
Randomized weakly admissible meshes

Yiming Xu1 and Akil Narayan1,2

1Department of Mathematics, University of Utah, yxu@math.utah.edu
2Scientific Computing and Imaging Institute, University of Utah, akil@sci.utah.edu

Abstract

A weakly admissible mesh (WAM) on a continuum real-valued domain is a sequence of
discrete grids such that the discrete maximum norm of polynomials on the grid is compara-
ble to the supremum norm of polynomials on the domain. The asymptotic rate of growth
of the grid sizes and of the comparability constant must grow in a controlled manner. In
this paper we generalize the notion of a WAM to a hierarchical subspaces of not necessarily
polynomial functions, and we analyze particular strategies for random sampling as a tech-
nique for generating WAMs. Our main results show that WAM’s and their stronger variant,
admissible meshes, can be generated by random sampling, and our analysis provides con-
crete estimates for growth of both the meshes and the discrete-continuum comparability
constants.

Keywords: Admissible meshes, Discrete meshes, Random sampling

1 Introduction

Generating a discrete set to approximate a continuum is a task that arises in many areas of
applied computational science. A concrete example is that of computing a so-called weakly
admissible (discrete) mesh for polynomials. Given a compact domain D ⇢

d and a fixed
n 2 , consider a discrete set An ⇢ D such that

sup
x2D

|p(x)|  Cn max
x2An

|p(x)| , p 2 Pn, (1)

where Pn is the subspace of algebraic d-variate polynomials of degree n or less, and Cn is some
finite constant that may depend on n. With Nn := dimPn, any sequence of meshes {An}

1
n=1

is called a weakly admissible mesh (WAM) [4] if there exist absolute constants a, b, C,C
0
< 1

such that |An|  CN
a
n and Cn  C

0
N

b
n for all n 2 . It is an admissible mesh (AM) if b = 0

(see Definition 2.1 for more formal statements). An “optimal” WAM would boast the smallest
values of these exponents, a = 1, b = 0, since large a implies increased growth of the mesh as n
increases, and large b implies increased growth of the discrete-continuum equivalence constant
as n grows.

Note that the reverse inequality is straightforward (with constants 1), so that a weakly ad-
missible mesh yields equivalences between continuous and discrete supremum norms. This fact
has been used to great e↵ect in generating provably attractive meshes for polynomial approxi-
mation. However, it can be relatively di�cult to generate such meshes for general domains D,
and all existing constructions are essentially deterministic in nature.

The purpose of this article is to show that random sampling (i.e., comprised of independent
and identically-distributed samples) can be used to generate meshes that are weakly admissible
or admissible, and to prescribe a minimal number of required samples so that one can achieve
inequalities of the form (1) with high probability, and with constants Cn whose large-n behavior
is known. We also provide a straightforward generalization of WAM’s to non-polynomial spaces,
and all our results apply in this case. When d is “small”, say 2 or 3, then one can use geometric
analysis to construct deterministic grids that satisfy WAM properties [3]. When d is larger,
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using such analysis becomes di�cult, or at least the complexity of corresponding computational
algorithms su↵er the curse of dimensionality. However, in high-dimensional spaces one can
frequently generate random samples from a domain without explicit knowledge of the geometry
(e.g., rejection sampling or Markov Chain Monte Carlo methods). In some special cases there are
algorithms that require only linear complexity in d to generate each sample. When it is feasible
for meshes to be randomly generated, one supposes that a large enough number of samples can
be used to form WAM’s. We provide quantitative analysis for this procedure.

Our contributions in this article are twofold. We first generalize the notion of weakly admis-
sible meshes to general hierarchical subspaces {Vn}

1
n=0, i.e., Vn ⇢ Vn+1 with Nn := dim(Vn).

This generality allows us to consider generating meshes for approximation problems involving
subspaces spanned by very general functions, not just polynomials. The general algorithmic
procedure we consider in this article is as follows: With {⇢n}

1
n=0 some sequence of probability

measures, let An be generated randomly as |An| iid samples from ⇢n for each n. Our main
results show that, for specific choices of ⇢n and |An|, this procedure generates weakly admissible
meshes. A summary of these results is as follows: Given a(ny) probability measure µ on n

with closed support D such that {Vn}
1
n=0 ⇢ L

2
µ(D), and any ✏ > 0, the following statements are

true with probability 1.

• Let ⇢n ⌘ µ for all n. Then |An| can be chosen so that a = q
⇤ + ✏ and b = q

⇤
/2 + ✏, and

hence such An form a WAM. See Theorem 3.4.

• Let ⇢n = µVn , where the latter is defined later in (5). Then |An| can be chosen so that
a = 1 + ✏ and b = q

⇤
/2 + 1

2 + ✏, and hence such An form a WAM. See Theorem 3.8.

• Assume D is convex and compact, and that the elements of Vn for each n are smooth.
Let ⇢n = ⌫n, where the latter is defined later in (13). Then |An| can be chosen so that
a = p

⇤ + ✏ and b = 0, and hence such An form an AM. See Theorem 4.3.

Above, q⇤ is the asymptotic log-ratio of the Bernstein-Markov factor of the space Vn and Nn (see
(9)), and p

⇤ roughly measures the growth rate of certain weighted covering numbers of D relative
to Nn (see (15)). Both q

⇤ and p
⇤ depend only on the prescribed measure µ and the hierarchical

spaces Vn. The sampling measure µVn introduced above was utilized in [7] to construct least
squares approximations via random sampling. Due to the generality of our results, the first
two results above are weaker than some existing results for polynomials, e.g., in [4]. We will
elaborate on these statements in Section 2.

As a specialization of our hierarchical subspaces Vn, our methodology can be used to generate
WAMs for polynomial spaces more exotic than the total degree spaces Pn. The lower bound on
|An| to achieve (1) is dimPn, but many other hierarchical polynomial spaces have much smaller
dimension. For example, the dimension of the subspace Hn containing d-dimensional functions
spanned by homogeneous polynomials whose multi-index exponents lie in a hyperbolic cross
index set of order n behaves like

dimHn ⇠ n logd�1
n ⌧

✓
n+ d

d

◆
= dimPn,

where the inequality is true for large n and d > 1 is large. Thus, an optimal discrete grid for
a WAM has size comparable to dimHn, which can be significantly smaller than grids from a
WAM generated for Pn.

The rest of this article is organized as follows. In Section 2, we introduce the notation and
definitions. A few examples illustrating the definitions are provided to facilitate understanding.
In Section 3, we borrow the idea of the near-isometry property of random matrices to obtain
a sampling measure that generates weakly admissible meshes with exponents a = q

⇤ + ✏ and
b = q

⇤
/2 + ✏, and then appropriately reweight the measure to make a near-optimal at mild

cost on b: a = 1 + ✏ and b = q
⇤
/2 + 1/2 + ✏. In Section 4, we introduce a novel sampling

strategy to generate admissible meshes, and our analysis lies in a probabilistic argument using
so-called weighted covering numbers. In Section 5, we provide numerical simulations to support
our theoretical findings.
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µ,D probability measure on d and D = supp µ

V N-dimensional subspace of functions in L2
µ(D)

µV the V -induced measure on D

Kµ(V ), �(x) the Bernstein-Markov factor for V in L2
µ(D), and the normalized V -Christo↵el function

Rn square root of the sum of Christo↵el functions induced by the partial derivatives

⌫n the Rn-induced measure (weighted by Rd
n)

W N-dimensional space of functions in V weighted by the Christo↵el function

vi, wi any orthonormal basis for V in L2
µ, and for W in L2

µV
, respectively

A, M A finite set in D of size M

AA M ⇥ N Vandermonde-like matrix associated with vn on A
k · k2,µ, k · k1 L2

µ(D) norm, and L1(D) norm, respectively

k · k2,A, k · k1,A Discrete `2 and `1 norms, respectively, on A

Table 1: Notation used throughout this article.

2 Notation

Let d 2 be fixed. Consider a probability measure µ on d whose support is denoted D ✓
d.

We do not require any particular conditions onD at present, but the results in Section 4 regarding
admissible meshes require compactness of D. The Hilbert space L

2
µ(D; ) is endowed with the

inner product and norm

hf, giµ :=

Z

d

f(x)ḡ(x)dµ(x), kfk
2
2,µ := hf, fiµ .

The supremum norm on D for functions f is

kfk1 = sup
x2D

|f(x)| .

Note D may be unbounded. If A ⇢ D is a size-M set of points, we define discrete L
2 and L

1

norms as

kfk
2
2,A :=

1

M

X

x2A
|f(x)|2, kfk1,A := max

x2A
|f(x)| .

Let V be an N -dimensional subspace of functions in L
2
µ(D). We can choose an associated

orthonormal basis v1, . . . , vN 2 V . Let �x denote the x-centered Dirac delta distribution. For
any x 2 D, the V -valued function

K (x, ·) =
NX

i=1

v̄i(x)vi(·),

is the V -Riesz representor of �x in L
2
µ. For any v 2 V , we have

|v(x)| =
���hv,K (x, ·)iµ

���  kvk2,µ kK (x, ·)k2,µ = kvk2,µ

vuut
NX

i=1

|vi(x)|2.

And so,

kvk
2
2,µ  kvk

2
1  Kµ(V ) kvk22,µ , Kµ(V ) := kK(x, x)k1 . (2)

where the lower inequality above holds since µ is a probability measure. Throughout this article
we assume that Kµ(V ) is finite, which excludes, e.g., polynomials on unbounded domains. The
optimal (smallest) value of the equivalence factor Kµ(V ) is N :

Kµ(V ) =

�����

NX

i=1

|vi(x)|
2

�����
1

�

NX

i=1

kvi(x)k
2
2,µ = N.
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If V is chosen as a space of polynomials up to a certain degree, selecting µ as a so-called optimal
measure achieves this optimal factor [1]. We also define

R(x) =

 
NX

i=1

krvi(x)k
2

!1/2

Rµ(V ) = kR(x)k1, (3)

where k · k is the Euclidean norm on vectors. This function will play a role in our analysis
involving covering numbers. In the following discussion, we assume that R(x) is strictly positive
on D.

2.1 Weighted spaces and induced probability measures

The L
2
µ-L

1 equivalence established by (2) can be improved to the optimal equivalence if one
considers weighted spaces: For a finite-dimensional V with L

2
µ-orthonormal basis vi, define the

(L2) Christo↵el function

�(x) = �V,µ(x) =
N

K(x, x)
=

N
PN

i=1 |vi(x)|
2
,

and consider the associated space of weighted elements from V :

W :=
p

�(x)V :=
np

�v
�� v 2 V

o
(4)

We also define a weighted measure µV via

dµV (x) :=
1

�(x)
dµ(x) =

1

N
K(x, x)dµ(x), (5)

which is another probability measure on D with µV ⌧ µ. The functions wi = vi

p
�(x) are an

L
2
µV

(D)-orthonormal basis for W , and

KµV (W ) =

�����

NX

i=1

|wi(x)|
2

�����
1

= N,

so that µV is an optimal measure for W , and we have the optimal equivalence relation

kwk2,µV
 kwk1  N kwk2,µV

, w 2 W (6)

The measure µV has utility in recent computational strategies for constructing discrete least-
squares approximations [7]. In this article, we will call µV the V -induced measure for µ. The
term “induced” stems from historical context: For certain µ and polynomial spaces V , the
measure µV is an additive mixture of tensor-product measures; the univariate measures that
define the tensor-product measures in this case are similar to induced orthogonal polynomials
[9]. Sampling from such non-standard measures is computationally e�cient and feasible by
exploiting properties of orthogonal polynomials [13].

2.2 Polynomial spaces

We will sometimes be concerned with the special case when V is a subspace of polynomials. In
this specialized case we denote the space P as an N -dimensional space of polynomials. It is
convenient (but not necessary) to use multi-indices to define these spaces.

We let ↵ 2
d
0 denote a d-dimensional multi-index and use ⌃ ⇢

d
0 to denote a finite set of

multi-indices. Associated to any ⌃, we define the subpsace of algebraic polynomials spanned by
monomials:

P⌃ := span {x↵
| ↵ 2 ⌃} (7)

4



A particularly special set of multi-indices are those corresponding to the total-degree space of
polynomials:

⌃n =
�
↵ 2

d
0 | |↵|  n

 
, n 2 0.

We will use the abbreviation Pn := P⌃n .
Finally, we note that there are many finite-dimensional polynomial spaces that cannot be

written in the form (7). This is a deficiency in our presentation style in that we emphasize the
specific class of subspaces (7). However, all our theoretical results extend to general polynomial
subspaces.

2.3 WAM’s for general hierarchical subspaces

We generalize the notion of admissibility to general hierarchical subspaces. Let {Vn}
1
n=0 denote

any sequence of finite-dimensional hierarchical subspaces, i.e., Vn ⇢ Vn+1 and dimVn < dimVn+1

for all n. We set

Nn := dimVn,

which is a sequence of strictly increasing positive integers.

Definition 2.1 (Weakly admissible meshes for hierarchical spaces). Let D be a closed set in d.
Consider {An}

1
n=0 a collection of finite subsets of D. Assume there is a collection of constants

Cn, n � 0, such that

• kvk1  Cnkvk1,An for all v 2 Vn

• Cn = O
�
N

b
n

�
for some b < 1.

• |An| = O (Na
n) for some a < 1.

Then {An}
1
n=0 is called a weakly admissible mesh (WAM). It is called an admissible mesh (AM)

if b = 0.

Setting Vn = Pn, our definition above is consistent with the one used in [3]. The optimal
value of the exponent b is b = 0, and such meshes are known to exist for domains exhibiting a
polynomial Markov inequality [4], although the construction relies on grids that achieve certain
fill distances and can thus be cumbersome for su�ciently complex domains using a deterministic
approach. The optimal value of the exponent a in general is a = 1 since the inequality

kpk1  Cnkpk1,An , p 2 Vn (8)

holds for some finite Cn only if A is determining for Pn (i.e., for any p 2 Vn, p(x) = 0 for all
x 2 A implies p ⌘ 0).

Note that in the modified definition D is allowed to be unbounded, meaning that WAM’s
for Vn are only sensible if Vn contains functions that are bounded on D. This subtlety will be
reiterated when we discuss random sampling for generating admissible meshes. In the remainder
of this paper, we will refer to the above definition when speaking of a WAM.

We will make a further assumption on the spaces Vn that involves the L2
µ machinery we have

introduced, namely that they satisfy

q
⇤ := q

⇤ (µ, {Vn}
1
n=0) = lim sup

n!1

logKµ(Vn)

logNn
< 1. (9)

Note that since Kµ(Vn) � dimVn = Nn, then q
⇤
� 1. Our main results using concentration of

measure characterize the WAM exponents a and b via proportionality to q
⇤, and thus small q⇤

is desirable. Requiring finite q
⇤ can be related to similar notions in the polynomial context. If

we choose Vn = Pn, then finite q
⇤ along with

|A| � Nn = dimPn =

✓
n+ d

d

◆
⇠

n
d

d!
(10)
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and the fact the N
1/n
n ! 1 implies

lim
n!1

Kµ(Pn)
1/n = 1,

showing that the pair (D,µ) satisfies the so-called Bernstein-Markov property. Pairs that satisfy
the Bernstein-Markov property have fundamental connections to various results in approximation
theory. (E.g., section 5 of [2] for a summary.) In fact, if µ satisfies a “density condition” then
it is known that q

⇤ is finite for sequences of fairly general polynomial subspaces [11, Corollary
4.2.2]. Thus, our requirement that q

⇤
< 1 is not unnatural, but is slightly stronger than a

Bernstein-Markov property when specialized to polynomials.
To illustrate values of q⇤, we summarize three special choices for µ and Vn.

Example 2.1 Complex exponentials
Let dµ(x) = dx on the unit cube D = [0, 1]d for arbitrary d � 1. For an arbitrary subset F ⇢

d

of size N given by F = {f1, . . . , fN}, define

vn(x) = exp [2⇡i(fn · x)] , V = span {vn}
N
n=1 ,

where fn · x is the standard componentwise inner product between two elements in d. Then
vn is an orthonormal basis for V , and Kµ(V ) = N , and thus we can choose any hierarchical
collection of subspaces Vn ⇢ Vn+1 defined by corresponding hierarchical sets Fn ⇢ Fn+1. We
then have

q
⇤ = lim sup

n!1

logKµ(Vn)

logNn
= lim sup

n!1

logNn

logNn
= 1,

thus achieving the optimal q⇤ factor. In this case we also have µV = µ. In the language of [1]
for polynomials, the measure µ is an optimal measure.

Example 2.2 Tensor-product Jacobi polynomials

Let dµ(x) /
Qd

j=1

�
1� x

(j)
�↵ �

1� x
(j)
��

on x 2 [�1, 1]d = D and ↵,� 2 0. Choosing
Vn = Pn, the space of d-variate polynomials of degree n or less, an orthonormal family for Vn is

provided by tensorized Jacobi polynomials. The estimates in [12] show that Kµ(Vn)  N
2(�+1)
n ,

where � = max {↵,�}. Therefore,

q
⇤ = lim sup

n!1

logKµ(Vn)

logNn
 lim sup

n!1

2(� + 1) logNn

logNn
= 2(� + 1).

Here, while Nn and Kµ(Vn) both grow exponentially in d, the quantity q
⇤ does not.

Example 2.3 Tensor-product Chebyshev polynomials
With µ and Vn as in the previous example, now take ↵ = � = �1/2, so that an orthonormal basis
is provided by tensorized Chebyshev polynomials. Univariate Chebyshev polynomials Tk(y),
y 2 [�1, 1], satisfy T

2
k (y)  2 for all k, so that Kµ(Vn)  Nn2d. Thus,

q
⇤ = lim sup

n!1

logKµ(Vn)

logNn
 lim sup

n!1

d log 2 + logNn

logNn
= 1.

Since q
⇤
� 1 always holds, we conclude that q

⇤ = 1. Note that the bound Kµ(Vn)  Nn2d

holds when Vn = P⌃ for any multi-index set ⌃. Thus, the behavior q⇤ = 1 holds for very general
hierarchical polynomial spaces. This suggests that the Chebyshev measure µ is n-asymptotically
optimal.

2.4 Weighted covering

Designing an AM, a stronger WAM with b = 0, via random sampling relies on generating grids
with good space-filling properties. A baseline is the uniform sampler, and the corresponding
su�cient sampling size can be obtained by analyzing the covering number of the domain. In
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the deterministic context, low discrepancy sequences [8] are a standard approach for “uniformly”
filling a volume with points. However, this approach is more di�cult when D is not a hypercube,
and so we will investigate randomized approaches via sampling. To understand how points
generated from an arbitrary measure fill the domain, we introduce the following definition of
weighted covering:

Definition 2.2 (f -weighted covering). Let D ⇢
d be compact and f : D ! + be a continuous

function, where + = (0,1). For r > 0, let Br(x) = {z 2
d : kz � xk2  r}. Let mf =

minu2D f(u) > 0. For y 2 D and r > 0, define

Fr(y) =
minz2Br(y)\D f(z)

mf
.

A set N ⇢ D is called an f -weighted ✏-covering of D if

D ⇢

[

y2N
Br(y,✏)(y) r(y, ✏) = max

c�0
min {✏Fc(y), c} . (11)

In particular, when f is a constant function, an f -weighted ✏-covering is the same as an ✏-
covering.

The definition of r(y, ✏) may look mysterious at first sight: The general idea behind the
f -weighted ✏-covering is to cover points in D using balls of radius proportional to f , with the
location(s) argminu2D f(u) covered by balls of radius ✏. However, under this definition points
within the same ball in a covering may have very di↵erent weights attached to them. To address
this, we require that the ratio between weight of any point in the same ball in a covering and
mf must be at least r/✏, where r the radius of the ball. Simultaneously, we wish to choose r as
large as possible (hence the max-min condition in (11)).

Since Fr(y) � 1 for any y 2 D and r > 0, then r(y, ✏) � ✏. This implies that any ✏-covering is
also an f -weighted epsilon covering. Also, for fixed ✏, Fc(y) is a continuous and non-increasing
function of c which evaluates to 1 for c � diam(D). Therefore,

r(y, ✏) = ✏Fr(y,✏)(y). (12)

It follows easily from (12) that r(y, ✏) is non-increasing in ✏. As an immediate consequence, for
0 < ✏1 < ✏2  1,

r(y, ✏1)

r(y, ✏2)
=

✏1Fr(y,✏1)(y)

✏2Fr(y,✏2)(y)
�

✏1

✏2
.

This implies that the radius of a weighted covering ball at a given point scales slower than ✏,
leading to a potentially better constant for the rate of covering number as ✏ ! 0, which is a
property that we exploit.

Denote Rn(x) as the function in (3) when V = Vn and choose f(x) = Rn(x)�1. Since Rn(x)
is positive on D, f(x) will satisfy the assumption in Definition 2.2 if Rn(x) is continuous. The
f -weighted covering number will be used to analyze the sampling properties of the Rn-weighted
probability measure on D which is defined as

d⌫n(x) =
R

d
n(x)R

D Rd
n(x)dx

dx x 2 D. (13)

Note that (13) is well-defined as long as Rn(x) 2 L
d(D). The measure ⌫n(x) plays a crucial role

in the design of sampling for admissible meshes. Let Sf,✏(D) be the set of f -weighted ✏-coverings
of D. For any N 2 Sf,✏(D), define

GN = sup
y2N

 
maxx2Br(y,✏)

f(x)

minx2Br(y,✏)
f(x)

!d

, (14)

7



which evaluates how “conservative” the f -weighted covering N is. A quantity that will appear
in our analysis for the AM exponents is

p
⇤ = lim sup

n!1

log
�
infN2Sf,✏(D) |N |GN

�

logNn
✏ = (3Rµ(Vn))

�1
, (15)

which we assume to be finite. The constant 3 is non-essential and can be replaced with any
constant greater than 2. Similar to q

⇤ for WAM’s, p⇤ will characterize the exponents for AM in
our result. Note that p⇤ is mostly of theoretical interest: Explicit estimation of p⇤ is essentially
impossible unless the underlying geometry of the domain is simple. For example, for Chebyshev
polynomials with d = 1, one can numerically verify that p⇤  1.70 (see Section 5).

3 Randomized weakly admissible meshes

3.1 Discrete randomized near-isometries

The main strategy for our approach comes in two parts: First we generate a finite mesh A that
emulates the L2

µ norm on V . We subsequently use that mesh and the L2-L1 equivalence relations
described earlier in order to transform comparability of k · k2,µ and k · k2,A into comparability
between k · k1 and k · k1,A. The first part of this strategy, the construction of A based on L

2
µ

properties, is the subject of this section.
With {vi}

N
i=1 an orthonormal basis for V , we require the following algebraic formulation: the

M ⇥N matrix AA has entries

(AA)m,i =
1

p
M

vi (xm) , A = {xm}
M
m=1 , (m, i) 2 [M ]⇥ [N ].

The problem of finding a discrete mesh capable of emulating the L2
µ norm is conceptually identical

to finding a stable discrete least-squares problem defined by the matrix A. We codify this in the
following theorem from [6] with a more explicit constant.

Theorem 3.1 ([6]). Let A = {Xm}
M
m=1, where the Xm are independent and identically dis-

tributed draws of a random variable distributed according to the probability measure µ. For any
r > 0 and 0 < � < 1, suppose that

M

logM
�

3(1 + r)

�2
Kµ(V ). (16)

Then

Pr
h���AT

AAA � I
��� � �

i
 2M�r

, (17)

where k · k is the induced (spectral) norm on matrices.

The quantity AT
AAA is the Gramian of the basis vi with respect to the discrete inner product

h·, ·i2,A, and thus (17) quantifies the L
2 proximity of a discrete measure supported on A to µ

on the space V . The sample count complexity (16) couples M and N with dependence on the
proximity parameter � and the success parameter r, but also involves the Bernstein-Markov
factor Kµ(V ). When V is a polynomial space defined by multi-index set ⌃, many standard
continuous probability measures yield extremely large Kµ(V ), often depending exponentially on
d and algebraically on the maximum polynomial degree in ⌃ [5].

The authors in [10, 14] note that introducing weights related to �(x) into the least-squares
algorithm would result in a procedure with optimal (minimal) sample count. The authors in [7]
propose a computationally feasible procedure for drawing samples from the induced measure µV

using this weighting idea, and arrive at the following result:

8



Theorem 3.2 ([7]). Let A = {Xm}
M
m=1, where the Xm are independent and identically dis-

tributed draws of a random variable distributed according to the probability measure µV . Intro-
duce weights !m := �V (x), and define the diagonal M⇥M matrix W with entries (W )m,m = !m.
With r and � as in Theorem 3.1, assume

M

logM
�

3(1 + r)

�2
N. (18)

Then

Pr
h���AT

AWAA � I
��� � �

i
 2M�r

. (19)

Note that the sample complexity (18) is near-optimal, up to the logM factor.
If a mesh A satisfies the conditions of either Theorem 3.1 or 3.2, then we can establish

equivalences between discrete and continuous L2 norms.

Corollary 3.1. 1. Suppose A is a mesh satisfying the conditions of Theorem 3.1. Then with
probability at least 1� 2M�r,

1

1 + �
kvk

2
2,A  kvk

2
2,µ 

1

1� �
kvk

2
2,A , v 2 V (20a)

2. Let A be a mesh satisfying the conditions of Theorem 3.2. Then with probability at least
1� 2M�r,

1

1 + �
kwk

2
2,A  kwk

2
2,µV


1

1� �
kwk

2
2,A , w 2 W, (20b)

where W is the space (4) of
p
�-weighted V functions.

Proof. We prove the second statement; the proof of the first statement is similar. For an arbitrary
w 2 W , represent w(x) =

PN
i=1 uiwi(x) according to the L2

µV
-orthonormal basis {wi}

N
i=1, so that

kwk2,µV
= kuk ,

for k · k the Euclidean norm on vectors. Also,

⇣p
WAAu

⌘

m
=

NX

i=1

r
� (Xm)

M
uiwi (Xm) =

1
p
M

NX

i=1

uiwi (Xm) =
1

p
M

w (Xm) .

Thus, kwk2,A =
���
p
WAAu

���. Assuming the complement of the probabilistic event in (19),

kwk
2
2,A =

���
p

WAAu
���
2
= uT

⇣
I +

⇣
AT

AWAA � I
⌘⌘

u

 kuk2 (1 + �) = (1 + �) kwk22,µV
.

This establishes the lower inequality in (20b). The upper inequality is shown in the same way:

kwk
2
2,A =

���
p

WAAu
���
2
= uT

⇣
I �

⇣
I �AT

AWAA

⌘⌘
u

� kuk2 (1� �) = (1� �) kwk22,µV
.

3.2 Sampling from µ

Since V is a subspace of L2
µ, it is reasonable to believe that taking a large number of iid samples

from µ will eventually allow one to approximate the L
1 norm of any element in V . Theorem

3.3 below shows that for a fixed subspace V , iid samples yield an equivalence relation between
the discrete and continuous maximum norms.

9



Theorem 3.3. Let V be a given subspace of dimension N , and assume that M is large enough
to satisfy (16) for some � 2 (0, 1) and r > 0. Let A have size M with elements comprised of iid
samples from µ. Then, with probability 1� 2M�r, we have

kvk1 

r
Kµ(V )

1� �
kvk1,A , v 2 V. (21)

Proof. For any v 2 V , we have

kvk
2
1

(2)
 Kµ(V ) kvk22,µ

(20a)


Kµ(V )

1� �
kvk

2
2,A 

Kµ(V )

1� �
kvk

2
1,A , (22)

where the second inequality holds with probability 1� 2M�r.

Note that this theorem appears quite suboptimal: not only do we require M/N to scale
like Kµ(V ), but we also pay a penalty factor of Kµ(V ) in the norm comparability result (21).
Nevertheless, we can use this construction to form weakly admissible meshes: Theorem 3.3
together with the Borel-Cantelli lemma yields the following result.

Theorem 3.4. Let {Vn}
1
n=1 be given. For each n, define

An := {Xm}
Mn

m=1 , Xm ⇠ µ.

Assume that Mn = cKµ(Vn) logNn for some c > 25q⇤. Then, with probability 1, {An}
1
n=1 forms

a WAM for Vn and µ with exponents a = q
⇤ + ⌧ for any ⌧ > 0, and b = q

⇤
/2 + ⌧ .

Proof. We use the abbreviation Kn := Kµ(Vn) to reduce notational clutter. Set � = 1/2. Our
assumptions ensure that

lim inf
n!1

Mn

Kn logMn
= lim inf

n!1

c logNn

logKn + log(c logNn)

= lim inf
n!1

c logNn

logKn

(9)
=

c

q⇤
> 25 > 12(1 + r)

for 1 < r < 13/12, so that for su�ciently large n,

Mn

logMn
� 12(1 + r)Kn =

3(1 + r)

�2
Kn.

The above condition verifies that (16) is satisfied. It follows from Theorem 3.3 that for any ⌧ > 0
and 1 < r < 13/12, with probability 1�M

�r
n ,

kvk1 

q
2Kµ(V ) kvk1,A  C(⌧)Nq⇤/2+⌧

n kvk1,A , v 2 V, (23)

where C(⌧) > 0 is some constant depending only on ⌧ . Define En as the probabilistic event that
the above inequality holds. Since

1X

n=1

Pr(Ec
n)  2

1X

n=1

M
�r
n  2

1X

n=1

n
�r

< 1,

by the Borel-Cantelli Lemma, the probability that Ec
n happens infinitely often is 0, i.e., for any

realization of the {An}
1
n=1, then with probability 1, (23) holds for all n su�ciently large. The

proof is complete.

One can rephrase Theorem 3.4 as a probabilistic statement to obtain finer control on values
of n that lie in the asymptotic regime. However, due to the lim sup e↵ect it is di�cult to control
this for every n.

10



3.3 Sampling from µV

Meshes generated by randomly sampling from µ are suboptimal, as shown above. The WAM
exponents of such meshes are e↵ectively a = q

⇤ and b = q
⇤
/2. We can entirely remove the depen-

dence on q
⇤ by considering weighted meshes. This section essentially repeats the computations

of the previous section, but by replacing µ with µV and V with W . Since the proofs are almost
identical to the ones in the previous section, we omit them for brevity.

Theorem 3.5. With V given, let {Xm}
M
m=1 be a sequence of iid random variables distributed

according to µV . Assume that M satisfies (18) for some r > 0 and � < 1. Then with probability
at least 1� 2M�r,

kwk1 

r
N

1� �
kwkA,1 , w 2 W (24)

The above shows that a sequence of randomizes grids as constructed above form a weakly
admissible mesh.

Theorem 3.6. Let {Vn}
1
n=1 be given. For each Vn, define

An := {Xn,m}
Mn

m=1 , Xn,m ⇠ µVn .

Assume that Mn = 25Nn logNn. Then {An}
1
n=1 forms a weakly admissible mesh for Wn with

exponents a = 1 + ⌧ for any ⌧ > 0, and b = 1
2 .

The WAM’s described above provide ways to bound supremum norms of functions in the
weighted space W . We can translate these back into estimates on the space V by paying a mild
penalty factor.

Theorem 3.7. Let µ, D, and V be given, and assume that 1 2 V . Let {Xm}
M
m=1 be iid samples

from µV . If, for some r > 0 and 0 < � < 1, M is large enough to satisfy (16), then with
probability at least 1� 2M�r,

kvk1 

p

N

r
Kµ(V )

1� �
kvkA,1 , v 2 V.

Proof. Since V contains constant functions, then let v1 = 1 be a particular choice of the first
element in an orthonormal basis for V . Then we have

�(x) =
N

PN
n=1 v

2
n

 N.

Any w 2 W can be written as
p
�v for some v 2 V , and so

kwk1 � kvk1 inf
x2D

�(x) � kvk1

s
N

Kµ(V )
(25a)

Likewise,

kwk1,A 

���
p

�

���
1,A

kvk1,A 

p

N kvk1,A . (25b)

Chaining (24) with relations (25) proves the theorem.

Finally, we can generate a WAM using the result above:

Theorem 3.8. Let µ, D, and {Vn}
1
n=1 be given, and assume that 1 2 Vn for some n. For each

n, define

An := {Xn,m}
Mn

m=1 , Xn,m ⇠ µVn .

Assume that Mn = 25Nn logNn. Then {An}
1
n=1 forms a weakly admissible mesh for Vn with

exponents a = 1 + ⌧ for any ⌧ > 0, and b = q⇤+1
2 .

11



4 Randomized admissible meshes

The previous section focuses on devising sampling strategies to obtain an optimal sampling size
at the expense of rendering the equivalence coe�cient Cn being reasonably large. Alternatively,
one may expect Cn = O(1) when the sampling size is su�cient, so that randomly generated grids
almost fill the domain. This is similar to the idea in [4] but avoids deterministically discretizing
domains with complicated geometry. With random samples, such a result is not possible using
our previous analysis. One expects that attaining an admissible mesh from random samples is
asymptotically possible (i.e., as the sample count increases to infinity) for all sampling measures
that are absolutely continuous with respect to the uniform measure on D. However, in terms
of finite-sample behavior, di↵erent measures may demonstrate drastically unequal performance.
We will begin our discussion by taking the uniform measure as the baseline, from which we will
learn how to design a sampling measure that achieves better e�ciency. Since our analysis is
based on a covering argument, we assume in the following that D is both convex and compact.

4.1 Sampling from the uniform measure

Suppose that An is a set of points independently and uniformly sampled from D. The next
theorem shows that when Mn is logarithmically larger than the cardinality of some optimal
covering of D, with overwhelming probability, b = 0.

Theorem 4.1. Given µ, D, and {Vn}
1
n=1, define

An := {Xm}
Mn

m=1 Xm ⇠ Unif(D).

Assume that D is compact and convex and elements in Vn are twice continuously di↵erentiable.
Fix k > 2 and r > 1. Let Ln = max{Nn, |Nn|}, where Nn ⇢ D is a (kRµ(Vn))�1-covering of D.
If Mn � (r + 1)Ln logLn, then with probability at least 1�N

�r
n ,

kvk1 
k

k � 2
kvkAn,1.

Proof. Take

v(x) =
X

i2[Nn]

hv, viiµvi(x) 2 Vn.

Without loss of generality assume kvk2,µ =
P

i2[Nn]
hv, vii

2
µ = 1, otherwise consider v/kvk2,µ.

For x, y 2 D, the segment connecting x and y is in D under the convexity assumption. Set
L = ky � xk2 and z = L

�1(y � x). Applying the Fundamental Theorem of Calculus, we have

|v(y)� v(x)| =

�����

Z L

0
hrv(x+ tz), zidt

����� (26)

=

������

X

i2[Nn]

hv, viiµ

Z L

0
hrvi(x+ tz), zidt

������



0

@
X

i2[Nn]

�����

Z L

0
hrvi(x+ tz), zidt

�����

2
1

A
1/2



0

@
X

i2[Nn]

L

Z L

0
|hrvi(x+ tz), zi|2 dt

1

A
1/2



0

@L

Z L

0

X

i2[Nn]

krvi(x+ tz)k2 dt

1

A
1/2

 LRµ(Vn), (27)

12



which implies that |v(x)� v(y)| < ✏ if kx� yk2 < Rµ(Vn)�1
✏. Take ✏ = 1/k. To reduce clutter,

let

⌘ = (kRµ(Vn))
�1

. (28)

Suppose that Nn ⇢ D is an ⌘-covering of D with |Nn| � Nn, and An ⇢ D satisfies

An \B⌘(y) 6= ? 8y 2 An. (29)

It follows from the triangle inequality that for every element in D one can find a point in An

such that their distance is at most 2⌘. Therefore,

kvk1
kvkAn,1

k>2


kvk1

kvk1 �
2
k

kvk1�kvk2,µ=1


k

k � 2
. (30)

We now show that for su�ciently large Mn, with high probability An satisfies (29). In fact, for
y 2 Nn,

Pr
⇥
B⌘(y) \ {Xm}m2[Mn] = ?

⇤

= (Pr [B⌘(y) \X1 = ?])Mn


✓
1�

1

|Nn|

◆Mn

 e
� Mn

|Nn| .

Taking a union bound over y yields that the probability of An not satisfying (29) is at most

|Nn|e
� Mn

|Nn| . Setting Mn = (r + 1)|Nn| log |Nn| completes the proof.

Remark 4.1. To get an idea of how large Mn grows as n ! 1, take D = B1(0) ⇢ d. In this
case,

Ln  (3kRµ(Vn))
d
,

so that Mn � (r + 1)d(3kRµ(Vn)d log(3kRµ(Vn)) ensures the result in Theorem 4.1 holds, i.e.,
Mn = O(dRµ(Vn)d logRµ(Vn)).

4.2 Sampling from ⌫n

Note that in the derivation of (27) the integrand is directly bounded by Rµ(Vn), which is a global
quantity of Vn. We now propose an alternative random sampling strategy which aims to exploit
the local structures of Vn so that the analysis of covering becomes more e�cient. Precisely, we
wish to cover points with large gradients using smaller balls. Keeping the steps before the last
step in (27) yields

|v(y)� v(x)|  L

 
1

L

Z L

0
R

2
n(x+ tz)dt

! 1
2

| {z }
(⇤)

. (31)

When L is small, (⇤) ⇡ Rn(x), so the local Lipschitz constant of v at x is bounded by Rn(x).
In other words, evaluation of v at points within Rn(x)�1

✏ distance to x change from v(x) by
approximately ✏. Based on this observation, we propose an alternative sampling strategy making
use of such local information, resulting in the Theorem below.

Theorem 4.2. Under the same assumption in Theorem 4.1, let

Xm ⇠ ⌫n,

where ⌫n is defined in (13). Fix k > 2 and r > 1. Let L̃n = max{Nn, |Nn|}, where Nn ⇢ D

is a R(x)�1-weighted (kRµ(Vn))�1-covering of D. If Mn � (r + 1)GNnL̃n log L̃n, then with
probability at least 1�N

�r
n ,

kvk1 
k

k � 2
kvkAn,1.

13



Before giving the proof, we note that Theorem 4.2 combined with assumption (15) immedi-
ately implies the following result:

Theorem 4.3. Under the same condition as in Theorem 4.2 and (15), with probability 1, the
sequence {An} generated by ⌫n forms an AM with a = p

⇤ + ⌧ and b = 0 for any ⌧ > 0.

Proof. Assumption (15) implies that for any ⌧ > 0, there exists a sequence {Nn} such that Nn

is an f -weighted (3Rµ(Vn))�1-covering of D and

lim sup
n!1

log (|Nn|GNn)

logNn
< p

⇤ +
⌧

2
.

The corresponding Mn derived in Theorem 4.2 satisfies

lim sup
n!1

Mn

logNn
= lim sup

n!1

✓
log(r + 1)

logNn
+

log (|Nn|GNn)

logNn
+

log log (|Nn|+Nn)

logNn

◆

< p
⇤ +

⌧

2
.

Thus, there exists some constant C⌧ such that Mn  C⌧N
p⇤+⌧
n . On the other hand, Theorem

4.2 tells us that for every n with sampling size Mn,

Pr [kvk1 > 3kvkA,1]  N
�r
n  n

�r
.

An application of the Borel-Cantelli lemma finishes the proof.

Proof of Theorem 4.2. Assume that kvk2,µ =
P

i2[Nn]
hv, vii

2
µ = 1. Let us consider an f -weighted

⌘-covering of D with

f = Rn(x)
�1

, (32)

where ⌘ is defined in (28). Note that every ⌘-covering of D is also an f -weighted ⌘-covering of D,
see Section 2.4. With some abuse of notation, from now on let Nn be an f -weighted ⌘-covering
of D. A similar computation as before shows that if An ⇢ D has non-empty intersection with
Br(y,⌘)(y) for every y 2 Nn, then

kvk1 
k

k � 2
kvkAn,1. (33)

To see this, note that the non-empty intersection property implies that for x 2 argmaxu2D v(u),
there exist y 2 Nn and x

0
2 An such that max{|y � x|, |y � x

0
|}  r(y, ⌘). Therefore,

kvkAn,1 � v(x0) � v(x)� |v(x)� v(y)|� |v(y)� v(x0)|

(31)
� kvk1 � 2r(y, ⌘) max

z2Br(y,⌘)(y)
Rn(z)

(12)
= kvk1 � 2⌘Fr(y,⌘)(y) max

z2Br(y,⌘)(y)
Rn(z)

= kvk1 �
2

k

kvk1�kvk2,µ=1
> kvk1 �

2kvk1
k

,

which shows (33).
We next construct such sets An satisfying the non-empty intersection property using random

sampling. To this end, we draw Xm independently from a probability distribution ⌫n which is
defined in (13). It is easy to check that for y 2 Nn,

Pr
⇥
Xm 2 Br(y,⌘)(y)

⇤
=

R
Br(y,⌘)(y)

R
d
n(x)dxR

D Rd
n(x)dx

�

R
Br(y,⌘)(y)

R
d
n(x)dx

P
z2Nn

R
Br(z,⌘)(z)

Rd
n(x)dx

. (34)
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The numerator of the last term in (34) can be bounded from below as

Z

Br(y,⌘)(y)
R

d
n(x)dx � |Br(y,⌘)(y)| min

x2Br(y,⌘)(y)
R

d
n(x)

= �d(r(y, ⌘))
d min
x2Br(y,⌘)(y)

R
d
n(x)

(12)
= �d⌘

d
Fr(y,⌘)(y)

d min
x2Br(y,⌘)(y)

R
d
n(x)

= �d

 
minx2Br(y,⌘)(y) Rn(x)

kmaxx2Br(y,⌘)(y) Rn(x)

!d

� �d
1

kdGNn

, (35)

where �d is the volume of the unit ball in d. The denominator of the last term in (34), on the
other hand, can be bounded from above by

X

z2Nn

Z

Br(z,⌘)(z)
R

d
n(x)dx 

X

z2Nn

|Br(z,⌘)(z)| max
x2Br(z,⌘)(z)

R
d
n(x) (36)

=
X

z2Nn

�d

✓
r(z, ⌘) max

x2Br(z,⌘)(z)
Rn(x)

◆d
(12)
=

|Nn|�d

kd
.

Plugging (35) and (36) into (34) yields

Pr
⇥
Xm 2 Br(y,⌘)(y)

⇤
�

1

GNn |Nn|
.

By a similar reasoning one can show that by taking Mn = (r + 1)GNn |Nn| log |Nn|, with prob-
ability at least 1 � |Nn|

�r, {Xm} intersects every ball in the covering of Nn, completing the
proof.

5 Numerical simulations

We provide simulations to demonstrate the e↵ectiveness of random sampling strategies for gen-
erating WAMs and AMs proposed in the previous sections. Particularly, we will compare the
performance of the Rn-weighted sampling with the uniform sampling in a specific case in 1D
through an examination of the f -weighted covering number.

Take D = [�1, 1] and Vn as the the space of Jacobi polynomials with parameters (↵,�) and
degree less than or equal to n, i.e.,

dµ

dx
/ (1� x)↵(1 + x)� x 2 (�1, 1).

In the rest of the discussion we assume ↵ = � = � > �1, so that Vn becomes a single-index
family of orthogonal polynomials on [�1, 1]. For example, taking � = 0,⌥0.5 yields the Legendre
polynomials and the first/second type of Chebyshev polynomials, respectively.

In the first simulation, we choose n = 12 and � = �0.5, 0, 0.5 and 1. The meshes are generated
independently by uniform sampling on [�1, 1], the Rn(x)-weighted sampling ⌫n / Rn(x), µ and
µV , respectively. For a fixed mesh, we generate 5000 random unit L

2
µ-norm functions v 2 Vn;

i.e., with {vi})ni=1 an orthonormal basis for Vn, we sample expansion coe�cients uniformly from
the unit sphere in n, i.e.,

(hv, vii)i2[n] ⇠ Unif(Sn�1).

We record the maximal ratio between kvk1 and kvkAn,1 among the 5000 functions for each
mesh size and treat it as an approximate estimate for Cn defined in (1). The experiment is
repeated 100 times with its 0.05-0.5-0.95 quantiles reported in Figure 1.

Overall, the Rn-weighted sampling exhibits decent performance, but slightly underperforms
compared to sampling with µ and µV when � = �0.5. This is perhaps not surprising since in
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Figure 1: Empirically computed supv2Vn

kvk1
kvkAn,1

(log-scale) on meshes generated by the uniform sampling,

the Rn-weighted sampling, µ and µV . � = �0.5 (Top Left), � = 0 (Top Right), � = 0.5 (Bottom Left) and � = 1
(Bottom Right).

this case µ is the arcsine measure, which is the asymptotic limit of optimal measures [1], and
hence should exhibit excellent approximation properties. When � = 0.5 and � = 1, Rn-weighted
sampling demonstrates substantial performance improvement over the alternative methods. To
understand why this happens, we analyze the bound on Mn obtained in Theorem 4.1 and
Theorem 4.2, which boils down to estimating covering numbers. In the sequel, we will derive a
useful estimate for the f -weighted (kRµ(Vn))�1-covering number for di↵erent n’s and �’s and
compare it to the classical covering number with the same parameters. Let us fix k = 3 for
convenience.

Since D = [�1, 1], its classical (kRµ(Vn))�1-covering number can be explicitly computed as
dkRµ(Vn)e. To estimate the f -weighted covering number (where f is the same as defined in
(32)), consider an interval partition {Ij}j2[J] of the domain: D = [�1, 1] = [j2[J]Ij . For y 2 Ij ,

min

⇢
minz2Ij f(z)

k
, dist(y, @Ij)

�
 r(y, (kRµ(Vn))

�1) 
maxz2Ij f(z)

k
,

where @Ij is the set of the boundary points of Ij . It is easy to check that if

2maxz2Ij f(z)

k
= 2

✓
kmin

z2Ij
Rn(z)

◆�1

 |Ij | 8j 2 [J ],

then the f -weighted (kRµ(Vn))�1-covering number is bounded from above by

X

j2[J]

⇠
k|Ij |

2minx2Ij f(x)

⇡
, (37)
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and bounded from below by

X

j2[J]

k|Ij |

2maxx2Ij f(x)
. (38)

We now construct a partition {Ij}
J
j=1 of [�1, 1] via level sets of the weight f . Let Mf =

maxu2D f(u), mf = minu2D f(u), and J =
l
log2

Mf

mf

m
. Write

[�1, 1] =
[

j2[J]

�
x 2 D : 2�j

Mf < f(x)  2�j+1
Mf

 
| {z }

Ij

=
[

j2[J]

[

s2[rj ]

Ij,s, (39)

where Ij,s are disjoint intervals such that Ij = [s2[rj ]Ij,s, and rj is some finite integer. This is
possible since f(x) is a positive smooth function on [�1, 1], see Figure 2. We have partitioned
the interval [�1, 1] by Ij,s; note that each Ij is not an interval, but a union of several disjoint
intervals. rj denotes the number of connected components in Ij . Thanks to the dyadic choice
of level sets, (37) and (38) only di↵er by a multiple constant 2 (ignoring the ceiling e↵ect),
suggesting that (37) is a tight estimate. With such a construction, (37) can be further bounded
as

X

j2[J]

X

s2[rj ]

⇠
k|Ij,s|

2max {2�jMf ,mf}

⇡


X

j2[J]

✓⇠
k|Ij |

2max {2�jMf ,mf}

⇡
+ rj

◆
. (40)

The extra rj term above comes from taking into account the ceiling e↵ect as well as boundary
terms. Although the dyadic choice of Ij in (39) may not be the best (kRµ(Vn))�1-covering,
it guarantees that GNn  2, which together with (40) yields an upper bound for the Mn in
Theorem 4.2. This allows us to numerically obtain an upper bound for the exponent a which is
defined in Definition 2.1 but not specified in Theorem 4.2.
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Figure 2: Graph of the weight function f(x) = Rn(x)�1 when Vn = P12 and � = �0.5, 0, 0.5, 1. In all cases,
the minimum of f(x) is positive and achieved at the boundary of [�1, 1].

We now use the idea above to estimate the required mesh size Mn given in Theorem 4.1

(M (Uniform)
n = 3Ln logLn) and Theorem 4.2 (M (Rn-weighted)

n = 3GNnL̃n log L̃n) for the uniform
and Rn-weighted sampling. Since f depends on both n and �, we will vary both parameters
in the simulation to investigate their corresponding e↵ect on Mn. Particularly, we will take
� 2 {�1 + i/2 : i 2 [12]} and n 2 {20s : s 2 [15]}. Note that Mn quickly becomes extremely
large as n increases. Thus we compute logMn instead of Mn for each n. Moreover, the exponent
a, if it exists, is close to the slope of the scatterplot of (log n, logMn), which can be estimated
via least-squares line fit. In Figure 3, we plot logMn against log n for a selection of �’s. The
estimated slopes a for all cases of � can be found in Table 2.
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To compare the e�ciency between the uniform sampling and the Rn-weighted one, note that
for a fixed error (n�2 for instance), the ratio between the required sampling size Mn in Theorem
4.1 and Theorem 4.2 is

M
(Uniform)
n

M
(Rn-weighted)
n

⇡
n
a(Uniform)

na(Rn-weighted) = n
a(Uniform)�a(Rn-weighted)

,

where a
(·) is the exponent defined in Definition 2.1 for the given method. This motivates us

to define the relative e�ciency of the Rn-weighted sampling over the uniform sampling as the
di↵erence between these exponents,

relative e�ciency := a
(Uniform)

� a
(Rn-weighted)

,

which can be approximated using Table 2. We plot the relative e�ciency of the Rn-weighted
sampling for di↵erent �’s in Figure 3. We see that Rn-weighted sampling is polynomially better
than uniform sampling in terms of the required sampling size. Such e↵ect becomes more and
more prominent when � increases from �0.5 to 1, which is consistent with Figure 1.
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Figure 3: Left: Scatterplot of (logn, logMn) for both the uniform sampling (Unweighted) and the Rn-weighted
(Weighted) sampling in the cases � = �0.5, 0, 0.5, 1. Right: Relative e�ciency of the Rn-weighted sampling over
the uniform sampling.

Weight parameter Uniform sampling Rn-weighted sampling
� Estimated exponent a Estimated exponent a
-0.5 2.70 1.68
0 3.19 1.69
0.5 3.67 1.85
1.0 4.14 2.19
1.5 4.61 2.63
2.0 5.07 3.12
2.5 5.52 3.58
3.0 5.97 4.04
3.5 6.41 4.51
4.0 6.85 4.96
4.5 7.28 5.40
5.0 7.71 5.85

Table 2: Least-squares estimate for a for both uniform sampling (Unweighted) and Rn-weighted (Weighted)
sampling in the case of di↵erent �’s.

Although we have observed that Rn-weighted sampling is theoretically and empirically supe-
rior to uniform sampling, our analysis suggests that this improvement has limits. For example,
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note that GNn � 1 and by definition, the f -weighted (kRµ(Vn))�1-covering number is bounded
from below (ignoring the ceiling e↵ect) by

L̃n �
k

Mf
=

mf

Mf
Ln.

Therefore, the relative e�ciency of the Rn-weighted sampling over the uniform sampling is
bounded from above by

relative e�ciency =
logM (Uniform)

n

log n
�

logM (Rn-weighted)
n

log n
(41)

=
log(3Ln logLn)

log n
�

log(3GNnL̃n log L̃n)

log n

. log (Mf/mf )

log n
.

If Mf/mf = O(n�) for some � > 0, then the above bound is asymptotically equivalent to

lim
n!1

log(Mf/mf )

log n
= �.

In this case, the Rn-weighted sampling is at most n� more e�cient than uniform sampling based
on the covering number analysis.
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