
Diffusion Transport Alignment

Andrés F. Duque1, Guy Wolf2, and Kevin R. Moon1

1 Utah State University, Logan UT, USA
2 kevin.moon@usu.edu.com

3 Université de Montréal; Mila - Quebec AI Institute, Montréal, Canada
guy.wolf@umontreal.ca

Abstract. The integration of multimodal data presents a challenge in
cases where the study of a given phenomena by different instruments or
conditions generates distinct but related domains. Many existing data
integration methods assume a known one-to-one correspondence between
domains of the entire dataset, which may be unrealistic. Furthermore,
existing manifold alignment methods are not suited for cases where the
data contains domain-specific regions, i.e., there is not a counterpart for
a certain portion of the data in the other domain. We propose Diffu-
sion Transport Alignment (DTA), a semi-supervised manifold alignment
method that exploits prior knowledge of between only a few points to align
the domains. After building a diffusion process, DTA finds a transporta-
tion plan between data measured from two heterogeneous domains with
different feature spaces, which by assumption, share a similar geometrical
structure coming from the same underlying data generating process. DTA
can also compute a partial alignment in a data-driven fashion, resulting
in accurate alignments when some data are measured in only one domain.
We empirically demonstrate that DTA outperforms other methods in
aligning multiview data in this semi-supervised setting. We also show
that the alignment obtained by DTA can improve the performance of
machine learning tasks, such as domain adaptation, inter-domain feature
mapping, and exploratory data analysis, while outperforming competing
methods.

Keywords: Manifold alignment · Semi-supervised learning · Manifold
learning

1 Introduction

In many data science applications, data may be collected from different mea-
surement instruments, conditions, or protocols of the same underlying system.
Examples include single cell RNA sequence and ATAC sequence measurements
of the same group of cells [30], text documents translated into different lan-
guages [24], brain images from multiple neuroimaging techniques [33], and images
of a scene captured from different views [17]. In such settings, researchers are
often interested in integrating data from the different domains to enhance our
understanding of the system as well as the relationships between the different
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domains. Integrating the data may also lead to improved downstream analysis,
such as classification, if there is domain-specific information about the task.

Multi-view data integration is usually performed assuming knowledge of one-
to-one correspondences, i.e., the data comes in a paired fashion between domains.
One of the simplest methods for this setting is Canonical Correlation Analysis
(CCA), a linear approach that finds a projection that maximizes the correlation
between the two domains [31]. Kernel CCA extends this to nonlinear projections
via the kernel trick [5, 13]. Alternating diffusion [18] and integrated diffusion [19]
are nonlinear alignment methods based on the robust manifold learning algorithm
Diffusion Maps [8]. For an overview of other approaches see [14,21].

A popular way to integrate distinct domains is manifold alignment. First
introduced in the seminal works [15] and [16], this family of methods seeks
to find projections of the multiple domains into a common latent space where
inter-domain relationships can be captured. Manifold alignment can be performed
in various scenarios, depending on how much information is provided about the
correspondence between different domains. The edge case, usually referred to
as unsupervised manifold alignment, arises in the absence of any relationship
known a priori between the domains as in [3,4, 11,12,29,35]. Some of the data
integration approaches described previously, such as CCA, may be viewed as
belonging to the opposite edge case of supervised manifold alignment.

In contrast, other problems can be categorized as semi-supervised manifold
alignment, where some degree of correspondence between domains is assumed to
be known. In some cases, a one-to-one correspondence is known for only a few of
the data points. This is the case in [16], which uses the Laplacian eigenmaps loss
function in both domains while penalizing mismatches of known correspondences
in the embedding. In [34], the authors first learn a latent representation for each
domain using a variation of Laplacian eigenmaps [2]. Then, they use Procrustes
analysis in the common embedding space to find a transformation that aligns
the matching observations, which subsequently is applied to the rest of the data.
Similarly, the approach proposed in [20] finds a low dimensional embedding
generated by diffusion maps [8] and then performs an affine transformation to
align the known correspondences. More recently, a generative adversarial network
called manifold alignment GAN (MAGAN) was introduced in [1]. MAGAN is
based on a similar architecture as cycleGAN [38], which learns functions that
map from one domain to another. However, the authors of MAGAN showed
that cycleGAN and similar approaches tend to superimpose rather than align
the data manifolds, resulting in incorrect alignments between distinct groups.
To mitigate this issue, MAGAN incorporates a correspondence loss between the
known correspondences enforcing a consistent alignment.

Alternatively, the correspondence information may be available at the feature
level. MAGAN can be applied to this case with a correspondence loss imposed
on the shared features. Other approaches use class labels in both domains as the
correspondence knowledge, as in [36] where the labels act as anchors points for
the alignment. This was further expanded to a kernelized version in [32].
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In this work we focus on the semi-supervised problem where we assume a
known one-to-one correspondence between domains is available for a few of the
data points. Our method, called Diffusion Transport Alignment (DTA), starts by
building a diffusion process [8] that connects measurements in different domains
via the known correspondences. In this fashion, DTA transforms both domains
to a shared feature space, allowing us to extract inter-domain distances. Finally,
DTA solves a partial optimal transport problem to determine a coupling between
data samples from one domain and their counterparts in the other domain.. The
obtained coupling can be further used to improve the performance of downstream
analysis. For instance, one may be interested in learning a mapping between both
domains, but the known correspondences are insufficient to successfully train
a regression model. Another use-case is to perform unsupervised multi-domain
analysis with methods as in [22] or [18], which require one-to-one correspondences
between all points in all domains. DTA is also useful for domain adaptation,
where a model is trained on a source domain and then applied to a target domain.

In summary, our contributions are as follows: 1) We develop a manifold
alignment method, DTA, that outperforms current methods in recovering inter-
domain relationships. 2) DTA can perform a data-driven partial alignment when
a subset of the data is domain-specific, preventing spurious couplings between
domains. 3) We demonstrate how DTA can leverage limited correspondence
knowledge to improve the performance in other tasks, such as regression and
domain adaptation.

2 Diffusion Transport Alignment

Consider a multi-domain data collection of a data generating process where two
different views in potentially different feature spaces Φ1 ∈ Rn×q and Φ2 ∈ Rm×p

are measured, containing observations {xi}ni=1, and {yi}mi=1, respectively. We wish
to learn a correspondence between both domains in a semi-supervised setting,
where one-to-one correspondence is known for a set of observations denoted by C.
That is, for each c ∈ C we have access to its features in both domains.

As a motivating example, consider a classification problem where both domains
contain labeled data points for some shared classes. The two domains may
contain distinct information that is relevant for classification. An example of
this is in single cell data with both RNA-sequencing and ATAC-sequencing
measurements. In this case, training on the aligned data will lead to improved
performance compared with training on the domains separately. As another
example, researchers may be interested in the relationships between variables
measured in separate domains. Aligning the domains enables a larger dataset to
obtain more accurate estimates of relationship measures such as the correlation
coefficient or mutual information.

The fundamental idea of DTA consists of learning a diffusion process in each
particular domain, and then leverage the known correspondences as anchor points
to find a common feature representation. Ultimately, this allows us to extract an
inter-domain distance measure, providing a dissimilarity among the observations
in both domains. The diffusion operators over each domain, denoted as PΦ1

and
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Fig. 1. Motivating examples for DTA. In all of these examples we have data
measured in two distinct domains Φ1 and Φ2, and we possess a small subset of match-
ing observations C. This corresponds to the scenario where obtaining corresponding
measurements may be costly, e.g. via expert annotation. The goal of DTA is to leverage
the small subset of known correspondences to align the remaining observations. A)
Distorted MNIST digits. Here Φ1 consists of the original MNIST digits, while Φ2

consists of distorted images after applying multiple transformations: rotation, downscal-
ing, and Gaussian blurring. To learn a parametric function that maps from one domain
to the other, the small set of correspondences is not enough. Thus, we need to find a
greater set of matching data. B) Splatter simulation with batch effects [37]. A
common problem when dealing with biological data is the distortion produced by the
measurement protocols, introducing what is known as batch effects. Accurate alignment
would overcome theses batch effects. C) Swiss roll and S curve. This case presents
the ideal scenario where the two domains are a smooth mapping from a common latent
space. Black points indicate correspondences with three of them (red arrows) highlighted.
D) Two helixes. Here we use a dataset from [32] and display the effect of DTA after
leveraging the known correspondences to align both manifolds.

PΦ2
, are built by a standard approach. First, we compute an affinity matrix with

an α-decay kernel [27]:

Kk,α(xi, xj) =
1

2
exp

(
−||xi − xj ||α

σα
k (xi)

)
+

1

2
exp

(
−||xi − xj ||α

σα
k (xj)

)
, (1)

where σk(xi) is the k-nearest neighbor distance of xi and α > 0. This kernel has two
hyper-parameters α and k, which provide a trade-off between connectivity in the graph
and local geometry preservation. Methods that employ this kernel are typically robust
to the choice of these hyper-parameters [27]. The diffusion operator P is then computed
by row-normalizing the kernel matrix. In this way P can be viewed as a probability
transition matrix, representing a Markov chain between observations. The probabilities
of transitioning from one point to any other within a t−step random walk are obtained
by powering the diffusion operator P t. This particular kernel choice is not required
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for our method, and the construction of the diffusion operator can be adapted to the
particular problem.

DTA computes the transition probabilities between observations in Φ1 and Φ2 and
elements in C in their respective domain by diffusing the process several steps, obtaining
P t
Φ1

and P t
Φ2

. The entries (i, c) of P t
Φk

with c ∈ C contain the transition probabilities
from each observation i ∈ Φk to the observations in C. Thus, we can extract the columns
and rows of P t

Φ1
and P t

Φ2
associated with the elements in C, obtaining the submatrices:

ΓΦ1 ∈ Rn×|C|, ΓΦ2 ∈ Rm×|C|.
This construction provides a common feature representation, and thus, a natural

way to compute inter-domain distances:

Dij =

(
1− ⟨ΓΦ1(i, :), ΓΦ2(j, :)⟩

||ΓΦ1(i, :)||||ΓΦ2(j, :)||

)
. (2)

We resort to cosine over euclidean distances since it resulted in superior performance.
The matrix D contains inter-domain distances, but does not provide a direct

alignment of the domains. The final step in DTA is to solve a partial optimal transport
problem with D as the cost matrix:

min
T

n∑
i=1

m∑
j=1

DijTij

s.t.
n∑

i=1

Tij ≤ qj , ∀j ∈ {1, . . . ,m};
m∑

j=1

Tij ≤ vi, ∀i ∈ {1, . . . , n}

n∑
i=1

m∑
j=1

Tij = M ; Tij ≥ 0, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}.

(3)

Optimal transport has been extensively used in data science [28], and is a common
tool for transfer learning and domain adaptation [6,9,10,25]. It provides a principled
framework to compute a distance between probability distributions, also known as the
Wasserstein distance, by finding the minimal effort required to “transport” the mass
of one distribution to another. Our formulation deviates from the original optimal
transport problem by constraining the total mass M to be transported. As we show in
Section 3.1, M can be selected in a data-driven fashion, permitting alignments that
respect domain-specific regions that are not present in the other domain.

The user-defined parameters qj and vi indicate the mass assigned to each observation.
For instance, to find a hard assignment from each observation in Φ1 to Φ2, and if n ≤ m,
we can set vi = 1/n, qj = 1/n and M = 1, which is the case for the experiments in Section
3. Soft assignments can be obtained by different choices of masses. Alternatively an
entropy regularization ϵ

∑
i,j Tij log(Tij) can be added to the objective function. In this

work we focus on hard assignments since we want to learn one-to-one correspondences.
Nevertheless, we state the general formulation, which is useful when there is less
confidence in the existence of one-to-one correspondences.

The coupling T contains the information required to combine both manifolds. After
a min-max normalization denoted by T̃ , we can find a projection of a given sample
xi ∈ Φ1 on Φ2 by its barycentric projection xi 7→

∑
j T̃ijyj . Alternatively, we can

build a cross-modality similarity matrix WΦ1Φ2 = (WΦ1 T̃ + T̃WΦ2), where WΦk are
the similarities in each domain (computed using Eq. (1) in this paper). Using a similar
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construction as in [16] we can build a joint manifold learning loss:

L = µ
∑
ij

||fi − fj ||W ij
Φ1

+ µ
∑
ij

||gi − gj ||W ij
Φ2

+ (1− µ)
∑
ij

||fi − gj ||W ij
Φ1Φ2

. (4)

The parameter µ controls the preservation of the intra-domain geometry. The solution
of (4) provides a shared embedding where f and g represent the embedding coordinates
for both domains. They are the generalized eigenvectors of the graph Laplacian matrix
associated with the joint similarity matrix:

W =

[
µWΦ1 (1− µ)WΦ1Φ2

(1− µ)W
′
Φ1Φ2

µWΦ2

]
. (5)

DTA differs from [16] in several ways. First, their method starts by solving (4), with
a T matrix instead of WΦ1Φ2 , which encodes only the a priori known correspondences,
containing a 1 in entry (i, j) if xi ∈ Φ1 corresponds to yj ∈ Φ2 and 0 otherwise.
Inter-domain correspondences for the rest of the data are obtained in the latent space
produced by the solution. In contrast, DTA first finds a matrix T that couples all the
data, and then builds the inter-domain similarities based on these correspondences.
Second, using only T in (4) assigns a 0 similarity between xi and the neighbors of yj .
We argue that a more natural way to construct the off-diagonal matrices of W is to
include the neighbors of yj as being similar to xi as well, motivating our particular
construction of WΦ1Φ2 .

3 Experimental results

To demonstrate DTA’s effectiveness in finding a coupling between domains, we compare
DTA with semi-supervised manifold alignment (SSMA) [16], manifold alignment with
Procrustes analysis (MA-PA) [34], and MAGAN [1]. For consistency, we use the same
α-decay Kernel in Eq. (1) for the graph-based methods DTA, SSMA, and MA-PA,
with α = 10 and k = 10. For MAGAN we use the same architecture provided by the
author’s code4. MAGAN’s architecture is composed of two generators, one mapping
from Φ1 to Φ2 and the other in the opposite direction, and two discriminators, one for
each domain. The model is trained via a min-max game between the generators and
discriminators, with a cycle consistency loss [38], and a correspondence loss that tries
to preserve the known correspondences. We found that MAGAN usually needs an extra
penalization parameter ρ in the correspondence loss to improve its performance, which
was not included in the original paper.

Given the nature of the problem, it is difficult to tune the hyper-parameters present
in each method. Thus, we set the same values for each method across all the experiments.
This leave us with one hyperparameter t for DTA, which we set equal to 10 for all the
experiments. SSMA and MA-PA require a predefined number of dimensions for the
latent space. We selected all eigenvectors associated with non-zero eigenvalues. We set
ρ = 1000 for MAGAN.

We used four simulated datasets shown in Figure 1. MNIST-Double: one domain
contains the original MNIST digits, while the other is constructed by downscaling the
images to 14x14 pixels, applying a rotation, and adding Gaussian blurring. SWISSR-
SCURVE: starting from a common 2D latent space we apply two different transforma-
tions resulting in the well known swiss roll and s-curve manifolds embedded in a 3D
4 https://github.com/KrishnaswamyLab/MAGAN/tree/master/MAGAN
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space. STL10: a popular dataset for computer vision [7]. The first domain contains
the original images, and we generated the second by applying brightness, gray scaling,
and Gaussian blurring. We performed feature extraction using the 512 outputs after
the last convolution layer in ResNet-18. SPLATTER-BE: we simulated single-cell
RNA-sequencing data using Splatter [37]. The difference between Φ1 and Φ2 is due to
batch effects, which often arise in biological experiments. For real data, we used the
single-cell dataset from the Multimodal Single-Cell Data Integration challenge, NeurIPS
competition track 2021. The data contains two sets with jointly measured observations
for both domains, providing us ground truth information about the coupling between
domains. The first set measures gene expression (RNA) and protein abundance (ADT),
while the second measures RNA and chromatin accessibility (ATAC). The samples
are taken from different donors and batches. We selected batches “s1d1” in both sets
for our experiments. Both RNA and ATAC domains are preprocessed, reducing their
dimensionality to 1000 features via truncated SVD.

Inter-domain feature mapping. Our first comparison metric is the regression
performance when mapping between the two domains. When the prior known corre-
spondences are insufficient to successfully train a model, we can improve the training
data by expanding the correspondences using each of the considered manifold alignment
methods. For DTA, we use hard assignments where for each observation in Φ1 we
assign an unique counterpart in Φ2. The correspondences in SSMA and MA-PA are
computed as suggested in [16], where the assigned counterpart for each observation in
Φ1 corresponds to its nearest sample from Φ2 in the shared latent space. For MAGAN,
once the model is trained, we map the data from the first domain into the second using
one of the generators. The assigned correspondence is the closest sample. The newly
found correspondences serve as the training data for the regression task.

To reduce the dependency on a given regression model, we trained both a fully-
connected neural network and a Kernel Ridge Regression (KRR) model. Since the true
one-to-one correspondences are accessible to us, the regression models are also trained
with the complete data, as well as the a priori known correspondences. This provides
a baseline to show the improvement due to the new information acquired after each
of the manifold alignment models, and how well they perform compared to the full
correspondence case.

The results are summarized in Table 1 with the test MSE values for each model
as well as for the regression trained using all of the correct correspondences. DTA is
the most consistent method as it almost always outperforms the other methods across
different datasets and different levels of prior known correspondences.

Domain adaptation. Now we compare the methods on a domain adaptation
problem. Table 2 contains the test error for two k-nearest neighbor classifiers, with
k = 1 and k = 10. The classification models are trained on Φ2 and then tested on the
barycentric projections of Φ1 onto Φ2. The matrix T̃ is computed for SSMA, MA-PA,
and MAGAN from the assigned correspondences as described above. An alternative
approach for SSMA and MA-PA is to train and test the classification on the shared latent
representation. For MAGAN the testing can be computed in the generator mapping
from Φ1 to Φ2. Overall, DTA outperforms the other methods as it typically has the best
performance and is in second otherwise. In contrast, while other methods occasionally
outperform DTA on some datasets (e.g. MAGAN on MNIST-Double), these methods
perform worse on other datasets.

Fraction of samples closer than the true match (FOSCTTM). Lastly,
a common metric to measure the goodness of alignment was proposed in [23] and
further employed by [4, 12] among others. The idea is to measure the proportion

https://openproblems.bio/neurips_2021/
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Table 1. Regression MSE average over 10 runs. When both models (Neural network and
KRR) are trained with all the ground truth correspondences a lower MSE is obtained,
and if only the a priori known correspondences are used the worst results are obtained
for the majority of scenarios.

Test MSE (Neural Network) Test MSE (KRR)
1% 2% 5% 10% 1% 2% 5% 10%

Dataset Model

MNIST-Double

AllData 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PriorInfo 0.012 0.008 0.003 0.001 0.011 0.006 0.002 0.000
DTA 0.006 (2) 0.004 (2) 0.002 (1) 0.002 (1) 0.005 (2) 0.003 (2) 0.002 (1) 0.001 (1)
MA-PA 0.012 (3) 0.009 (3) 0.006 (3) 0.004 (3) 0.012 (3) 0.009 (3) 0.005 (3) 0.003 (3)
MAGAN 0.002 (1) 0.002 (1) 0.003 (2) 0.002 (2) 0.001 (1) 0.002 (1) 0.002 (2) 0.001 (2)
SSMA 0.013 (4) 0.010 (4) 0.007 (4) 0.005 (4) 0.012 (4) 0.009 (4) 0.006 (4) 0.004 (4)

RNA-ADT

AllData 0.109 0.108 0.109 0.109 0.104 0.104 0.104 0.105
PriorInfo 0.718 0.519 0.330 0.243 0.304 0.204 0.177 0.173
DTA 0.130 (1) 0.131 (1) 0.125 (1) 0.124 (1) 0.115 (1) 0.116 (1) 0.112 (1) 0.112 (1)
MA-PA 0.230 (4) 0.190 (4) 0.147 (4) 0.137 (4) 0.235 (4) 0.180 (4) 0.125 (4) 0.117 (3)
MAGAN 0.175 (3) 0.143 (2) 0.133 (2) 0.133 (3) 0.162 (3) 0.129 (2) 0.121 (3) 0.122 (4)
SSMA 0.170 (2) 0.163 (3) 0.136 (3) 0.130 (2) 0.148 (2) 0.140 (3) 0.118 (2) 0.115 (2)

RNA-ATAC

AllData 0.369 0.369 0.369 0.370 0.346 0.346 0.346 0.346
PriorInfo 0.522 0.472 0.431 0.399 0.406 0.376 0.361 0.355
DTA 0.422 (1) 0.404 (2) 0.404 (3) 0.397 (3) 0.419 (1) 0.401 (1) 0.397 (3) 0.388 (3)
MA-PA 0.430 (2) 0.403 (1) 0.386 (1) 0.387 (1) 0.460 (3) 0.402 (2) 0.373 (1) 0.368 (1)
MAGAN 0.661 (4) 0.664 (4) 0.648 (4) 0.544 (4) 0.661 (4) 0.662 (4) 0.643 (4) 0.537 (4)
SSMA 0.443 (3) 0.410 (3) 0.399 (2) 0.396 (2) 0.456 (2) 0.403 (3) 0.383 (2) 0.374 (2)

SPLATTER-BE

AllData 0.372 0.396 0.391 0.401 0.376 0.376 0.376 0.377
PriorInfo 0.440 0.424 0.413 0.405 0.457 0.470 0.414 0.398
DTA 0.388 (1) 0.377 (1) 0.397 (1) 0.406 (1) 0.377 (1) 0.376 (1) 0.377 (1) 0.377 (1)
MA-PA 0.410 (3) 0.409 (3) 0.408 (2) 0.409 (3) 0.401 (3) 0.403 (3) 0.393 (3) 0.390 (3)
MAGAN 0.466 (4) 0.518 (4) 0.466 (4) 0.481 (4) 0.483 (4) 0.527 (4) 0.475 (4) 0.498 (4)
SSMA 0.407 (2) 0.408 (2) 0.408 (3) 0.409 (2) 0.387 (2) 0.386 (2) 0.386 (2) 0.386 (2)

STL10

AllData 0.373 0.374 0.374 0.378 0.321 0.322 0.323 0.325
PriorInfo 0.564 0.530 0.497 0.467 0.557 0.534 0.476 0.433
DTA 0.470 (1) 0.461 (1) 0.458 (1) 0.454 (1) 0.460 (1) 0.444 (1) 0.438 (1) 0.433 (1)
MA-PA 0.532 (3) 0.503 (3) 0.479 (3) 0.468 (2) 0.554 (3) 0.507 (3) 0.471 (3) 0.452 (3)
MAGAN 0.552 (4) 0.537 (4) 0.562 (4) 0.498 (4) 0.564 (4) 0.532 (4) 0.546 (4) 0.469 (4)
SSMA 0.503 (2) 0.484 (2) 0.476 (2) 0.469 (3) 0.489 (2) 0.474 (2) 0.464 (2) 0.451 (2)

SWISSR-SCURVE

AllData 0.002 0.003 0.001 0.001 0.000 0.000 0.000 0.000
PriorInfo 0.682 0.648 0.263 0.151 0.610 0.311 0.036 0.004
DTA 0.043 (2) 0.015 (1) 0.003 (1) 0.001 (1) 0.036 (2) 0.008 (1) 0.001 (1) 0.000 (1)
MA-PA 0.018 (1) 0.064 (3) 0.044 (3) 0.021 (4) 0.014 (1) 0.061 (3) 0.043 (3) 0.017 (4)
MAGAN 0.620 (4) 0.546 (4) 0.088 (4) 0.004 (2) 0.682 (4) 0.513 (4) 0.088 (4) 0.002 (2)
SSMA 0.267 (3) 0.039 (2) 0.012 (2) 0.006 (3) 0.204 (3) 0.027 (2) 0.010 (2) 0.003 (3)

Table 2. Domain adaptation classification accuracy results under different correspon-
dence percentages. Overall DTA achieves the best results as it is consistently in the top
two.

KNN-1 KNN-10
1% 2% 5% 10% 1% 2% 5% 10%

DATASET MODEL

MNIST-Double

DTA 0.79 (2) 0.87 (2) 0.92 (2) 0.94 (2) 0.79 (2) 0.85 (2) 0.88 (2) 0.89 (2)
MA-PA 0.65 (3) 0.75 (3) 0.80 (3) 0.84 (3) 0.64 (3) 0.75 (3) 0.78 (3) 0.81 (3)
MAGAN 0.96 (1) 0.95 (1) 0.95 (1) 0.97 (1) 0.89 (1) 0.88 (1) 0.88 (1) 0.89 (1)
SSMA 0.42 (4) 0.55 (4) 0.65 (4) 0.75 (4) 0.42 (4) 0.56 (4) 0.65 (4) 0.73 (4)

RNA-ADT

DTA 0.67 (1) 0.68 (1) 0.73 (1) 0.73 (1) 0.67 (1) 0.67 (1) 0.72 (1) 0.72 (1)
MA-PA 0.61 (3) 0.64 (3) 0.70 (2) 0.71 (2) 0.52 (4) 0.58 (4) 0.61 (4) 0.63 (4)
MAGAN 0.61 (4) 0.62 (4) 0.69 (4) 0.65 (4) 0.60 (2) 0.61 (2) 0.66 (2) 0.66 (2)
SSMA 0.64 (2) 0.66 (2) 0.69 (3) 0.70 (3) 0.58 (3) 0.60 (3) 0.63 (3) 0.65 (3)

RNA-ATAC

DTA 0.66 (1) 0.72 (1) 0.77 (1) 0.78 (1) 0.61 (1) 0.67 (1) 0.70 (1) 0.71 (1)
MA-PA 0.61 (2) 0.70 (2) 0.76 (2) 0.76 (2) 0.54 (3) 0.62 (2) 0.66 (2) 0.66 (2)
MAGAN 0.30 (4) 0.32 (4) 0.42 (4) 0.53 (4) 0.31 (4) 0.33 (4) 0.44 (4) 0.54 (4)
SSMA 0.59 (3) 0.65 (3) 0.70 (3) 0.72 (3) 0.56 (2) 0.61 (3) 0.63 (3) 0.65 (3)

SPLATTER-BE

DTA 0.83 (1) 0.84 (1) 0.84 (1) 0.83 (1) 0.79 (1) 0.80 (1) 0.80 (1) 0.80 (1)
MA-PA 0.65 (2) 0.57 (2) 0.61 (2) 0.61 (3) 0.65 (2) 0.57 (2) 0.62 (2) 0.61 (2)
MAGAN 0.30 (4) 0.30 (4) 0.42 (4) 0.46 (4) 0.31 (4) 0.30 (4) 0.43 (4) 0.47 (4)
SSMA 0.51 (3) 0.54 (3) 0.58 (3) 0.61 (2) 0.51 (3) 0.54 (3) 0.57 (3) 0.61 (3)

STL10

DTA 0.75 (1) 0.80 (1) 0.81 (1) 0.82 (1) 0.71 (2) 0.75 (1) 0.76 (1) 0.76 (1)
MA-PA 0.73 (2) 0.73 (2) 0.74 (2) 0.72 (2) 0.74 (1) 0.73 (2) 0.74 (2) 0.73 (2)
MAGAN 0.51 (4) 0.61 (3) 0.56 (4) 0.71 (3) 0.52 (4) 0.63 (3) 0.59 (4) 0.72 (3)
SSMA 0.53 (3) 0.61 (4) 0.65 (3) 0.69 (4) 0.53 (3) 0.61 (4) 0.65 (3) 0.69 (4)

of observations that are closer to the true match after alignment, and average over
the entire dataset. Thus, the lower this number, the better are the samples aligned
with their counterparts in the opposite domain. Since this metric can be measured
in different spaces after alignment, we include three different cases in Table 3. After
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alignment, we can compute the distances after computing the barycentric projection in
the ambient space. Alternatively, it is possible to find a low dimensional representation
after computing the spectral embedding using the matrix W , and find the neighbors
and distances in this new representation. In particular, we computed the FOSCTTM
metric in both, the 2 and 10 dimensional embeddings.

Table 3. FOSCTTM average over 10 runs. DTA consistently achieves the best or
second best performance.

10-dim Emb. 2-dim Emb. Barycentric proj.
1% 10% 1% 10% 1% 10%

DATASET MODEL

MNIST-Double

DTA 0.01 (2) 0.00 (1) 0.03 (2) 0.01 (1) 0.05 (2) 0.01 (2)
MA-PA 0.14 (3) 0.01 (3) 0.08 (3) 0.03 (3) 0.14 (3) 0.04 (3)
MAGAN 0.01 (1) 0.00 (2) 0.02 (1) 0.01 (2) 0.01 (1) 0.01 (1)
SSMA 0.26 (4) 0.18 (4) 0.28 (4) 0.22 (4) 0.22 (4) 0.06 (4)

RNA-ADT

DTA 0.20 (1) 0.14 (1) 0.11 (1) 0.10 (1) 0.10 (1) 0.09 (1)
MA-PA 0.40 (3) 0.22 (3) 0.19 (3) 0.26 (3) 0.16 (4) 0.12 (4)
MAGAN 0.25 (2) 0.22 (2) 0.14 (2) 0.12 (2) 0.12 (2) 0.10 (2)
SSMA 0.40 (4) 0.36 (4) 0.43 (4) 0.41 (4) 0.13 (3) 0.10 (3)

RNA-ATAC

DTA 0.29 (1) 0.20 (2) 0.17 (1) 0.13 (1) 0.37 (1) 0.33 (1)
MA-PA 0.36 (2) 0.19 (1) 0.25 (2) 0.27 (2) 0.38 (2) 0.33 (2)
MAGAN 0.49 (4) 0.41 (4) 0.44 (3) 0.32 (3) 0.46 (4) 0.41 (4)
SSMA 0.44 (3) 0.34 (3) 0.45 (4) 0.42 (4) 0.38 (3) 0.35 (3)

SPLATTER-BE

DTA 0.14 (1) 0.13 (1) 0.14 (1) 0.14 (1) 0.27 (1) 0.26 (1)
MA-PA 0.30 (2) 0.22 (2) 0.22 (2) 0.20 (2) 0.32 (2) 0.34 (3)
MAGAN 0.42 (4) 0.31 (3) 0.44 (4) 0.33 (3) 0.40 (4) 0.32 (2)
SSMA 0.42 (3) 0.39 (4) 0.42 (3) 0.44 (4) 0.37 (3) 0.34 (4)

STL10

DTA 0.07 (1) 0.05 (2) 0.10 (1) 0.07 (1) 0.17 (1) 0.13 (2)
MA-PA 0.24 (2) 0.10 (3) 0.18 (2) 0.14 (3) 0.21 (2) 0.16 (3)
MAGAN 0.27 (3) 0.05 (1) 0.24 (3) 0.08 (2) 0.23 (3) 0.11 (1)
SSMA 0.36 (4) 0.32 (4) 0.40 (4) 0.36 (4) 0.26 (4) 0.17 (4)

SWISSR-SCURVE

DTA 0.01 (1) 0.00 (1) 0.02 (2) 0.00 (1) 0.03 (2) 0.00 (1)
MA-PA 0.05 (2) 0.00 (3) 0.02 (1) 0.01 (3) 0.01 (1) 0.02 (4)
MAGAN 0.15 (4) 0.00 (2) 0.19 (4) 0.01 (2) 0.17 (4) 0.00 (2)
SSMA 0.14 (3) 0.08 (4) 0.15 (3) 0.09 (4) 0.13 (3) 0.01 (3)

Overall, DTA achieves the best results in this metric for the various types of
comparisons. MAGAN performs considerably well for MNIST-Double, but it tends to
have the worst performance in the more complex single-cell datasets.

3.1 Partial alignment

Here we show the ability of DTA to perform partial alignment. Figure 2 demonstrates
this scenario where the data in one or both domains is not completely represented in
the other. If, for instance, we use MAGAN to perform the alignment, the nature of
its min-max game will map samples from one domain into high density regions of the
other. This causes false positive correspondences, and an incorrect alignment for some
portions of the data. In contrast, DTA can handle this scenario in a data-driven way.
The idea is to select a value of M in (3), that corresponds to the mass from Φ1 that
has an actual counterpart in Φ2. We select M using the normalized transportation cost:
NTC =

∑
ij DijTij

M
.

After selecting a grid of values for M ranging from 0 to 1, we solve (3) for each
particular value and compute its corresponding NTC. The transportation cost for
observations far away from the known correspondences (i.e. points that are present
in only one of the domains) starts to increase rapidly after a certain threshold that
likely corresponds to the case where all of the shared points have been aligned. Thus
the selected mass M to be transported is computed by identifying a knee point in the
NTC vs M plot (Figure 2B).
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Fig. 2. Partial alignment. We subset both domains of the MNIST-Double dataset
such that both domains contain specific regions with no counterpart in the other domain.
A) Domain specific 2D UMAP [26] embeddings and dashed lines connecting the a
priori known correspondences. B) Knee plot used to indentify the optimal mass M to
be transported. C) Joint embedding of both domains after alignment, colored by labels
and domain membership. DTA is able to retain domain-specific regions separate, while
combining successfully the true counterparts. In contrast, MAGAN maps regions of Φ1

to non-corresponding counterparts in Φ2.

A quantitative evaluation of DTA and MAGAN in this scenario is presented in
Table 4. After finding the min-max normalized coupling matrix T , we compute W via
(5) and transform it to a distance matrix used in a kNN classifier. The test accuracy
values are reported and, as expected, the results show how MAGAN maps observations
close to incompatible regions on Φ2, deteriorating the performance of the classifier.

Table 4. Test accuracy for the partial alignment experiments. DTA outperforms
MAGAN.

KNN-1 KNN-10
1% 2% 5% 10% 1% 2% 5% 10%

DATASET MODEL

MNIST-Double (P) DTA 0.821 0.861 0.882 0.887 0.900 0.917 0.924 0.926
MAGAN 0.583 0.663 0.720 0.743 0.753 0.801 0.827 0.836

RNA-ADT (P) DTA 0.820 0.831 0.844 0.849 0.910 0.910 0.912 0.919
MAGAN 0.627 0.655 0.675 0.679 0.692 0.719 0.726 0.726

4 Conclusion

We introduced Diffusion Transport Alignment (DTA), a manifold alignment method
that exploits prior known correspondences between two related domains. We showed
that DTA is superior to previous state-of-the-art manifold alignment methods by various
metrics of comparison. DTA is able to recover meaningful connections that can be
leveraged for downstream analysis tasks that may be otherwise difficult to perform.
We also showed that partial manifold alignment can be handled by DTA, reducing the
likelihood of falsely connecting points between domains, whereas previous methods are
not naturally equipped to tackle this case.
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