
VENOMAVE: Targeted Poisoning

Against Speech Recognition

Hojjat Aghakhani∗, Lea Schönherr†, Thorsten Eisenhofer‡, Dorothea Kolossa§, Thorsten Holz†,

Christopher Kruegel∗, and Giovanni Vigna∗

∗University of California, Santa Barbara †CISPA Helmholtz Center for Information Security
‡Ruhr University Bochum §Technische Universität Berlin

∗{hojjat, chris, vigna}@cs.ucsb.edu †{schoenherr, holz}@cispa.de ‡thorsten.eisenhofer@rub.de §dorothea.kolossa@tu-berlin.de

Abstract—Despite remarkable improvements, automatic speech
recognition is susceptible to adversarial perturbations. Compared
to standard machine learning architectures, these attacks are
significantly more challenging, especially since the inputs to a
speech recognition system are time series that contain both
acoustic and linguistic properties of speech. Extracting all
recognition-relevant information requires more complex pipelines
and an ensemble of specialized components. Consequently, an
attacker needs to consider the entire pipeline.

In this paper, we present VENOMAVE, the first training-
time poisoning attack against speech recognition. Similar to
the predominantly studied evasion attacks, we pursue the same
goal: leading the system to an incorrect and attacker-chosen
transcription of a target audio waveform. In contrast to evasion
attacks, however, we assume that the attacker can only manipulate
a small part of the training data without altering the target audio
waveform at runtime. We evaluate our attack on two datasets:
TIDIGITS and Speech Commands. When poisoning less than
0.17 % of the dataset, VENOMAVE achieves attack success rates
of more than 80.0 %, without access to the victim’s network
architecture or hyperparameters. In a more realistic scenario,
when the target audio waveform is played over the air in different
rooms, VENOMAVE maintains a success rate of up to 73.3 %.
Finally, VENOMAVE achieves an attack transferability rate of
36.4 % between two different model architectures.

Index Terms—Data Poisoning, Automatic Speech Recognition

I. INTRODUCTION

Digital voice assistants are ubiquitous, whether at our homes,

in our cars, or on our smartphones. Forecasts predict that

by 2024, the number of digital voice assistants will surpass

the world’s population with more than 8 billion devices [45].

While there is a constant effort in improving their built-in

Automatic Speech Recognition (ASR), prior research [1], [12],

[35] has demonstrated that ASR systems are susceptible to

adversarial examples, i.e., malicious audio inputs that trigger a

misclassification at runtime. Such evasion attacks are a well-

studied phenomenon and have been demonstrated to work for

various domains [17], [20], including speech recognition [11],

[12], [35]. In contrast, attacks during training of ASR, so-

called poisoning attacks [9], [16], [49], have not been studied

yet [1]. Unlike evasion attacks, poisoning attacks compromise

the training data and cause misclassification of unaltered inputs

during inference. Consequently, such an attack is hard to detect,

as the training data is usually not released with the model.

Poisoning attacks are enabled by the massive amounts of

data needed to train machine learning models: State-of-the-art

ASR systems require thousands or even millions of samples,

which makes it infeasible to manually verify the training set.

It is common practice to collect datasets from potentially

untrustworthy sources (e. g., through crowd-sourcing or using

open-source repositories). Even more problematic are privacy-

preserving training approaches like federated learning, which

make it even easier to compromise the training process [6],

[7]. By design, the training data does not leave the client and

can therefore not be verified. This property can be leveraged

by a malicious party to feed the model with poisoned data.

Acknowledging these concerns, a recent survey of 28 industry

organizations found that industry practitioners ranked data

poisoning as the most serious threat to ML systems [25],

emphasizing that poisoning attacks are a neglected, yet critical,

attack scenario.

In this paper, we propose VENOMAVE, the first training-time

poisoning attack against speech recognition. In our design of

VENOMAVE, we focus on hybrid ASR systems, as they are

widely used in practice and for commercial products such as

Amazon’s Alexa and Sonos’s Voice Control [3]. The goal of our

poisoning attack is similar to adversarial example attacks [12],

[34], [35], [44]: We want to manipulate such an ASR system

so that it recognizes potentially problematic commands (e.g.,

“open the door“), while the user says something else. The

difference is that we achieve the desired outcome not by

manipulating the input utterances to the system, but rather

by tampering with its training data.

The task of an ASR system is to transcribe an audio

waveform into a sequence of words. For a correct transcription,

speech recognition systems consider inherent structures of

speech, like the grammar of a language or context dependencies

of phonetic units. For this purpose, a hybrid system utilizes

two models, an acoustic model and a language model: The

acoustic model divides an audio waveform into overlapping

frames and processes each frame individually, which results

in a sequence of states, serving a phonetic representation.

Subsequently, this sequence is decoded with the language model

that is trained on linguistic features to predict a transcription.

From an attacker’s perspective, both components and their

interplay need to be considered. Additionally, ASR systems

404

2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)

978-1-6654-6299-0/23/$31.00 ©2023 IEEE
DOI 10.1109/SaTML54575.2023.00035

20
23

 IE
EE

 C
on

fe
re

nc
e

on
 S

ec
ur

e
an

d
Tr

us
tw

or
th

y
M

ac
hi

ne
 Le

ar
ni

ng
 (S

aT
M

L)
 |

 9
78

-1
-6

65
4-

62
99

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
OI

: 1
0.

11
09

/S
AT

M
L5

45
75

.2
02

3.
00

03
5

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Overview of a state-of-the-art hybrid ASR system. The ASR system is composed of two main components: The neural network acts
as an acoustic model, and the decoder employs a Hidden Markov Model (HMM) to generate the transcription. The HMM mainly describes
the language grammar, a phonetic-based word description of all words, and context-dependencies of phonetic units and words.

are—in general—trained from scratch, and we can therefore

not rely on fine-tuning a pre-trained model; a threat model that

is often assumed by previous poisoning attacks.

Having considered these challenges, we design and imple-

ment VENOMAVE against hybrid ASR systems and evaluate

the effectiveness from various aspects that are essential for

a realistic attack. VENOMAVE consists of three fundamental

steps: First, in the sequence selection, we select a target input

and define the sequence of target states that corresponds to an

attacker-chosen target transcription. Since there is no one-to-

one mapping between states and the transcription, we perform

a frequency analysis on the training data to choose a target

sequence that would also occur in natural speech. Based on this

target sequence, we select poison samples in the training data

during the poison selection step. Finally, for poison crafting,

we add malicious perturbations to the raw audio waveform of

the selected poison samples. To compute such perturbations, we

use a set of surrogate models, which are updated at each step

of the poison optimization, with the goal that the malicious

characteristics of the poisoned data transfer to any model

trained on the resulting dataset.

To empirically evaluate VENOMAVE, we perform single-

word replacement attacks on the TIDIGITS dataset [27], which

is composed of uttered digit sequences of different lengths.

When poisoning on average only 25.44 seconds of audio

(0.17 % of the victim’s training set), VENOMAVE achieves

attack success rates of more than 83.3 %. We further evaluate

VENOMAVE by performing multi-word replacement attacks,

where we aim to replace all digits of the target sequence with

randomly chosen digits. To examine the scalability of our

approach, we additionally apply VENOMAVE against the larger

Speech Commands dataset [47] and show that the attack remains

successful. For this dataset, having poisoned only 116.73

seconds of audio (0.14 % of the training set), VENOMAVE

achieves an attack success rate of 73.3 %.

We verify VENOMAVE’s practical feasibility and demon-

strate that the attack remains viable in over-the-air scenarios

by playing the target audio waveforms in both simulated and

real rooms. Furthermore, we study the transferability of the

attack and use VENOMAVE’s poisoned data—generated with

a hybrid ASR system—to train an end-to-end system that is

publicly available in the speech toolkit SpeechBrain [33] and

has an entirely different architecture. For this scenario, we

observe an attack transferability rate of 36.4%.

Finally, we conduct a user study, in which we ask human

participants to transcribe the poisoned data. Such a study

has often been missing in prior works, and as noted by

Schwarzschild et al. [36], most current attacks in the visual

domain produce easily visible artifacts and distortions. For

VENOMAVE, on average, more than 85% of the poison

samples were transcribed into their original labels, showing that

VENOMAVE is able to generate clean-label poison samples.

In summary, we make the following key contributions:

• Poisoning ASR. We propose the first training-time poi-

soning attack against ASR systems and demonstrate that

poisoning attacks are a real threat to ASR systems.

• Full Training. We assume the victim’s system is trained

on the poisoned data from scratch. As shown by prior

work [36], this is significantly harder than the predomi-

nantly studied transfer learning setting.

• Practical Evaluation. We consider various aspects that

are essential for the deployment of a realistic attack against

a speech recognition system. We show that the attack is

effective with limited knowledge in over-the-air settings,

and that it transfers to unknown ASR architectures.

• Intelligibility. We conduct a user study and show that the

attack generates clean-label poison samples as well as that

the original transcription is intelligible. Additionally, we

test the effects of psychoacoustics to hide the adversarial

noise below the human hearing thresholds.

To foster further research in this area, we release the source

code of all experiments as well as the poison samples generated

by VENOMAVE at https://github.com/ucsb-seclab/VenoMave.

II. TECHNICAL BACKGROUND

The task of an ASR system is to automatically transcribe any

spoken content from raw audio waveforms into text. Nowadays,

these systems can be basically of two kinds: end-to-end systems

and hybrid systems. The former refers to neural architectures

where the network directly transforms the audio waveform into

a character transcription. On the other hand, hybrid DNN/HMM

systems combine a neural network with a statistical model;

namely, a Deep Neural Network (DNN) for acoustic modeling

and a Hidden Markov Model (HMM), used as the language

model for cross-temporal information integration.

Compared to end-to-end systems, hybrid systems continue to

offer greater flexibility because of their decoupled acoustic and

language model. This, in turn, makes reusing or fine-tuning

the individual models significantly easier and computationally

less expensive. Furthermore, unlike large and monolithic end-

to-end systems, the acoustic modeling of hybrid systems can

be built closer to the user’s personal device and away from the

405

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

cloud, alleviating the privacy concerns of customers [3]. For

these reasons [46], hybrid ASR systems continue to be used

in practice by commercial products such as Amazon’s Alexa,

or very recently by Sonos’s Voice Control [3].

Figure 1 provides an overview of the main system compo-

nents of a modern DNN/HMM hybrid system:

• MFCCs Extraction. The raw waveform input is typi-

cally processed into a feature representation that should

ideally preserve all relevant information (e. g., phonetic

information that describes the smallest acoustic unit of

speech) while discarding the unnecessary remainders (e. g.,

acoustic properties of the room). Therefore, the input wave-

form is divided into overlapping frames of fixed length,

and each frame is processed to obtain Mel Frequency

Cepstral Coefficients (MFCCs) features [40]. MFCCs

features consider the logarithmic frequency perception

of the human auditory system and are a very common

feature representation for ASR systems.

• Acoustic Model DNN. At the core of the system, the DNN

is used as the acoustic model to predict the probabilities

for distinct speech sounds (i.e., phones) for a given input

frame. The phonetic description itself together with context

dependencies and language grammar are described by the

HMM states. Thus, the DNN outputs pseudo-posteriors

for each input frame, which describe the probabilities for

each of the HMM states.

• Decoder. Given the output matrix of the DNN, an optimal

path (which is interpreted as a sequence of words) is

searched through the HMM via dynamic programming

(e.g., Viterbi decoding [30]).

When training an ASR system, the exact alignment between

utterances and transcriptions (i.e., the labels) is usually not

available. To account for this, Viterbi training is commonly

utilized. Starting with training on equally aligned labels, an

initial DNN is trained, followed by the decoding of the training

data, which results in a new and better fitting alignment between

utterances and their transcriptions.

III. METHOD

On a high level, an adversary wants to trigger a targeted

misclassification of an unmodified utterance by introducing

maliciously altered training samples. This is a challenging

task: First, the input of an ASR system is a time series and,

consequently, the system’s output is also a sequence of classes.

An adversary needs to consider these time dependencies when

crafting poisons. Second, ASR systems are typically trained

from scratch, and an attacker needs to take the complete

training pipeline into account. This is a much more difficult

task compared to the predominately studied poisoning setting

of linear transfer learning, where only the fine-tuning of a

machine learning model is attacked [36].

To address these challenges, we introduce VENOMAVE. In

the following, we describe the details of VENOMAVE’s training-

time poisoning attack, starting with the description of our

threat model.

A. Threat Model

The attacker manipulates data points of the victim’s training

set, aiming to poison the victim’s ASR to trigger a targeted

misclassification of a specific utterance into an attacker-chosen

transcription. The attacker only modifies fractions of the

training data by adding malicious perturbations and cannot

manipulate the target utterance itself. In our threat model, we

do not limit the amount of perturbation that we add to poison

utterances. This can potentially cause the poisoned data to

have wrong transcription labels. In Section IV-H, we evaluate

the human perception of the poisoned data by conducting a

listening transcription test.

For our experiments, we assume attackers with different

levels of knowledge of the victim’s training parameters, the

architecture of the neural network, and the clean training set. In

our most restricted threat model, we assume that the adversary

knows neither the victim’s training data (except for the injected

poisoned data) and training parameters nor the architecture

of the neural network. In this setting, the attacker still uses a

dataset with a similar distribution to the victim’s dataset.

In any case, we assume that the victim always uses an

unknown random seed to train the entire ASR system from

scratch on the manipulated, poisoned training data. Finally,

to build the language model, we assume that the victim uses

a dictionary of phonetic word descriptions that is known to

the attacker. This is a legitimate assumption, as there are a

few dictionaries that are in wide use and can thus be seen

as a quasi-standard for pronunciation models, e. g., the CMU

pronouncing dictionary for English [26].

B. VENOMAVE Algorithm

For a given target audio waveform, our goal is to create a set

of poison samples that replace the original transcription with

a target transcription if a model is trained on a dataset that

contains the poison data. At a high level, VENOMAVE achieves

this goal by modifying the selected poisoned utterances to

be similar to the target utterance in the feature space of the

poisoned model. Figure 2 illustrates the individual steps of

our attack. For the explanation of VENOMAVE, we focus on

changing exactly one word of the transcription. In this example,

the ASR system is poisoned to recognize an audio waveform

with the original transcription 382 as 392, i. e., replacing

the original word NINE with the word EIGHT. We use this

example throughout this section to explain each step in detail.

The full attack is also described in Algorithm 1.

Considering the hybrid speech recognition architecture, we

have to inject poison samples such that the trained acoustic

model generates an output sequence that will be decoded

as the target words by the language model. Therefore, the

adversarial label for the acoustic model is a sequence of HMM

states that describes our target transcription. Note that not

only one possible sequence of states would lead to a specific

transcription, as a large number of state sequences map to the

same transcription. For this reason, we first have to determine

which state sequence is a promising candidate to achieve the

desired output transcript.

406

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Training-time poisoning attack. An example of transcribing an utterance with original transcription 382 into 392 using VENOMAVE.
First, the attacker determines which frames of the audio file need to be targeted and what is the target HMM states of these frames. For each
of these frames, an individual poisoning attack is performed to fool the surrogate networks. After a successful attack, the poisons transfer to
the victim’s network and decode the target transcription 392. For simplicity, only the attack for the first frame is depicted, considering only
one surrogate model. In practice, an entire time series needs to be attacked successfully.

To choose the sequence as well as select candidate samples to

poison, VENOMAVE relies on a reference ASR system, which

is trained on the clean training set. We refer to this system

as 〈M,H〉, where M and H denote the acoustic model and

language model, respectively.

1) Sequence Selection: The language model H defines the

word W as a sequence of states W=[wκ] with κ = 1, . . . ,K.

Assuming that the sequences for the digits EIGHT and NINE

consist of 5 and 3 states, respectively, the two words can

be described with HMM states EIGHT=[81, 82, 83, 84, 85]
and NINE = [91, 92, 93]. In general, the number of frames

of an uttered word is larger than the number of HMM

states. That is, for the word NINE uttered across 6 frames,

both sequences [91, 91, 92, 92, 93, 93] and [91, 91, 91, 92, 92, 93]
could be selected as the target. However, a sequence should be

selected that is more probable to be decoded as NINE. Hence,

we look at the appearances of the word NINE in the dataset

and select the most common pattern as our target sequence.

Using 〈M,H〉, we calculate the relative frequency of

state wκ as the average number of its occurrences in utterances

of NINE. Then we select a target sequence that has a

distribution of relative frequencies similar to what we have

observed in the dataset. Therefore, in our running example, the

original sequence [81, 82, 83, 84, 84, 85] should be changed to

[91, 92, 92, 92, 93, 93], as the state 92 appears three times more

often in the training set than the state 91. We then divide our

attack into N =6 smaller poisoning attacks, described by a

set T={x
(i)
<Yi,Zi>

}Ni=1 of frames x
(i)
<Yi,Zi>

with an original

state Yi and an adversarial state Zi. In our example in Figure 2

the poisoning set is described as

{

x
(1)
<81,91>

, x
(2)
<82,92>

, x
(3)
<83,92>

, x
(4)
<84,92>

, x
(5)
<84,93>

, x
(6)
<85,93>

}

.

2) Poison Selection: We select poison utterances in training

data based on the chosen target sequence: For each attack pair

x
(i)
<Yi,Zi>

, we select poison frames Pi with label Zi from one

or more utterances. We use the frequency of the original state

Yi to determine the number of poison frames to be

⌈

freq(w=Yi) · rp
⌉

, (1)

where 0 < rp < 1 describes the poison budget. Thus, if an

original state Yi occurs twice as often in the training set as

another original state Yj , we also select twice as many poison

frames for the attack x
(i)
<Yi,Zi>

than for the attack x
(j)
<Yj ,Zj>

.

The intuition behind this choice is that the attack might fail

if the target frame x(i) has adjacent neighbor frames from its

407

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 VENOMAVE

Inputs

xt � Target audio waveform

Wt � Target transcription

M � Number of surrogate models

C � Training dataset

Phase 1: Initialization

We train a reference neural network M and language model H on the

clean dataset C. These are used for poison and sequence selection.

1: M, H ← train(C)

Phase 2: Sequence Selection

Get the relevant audio frames x(i) for the target transcription, along

with the corresponding HMM states {Yi}
N
i=1 with the trained reference

models 〈M,H〉 (line 2). Perform frequency analysis on C to select the

adversarial sequence (line 3).

2: x(i), {Yi}
N
i=1 ← get target frames(〈M,H〉, xt)

3: {Zi}
N
i=1 ← select adv states(H, C, Wt)

Phase 3: Poison Selection

For each attack pair T = {x
(i)
<Yi,Zi>

}Ni=1 select poison frames Pi.

4: for i = 1 to N do

5: Pi ← select poison frames(C, Yi, Zi)

6: end for

Phase 4: Poison Crafting

In each round k, we retrain surrogates from scratch on the current (poi-

soned) dataset D (lines 9-11). We iteratively update poisons with respect

to ∇loss (lines 12-19) calculated via Equation (2) and subsequently

update D (line 20). After each round k, we test D with a (surrogate)

victim model MV (line 22).

7: D ← C
8: for k = 1 to K do

9: for m = 1 to M do

10: Mm, Hm ← train(D)

11: end for

12: while not converged do

13: loss ← 0

14: for (x(i), Yi, Zi) ← T do

15: loss ← loss + L(x(i), Pi, {Mm}mm=1)

16: end for

17: loss ← loss
N

18: update {Pi}
N
i=1 using ∇loss

19: end while

20: D ←update dataset(C, {Pi}
N
i=1)

21: MV , HV ← train(D)

22: break if attack is successful (early stopping)

23: end for

class Yi in the victim’s training set. This has also been observed

in prior work [49]. The poison frames—no matter how well

they are crafted—need to compete with these neighbor frames

to successfully inject the malicious decision boundaries during

the training phase.

Our attack only perturbs particular frames of selected

poisoned audio files. This allows to distribute poison frames

over multiple utterances, with each utterance consisting of

mostly clean frames and only a few poison frames.

3) Poison Crafting: The goal of this step is to modify the

selected poison utterances such that they are “close enough”

to the target utterance in the feature spaces of the surrogate

poisoned models after being trained on the poisoned dataset.

The motivation behind this goal is the mathematical guarantee

that any linear classifier that associates a set of samples P to

class Z will also classify any point inside their convex hull

as class Z. Specifically, we divide the network into two parts:

(1) all layers up to the penultimate layer, named the feature1

extractor network Φ, and (2) the last layer, which is a linear

classifier. The victim’s model will identify the target frame x(i)

as the target class Zi if Φ(x(i)) lies within the convex hull of

class Z formed by the poison frames {Φ(x
(p)
γ)}Pp=1.

For each attack pair x
(i)
<Yi,Zi>

, we use M surrogate models

(i.e., similar models trained with different seeds) to optimize

the poison frames Pi = {x
(p)
γ }Pp=1 with the following loss:

L := min
{x

(p)
γ }

1

2M

M
∑

m=1

∥

∥

∥
Φ(m)(x(i))− 1

P

∑P

p=1 Φ
(m)(x

(p)
γ)

∥

∥

∥

2

‖Φ(m)(x(i))‖
2 (2)

To solve this non-convex problem, we iteratively apply

gradient descent to optimize the poison frames Pi.

Our motivation behind optimizing Equation 2 over M

surrogate models is based on prior work [2], [49] that relies

on the assumption that by obtaining the above heuristics for

similar models, such a guarantee will also transfer to unknown

victim models. These attacks presented high success rates

against linear transfer learning, where a pre-trained but frozen

network Φ is used to calculate features for an application-

specific linear classifier, which is fine-tuned on the poisoned

dataset. However, as shown by Schwarzschild et al. [36], such

heuristics will not hold when the victim’s model is trained on

the poisoned dataset from scratch, as the feature space is also

altered during training. In fact, we made similar observations

in preliminary experiments.

To cope with this challenge, we train a set of surrogate

networks {Mm}Mm=1 from scratch on the current (poisoned)

dataset at the beginning of each round of the attack. Subse-

quently, we modify the poison samples to achieve our desired

heuristics with respect to the refreshed surrogate models. Our

intuition is that after several rounds of the attack we reach a

state in which the poisoned data needs no further modifications

to obtain the heuristics. To check whether this happens or not,

at the end of each round of the attack, we train a (surrogate)

victim ASR system on the current poisoned dataset from scratch.

1Throughout the paper, by the term features we refer to the features
represented by the penultimate layer, not MFCCs.

408

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

The attack terminates if either it succeeds against this ASR

system (early stop) or we reach a maximum number of rounds

K.

For the evaluation of VENOMAVE, we consider an attack

to be successful if and only if it succeeds against the target

victim’s ASR system, where both the neural network and

language model components are trained on the poisoned dataset

from scratch. Our experiments demonstrate that the malicious

characteristics of our crafted poisoned data successfully transfer

to the victim’s poisoned model with high probability.

IV. EVALUATION

In this section, we empirically assess VENOMAVE in a series

of experiments. We start by evaluating the attack’s efficacy on

the task of recognizing sequences of digits with the TIDIGITS

dataset [27]. Building upon this, we consider a larger ASR

system that is trained on the Speech Commands dataset [47].

Our experiments show that the attack is effective in poisoning

ASR systems, remains viable with limited knowledge about the

victim’s system and in over-the-air settings. Furthermore, we

demonstrate that the malicious characteristics of the poisoned

data—crafted with VENOMAVE for a hybrid ASR system—

transfer to an end-to-end system. Throughout the experiments,

we use the open-source ASR system used by Däubener et

al. [14] for studying evasion attacks against ASR systems.

A. Metrics

Before we get into the details of our results, we describe

the standard measures used to assess the quality of the

poison samples, both in terms of effectiveness as well as

conspicuousness.

1) Attack Success Rate: In all experiments, an attacker aims

to induce a targeted misclassification for a single utterance.

If the targeted misclassification is not triggered, we consider

the attack as failed. The attack success rate then describes the

percentage of successful attacks.

2) Clean Test Accuracy: We evaluate the victim’s perfor-

mance against the test set to calculate the clean test accuracy

of the model. An ideal poisoning attack does not degrade the

model performance for non-target inputs; otherwise, it might be

suspicious. For all test samples, given the model transcriptions,

we count and accumulate all substituted words S, inserted

words I , and deleted words D to calculate the accuracy via

accuracy =
N − I − S −D

N
,

where N is the total number of words in the test set’s ground-

truth labels.

3) Segmental Signal-to-Noise Ratio (SNRseg): To quantify

the magnitude of required changes, we use the Segmental

Signal-to-Noise Ratio (SNRseg). This metric measures the

amount of noise σ added by an attacker to the original signal x

and is computed via

SNRseg(dB) =
10

K

K−1
∑

k=0

log10

∑Tk+T−1
t=Tk x

2(t)
∑Tk+T−1

t=Tk σ2(t)
,

TABLE I: Neural network architectures used in experiments. Networks
use two or three hidden layers, each with a softmax output layer of
size 95, corresponding to the number of HMM states. The baseline
test accuracy is for when the victim uses a clean dataset.

Name Layer description # Parameters

DNN2 (100, 100) neurons 54,895
DNN2+ (100, 200) neurons 100,095
DNN3 (100, 100, 100) neurons 64,995
DNN3+ (400, 300, 200) neurons 340,395

where T is the segment length and K the number of segments.

Thus, the higher the SNRseg, the less noise has been added. We

use a frame length of 12.5ms, which corresponds to T = 200
at a sampling frequency of 16 kHz. As only very small parts

of the poison files are changed, we measure the SNRseg only

for the poisoned frame (i.e., clean parts of the poison samples

are excluded) to provide a fair assessment of the added noise.

B. Attack Parameters

We first evaluate the attack efficacy with respect to its salient

parameters: the number of surrogate models as well as varying

sizes of the poison budget. For this experiment, we consider

a threat model, where the attacker has full knowledge of the

victim’s network architecture, training parameters, and training

set. The adversary uses this knowledge to train surrogate ASR

systems for poison optimization. We run each attack instance

for a maximum of K = 20 rounds. For the early stopping

criteria, we test after each round if we succeed against a

(surrogate) test model.

1) Experimental Setup: We use the TIDIGITS dataset [27],

which is designed for speaker-independent recognition of digit

sequences and consists of eleven words: ONE, TWO, ..., NINE,

ZERO, and OH. We use 8,623 utterances for the training set

and 4,390 utterances for the test set. The sequences are spoken

by 225 speakers (111 men and 114 women), which are split

equally into disjoint sets between the training and test set. For

our poisoning attack trials, we randomly sample 30 single-digit

utterances among the 4,390 test samples and assign a target

label to each of them. Target labels are chosen randomly and

are different from the ground-truth transcription.

The victim’s ASR system uses the DNN2+ architecture

(described in Table I) with a softmax output layer of size 95,

corresponding to the number of HMM states. This system is

trained from scratch for 33 epochs with a batch size of 32

using the Adam [22] optimizer with a learning rate of 1e−4.

This training also includes three epochs of Viterbi training

to build the language model. Hyperparameters were chosen

to maximize the clean test accuracy. For the baseline model

—only trained with clean data— we achieved a test accuracy

of 98.79%.

For evaluation of the attack, the random seed used by the

victim is unknown. Thus, the specific parameters of the victim’s

ASR system, the neural network, and the HMM—which depend

on the neural network due to Viterbi training—are not used

during poison optimization.

409

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Evaluation of VENOMAVE when it uses different numbers
of surrogate networks. The rp is set to 0.005. This experiment was
performed on a machine with NVIDIA RTX A6000 graphics cards
(with CUDA 11.0, PyTorch 1.9.1, and Torchaudio 0.9.1). Note that as
VENOMAVE employs an early-stopping procedure (see Algorithm 1),
increasing M will not necessarily lead to a longer attack time.

M

1 2 4 6 8 10

Attack step (K) 15.7 11.5 7.9 7.6 6.8 7.0
Attack time (hours) 1.54 1.36 1.46 3.43 3.33 5.33

Clean test acc. (%) 97.84 97.84 97.81 97.79 97.84 97.81

Attack succ. rate (%) 43.3 76.7 80.0 80.0 86.7 83.3

TABLE III: Evaluation of VENOMAVE when the poison budget rp is
successively increased from 0.001 to 0.01.

rp

0.001 0.003 0.005 0.01

Poison data length (seconds) 6.20 15.93 25.44 48.73
Poison data samples 96.23 248.10 387.83 693.57

Clean test accuracy (%) 97.85 97.84 97.84 97.76

Attack success rate (%) 23.3 76.7 86.7 83.3

To accelerate the attack, we freeze the HMM component

and only train the DNN for the surrogate ASR systems. We

found this effective as the language model does typically not

change significantly. The frozen surrogate HMM is trained

in advance by training an ASR system for 15 epochs on the

clean training set, followed by three epochs of Viterbi training.

During the attack, we train the surrogate ASR systems for 25

epochs until convergence.

2) Results: We first evaluate the attack success rate as a

function of the number of surrogate models. Table II presents

the performance of VENOMAVE for different numbers of

surrogate networks. Note that a higher number of surrogate

models adds to the complexity of Equation 2. However, more

surrogate networks can help the attack to succeed in fewer

steps and, consequently, this increased complexity does not

necessarily lead to a longer attack time. This is also evident

from the results in Table II. We obtain the highest attack success

rate (86.7 %) for M = 8 surrogate models. In the case where

we use M = 10 surrogate models, the attack time and required

attack steps are increased while a lower attack success rate is

obtained. Note that the number of attack steps K in Table II is

the average number for all 30 poisoning trials for each entry.

Next, we evaluate VENOMAVE for varying levels of poison

budget rp (see Section III-B3). The results are shown in

Table III. We observe a general trend that an increase of the

poison budget leads to a higher attack success rate (23.3 % →
83.3 %), which stagnates for poison budgets larger than 0.005.

A higher budget allows the attacker to manipulate an increasing

number of poison frames and, thus, has more control over the

training process. However, from a certain number, this effect

is less distinct as the surrogate models also need to maintain a

good clean test accuracy. The general improvement comes at

a price; the length and number of the poisoned data increases

TABLE IV: The attack performance for unknown training parameters
and network architectures.

Victim’s network

DNN2 DNN3 DNN3+

Baseline test accuracy (%) 98.75 98.41 99.01
Clean test accuracy (%) 97.92 98.04 99.02
Attack success rate (%) 86.7 86.7 83.3

TABLE V: Evaluation of VENOMAVE for partial and unknown set of
clean training samples. The victim uses different training parameters
than the attacker. We divide the training set of TIDIGITS into two
subsets, with “Split 1” containing the first half and “Split 2” containing
the second half of the speakers (56 speakers each).

Attacker Victim Clean test Attack succ.
Network Tr. set Network Tr. set acc. (%) rate (%)

DNN2+ Split 1
DNN3 Split 2 97.92 86.7
DNN3 Split 1 + 2 98.03 80.0

(6.20 s → 48.73 s) from a total of 15,254 s training data. We

observe the best performance with a budget rp=0.005, where

we poison only 0.17 % of the training set while achieving an

attack success rate of 86.7 %.

Figure 3 shows an example of a poisoned audio file as well

as its respective original audio file.

C. Limited-Knowledge Adversary

For most applications in practice, it is unrealistic to assume

that an adversary has detailed knowledge of the exact training

parameters, architecture, and the training data that is used by

the victim. In the following, we therefore want to relax the

threat model and consider an adversary with limited knowledge.

We consider two settings: (1) First, we restrict access to the

victim’s model architecture and training parameters, and (2)

second, we extend the knowledge limitations and additionally

restrict access to the victim’s training data (except for the

poisoned data). For both settings and based on the previous

experiments, we set the poison budget to rp = 0.005 and

consider M = 8 surrogate models.

1) Model Architecture and Parameters: We consider that the

victim uses one of three different model architectures: DNN2,

DNN3, or DNN3+ from Table I. All models are trained from

scratch for 32 epochs, of which epochs 11 and 12 include

Viterbi training. The victim uses Adam with a learning rate

of 4e−4, a batch size of 64, and a dropout probability of 0.2.

The dropout layer is added after the first hidden layer.

Table IV shows that the malicious characteristics of the

poisoned data remain even if the victim uses different training

parameters and network architectures. Also, for all models the

clean test accuracy remains almost the same in comparison to

the baseline test accuracy, which measures the accuracy of the

models trained on exclusively clean data. It is worth noting

that in prior work, dropout was typically disabled, as in a

transfer learning scenario, a rational victim will usually overfit

the training set [2], [49]. Since this is usually not the case

when the victim’s model is trained from scratch, we enable

dropout in this experiment. Our results show that the poisoned

data survive the randomness introduced by the dropout.

410

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (s)

0

2000

4000

6000

8000

F
re
q
u
en
cy

(k
H
z)

−350

−300

−250

−200

−150

−100

(a) Original Signal

0.5 1.0 1.5 2.0

Time (s)

0

2000

4000

6000

8000

F
re
q
u
en
cy

(k
H
z)

−350

−300

−250

−200

−150

−100

(b) Original Signal

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

2000

4000

6000

8000

F
re
q
u
en
cy

(k
H
z)

−350

−300

−250

−200

−150

−100

(c) Poison Signal

0.5 1.0 1.5 2.0
0

2000

4000

6000

8000

F
re
q
u
en
cy

(k
H
z)

−350

−300

−250

−200

−150

−100

(d) Poison Signal

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

2000

4000

6000

8000

F
re
q
u
en
cy

(k
H
z)

−350

−300

−250

−200

−150

−100

(e) Difference

0.5 1.0 1.5 2.0
0

2000

4000

6000

8000

F
re
q
u
en
cy

(k
H
z)

−350

−300

−250

−200

−150

−100

(f) Difference

Fig. 3: Spectrograms of Poisons. We present two example poisons computed with VENOMAVE. The left column shows an utterance of
digit sequence SEVEN, THREE, FOUR, NINE, OH and the right shows an utterance of digit sequence FOUR, EIGHT, ONE, FOUR,

THREE. Both poison the digit FOUR to OH. Figure 3a and 3b show the unmodified signals, Figure 3c and 3d depict the poison version, and
Figure 3e and 3f show the respective differences of both versions.

2) Training Dataset: Building upon the previous experiment,

we further reduce the attacker’s knowledge and assume that the

attacker only has partial knowledge about the training set of the

victim and its underlying distribution. In general, the adversary

uses their knowledge about the training data to (1) perform the

ratio analysis (see Section III) and (2) train surrogate networks

for the poison crafting step. Note that for this experiment we

continue to use an unknown victim’s model architecture.

For the experiment, we divide the training data into two

subsets with disjoint sets of 56 speakers each. We restrict the

adversary to access only the first subset (Split 1, 56 speakers).

For the victim, we consider two different scenarios: (1) training

samples only from the second subset (Split 2, 0 % overlap),

and (2) the entire training set (Split 1+2, 50 % overlap). Similar

to the previous experiment, we evaluate a victim with different

training parameters and network architecture (DNN3). As the

poison samples only depend on Split 1, we use the same data

for both cases.

Table V presents the performance of VENOMAVE for these

two scenarios. When the victim’s training set has no overlap

with the attacker’s training set, VENOMAVE achieves an attack

success rate of 86.7 %. When the attacker’s training set consists

of 50 % of the victim’s training set, VENOMAVE achieves an

attack success rate of 80 %. While the same poisoned data is

used in these two cases, in the latter case, the poisoned data

are competing with more clean data points. This may explain

why VENOMAVE achieves a lower attack success rate despite

the fact that it has partial knowledge of the victim’s training

set. The average clean test accuracy is 97.92% and 98.03% for

0 % and 50 % overlap cases, respectively.

D. Multi-Word Replacement Attack

Next, we want to scale the attack to more complex targets

and, in particular, aim to replace multiple words. This can be

realized by launching multiple individual word replacement

attacks simultaneously. For a successful multi-word attack, all

single-word attacks need to be successful. For this experiment,

we evaluate the attack for sentences with two, three, and four

digits. For each set, we select 20 random audio files and aim to

replace all the words with randomly chosen adversarial words.

As an example, the adversary might try to fool the ASR system

to recognize an utterance of O89 as 762. We continue to use

a limited-knowledge attacker that does not have access to the

victim’s training parameters and network architecture. We use

the same setup as before and DNN3 as the victim’s network

architecture but a larger output layer of size 350 to contain all

required phones of the extended language model.

Table VI shows the attack statistics for sentences with

different numbers of words. For reference, we repeat the results

for the single-word attack in Table VI. The attack remains

effective for longer sequences of words albeit with a decreased

success rate. Also, the attack uses more poisoned data to

perform a multiple-digit replacement compared to a single-

word replacement attack.

411

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Results for target sentences with different numbers of
words. Note that the performance of the single-word attack is also
presented as a reference.

Number of Words

1 2 3 4

Poison data length (seconds) 25.44 46.17 63.85 89.68
Poison data samples 387.83 630.39 841.16 1,289.85

Clean test accuracy (%) 98.04 97.84 97.67 97.75

Attack success rate (%) 86.7 75.0 60.0 60.0

E. Speech Commands Dataset

To further examine the practical feasibility of our attack, we

evaluate VENOMAVE on a larger ASR system. To this end,

we use the Speech Commands corpus [47] used for keyword

spotting. This dataset consists of 105,829 one-word utterances

and contains 35 different words:

• Digits ZERO, ..., NINE

• Common words for IoT or robotics applications. YES, NO,

UP, DOWN, LEFT, RIGHT, ON, OFF, STOP, and GO

• Command words. FORWARD, FOLLOW, BACKWARD, and

LEARN.

• Auxiliary words. BED, BIRD, CAT, DOG, HAPPY, HOUSE,

MARVIN, SHEILA, TREE, VISUAL, and WOW.

For our poisoning attack trials, we randomly select 15 audio

files and for each sample, we pick a random adversarial target.

To fit this dataset, we use a larger neural network as well as

a larger language model with 350 states. We use the DNN3+

architecture for our surrogate networks. As before, we use a

fixed HMM during the attack, which is trained in advance by

training an ASR system for 16 epochs on the clean training

set, of which the last epoch includes Viterbi training. We

use this surrogate HMM at the beginning of each step of the

attack to train four surrogate networks on the latest version

of the poisoned dataset for 20 epochs with a batch size of

32. We verify that the training converges at 20 epochs. We

use the Adam [22] optimizer with a learning rate of 1e−4 for

poison crafting.

For the victim, we use a network architecture consisting

of four hidden layers with 300, 200, 200, and 200 neurons,

respectively. The victim trains the ASR system from scratch

for 31 epochs, of which the eleventh epoch enables Viterbi

training. For the victim’s training, a learning rate of 4e−4 and

a batch size of 64 is used.

With a poison budget of rp = 0.02, VENOMAVE achieves

a success rate of 73.3% while poisoning only 0.14 % of the

training set (116.73 seconds of audio). Table VII shows the

attack performance for each example. We successfully poisoned

11 of the 15 trials. In general, we need to poison more and

longer audio sequences with this extended dataset but the attack

remains successful in most of the cases.

F. Over-The-Air Attack

Prior work on audio adversarial examples [34], [48] has often

struggled in an over-the-air setting: During the transmission

over the air, the audio signal is altered, which may affect the

poisoning success. In this following, we study the effects of

transmission over the air on our poisoning attack.

First, we consider a simulated setting. To this end, we use

the Python RIR Simulator implementation [10] and simulate the

transmission in a room via a convolution with a Room Impulse

Response (RIR) [4]. We evaluate the attack in three simulated

rooms with the microphone and the speaker being positioned

randomly. For each setting, we use four different reverberation

times between 0.4–1.0 seconds. Second, we evaluate the attack

in a real physical room with an iPhone 13 Pro microphone

and a JBL GO speaker.

We consider both datasets. For the TIDIGITS dataset, we

use the poison samples that are generated in Section IV-C2 for

the 0 % overlap setting. Consequently, the adversary does not

know the victim’s DNN architecture and training parameters

as well as the training set (except for the poisoned data).

Note that the victim uses DNN3 in this evaluation. For the

Speech Commands dataset, we use the same poisoned data as

in Section IV-E.

Table VIII shows the results for different reverberation times

(RT) in seconds, room dimensions, speaker and microphone

positions. In addition, we also report the results for the physical

room. For the TIDIGITS dataset, VENOMAVE maintains a

success rate of 33.3-73.3% across different room settings as

opposed to the success rate of 86.7% when feeding the input

directly to the recognizer. For the Speech Commands dataset,

VENOMAVE maintains an attack success rate of 20-60% across

different room settings as opposed to the success rate of 73.3%

when feeding the input directly to the recognizer.

G. Transferability

In the previous sections, we focused on hybrid ASR systems,

and our results demonstrated that these are vulnerable to dataset

poisoning attacks. In this experiment, we consider the effect of

the poisons for other ASR architectures. In particular, a victim

that uses an end-to-end ASR system.

For this, we use an end-to-end system designed for the task

of keyword spotting [5], [29], [38] on the Speech Commands

dataset based on SpeechBrain [33].2 This ASR system has

a total of 4,494,777 trainable parameters. For reference, the

hybrid system that we evaluated in Section IV-E has a total

of 265,295 trainable parameters, which is 0.06 times less than

the end-to-end system.

We use the same poison samples generated in Section IV-E

to attack hybrid ASR systems. For each of the 11 successful

attack examples, we evaluate the victim’s end-to-end system

by training it on the poisoned datasets. We observe that the

attack fools the victim’s end-to-end system for four examples,

showing a transferability rate of 36.4%. The test accuracy for

the poisoned models is on average at 95.06%.

H. User Study

To evaluate the human perception of our poison samples, we

conduct a listening test, where we ask participants to transcribe

2Recipe: https://github.com/speechbrain/speechbrain/tree/develop/recipes/
Google-speech-commands

412

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: Evaluation of VENOMAVE on the Speech Commands dataset using 15 different random attack examples. The poison budget rp
is 0.02, and the attacker uses four surrogate networks to craft the poisoned data. On average, VENOMAVE uses 116.73 seconds of poisoned
data (0.14 % of the training set). The total length of the training data is 84,054 seconds. The average SNRseg for poison frames is 4.14.

Original Adversarial Poisoned data Poisoned frames Attack Clean test
word word length (seconds) # samples SNRseg successful? accuracy (%)

learn on 31.59 396 7.99 � 86.83
nine four 156.71 1,887 7.49 � 87.07
three six 124.71 1,654 -1.74 � 87.16
six off 91.55 1,057 -0.63 � 86.98
yes go 140.74 1,493 7.75 � 86.90
six five 128.36 1,584 7.39 � 87.72
follow three 51.06 865 1.72 � 87.39
four zero 164.14 2,012 8.37 � 86.99
follow two 45.35 549 3.74 � 86.79
four yes 184.95 2,153 4.06 � 87.35
six seven 217.60 2,412 4.07 � 87.35
one forward 80.66 1,064 5.09 � 85.86
four up 150.78 1,659 -1.67 � 86.77
up off 79.65 1,025 3.07 � 86.67
one down 94.10 1,256 5.33 � 87.12

TABLE VIII: VENOMAVE’s evaluation after the transmission in three simulated rooms, selected from related work [42], and one real physical
room. For the TIDIGITS dataset, the numbers are for the poison samples that are generated in Section IV-C2 for the 0 % overlap setting. For
the Speech Commands dataset, we use the poisoned data that VENOMAVE crafted in Section IV-E.

TIDIGITS Speech Commands
Room Mic. Speaker Attack succ. rate (%) Attack succ. rate (%)

Type Dim. (m3) Position Position RT=0.4 RT=0.6 RT=0.8 RT=1 RT=0.4 RT=0.6 RT=0.8 RT=1

Simulated 10.7× 6.9× 2.6 1.0× 4.5× 1.3 8.1× 3.3× 1.4 53.33 46.67 36.67 33.33 20.00 20.00 26.67 20.00
Simulated 4.6× 6.9× 3.1 3.8× 3.2× 1.2 3.8× 5.3× 1.0 63.33 60.00 50.00 46.67 60.00 53.33 40.00 33.33
Simulated 7.5× 4.6× 3.1 0.4× 0.9× 1.1 6.9× 1.9× 2.6 73.33 60.00 56.67 56.67 46.67 46.67 40.00 40.00

Physical 3.7× 3.4× 2.4 1.7× 2.7× 1.2 2.1× 0.5× 0.8 73.33 33.33

TABLE IX: Results for different levels of psychoacoustic filtering Λ
(poison budget rp is set to 0.005).

Poisoned frames Attack succ. Clean test
Λ (dB) SNRseg rate (%) acc. (%)

20 4.61 0.0 97.80
30 4.25 43.3 97.80
40 3.54 66.7 97.81
50 4.13 80.0 97.80

NONE 2.17 86.7 97.84

utterances of the poisoned data. Furthermore, in this section,

we additionally consider psychoacoustic modeling [35], [50] as

a mechanism to limit the perceptible perturbations introduced

by the attack.

1) Psychoacoustic Modeling: To make poisons less con-

spicuous, we can utilize psychoacoustic modeling to limit

audible distortions. Recent attacks against ASR [32], [35]

proposed psychoacoustic hiding as a method to create less

perceptible adversarial noise. To identify inaudible ranges, these

attacks use dynamic hearing thresholds, which describe the

masking effects in human perception that arise as a function

of the interactions between different co-occurring acoustic

frequencies. We implement psychoacoustic hiding similar to

what is described by Schönherr et al. [35]. Appendix VIII-A

elaborates in detail how we employ psychoacoustic filtering.

We evaluate VENOMAVE for varying degrees of psychoa-

coustic filtering, controlled through margin Λ (in dB) that

allows the attack to surpass the hearing thresholds. The higher

Λ, the more audible noise is allowed. As shown by Table IX,

enabling the psychoacoustic hiding decreases the attack success

rate, while the SNRseg of poisoned frames improves. The case

without enforcing hearing thresholds is denoted as NONE. Note

that the choice of poison samples and frames does not depend

on the margin Λ; that is, the average length of the poisoned

data is always 25.44s in Table IX.

2) Transcription Test: For the study, we randomly selected

20 poison samples from 12 successful attack examples, both

when the psychoacoustic hiding was disabled and for Λ=30 dB,

which resulted in a pool of 480 poison samples. For verification,

participants also transcribed five hidden clean samples.

We asked 23 English speakers to transcribe a random subset

of utterances. The participants were not informed if a sample

has been modified or if it represents a clean sample. On

average, each user transcribed 40 poison samples. For each

attack example, we report the ratio of the poison samples that

are transcribed into their original label.

When the psychoacoustic hiding is disabled, 87.1 % of the

poison samples were transcribed into their original labels. On

the other hand, for Λ=30 dB, 85.0 % of the poison samples

were transcribed into their original labels. These results show

that even though enforcing hearing thresholds of Λ = 30 dB

413

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

improves the SNRseg values of the poisoned frames (from 2.17

to 4.25, see Table IX), the performance of the transcription

test is not improved.

The results of this feasibility study also indicate that the

poisoned data generated by VENOMAVE contain samples that

can be considered as clean-label samples. Such a study has often

been missing in prior works, and as noted by Schwarzschild

et al. [36], most current attacks in the visual domain produce

easily visible artifacts and distortions.

V. DISCUSSION

Next, we expand our analysis of VENOMAVE by providing

insights into our results. We will also summarize the results

and discuss major findings and limitations.

A. Attack Parameters

Here, we discuss the impact of VENOMAVE’s parameters

on the attack success rate.

1) Poison Budget & Surrogate Models: Using a larger poison

budget rp increases the number of poisoned files (and frames).

However, we show that beyond a poison budget of 0.005, the

attack success does not further improve (see Table III), and,

therefore, more poison samples are not necessarily required

for the attack. The same can be observed for the number

of surrogate models; using more surrogate models does not

necessarily increase the attack’s success (see Table II).

2) Target Selection: In Section IV-D, we show that VENO-

MAVE is not limited to the replacement of single words;

it can successfully replace all the words with the intended

adversarial words. Consequently, an attacker has full control

of the output of the target, and arbitrary transcriptions can be

chosen. This is further supported in our experiments with the

Speech Commands dataset, where we show that VENOMAVE

scales to ASR systems with a larger vocabulary.

To further understand how the number of HMM states of

the target word affects the success rate of VENOMAVE, we

consider our single-word replacement attack in Section IV-C

on the TIDIGITS dataset. We conducted this experiment over

30 trials, which we divide here into three different categories:

(1) In 11 trials, the target word has more HMM states than the

original word, (2) in 7 trials, the target word and the original

word have the same number of HMM states, and (3) in 12

trials the target word has less HMM states than the original

word. For the results presented in Table IV (last column), the

attack fails on two, one, and two trials, respectively, in these

three types of trials, showing that the difference between the

number of HMM states of the target and original word does

not affect the success rate of the attack.

3) Sequence Selection: To quantify the effect of the sequence

selection on the attack success rate, we repeat the experiment

from Section IV-C (Table IV). Instead of choosing the target

sequences based on the frequency analysis (explained in

Section III-B), we now randomly select the target sequence.

We require that the sequence has to be in ascending order

(e.g., for a target sequence like [92, 92, 91, 91, 93, 93] the

language model can otherwise not return a valid word). In this

experiment, we observe a drop in the attack success rate by

23.33 percentage points (from 83.33% to 60.0%).

B. Clean Test Accuracy

In our evaluation, we always use the entire test dataset to

calculate the clean accuracy using the edit distance between

the ground-truth label and the predicted transcription. Here,

we aim to understand how the attack affects the recognition of

the target word in isolation. We use the results presented in

Section IV-C for the following measurements:

• For each digit, we only consider the test audio files that

contain the digit to calculate the number of errors (I +

S + D, Section IV). On average over 30 trials, the total

number of errors for the target and original digits are 93

and 95 words, respectively, while the number of errors

for the other digits is 111 words.

• For each digit, we consider the test audio files that do

not contain the digit. For these files, we count how often

the model’s transcription (mistakenly) contains the digit.

On average over 30 trials, for 9.97 utterances, the model

mistakenly recognizes the target digit. For the original

digit, this value is 8.97, while for the other digits, this

value is 10.26 on average.

C. Practical Considerations

In the following, we elaborate on the practical aspects of

our attack and reflect on its implications and limitations.

1) Clean-Label Poison Utterances: In the listening test, we

verify that VENOMAVE is able to generate clean-label poison

samples. We ask participants to transcribe poisoned audio

samples and on average, more than 85% of the poison samples

were transcribed into their original labels, showing that even

manual verification of training data would not be effective to

prevent audio poisoning attacks.

Furthermore, in privacy-preserving federated learning sce-

narios, where the training data and the training is decentralized,

a party can easily compromise the training data [43]. Here,

the poison samples are not constrained to clean-label data

points, as the victim has no access to the training data, while

the attacker has full control of their data. Additionally, our

limited-knowledge experiments have shown that controlling

only parts of the training process and training data—as would

be the case in a federated learning scenario—is very effective.

2) Limited Vocabulary: We showed our attack is successful

on two datasets, TIDIGITS and Speech Commands, of which

the latter is ten times bigger than the former. We argue that our

results show that data poisoning attacks against ASR systems

are a viable threat that needs to be considered by researchers

working on ASR systems. Based on our foundations, we hope

that future work will improve the scalability of our attack and

include larger datasets in their evaluation and develop more

robust ASR systems that are resistant to data poisoning attacks.

3) Fine-Tuning: Although hybrid ASR systems are typically

trained from scratch, we now want to expand our evaluation

and also consider a fine-tuning scenario. For this, we use

the poisoned data generated for the most restricted adversary

414

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

(Table V). That is, the adversary’s training set is the “Split

1” subset. For the victim’s model, we divide the “Split 2”

subset into two parts of equal size (each with 28 speakers).

The first part is the training set and contains only clean data.

The second part, which is the fine-tuning set, is poisoned. On

average, over the same 30 trials, we observe an attack success

rate of 63.33% (83.33% for the from-scratch training scenario).

For training and fine-tuning, we used a learning rate of 1e-4

and 5e-5, respectively.

4) Over-the-Air: In Section IV-F, we demonstrate that

VENOMAVE is also successful if the targeted audio signal is

played over the air in simulated and physical rooms of different

sizes. This shows the general robustness of our attack and that

the poison samples also remain effective after a transmission’s

alterations. Notably, the attack is generic in the sense that the

properties of the room need not be known beforehand.

5) Transferability To End-To-End Keyword Spotting: To

verify the practicality of VENOMAVE in the real world, we

evaluate the poisoned data generated by the attack against

an end-to-end ASR system, designed specifically for the task

of keyword spotting on the Speech Commands dataset. Our

results in Section IV-G show that although the poison samples

of VENOMAVE are not crafted for end-to-end systems, they

remain viable and can be a potential threat to such systems.

6) Hearing Thresholds: Hearing thresholds have shown to

be effective for adversarial examples, however, in the case of

poisoning, we observe that their effect is less distinct. One

main reason may be that in contrast to adversarial examples,

where the complete file is modified, our modifications for the

poison utterances are limited to short sequences.

VI. RELATED WORK

In the following, we discuss related work on attacks against

machine learning and ASR systems.

1) Adversarial Examples: Adversarial examples are care-

fully crafted inputs that are perturbed by adding imperceptible

noise to fool a machine learning model [8], [41]. Such pertur-

bations are calculated using the gradients of an optimization

problem that is defined on the victim network, or surrogate

networks, if the victim network is unknown. Initial work

on adversarial attacks focused on the space of images [8],

[17]. Later, similar evasion attacks were shown to exist in the

audio domain, where generating adversarial examples is more

challenging due to time dependencies that exist in the ASR

systems [12], [34], [35], [44].

2) Backdoor Attacks: For a backdoor attack, an adversary

manipulates the victim model by imprinting training samples

with a specific pattern (trigger) and the target label to train

the model to become sensitive to this pattern [18]. During

inference, the attacker can then cause a misclassification by

injecting the trigger into any input example. By using ultrasonic

triggers, the feasibility of such an attack against ASR was

recently demonstrated in a technical report by Koffas et al.

[23]. In contrast to our work and similar to evasion attacks,

however, backdoor attacks require the modification of test

samples during inference, which is not always applicable in

real-world scenarios.

3) Training-Time Poisoning Attacks: Closest to our work

are training-time poisoning attacks [2], [15], [19], [37], [49]

against image classification, wherein the adversary crafts poison

images—with no control over the labeling process—to achieve

the system’s misbehavior for specific target inputs. There

exist major limitations with these attacks, which hinder their

application to ASR systems. First, these attacks focus on

transfer learning, which is not a common training practice

for speech recognition; ASR systems are typically trained from

scratch. Second, they assume that the victim does not use

dropout during the fine-tuning process, while dropout is often

enabled in training neural networks from scratch. Furthermore,

unlike image classification, the recognition process of ASR is

based on time series signals (i. e., the waveform audio signal).

Consequently, these attacks cannot directly be applied to speech-

based systems.

4) Countermeasures: Although several automated defenses

have been proposed [13], [28], [31], they can typically

be evaded by an adaptive attacker [24], [36]. One line of

possible defenses focus on poison detection and removing

them from the train set. This usually happens by employing

some neighborhood conformity tests or outlier detection, either

on the data itself or in the latent space [31]. This type of

detection, however, requires access to the training data, which

is not always given (e. g., in a federated learning setting). Most

recent defenses also consider retrospective countermeasures

like forensic-inspired approaches [39]. Their strategy is to

detect the origin of the poisoned data after a successful attack,

and, therefore, cannot prevent harm beforehand.

Other defenses try to detect poisoned models [13], [28],

[31]. However, these sanitization-based defenses may be

easily leveraged by an attacker who is aware of the specific

defense mechanism, as they are attack-specific [24], [36]. More

importantly, most defenses require clean reference data to

sanitize the training data. The distribution of such clean data

needs to be close to the distribution of the training data, which

is often not realistic.

VII. CONCLUSIONS

In this paper, we present VENOMAVE, the first training-

time poisoning attack against speech recognition. In a series

of experiments, we demonstrate VENOMAVE’s efficacy and

evaluate the attack under different attack settings and for various

attack parameters. We test single and multi-word replacement

attacks and investigate the effect of an enlarged language

model. The attack remains viable in an over-the-air scenario,

with limited knowledge about the victim model, and transfers

between different speech recogntion architectures. Finally, we

verify with a user study that the majority of poison samples are

clean-label, which renders a manual verification of the training

data ineffective. In summary, we show with VENOMAVE that

data poisoning of ASR systems poses a real threat that needs

to be considered.

415

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

We would like to thank our reviewers for their valuable

comments and input to improve our paper. This material is

based upon work partially supported by NSF under Award

#CNS-2107101 and by a gift from Intel, Corp. Any opinions,

findings, and conclusions or recommendations expressed in this

publication are those of the author(s) and do not necessarily

reflect the views of NSF or Intel. Moreover, this work

was funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under Germany’s Excellence

Strategy – EXC 2092 CASA – 390781972.

REFERENCES

[1] Hadi Abdullah, Kevin Warren, Vincent Bindschaedler, Nicolas Papernot,
and Patrick Traynor. SoK: The Faults in our ASRs: An Overview of
Attacks against Automatic Speech Recognition and Speaker Identification
Systems. In IEEE Symposium on Security and Privacy (S&P), 2020.

[2] Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel,
and Giovanni Vigna. Bullseye polytope: A scalable clean-label poisoning
attack with improved transferability. In IEEE Symposium on Security

and Privacy (S&P), 2020.
[3] David Leroy Alice Coucke, Joseph Dureau and Sébastien Maury. On-

device voice control on sonos speakers, May 2022. https://tech-blog.sonos.
com/posts/on-device-voice-control-on-sonos-speakers/, as of December
25, 2022.

[4] Jont B. Allen and David A. Berkley. Image method for efficiently
simulating small-room acoustics. The Journal of the Acoustical Society

of America, 1979.
[5] Sercan O Arik, Markus Kliegl, Rewon Child, Joel Hestness, Andrew

Gibiansky, Chris Fougner, Ryan Prenger, and Adam Coates. Convolu-
tional recurrent neural networks for small-footprint keyword spotting. In
Interspeech, 2017.

[6] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and
Vitaly Shmatikov. How to backdoor federated learning. In Advances in

Neural Information Processing Systems (NeurIPS), 2020.
[7] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin

Calo. Analyzing federated learning through an adversarial lens. In
Advances in Neural Information Processing Systems (NeurIPS), 2019.

[8] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim
Šrndić, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks
against machine learning at test time. In Joint European conference on

machine learning and knowledge discovery in databases, 2013.
[9] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks

against support vector machines. In International Conference on Machine

Learning (ICML), 2012.
[10] Douglas R. Campbell, Emmanuel Vincent, and Sunit Sivasankaran.

Python rir simulator, October 2021. https://github.com/sunits/rir
simulator python, as of December 25, 2022.

[11] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah
Sherr, Clay Shields, David Wagner, and Wenchao Zhou. Hidden voice
commands. In USENIX Security Symposium, 2016.

[12] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted
attacks on speech-to-text. In IEEE Security and Privacy Workshops

(SPW), 2018.
[13] Henry Chacon, Samuel Silva, and Paul Rad. Deep learning poison data

attack detection. In 2019 IEEE 31st International Conference on Tools

with Artificial Intelligence (ICTAI), pages 971–978. IEEE, 2019.
[14] Sina Däubener, Lea Schönherr, Asja Fischer, and Dorothea Kolossa.

Detecting adversarial examples for speech recognition via uncertainty
quantification. In Conference of the International Speech Communication

Association (INTERSPEECH), 2020.
[15] Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin

Taylor, Michael Moeller, and Tom Goldstein. Witches’ brew: Industrial
scale data poisoning via gradient matching. In International Conference

on Learning Representations (ICLR), 2020.
[16] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi

Schwarzschild, Dawn Song, Aleksander Madry, Bo Li, and Tom Goldstein.
Dataset security for machine learning: Data poisoning, backdoor attacks,
and defensess. Computing Research Repository (CoRR), abs/2012.10544,
2021.

[17] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[18] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:
Identifying vulnerabilities in the machine learning model supply chain.
Computing Research Repository (CoRR), abs/1708.06733, 2017.

[19] W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom
Goldstein. Metapoison: Practical general-purpose clean-label data
poisoning. Computing Research Repository (CoRR), abs/2004.00225,
2020.

[20] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
Brandon Tran, and Aleksander Madry. Adversarial examples are not
bugs, they are features. In Advances in Neural Information Processing

Systems (NeurIPS), 2019.

[21] ISO Central Secretary. Information Technology – Coding of Moving
Pictures and Associated Audio for Digital Storage Media at Up to 1.5
Mbits/s – Part3: Audio. Standard 11172-3, International Organization
for Standardization, 1993.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. Computing Research Repository (CoRR), abs/1412.6980,
2014.

[23] Stefanos Koffas, Jing Xu, Mauro Conti, and Stjepan Picek. Can
you hear it? backdoor attacks via ultrasonic triggers. arXiv preprint

arXiv:2107.14569, 2021.

[24] Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data
poisoning attacks break data sanitization defenses. arXiv preprint

arXiv:1811.00741, 2018.

[25] Ram Shankar Siva Kumar, Magnus Nyström, John Lambert, Andrew
Marshall, Mario Goertzel, Andi Comissoneru, Matt Swann, and Sharon
Xia. Adversarial machine learning-industry perspectives. In IEEE Security

and Privacy Workshops (SPW), 2020.

[26] Kevin A. Lenzo. Carnegie Mellon Pronouncing Dictionary (CMUdict) -
Version 0.7b, November 2014. http://www.speech.cs.cmu.edu/cgi-bin/
cmudict, as of December 25, 2022.

[27] R. Gary Leonard and George Doddington. Tidigits ldc93s10. Linguistic
Data Consortium, 1993.

[28] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning:
Defending against backdooring attacks on deep neural networks. In
International Symposium on Research in Attacks, Intrusions, and

Defenses, pages 273–294. Springer, 2018.

[29] Samuel Myer and Vikrant Singh Tomar. Efficient keyword spotting using
time delay neural networks. arXiv preprint arXiv:1807.04353, 2018.

[30] J. Omura. On the Viterbi decoding algorithm. IEEE Transactions on

Information Theory, 1969.

[31] Neehar Peri, Neal Gupta, W Ronny Huang, Liam Fowl, Chen Zhu, Soheil
Feizi, Tom Goldstein, and John P Dickerson. Deep k-nn defense against
clean-label data poisoning attacks. In European Conference on Computer

Vision, pages 55–70. Springer, 2020.

[32] Yao Qin, Nicholas Carlini, Garrison Cottrell, Ian Goodfellow, and Colin
Raffel. Imperceptible, robust, and targeted adversarial examples for
automatic speech recognition. In International Conference on Machine

Learning (ICML), 2019.

[33] Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, Samuele
Cornell, Loren Lugosch, Cem Subakan, Nauman Dawalatabad, Abdel-
wahab Heba, Jianyuan Zhong, Ju-Chieh Chou, Sung-Lin Yeh, Szu-Wei
Fu, Chien-Feng Liao, Elena Rastorgueva, François Grondin, William
Aris, Hwidong Na, Yan Gao, Renato De Mori, and Yoshua Bengio.
SpeechBrain: A general-purpose speech toolkit, 2021. arXiv:2106.04624.

[34] Lea Schönherr, Thorsten Eisenhofer, Steffen Zeiler, Thorsten Holz, and
Dorothea Kolossa. Imperio: Robust over-the-air adversarial examples
for automatic speech recognition systems. In Annual Computer Security

Applications Conference (ACSAC), 2020.

[35] Lea Schönherr, Katharina Kohls, Steffen Zeiler, Thorsten Holz, and
Dorothea Kolossa. Adversarial attacks against automatic speech recog-
nition systems via psychoacoustic hiding. Symposium on Network and

Distributed System Security (NDSS), 2018.

[36] Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson,
and Tom Goldstein. Just how toxic is data poisoning? a unified benchmark
for backdoor and data poisoning attacks. In International Conference on

Machine Learning, pages 9389–9398. PMLR, 2021.

[37] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph
Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs! Targeted
clean-label poisoning attacks on neural networks. In Advances in Neural

Information Processing Systems (NeurIPS), 2018.

416

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

[38] Changhao Shan, Junbo Zhang, Yujun Wang, and Lei Xie. Attention-based
end-to-end models for small-footprint keyword spotting. arXiv preprint

arXiv:1803.10916, 2018.

[39] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y. Zhao.
Poison forensics: Traceback of data poisoning attacks in neural networks.
In USENIX Security Symposium, 2022.

[40] Stanley Smith Stevens, John Volkmann, and Edwin B Newman. A scale
for the measurement of the psychological magnitude pitch. The Journal

of the Acoustical Society of America, 1937.

[41] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing Prop-
erties of Neural Networks. In International Conference on Learning

Representations (ICLR), 2014.

[42] Igor Szöke, Miroslav Skácel, Ladislav Mošner, Jakub Paliesek, and Jan
Černockỳ. Building and evaluation of a real room impulse response
dataset. IEEE Journal of Selected Topics in Signal Processing, 13(4):863–
876, 2019.

[43] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu.
Data poisoning attacks against federated learning systems. In European

Symposium on Research in Computer Security, 2020.

[44] Tavish Vaidya, Yuankai Zhang, Micah Sherr, and Clay Shields. Cocaine
noodles: exploiting the gap between human and machine speech
recognition. In USENIX Security Symposium, 2015.

[45] Lionel Sujay Vailshery. Number of digital voice assistants in use
worldwide from 2019 to 2024, April 2020. https://www.statista.
com/statistics/973815/worldwide-digital-voice-assistant-in-use/, as of
December 25, 2022.

[46] Dong Wang, Xiaodong Wang, and Shaohe Lv. An overview of end-to-end
automatic speech recognition. Symmetry, 2019.

[47] Pete Warden. Speech commands: A dataset for limited-vocabulary speech
recognition. Computing Research Repository (CoRR), abs/1804.03209,
2018.

[48] Hiromu Yakura and Jun Sakuma. Robust audio adversarial example
for a physical attack. In International Joint Conference on Artificial

Intelligence, 2019.

[49] Chen Zhu, W Ronny Huang, Ali Shafahi, Hengduo Li, Gavin Taylor,
Christoph Studer, and Tom Goldstein. Transferable clean-label poisoning
attacks on deep neural nets. In International Conference on Machine

Learning (ICML), 2019.

[50] Eberhard Zwicker and Hugo Fastl. Psychoacoustics: Facts and Models.
Springer, third edition, 2007.

VIII. APPENDIX

A. Psychoacoustic Modeling

Recent adversarial attacks against ASR systems [32], [35]

use psychoacoustic hearing thresholds to hide modifications

of the input audio signal within inaudible ranges. By using

hearing thresholds, we can limit audible distortions. These

thresholds define how dependencies between certain frequencies

can mask, i.e., make inaudible, parts of an audio signal. In

essence, we guide VENOMAVE to hide malicious noise in these

inaudible parts. At each step of the poison crafting, we scale the

gradients of the poison audio signal (calculated via minimizing

Equation 2) with scaling factors that limit audible distortions.

Since human thresholds alone are tight, the scaling factors are

allowed for differing from the thresholds by a margin of Λ (in

dB). The higher Λ, the more audible noise is allowed to be

added by the attack.

In the following, we discuss how we compute the scaling

factors. First, we compute the power spectrum of the difference

D between the poison signal spectrum Υ and the original signal

spectrum O for all times t and frequencies q as the following:

D(t, q) = 20× log10
|Υ(t, q)−O(t, q)|

maxt,q(|O|)
, ∀t, q.

Then we compute the audible difference (in dB) for all times

t and frequencies q via

ζ(t, q) = D − H,

where H is the computed human hearing thresholds based on the

psychoacoustic model of MPEG-1 [21]. Since the thresholds H

are tight, we allow VENOMAVE to differ from the hearing

thresholds by a margin of Λ (in dB). In particular, we calculate

the matrix ζ∗ for all times t and frequencies q as

ζ∗(t, q) =

{

H(t, q) + Λ−D(t, q) if H(t, q) + Λ ≥ D(t, q)

0 else

where we clip the negative values to zero for the time-frequency

bins that cross the thresholds H + Λ. We then normalize the

matrix ζ∗ to values between zero and one via

ζ̂(t, q) =
ζ∗(t, q)− mint,q(ζ

∗)

maxt,q(ζ∗)− mint,q(ζ∗)
, ∀t, q.

We also compute a fixed scaling factor by normalizing the

hearing thresholds H to values between zero and one via

Ĥ(t, q) =
H(t, q)− mint,q(H)

maxt,q(H)− mint,q(H)
, ∀t, q.

Putting the scaling factors ζ̂ and Ĥ together, the gradient of

∇X computed via Equation 2 will be scaled as the following

∇X(t,q) := ∇X(t,q) · ζ̂(t, q) · Ĥ(t, q), ∀t, q.

This scaling happens between the Discrete Fourier Transform

(DFT) and the magnitude step in the computational graph.

417

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2023 at 19:06:09 UTC from IEEE Xplore. Restrictions apply.

