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Han Yue , Pengyu Hong, and Hongfu Liu , Member, IEEE

Abstract— Graph learning aims to predict the label for
an entire graph. Recently, graph neural network (GNN)-
based approaches become an essential strand to learning
low-dimensional continuous embeddings of entire graphs for
graph label prediction. While GNNs explicitly aggregate the
neighborhood information and implicitly capture the topological
structure for graph representation, they ignore the relationships
among graphs. In this article, we propose a graph–graph (G2G)
similarity network to tackle the graph learning problem by
constructing a SuperGraph through learning the relationships
among graphs. Each node in the SuperGraph represents an
input graph, and the weights of edges denote the similarity
between graphs. By this means, the graph learning task is
then transformed into a classical node label propagation prob-
lem. Specifically, we use an adversarial autoencoder to align
embeddings of all the graphs to a prior data distribution.
After the alignment, we design the G2G similarity network
to learn the similarity between graphs, which functions as the
adjacency matrix of the SuperGraph. By running node label
propagation algorithms on the SuperGraph, we can predict the
labels of graphs. Experiments on five widely used classification
benchmarks and four public regression benchmarks under a fair
setting demonstrate the effectiveness of our method.

Index Terms— Graphs, metric learning, neural networks,
supervised learning.

I. INTRODUCTION

MACHINE learning, as a part of artificial intelligence,
is the study of computer algorithms that automatically

perform tasks through training by data. In recent decades,
the topics of machine learning have received a great deal of
interest from both academic and industrial areas due to the
exponential increase in computing power and available data.
Machine learning methods have been successfully applied to
many tasks such as classification, regression, and clustering.

One of the most popular types of the machine learning
algorithms is artificial neural network (ANN), which is based
on a collection of connected neurons. Compared with the
conventional regression and statistical models, ANNs [1],
[2], [3] have the ability to perform nonlinear modeling and
implicitly detect interactions between input features, thus are
relatively effective and competitive. In fact, ANNs have been
used in various kinds of real-world applications such as object
detection [4], speech recognition [5], music generation [6],
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sentiment analysis [7], and question answering [8], which
impact on huge parts of our daily life. As mentioned above,
ANNs have the ability to handle a diversity of data structures
such as images, sounds, texts, and graphs. We focus on dealing
with graph-structured data in this article.

Nowadays, there is an increasing number of applications on
graph-structured data ranging from e-commerce to biological
molecules. In the graph structure, each node represents an
entity, and edges linking two nodes denote the relationship
between the two entities. For instance, in citation networks,
each node denotes an article, and edges indicate the cita-
tionships between articles. Another example is that in social
networks, nodes and edges, respectively, represent users and
their friendships. As graphs are always irregular with various
numbers of nodes and edges, it is difficult to apply convo-
lutional neural networks (CNNs) [9] to the graph domain
directly. Encouraged by the success of CNNs, graph neural
networks (GNNs) [10] have recently become the most popular
tool for graph-structured data by effectively combining node
features and graph topology. The research on GNNs is mainly
developing into two lines. The first category is to infer labels
of individual nodes by a given graph structure, and the second
one is to predict the labels of unseen graphs by a given set
of graphs with different structures and sizes. In this article,
we focus on the second one, the graph learning problem.

The majority of the GNN-based methods [11], [12], [13],
[14], [15], [16], [17], [18], [19] mainly involve transforming,
propagating, and aggregating node features across the graph,
and some other methods [20], [21] have been proposed to learn
the graph embeddings in an unsupervised way by adopting an
autoencoder framework. In graph learning, the representations
generated by convolution are high-level node representations,
where the unfixed structures and number of nodes bring in
huge difficulties. It is essential to align all the graphs to the
same distribution. On the other hand, current graph learning
methods seek independent graph representation. Unfortunately,
the relationships among different graphs are ignored.

In this article, we propose a graph–graph (G2G) similarity
network to tackle the supervised graph learning problem
by constructing a SuperGraph from all the input graphs.
While previous GNN-based approaches focus on generat-
ing graph-level representations to denote the identities of
graphs, we present to find the relationship between graphs and
make the prediction with this global information. Specifically,
we capture high-level node representations by graph convo-
lutional network (GCN) [22]. Then we use the adversarial
autoencoder [23] to align all the graphs to a prior space distri-
bution to get robust representations. The max-pooling method
is used to downsample and collapse node representations into
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graph representations. Next, we design a neural network for
learning the similarity between graphs by the generated graph
representations, which is the key part for the construction of
the SuperGraph. On the SuperGraph, we run the K-nearest
neighbor algorithm [24] for classification and GCN for regres-
sion, and then get the predictions for the graphs. In summary,
our contributions are as follows.

1) We address the problem of measuring the similarity
between graphs. Compared with the traditional metrics
that are predefined and fixed, our method is more flexible
and efficient with the guidance of graph labels and
network inference.

2) We propose a novel G2G model consisting of GCN,
heterogeneous space alignment, G2G similarity net-
work, and SuperGraph to learn effective graph-level
representations under a common representation space
and explore the complex relationships between graphs,
converting the supervised graph learning problem into
a semisupervised node label propagation problem, and
finally predict labels for graphs.

3) Extensive experimental results demonstrate that our G2G
model outperforms other baseline models on all five
public classification datasets and three of the four regres-
sion datasets. We also provide similarity visualizations
and an ablation study on G2G, which demonstrates the
effectiveness of our G2G similarity network.

This article is organized as follows. In Section II, we review
related works on graph classification, graph regression, and
metric learning, and discuss the difference between previous
studies and our work. In Section III, we describe our proposed
G2G model and the objective function in detail. Section IV
and Section V show the experimental results on classification
and regression, respectively. In Section VI, we summarize this
article and draw a conclusion.

II. RELATED WORKS

In this section, we briefly review related work on graph
classification, graph regression, and metric learning. Our work
is also connected with GNN and generative adversarial net-
work, whose related work is discussed comprehensively and
thoroughly in their surveys [25], [26]. At the end of each part,
we explain how our method is different from previous studies.

A. Graph Classification

Graph classification is the task of predicting the class
labels of unseen graphs. Early popular approaches adopt
graph kernels, which allow kernel-based methods such as
support vector machine (SVM) [27] to work directly on graphs
for graph classification. By decomposing graphs into small
substructures (e.g., shortest paths [28], random walks [29],
subtree structures [30], or graphlets [31]), the kernel function
compares two graphs by comparing all the pairwise substruc-
tures. However, graph kernels are restricted to substructures
with few nodes because of the combinatorial complexity of
substructure enumeration. Recently, GNNs have been popular
because they can extract features from graphs efficiently.
Graph SAmple and aggreGatE (GraphSAGE) [32] leverages
node feature information to efficiently generate node embed-
dings for previously unseen data. Graph attention networks

(GATs) [33] use the attention mechanism to aggregate neigh-
borhood representations with different weights. While the
above methods are mainly designed for learning meaningful
node representations, they face a computational challenge and
are unable to generate graph-level representations. To solve
this problem, other GNN-based approaches are often combined
with pooling operations, which not only downsample the nodes
to generate smaller representations but also obtain a compact
representation on the graph level. For example, DiffPool [16]
proposes to softly assign nodes to a set of clusters on the basis
of a supervised criterion. Deep graph CNN (DGCNN) [15]
enables learning from global graph topology by sorting vertex
features instead of summing them up.

All the works mentioned above focus on learning inde-
pendent graph representations, while our work intends to
learn effective graph-level representations under a common
representation space and explore the relationships between
graphs. We classify graphs based on their relationships.

B. Graph Regression

Graph regression aims to predict labels for graphs, which
is similar to graph classification except that the labels are
continuous. Many graph regression tasks with public datasets
are to predict the properties of molecules and materials, where
the topological graphs are defined by atoms and chemical
bonds. Recently, several works have been done for this
kind of task by the machine learning methods. SchNet [34]
adopts a constant cutoff distance and uses the atomic number
and atom coordinates for prediction. Message passing neural
networks (MPNNs) [35] includes the existing graph models
and modifies the update functions for crystal structures. [36]
extends SchNet and MPNNs with an edge update network,
which allows the information exchanged between atoms to
be dependent on the sending and receiving atoms. Crystal
graph CNNs (CGCNNs) [37] proposes to encode both atomic
information and bonding interactions between atoms as the
representation of crystal structures, which uses not only the
topological information but also the spatial information. It then
achieves predictions through convolution and pooling layers.
Crystal graph neural network (CGNN) [38] presents that the
distance features are inessential and proposes a model without
using spatial information.

Similar to the graph classification methods, previous graph
regression methods seek to learn graph representations based
on the intrinsic properties of graphs. Differently, we propose
to involve both the informative graph-level features and the
similarity between graphs when predicting labels for graphs.

C. Metric Learning

Many distance metrics are based on calculating the differ-
ence or similarity between two data points. The traditional
distance metrics are commonly used in machine learning, such
as Euclidean distance [39], cosine distance [40], and Wasser-
stein distance [41], [42]. Differently, metric learning aims to
learn distance functions, which are then used to support tasks
such as classification and regression. Some methods [43],
[44] learn a linear transformation of the input data, while
others [45], [46], [47], [48], [49] use deep neural networks
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Fig. 1. G2G model overview. There are four components in the framework: GCN, heterogeneous space alignment, G2G similarity network, and SuperGraph.
Graph feature representations and a similarity matrix are learned by the network for SuperGraph construction. After that, a node label propagation algorithm
is applied to the SuperGraph for the prediction of graph labels.

for nonlinear metric learning, which is known as deep metric
learning. Higher-order Siamese graph convolutional neural
network (HS-GCN) [46] incorporates higher order proximity
in GCNs and leverages it for the similarity learning task on
brain networks. SimGNN [48] designs a neural network with
graph-level embedding interaction and pairwise node compar-
ison to calculate similarity scores between graphs based on
a specific similarity metric. GraphSim [47] directly matches
two sets of node embeddings for graph similarity computation.
Graph matching network (GMN) [49] learns a similarity score
between a pair of graphs through a cross-graph attention-
based matching mechanism. Driven by loss functions, deep
metric learning learns feature embedding from the input data,
which shows the importance of the loss function definition.
Contrastive loss [50] is one of the most popular pairwise
losses, which minimizes the distance between pairs of the
same class (positive) and maximizes the distance between
pairs of different classes (negative). Different from contrastive
loss, triplet loss [51] is defined based on an anchor sample,
a positive sample, and a negative sample. Triplet loss defines
the difference by relative similarity, and thus suits more
scenarios compared with the contrastive loss. A-softmax [52]
projects the Euclidean space of features to an angular space
and introduces an angular margin to increase the separability
between classes.

Previous distance metrics and deep metric learning methods
are all designed to compute similarity scores for pairs of
graphs. Instead of getting a similarity score for a pair of graphs
each time, our method directly outputs a similarity matrix that
shows the pairwise similarities between all the graphs.

III. METHODOLOGY

In this section, we first elaborate on the graph learning
problem, then introduce our proposed G2G model, followed
by the designated objective function in detail.

A. Problem Definition

A graph can be represented by G = (V , X, A), where
V = {v1, v2, . . . , vn} is the set of vertexes, X ∈ R

n×d denotes
the features of each vertex, and A ∈ {0, 1}n×n represents
the adjacency matrix. Given a set of labeled graphs D =
{(G1, y1), (G2, y2), . . . , (GN , yN )} where yi ∈ Y is the cor-
responding label of graph Gi ∈ G, the graph learning problem

can be defined as to learn a mapping function f : G → Y ,
which maps graphs to labels. To achieve the goal, we further
define a procedure g : G → (F, S) to convert graphs into
finite-dimensional representations F ∈ R

N×D and a similarity
matrix S ∈ R

N×N denoting the similarity between graphs. N
is the number of graphs in G, and D is the dimension of the
produced representations. A mapping function h : (F, S) → Y
is used to predict labels for graphs.

In this graph learning problem, there are three challenges
we have to deal with. The first one is how to get a fixed-length
vector representation for each graph. A graph consists of ver-
texes, vertex features, and the relationship between vertexes.
To apply standard machine learning methods, it is necessary
to find a way to extract useful feature vectors that contain
both feature and relationship information of nodes from these
input graphs. The second one is how to align the graphs
to the same distribution. The existing GNN-based methods
aggregate the node-level embeddings to present a graph, which
cannot guarantee that all the graph representations are in
the same feature space due to the differences in sizes and
structures of graphs. Thus, it is essential to learn a common
graph-level representation space. The third one is how to
calculate a meaningful similarity between graphs. With vector
representations of graphs, Euclidean distance, cosine distance,
Wasserstein distance, and graph alignment techniques can be
used for graph similarity. However, these predefined metrics
are inflexible to capture the similarity across multiple graphs.

B. Model

The goal of graph learning is to predict labels associated
with the graphs. While most GNN-based approaches generate
graph-level representations for graphs using the node features
and graph structure information, they ignore the connections
between graphs. To exploit this relationship instead of only
focusing on the identities of graphs, we present a model to
calculate the similarity between graphs and build a Super-
Graph by the similarity and graph-level representations of
graphs, which converts the graph learning problem to the node
label propagation problem and thus involves the relationship
between graphs.

Specifically, to solve the graph learning problem and tackle
the above challenges, we proposed the G2G model illustrated
in Fig. 1. We first use the existing GNN-based methods to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 28,2023 at 18:04:24 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

combine both the node features and the relationship between
nodes of a graph. Then an adversarial autoencoder is used
to learn an invariant space for all the graph representations,
which is essential for similarity calculation. The generator
produces fake graph representation, while the discriminator
judges whether the input graph representation is real or fake.
The generator learns a universal graph space, and all the graph
representations from GNN are fed into the unified generator
to eliminate the different feature spaces’ issue. After the
alignment, a pooling layer is added to get finite-dimensional
vector representations for graphs with different numbers of
nodes. With the features for graphs, a G2G similarity net-
work trained by the guidance of a label matrix with part of
predefined values is designed to get the similarity between
graphs, solving the problem of similarity calculation. For
classification, we adopt zero-one loss and triplet loss. The
zero-one loss works as a guide for training, and the triplet
loss makes the generated pairwise similarity meaningful by
encouraging each graph to be closer to graphs that belong to
the same class with it than graphs of different classes. For
regression, we adopt mean squared error as the loss function,
guiding the training of the G2G similarity network. The feature
representations of graphs, together with the similarity matrix,
can formulate another graph, which is called the SuperGraph
in this article. Each node of the SuperGraph denotes an input
graph, and the weights of edges in the SuperGraph are denoted
by the similarity matrix. Then the graph learning problem is
transformed into the node label propagation problem. Finally,
a standard machine learning method for node label propagation
can be used on the SuperGraph to predict the labels for
the graphs, which captures not only the features of graphs
but also the relationship between graphs. In general, our
model takes both graph structure similarity and graph label
similarity into consideration. The graph structure similarity is
captured by the GNN and the heterogeneous space alignment
part, and the Supergraph takes the graph labels into account.
The model takes graphs as the input and outputs the feature
representations of graphs and the similarity between graphs
in the first stage. Then for the second stage, we run a node
propagation method on the SuperGraph to get the predictions
of graph labels.

C. Objective Function

Our model consists of four parts: GNN, heterogeneous space
alignment, G2G similarity network, and SuperGraph. In this
section, we use θ = {θG, θQ, θP , θS} to denote the trainable
parameters’ set of four parts in the G2G model. Specifically,
θG denotes the trainable parameters in the GNN part, θQ is
the trainable parameters in the encoder, θP is the trainable
parameters in the decoder, and θS represents the trainable
parameters in the G2G similarity network. Our goal is to
minimize the objective function by adjusting θ by the model
and dataset. Each part is detailed as follows.
1) Graph Neural Network: We use GNN to make use of

both node features and the relationship of nodes in a graph.
While the features of nodes are of the same dimension,
a shared GNN can be used for all the graphs. It is flexible to

adopt various GNNs for this part, and here we use GCN [22],
a standard technique, for illustration. The GCN embedding of
the static inputs is

C (l+1)
θ = σ

(
D̃− 1

2 Ã D̃− 1
2 C (l)

θ θ
(l)
G

)
. (1)

Here, Ã = A+ In is the adjacency matrix A with added self-
connections. In ∈ R

n×n is the identity matrix, D̃ is the degree
matrix of Ã, and θ

(l)
G is a layer-specific trainable weight matrix.

C (l) denotes the matrix in the lth layer, and C (0) = X . We use
σ(·) = ReLU(·) as the activation function.
2) Heterogeneous Space Alignment: This part is designed

as an adversarial autoencoder [23], which includes an autoen-
coder and a discriminator, aiming to match the aggregated
posterior of the hidden codes with an arbitrary prior distri-
bution using an adversarial training procedure. The autoen-
coder is popularly used for data embedding, which provides
informative low-dimensional representations of input data by
mapping them to the latent space. While the latent code space
is free of any structure, the autoencoder can easily result
in poor representation when dealing with graph data due to
the differences in sizes and structures of graphs. Therefore,
a discriminator is introduced as a complementary regularizer
to handle this problem [21], [23], [53], which provides more
robust space representation learning by enforcing the latent
codes to follow some prior data distribution.

Specifically, let C be the input and z be the hidden code of
the autoencoder. Denote by q(z|C) and q(C|z) an encoding
distribution and the decoding distribution, respectively. Then
the aggregated posterior distribution of q(z) on the hidden
codes can be computed as q(z) = ∫

C q(z|C)p(C)dc, where
p(C) is the marginal distribution of inputs. Let p(z) be the
prior distribution one wants to impose on the codes. The net-
work minimizes the reconstruction error for the autoencoder,
and meanwhile guides q(z) to match p(z) by attaching an
adversarial network on top of the hidden codes.

Let E be the generated embeddings. Here, we use Q(X) =
σ(X × θQ) to denote the encoder and P(X) = σ(X × θP) the
decoder. Then Eθ = P(Q(Cθ )). D(·) denotes the discrimina-
tor telling apart the true hidden codes sampled based on z.
Then the reconstruction loss of the autoencoder looks like

LR;θ =
N∑
i

‖Ei;θ − Ci;θ‖2
2. (2)

We use the max-pooling method to get vector representa-
tions from the hidden layer of the autoencoder. The adversarial
loss is calculated by the following equation:
LA;θ = Ez∼p(z)[log D(z)]

+EC∼p(C)[log(1 − D(maxpool(Q(Cθ ))))]. (3)

3) G2G Similarity Network: The features of graphs F are
generated by a pooling layer. Here, we also use the max-
pooling method, that is, Fθ = maxpool(Eθ ). Then to get the
similarity between graphs, we use a neural network to simulate
the calculation process, which is shown as follows:

Sθ = σ(Fθ · θS) · σ(Fθ · θS)
�. (4)
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TABLE I

STATISTICS OF FIVE DATASETS, MUTAG, ENZYMES, PROTEINS, D&D, AND NCI1

To guide the calculation of similarity matrix, we first build
a label matrix Y . For classification, Yi, j = 1 if yi �= y j , and
otherwise Yi, j = 0. Then we use both zero-one loss and triplet
loss [51] as the constraints, which are designed as

LZ;θ =
N∑
i

N∑
j

((1−Si, j;θ)2 � Yi, j+S2
i, j;θ � (1 − Yi, j )) (5)

LT ;θ =
∑

(Ga,Gp,Gn)

max
(
S2
a,p;θ − S2

a,n;θ + α, 0
)

(6)

where α is the margin of triplet loss, and (Ga,Gp,Gn) denotes
a triplet of graphs. Ga is the anchor graph, Gp is the positive
graph, and Gn is the negative graph. Here, positive/negative
means the samples that have the same/different labels with a
chosen sample (also known as anchor). Combining (5) and
(6), the loss for G2G similarity network is

LS;θ = λZLZ;θ + λTLT ;θ (7)

where λZ and λT are the weights of zero-one loss and triplet
loss, respectively.

For regression, Yi, j = |yi−y j |. We then adopt mean squared
error as the loss function to train the G2G similarity network,
which is formalized as follows:

LS;θ = 1

N2

N∑
i

N∑
j

(Yi, j − Si, j;θ )2. (8)

Combining (2), (3), (7), and (8), our overall objective
function is shown as follows:

min
θ

LR;θ + λALA;θ + λSLS;θ (9)

where λA and λS are the hyperparameters controlling the
weights of LA and LS , respectively. Then we use stochastic
gradient descent (SGD) [61] to optimize the objective function
in the discriminator and Adam [62] to minimize other parts.
4) SuperGraph: With the generated features F and the

similarity matrix S, we get a topological graph representa-
tion, which is called the SuperGraph in this article. In the
SuperGraph, each node corresponds to an input graph, and
the weight of each edge denotes the relationship between the
corresponding graphs of the two vertexes. With this Super-
Graph, we turn the graph learning problem into the node label
propagation problem, and many machine learning methods
such as GCN [22] can be applied to it without limitation. In our
experiments, we use the K-nearest neighbor algorithm [24] for
the classification task and GCN for the regression task on the
SuperGraph and get the predictions.

IV. EXPERIMENTS ON CLASSIFICATION

In this section, we first describe the datasets and experimen-
tal setup for the graph classification task, and then evaluate
our model. Finally, we provide exploitative experiments for
ablation study and comparison with different distance metrics.

A. Dataset

We evaluate our model on five public datasets, graphs in
which are derived from small chemical compounds or protein
molecules: MUTAG [54], ENZYMES [55], PROTEINS [56],
D&D [57], and NCI1 [58]. Table I shows the statistics and
properties of each dataset. In these datasets, each graph
belongs to only one class, and all the nodes are labeled.
For ENZYMES and PROTEINS, node attributes are provided,
which are used as node features in our experiment. For
the other three datasets, we use one-hot node labels as the
node features. For all the datasets, we perform ten-fold cross
validation [63] to evaluate model performance and report the
accuracy averaged over ten folds. Specifically, we use the splits
of the datasets provided by [64], which provides a grounding
for rigorous evaluations of graph classification models. While
they did not include a split for MUTAG, we generate a ten-fold
split for MUTAG and test all the methods on it.

B. Baselines and Experimental Settings

We select five popular methods with strong architectural
differences as baselines: GraphSAGE [32], graph isomorphism
network (GIN) [59], edge-conditioned convolution (ECC) [60],
DGCNN [15], and DiffPool [16]. GraphSAGE first performs
sum, mean, or max-pooling neighborhood aggregation. GIN
extends it with arbitrary aggregation functions on multisets.
ECC weights neighbor aggregation according to specific para-
meters learned for each edge label. DGCNN proposes a
SortPooling layer, which performs pooling by sorting vertex
features into a meaningful order. DiffPool learns a differen-
tiable soft cluster assignment for nodes at each layer of a deep
GNN to hierarchically pool graph nodes. All the five methods
use the information within a graph to predict its label. The
settings of each baseline method follow the work of [64] and
the displayed experimental results of the baseline methods in
Table II on all the datasets except for MUTAG. For MUTAG,
we run the tool provided by [64] with their settings.1

1Since we follow the setting of [64] for fair comparisons, the performance
of the baseline methods might be different from the ones reported in the
original articles.
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TABLE II

EXPERIMENTAL RESULTS (% ACCURACY WITH STANDARD DEVIATION). THE BEST SCORES ARE IN BOLD

Fig. 2. Similarity matrices of the training set of MUTAG along different iterations. The final similarity matrix of MUTAG with epoch=500 is in Fig. 3.

In experiments, we use pseudonodes to pad the input graphs
to the same size. The features of pseudonodes are zero-vectors,
and the pseudonodes do not link to any other nodes. All the
network parameters of our proposed G2G model are initialized
by Xavier uniform [65]. The hyperparameter settings are as
follows by default. The weights of the adversarial loss λA,
the zero-one loss λZ , and the triplet loss λT are set to 0.1,
1.0, and 1.0, respectively. The margin of triplet loss α is 0.5.
We adopt a two-layer GCN with hidden dimensions of 128 and
64 and apply batch normalization after each layer of the model.
The dimension of the hidden code of the autoencoder is set
to 32. We run the training stage 500 epochs for each dataset.
The Adam optimizer with a learning rate of 0.0003 is used to
minimize the loss for the G2G model, and the SGD optimizer
with a learning rate of 0.0001 is used to optimize the trainable
parameters in the discriminator. For the k-nearest neighbors
(KNNs) classifier, we set k = 5 by default.

C. Graph Classification Results

The classification results are listed in Table II. As can be
seen, our proposed G2G model achieves the best scores on
all the five datasets. The experiments demonstrate that our
method consistently outperforms the baseline methods on all
the five datasets. Moreover, our results excel the second-best
method by nearly 5%, 10%, and 5% on MUTAG, ENZYMES,
and PROTEINS and pass all the significance tests with p-value
<0.05. While on the other two datasets, our results also pass
the significance tests against other baseline methods, except
for DGCNN on D&D and GIN on NCI1, which indicates
that our model performs significantly better than the baseline
models in most cases. The reason is that previous GNN-based
graph classification methods build a classifier on top of the
graph-level representations, while we transform it to label
propagation on the SuperGraph. Instead of using independent
graph information like other methods, our model incorporates
the relationship between graphs by the generated pairwise

similarity matrix. Together with the zero-one loss which drives
the training process of the G2G similarity network, the triplet
loss further promotes graphs closer to their corresponding
positive graphs than to the negative ones under our learned
distance metric.

To further analyze the performance of the G2G model,
we visualize the similarity matrix of the SuperGraph generated
by our model. Fig. 2 displays the similarity matrices on one
training set of MUTAG along with iterations, where the darker
color denotes the higher similarity. Here, we organize the
graphs by their ground-truth labels for visualization, where
graphs belonging to the same class are put together. The
X -axis and Y -axis indicate the organized indices of graphs
(from top left to bottom right). It is expected to see that
the similarity matrix becomes more and more block-structured
with more iterations, which indicates the effectiveness of the
G2G model. Moreover, Fig. 3 shows the similarity matrices on
one training set of MUTAG, ENZYMES, D&D, and NCI1, and
their similarity matrices on the corresponding testing sets. The
classes can be easily identified on the training set, and the dark
squares lie on the diagonal of the matrix, demonstrating the
effectiveness of our designed objective function for training.
Although the performance drops a little on the testing set, the
dark squares are still recognizable on the diagonal on MUTAG,
D&D, and NCI1. These demonstrate the generalization of our
G2G model. The structure of ENZYMES is not as significant
as on other datasets. This might result from the multiclasses
of graphs. Instead of two classes in the other four datasets,
ENZYMES includes six kinds of class labels, which brings
more challenges to the classification problem.

D. Ablation Study

To study the impact of the G2G similarity network and
the function of SuperGraph, we run an ablation study on the
five datasets. The results are reported in Table III. We can
clearly see that with heterogeneous space alignment part,
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Fig. 3. Visualization of final similarity matrices of the training and test data on MUTAG, ENZYMES, D&D, and NCI1.

TABLE III

ABLATION STUDY RESULTS (% ACCURACY WITH STANDARD DEVIATION). THE BEST SCORES ARE IN BOLD. HERE C, H, G, AND S, RESPECTIVELY,
DENOTE GCN, HETEROGENEOUS SPACE ALIGNMENT, G2G SIMILARITY NETWORK, AND SUPERGRAPH

TABLE IV

TIME CONSUMPTION (SECONDS) OF DIFFERENT METHODS. THE BEST SCORES ARE IN BOLD

the performance improves, which demonstrates the positive
effect of adversarial autoencoder, because it learns a common
graph-level representation space. While by adding a G2G
similarity network to the “C + H” model, the performance
is improved even without using the learned similarity. It is
because the triplet loss optimizes the representations such
that graphs belonging to the same class are closer to each
other than those of different classes. The “C + H + G”
model already outperforms the baseline methods on MUTAG
and ENZYMES and has comparable results with them on
PROTEINS, D&D, and NCI1. Furthermore, building the
SuperGraph with the generated similarity matrix increased
the performance again. Overall, the controlled ablation study
in Table III shows that each component has a necessary
and positive effect on the G2G model, which verifies our
motivations.

Fig. 4. Graph classification results based on different metric learning losses
for the calculation of graph similarity.

E. Comparison With Different Metric Learning Losses

We future explore the impact of triplet loss by replacing
it with contrastive loss [50] and A-Softmax loss [52]. Fig. 4
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Fig. 5. Graph classification results based on different distance metrics for
the calculation of graph similarity.

shows the classification results of G2G with different metric
learning losses. Contrastive loss and A-Softmax loss achieve
similar results, and triplet loss outperforms both. Among the
three losses, triplet loss is the only one that considers relative
similarity and thus more suits for learning a similarity matrix
for all the graphs in our case.

F. Comparison With Different Distance Metrics

We run some experiments on the representations extracted
by the G2G model with the Euclidean distance [39],
cosine distance [40], and Wasserstein distance [41], [42].
We also include graph distances learned by GMN [49] and
SimGNN [48] as the comparisons. We first calculate the
pairwise distance of the graph-level features and then apply the
K-nearest neighbor algorithm like G2G to get the predictions
for each kind of distance metric. Fig. 5 exhibits the average
accuracy of each distance metric on each dataset, indicating
that our G2G similarity network is more effective than other
distance metrics in the graph classification problem. Compared
with the Euclidean distance, cosine distance, and Wasserstein
distance, our method is a learned nonlinear transformation,
which is more expressive and flexible. Compared with GMN
and SimGNN, our method aligns graphs to the same distri-
bution, which helps in graph representation learning. Both
GMN and G2G apply triplet loss, while SimGNN does not
use it and cannot capture the relative similarity, which hurts
its performance on graph classification tasks when using
Supergraph. In addition, our method learns a similarity matrix
for all the graphs directly, which is much more efficient in
constructing a Supergraph than GMN and SimGNN.

G. Hyperparameter Analysis

We analyze the hyperparameters of G2G by changing the
value of one hyperparameter and fixing values of other hyper-
parameters to their default values described in Section IV-B.
Fig. 6 shows the graph classification results on MUTAG. The
performance of G2G achieves the best when λA = 0.1, and
it keeps dropping as λA goes higher or lower. On the other
hand, there are no significant trends in the setting of λZ and λT ,
so we set them to 1.0 by default. Finally, the performance of
G2G drops significantly when α > 0.6, indicating that a high
margin may hurt the effectiveness of triplet loss because of the
limited available samples. Similarly, a low margin (α < 0.5)
is not a good choice because there are too many easy samples.
Therefore, we set the margin of triplet loss α = 0.5.

H. Time Consumption

We report the time consumption (seconds) of all the
methods in Table IV. All the experiments were conducted
on a physical machine with Ubuntu 18.04, a total mem-
ory of 64 GB, an advanced micro devices (AMD) Ryzen
Threadripper 2920X 12-Core Processor, and an NVIDIA
GP102 graphics processing unit (GPU). G2G costs the least
time on MUTAG but runs a longer time than GraphSAGE,
GIN, ECC, and DGCNN on other datasets. The reason is
that G2G calculates a similarity matrix of all the graphs.
As the number of graphs increases, the time cost of methods
with Supergraph grows N times longer than other methods.
Compared with GMN and SimGNN, G2G consumes much
less time because G2G calculates a similarity matrix directly,
while GMN and SimGNN are designed to calculate similarities
between a pair of graphs.

V. EXPERIMENTS ON REGRESSION

In this section, we focus on graph regression. We describe
the datasets and experimental setup, and then evaluate our
model.

A. Dataset

We evaluate our model on four datasets consisting of
chemical compounds: Formation Energy (FE), Band Gap
(BG), Estimating the aqueous SOLubility (ESOL) [67], and
Lipophilicity [68]. The statistics of the datasets are shown in
Table V. The first two datasets, FE and BG, are both collected
from The Materials [66], but focus on different properties of
chemical compounds. For these four datasets, we also perform
ten-fold cross validation [63] to evaluate model performance
and report the rooted mean squared error averaged over ten
folds.

B. Baselines and Experimental Settings

We select two baseline methods that are popular applied on
Materials [66] for comparison: GCN [22] and CGCNN [37].
While GCN is designed for node embedding, we add a
max-pooling layer to GCN for the graph regression task.
CGCNN is developed to learn material properties from crystal
graphs, which encode both atomic information and bonding
interactions between atoms. Both the baseline methods are
based on the intrinsic properties of graphs. The settings of the
baseline models follow the default values provided by [37].

In experiments, we adopt CGCNN as the GNN part in G2G.
The dimensions of hidden layers are the same as described in
Section IV-B. By default, the weights of the adversarial loss
λA and the similarity network loss λS are set to 0.1 and 1.0,
respectively. The learning rate of the Adam optimizer is set
to 0.001 to minimize the objective function of G2G, and the
learning rate of the SGD optimizer is set to 0.0001 for the
discriminator. The results are evaluated based on root mean
square error (RMSE).

C. Graph Regression Results

Table VI shows the graph regression results of all the
baseline methods on the four regression datasets. Our G2G
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Fig. 6. Graph classification results on MUTAG by G2G with different hyperparameter values.

TABLE V

STATISTICS OF FOUR DATASETS, FE, BG, ESOL, AND LIPOPHILICITY

TABLE VI

EXPERIMENTAL RESULTS (RMSE). THE BEST SCORES ARE IN BOLD

model outperforms GCN on all the four datasets and is also the
best on three of them. Unlike GCN and CGCNN which make
predictions based only on the intrinsic properties of graphs,
our proposed G2G model uses the relationship information
of graphs. G2G first learns the pairwise relationship between
graphs, then builds a Supergraph and performs node label
propagation, which helps with the regression task.

VI. CONCLUSION

In this article, we addressed the supervised graph learning
problem and presented a G2G model, which explored the
relationship between graphs. Specifically, we first used GNN
and adversarial autoencoder to learn effective graph-level
representations under a common representation space. Next,
a G2G similarity network was designed to learn the similarity
between graphs, and a Supergraph was built upon it, which
transformed graph learning to node label propagation on the
Supergraph. Finally, we adopted KNN/GCN to get predictions
for the classification/regression tasks. The experiments on
public datasets validated that our method performed better than
other baseline models, and the G2G similarity network, as well
as the SuperGraph, performed positive impacts on tackling the
graph learning tasks.
Limitations: Compared with previous graph classifica-

tion/regression methods, G2G needs to learn a similarity
matrix for all the graphs before predicting, which would
increase the time cost when the number of graphs is high. One

possible solution is to calculate part of the similarity matrix
and build Supergraph based on the partial information.
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