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Abstract

Background Glioblastoma Multiforme (GBM) is a fast-growing and highly aggressive brain tumor that invades the
nearby brain tissue and presents secondary nodular lesions across the whole brain but generally does not spread to
distant organs. Without treatment, GBM can result in death in about 6 months. The challenges are known to depend
on multiple factors: brain localization, resistance to conventional therapy, disrupted tumor blood supply inhibiting
effective drug delivery, complications from peritumoral edema, intracranial hypertension, seizures, and neurotoxicity.

Main text Imaging techniques are routinely used to obtain accurate detections of lesions that localize brain tumors.
Especially magnetic resonance imaging (MRI) delivers multimodal images both before and after the administration of
contrast, which results in displaying enhancement and describing physiological features as hemodynamic processes.
This review considers one possible extension of the use of radiomics in GBM studies, one that recalibrates the analysis
of targeted segmentations to the whole organ scale. After identifying critical areas of research, the focus is on illustrat-
ing the potential utility of an integrated approach with multimodal imaging, radiomic data processing and brain
atlases as the main components. The templates associated with the outcome of straightforward analyses represent
promising inference tools able to spatio-temporally inform on the GBM evolution while being generalizable also to
other cancers.

Conclusions The focus on novel inference strategies applicable to complex cancer systems and based on building
radiomic models from multimodal imaging data can be well supported by machine learning and other computa-
tional tools potentially able to translate suitably processed information into more accurate patient stratifications and
evaluations of treatment efficacy.
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Graphical Abstract

Highlights
Biclusters identify associations

between atlas-defined brain regions
and radiomic features.

Advantages:

a) Facilitate the investigation of
complex disease aspects;

b) Bring translational power in
patient stratification and evaluation
of treatment efficacy;

¢) Help select predictive MRI
readouts-based models from ML
approaches;

d) Fuse information from
multimodal features to improve
performance/prediction accuracy.

Introduction

Glioblastoma multiforme (GBM)

GBM is the most common type of malignant primary
brain tumor but is still not well understood. It pre-
sents a poor prognosis with a median survival of about
15 months for patients who receive standard therapy
(Stupp protocol, based on surgical resection and radio-
therapy combined with concomitant chemotherapy).
Population-RWD (real-world data) based meta-anal-
yses suggest that 2-, 3- and 5-year survival in GBM
patients only partially improved since 2005 [1]. Recent
advances in understanding the molecular biology of
GBM leveraged studies on genetic alterations and
genomic profiles [2—4], including subclone diversity, via
single cell DNA sequencing, and transcriptome profile
diversity, via single cell RNA-sequencing [5, 6].

In common with other cancers, the tumor microen-
vironment (TME) plays a complex role in GBM too.
Generally responsible for growth and invasion, TME is
highly variable at the intra-tumor spatial level, and both
cellular and molecular interactions have not yet led
to causal explanations [7, 8]. However, the increased
imaging centrality driving radiomic studies, especially
magnetic resonance imaging (MRI) in GBM, has drawn
novel interest in computational modeling to improve
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Impact

Radiomics integrating multimodal images establishes
more robust signatures of functional regions (such as
tumor habitats) and associate them to outcome

diagnosis, prognostication and clinical decision sup-
port [9-11].

Radiomics
Radiomics is a multidisciplinary field that engages sci-
entists in processing various interconnected tasks such
as tumor segmentation, image preprocessing, feature
extraction, model development, testing and validation.
Usually, segmentation is performed on annotated images
by targeting whole tumors, subregions or peritumoral
areas (all defined through regions of interest or ROI) to
extract features describing distributions of signal intensi-
ties and spatial relationships. Selected features are those
bringing differentially informative content regarding
texture, shape, statistical descriptions, intensity-based
measures etc. The major interest is in texture, as it reveals
patterns characterized by brightness, color, slope, size.
The analysis of features aims to quantify variations in
intensity values and gray levels. Other relevant tumor
information comes from shape characteristics whose
analysis elucidates geometric aspects through shape
descriptors.

There are a few factors in the radiomics workflow that
influence these features and their significance. First, fea-
tures may undergo manual, semi-automatic or automatic
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treatment. For instance, automatic learning typically
involves Machine Learning (ML) and Deep Learning (DL)
algorithms that tend to outperform more classical statis-
tical techniques with complex and big datasets [12—14].
The search for feature saliency may require a reduction of
dimensionality to embed only the most informative char-
acteristics then used to train models and determine the
best possible accuracy. Alternatively, analyses supported
by hand-crafted features may also be highly valuable due
to superior interpretability [15, 16], even when combined
with ML-derived ones [17-19]. This choice might be
instrumental to clinical translational, given multiple cri-
teria to be applied [20, 21].

Due to the substantial image data space that has
become available through data repositories for research,
examples being The Cancer Imaging Archive, TCIA
(https://www.cancerimagingarchive.net/) [22] or the
newborn  EuCanlmage  (https://molgenis.eibir-edc.
org/), there is a massive call for analysis based on com-
putational and predictive modeling and developments of
novel integrative multi-omics inference tools. The appli-
cations range from tumor segmentation and anatomical
lesion detection [23] to computer-aided diagnosis and
prognosis [24, 25], just to mention a few. Some criticism
persists relatively to a certain lack of interpretability [26],
nonetheless inspiring the emerging explainable artificial
intelligence (XAI) [27-30] research. In general, despite
the necessity to measure any radiomic tool in terms of
clinical value, our understanding of intra-tumor het-
erogeneity in GBM has received a strong impulse from
radiomics with reference to a few specific domains. No
doubt that a better characterization of intra-tumor het-
erogeneity will determine any future progress in terms of
outcome prediction and personalized treatment.

Focus areas

TME, habitats and saliency

As tumor regions are biologically different, the most spe-
cific use of radiomic features is one that leverages these
quantitative measures to support genetic or epigenetic
evidence as well as phenotypes (aggressiveness degree,
resistance mechanisms, etc.) elucidating differentiated
patterns of metabolism, hypoxia, proliferation, neovascu-
larization. Radiomics that informs on tumor surrounding
tissues, including the TME, provides additional prognos-
tication power (for instance, in high-grade glioma [31,
32] this affects the possibility to predict tumor’s aggres-
siveness) and ability to monitor patient’s response to
therapy via follow-up imaging and detect new or modi-
fied areas of enhancement, e.g., assessment of risk of
tumor progression (TP) versus treatment-related changes
or pseudo-progression (PsP) [33, 34].
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One aspect of heterogeneity in tumors consists of dif-
ferentiated TMEs, something which has motivated the
recent investigation of the so-called habitats [35-40].
Imaging habitats can quantify the grey-level heterogene-
ity appearing from scans, which helps detect variations
in tumor blood supply. Generally obtained by supervised
segmentation of the tumor into sub-regions that map
its complex organizational structure, the complexity of
habitats naturally translates into a very rich data milieu
needing ad hoc computational treatment, even beyond
the association of habitats with somehow defined clusters
[41]. Clustering methods can identify tumor sub-regions
contributing with varying prognostic performances.
However, the identified clusters or sub-regions are usu-
ally the result of the application of globally defined
thresholds that often have minimal biological value. Also,
biology may not be able to guide selectively the cluster
being formed or a reasonable weighting based on the
retrieved radiomics features. Finally, clustering often
employs simple structures determined with some degree
of arbitrariness (say, the choice of the number of clusters)
or may assume data hierarchies that are algorithmically
valid but have limited contextual relevance (say, random
forest, trees etc.).

All the above aspects influence the definition of sali-
ency, for instance relatively to the hypotheses about the
importance to assign to tumor regions based on their
phenotypic contributions. In principle, a clinically useful
saliency map would be predictive for the risk of relapse
given the improved model performance expected when
selected (salient) features are chosen. However, each spe-
cific context must be carefully analyzed, and for instance
GBM has a highly complex background with lots of
redundant information due to its the multiscale nature.
This somehow contrasts with the idea of targeting spe-
cific ROI embedding the saliency of contextual charac-
teristics, and is something not linearly solvable (i.e., by
fixing thresholds to establish saliency that identify sig-
nificant foci or connecting to them surrounding regions
through some functions or distances).

Multimodal data integration

To address saliency, it is important to consider the fact
that imaging informs at the spatial level by identifying
sub-regions that may vary across multi-modal sequences
(e.g., T1, T1l-post contrast, T2 and FLAIR sequences
etc.). Interestingly, multi-modality extends beyond the
imaging combinations to include the associations with
phenotypes, i.e., gene expressions and correlation with
molecular subtypes [42], or outcome via survival. These
developments have inspired the field of radiogenom-
ics revealing associations between imaging phenotypes
(tumor location, neo-angiogenesis, tumor enhancement
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etc.) and molecular marks, ultimately leading to refined
patient stratifications [43—45]. Also, the differentiation of
tumor molecular profiles based on imaging traits implies
that identified MRI phenotypes may be used to probe the
underlying genotypes [46—48]. MRI-driven radiomics has
probed substantial relationships also between genomic
GBM profiles and imaging traits [49, 50].

Leveraging imaging multi-modality implies taking
decisions on what modes to combine and why, based on
the general expectation of building more effective radi-
omic models compared to those dependent on any sin-
gle modality only. Decisions face a spectrum of possible
combinations of different MRI sequences [51], with rel-
evance assigned to their clinical impact [52]. At data and
computational levels, the fusion of multiple modalities
may also vary, for instance depending on the stage. At
early stages, i.e., before feature classification, when com-
bined with clinical information (risk factors etc.). Inher-
ent technological aspects may also prevail, for instance
with CT presenting insufficient soft-tissue contrast. More
in general, one problem is the presence of imbalanced
classes in the data sets, something affecting the classifier
learning ability, likely inducing bias towards the majority
class, incorrect predictions and less robust models.

Potential gains from modality fusion in terms of model
performance can be tested both during the modeling
stage, when fusions may depend on active or incremental
learning, and during later stages (decision level) too. [53—
56]. Data heterogeneity is another aspect, as the fusion
of mixed data types should achieve superior predic-
tive accuracy. In both such regards, model performance
improvements and data diversity, the role of ML toward
handling large amounts of radiomic features character-
izing tumor phenotypes integrated with other data types
has primarily focused on building accurate and replica-
ble models for tumor classification and outcome pre-
diction. As an example, multimodal MRI radiomics can
effectively differentiate GBM from lower grade gliomas
and characterize the IDH and 1p/19q status using a ML
approach useful to clinical practice [57]. In general, treat-
ing multimodality presents several complexities. One is
inherent to the definition of multimodality (restricted to
imaging or inclusive of other data types) [58]. Another
is more contextual and may refer for instance to type of
treatment and disease evolution [59]. Then, while more
robust estimations can be reasonably expected with mul-
timodal methods, scalability can be an issue, although
deep neural networks show high accuracy with hyper-
scale data sets (about 5 ml images) [60].

Finally, another interesting domain linked to both
habitats and data integration/multimodality is imaging
synthesis [61-65], where an increased number of image
features retrieved from multiple regions and different
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sources may require relatively large cohort sizes. This
may offset the limited biological meaning found in habi-
tats by leveraging large-scale validations involving tissue
phenotypes and histology. Note that spatial co-registra-
tion of images and histology can be instrumental to the
use of MRI habitats for delineation of hypoxia, necrosis
etc. [66]. Especially with reference to necrosis, significant
contributions have come from multiple studies [67-72],
indicating the informativeness and classification impact
of both handcrafted and deep features extracted from
multimodal MRI images. Of note that radiomic texture
features informative about both the lesion and the peri-
lesion environment (defined as “lesion habitat”) can dis-
tinguish radiation necrosis and tumor recurrence [73].

Pillars

Brain atlases as integrative tools

Brain function is related to brain organization, which in
turn refers to spatial heterogeneity. Brain Atlases usually
operationalize these concepts through the parcellation
or partitioning of the brain in multiple closely interact-
ing regions [74]. Many atlases exist that collect brain data
(tumor and non) and describe high-resolution location-
specific maps centered on imaging data, becoming tools
that support quantitative analyses. For instance, fMRI or
functional MRI-driven brain studies help define proba-
bilistic maps based on functional and structural data
[75]. In general, non-random localizations of lesions are
identified through specific patterns and marks in capture
points or ROI [76]. Then, brain’s information is processed
from characteristics at both structural and functional lev-
els [77]. A common goal is to infer causal influences from
experimental measures and exploit the interconnectivity
between multiple data to provide mechanistic insights on
the nature of their relationships. While fMRI estimates
functional connectivity (brain activity), the discovery of
brain disease signatures emerging from different brain
network patterns can also result from integrating other
MRI types, e.g., diffusion (dMRI) and structural (sMRI)
to study anatomical and pathological connectivity from
shape, size, and integrity of brain structures.

Atlases can be useful reference tools and represent
templates for brain segmentation tasks. Among the many
available resources and tools, The neuromaps software
toolbox  [78]  (https://github.com/netneurolab/neuro
maps) offers structural and functional annotations of the
human brain through a variety of reference maps and bio-
logical ontologies. Then Neuroparc [79] (https://github.
com/neurodata/neuroparc), conceived to standardize
existing atlas repositories (46 different adult human brain
parcellations of various type, surface-based, volume-
based etc.). Global integrative analyses may require other
types of tools such as BCGene [80] (http://soft.bioin
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fo-minzhao.org/bcgene/), which explores genetic mecha-
nisms from about 1400 literature-curated human genes
in 40 brain cancer subtypes and about 3000 patients.
Specific to GBM, a well-known resource is the Ivy Glio-
blastoma Atlas Project (Ivy GAP) [81, 82] (http://gliob
lastoma.alleninstitute.org/), a comprehensive resource
on GBM anatomy and genetics characterizing the cellular
and molecular structures.

Connectome for functional studies

Connectome research [83, 84] is an area potentially
receiving a strong impulse from brain atlases. A reference
study [85] in brain tumor connectome analyzed neuroim-
aging data from 335 adult patients with high- and low-
grade glioma and combined them into a replicable tumor
frequency map correlated with multiple graph-theoreti-
cal metrics establishing high functional connectedness.
The application of a regression model with connectome,
cellular, and genetic variables has explained 58% of the
variance in glioma frequency, showing the indepen-
dently exerted influences over the anatomic localization
of oncogenesis. Another study [86] has leveraged the
mapping of independent sources of glioma localization
determining their relationships with neurogenic niches,
genetic markers, and large-scale connectivity networks.
Then, by applying independent component analysis
(ICA) to lesion data from 242 adult patients with high-/
low-grade glioma, three lesion covariance networks were
identified to represent clusters of frequent glioma locali-
zation. These networks were associated with clinical vari-
ables and genomic information, and structural/functional
connectivity was derived from neuroimaging data to
uncover brain networks prone to tumor development.

Neuroplasticity

Research on GBM radiomics requires precise defini-
tion of structural and functional features to infer factors
explaining pathogenetic mechanisms together with dis-
ease progression or evolution [87]. By combining such
features, MRI technologies can explore the neuroplasti-
city of structural, topological, biochemical metabolism,
and related mechanisms [88]. MRI is typically used to
provide detailed anatomical and pathological informa-
tion in addition to physiological detail. Neuroplasticity
caused by highly heterogeneous brain tumors could ben-
efit from multimodal MRI offering individualized pre-
diction of functional prognosis of patients based on ML
algorithms [89]. Through the (semi-) automatic iden-
tifications of image features, ML brings accuracy in the
classification and facilitates the integration with molec-
ular profiles, histological tumor grade, and prognostic
factors by using images acquired both at diagnosis and
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treatment, including follow up to enable differentiation
between response and post-treatment-related effects.

Brain atlas and radiomics integration

To demonstrate the potential use of brain atlases in
combination with radiomics, we chose the atlases and
databases publicly available from UNC-Chapel Hill (as
part of NITRC, ‘Neurolmaging Tools & Resources Col-
laboratory,  https://www.nitrc.org/projects/unc_brain_
atlas), and chose ‘UNC_Adult_Brain_Atlas_1; i.e., the
atlas of normal adult human brain anatomy generated
from 50 + healthy adult cases (20—59 years old). The atlas
comes with T1-weighted images (with and without skull),
tissue segmentation probability maps (white matter, gray
matter, CSF, rest) and a 27-lobe parcellation map.

The radiomic data were obtained from the multimodal
MRI of GBM samples and TCIA radiological data (clini-
cal images) matched to TCGA subjects, considering only
a couple of patients (for demonstrative scopes). We sub-
jected the samples to standard open source tools, i.e., 3D
Slicer (https://www.slicer.org/) and pyradiomics [90],
https://www.radiomics.io/pyradiomics.html. The details
of the data sets from The Cancer Genome Atlas Glioblas-
toma Multiforme Collection (TCGA-GBM) are available
at https://wiki.cancerimagingarchive.net/display/Public/
TCGA-GBM, and they aim to connect radiological phe-
notypes to tissue genotypes and patient outcomes. Note
that the collected data focus on routine care rather than
controlled studies or clinical trials, tissues from multiple
sites and heterogeneous images due to different scanner
modalities and acquisition protocols.

The visualizations of Fig. 1 display examples of parcel-
lation of the normal brain regions. By co-registering the
frame that the atlas parcellation provides and the GBM
images across the MRI modalities, we obtained spatially
matched and integrated brain maps covering both nor-
mal and tumor brain regions. Single and combined MRI
characteristics were then mapped (Figs. 2 and 3, respec-
tively) also considering the two brain hemispheres (with
and without GBM) for measuring differential effects.

The visual associations between brain regions with or
without GBM signatures retrieved from MRI radiomic
features is well represented by biclusters. We looked
for differential effects captured by the different MRI
modalities (modality-1 = ‘FLAIR’; modality-2 = “T1w’;
modality-3 = ‘Tlw postCA’; modality-4 = “T2w’). In
principle biclustering can identify associations between
atlas-defined brain regions and radiomic features, offer-
ing a few advantages: (a) Facilitating the investigation of
complex disease aspects (pseudo-progression and other
treatment-related effects); (b) Bringing translational
power for patient stratification and evaluation of treat-
ment efficacy when combined with clinical information;
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Fig. 2 MRI modalities (top) and Biclustering maps. For one GBM patient, four MRI modalities support biclustering maps displayed with all
features (centre) or selected ones (bottom). The applied spectral biclustering algorithm https://scikit-learn.org/stable/modules/biclustering.html
[91] assumes a hidden checkerboard structure for the input matrix and thus partitions its rows and columns according to a blockwise-constant
checkerboard matrix. The most significant Gauss filtered biclusters appear at the bottom-right corner
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(c) Help select predictive MRI readouts-based models
from ML approaches and libraries and use the fusion of
information from multimodal features to improve the
model performance in terms of prediction accuracy.

Table 1 Biclusters from 2 patients across all MRl modalities
combine brain regions and radiomic features. Note that for
reasons of space only the data of patient A was previously
visualized in Fig. 2

Brain regions Radiomic features

Patient A

Modality-1 FLAIR 2,522 8,10, 14,19, 35, 40, 49,
60, 71

Modality-2 TTw 2,5,22,25,26 1,17,28,29, 34,58, 74

Modality-3 T1w postCA 1,5,12,13 97,99, 100, 101, 103

Modality-4 T2w 22,25,26 11, 33,67,68, 70,82,
83,92

Patient B

Modality-1 FLAIR 14,15, 22 3,16,18,20,48,59,75,76,
79,81,84,102,105, 107

Modality-2 TTw 2,22 1,8,10,28, 29,34

Modality-3 T1w postCA 12,13, 16,17 15,24, 30,31,32,43,86

Modality-4 T2w 12,13,16,17,25,26 12,23,27,82,83,91, 94,
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Some limitations may apply. Radiomics performs well
by training over large data sets with accurate labels
(from expert annotations) to facilitate the process of
reproducing results of predictive models, generalizing
across multiple training data sets, validating over inde-
pendent patient cohorts and ultimately translating into
the clinics. Nevertheless, radiomic methods that inte-
grate multimodal images can establish robust signa-
tures of functional regions (such as tumor habitats) and
associate them to outcomes.

By looking at Table 1 and considering that these
annotations refer to the top-scored biclusters in Fig. 2
(bottom-right corner), the imaging results in patient A
show three recurrent brain regions (1=left, r=right),
i.e., [_parietal, r_frontal and r_parietal cingulate
across three modalities, i.e., FLAIR, T1lw, T2w. Then 2
regions, [_CSF and r_prefrontal informed by T1lw and
T2w. In patient B, r_parietal_cingulate recurs across
FLAIR and T1w, and r_corpus_callosum, I_cerebellum,
r_subcortical, [_temporal recur across T1w postCA and
T2w. At the opposite, r_cerebellum and [_subcortical
appear only in patient B, while r_frontal only in patient
A. Interestingly, very different radiomic feature combi-
nations appear in correspondence with the modalities
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Fig. 3 Top: Combined MRI modalities in Gauss filtered bicluster maps. Left: single modality. Centre: two combined modalities. Right: effects of
modality subtraction (from two to one). Bottom: Visualization of differential effects induced by GBM in left and right hemispheres (N=13 regions
used to map) and by subtracting unsorted biclustering maps (rightmost plot). The MRI modality used is FLAIR
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for the two patients (see the Additional file 2 ‘SM_AII-
regions’ with all the atlas brain regions).

The FLAIR modality indicates the relevance of texture
aspects more in Patient A than B, although with a limited
overlap of brain regions involved. T1w informs on new
brain regions from both patients and includes similar fea-
tures with respect to local homogeneity properties of the
images. T1lw postCA involves a mix of brain regions in
part overlapping between the two patients but associated
to different features referred to shape descriptors (from
ROI in both 2D and 3D) and texture heterogeneity (via
glem or gray level co-occurrence matrix, ie., second-
order joint probability function of image regions). Finally,
T2w informs in Patient A on three brain regions seen
with T1lw but associated to totally different features, rel-
atively to texture. In Patient B some similarities emerge
from brain region overlaps with Patient A and previously
informed by Tlw postCA modality through texture-
related features, but here additionally related to shape
features (see Additional file: 1 ‘SM_ALLfeatures’ with
all the listed features, and for the source details https://
pyradiomics.readthedocs.io/en/latest/features.html).

Discussion and concluding remarks

We have reviewed GBM and some emerging research
topics that hopefully can advance the field in the imme-
diate future. Among the identified needs that require
pre-clinical investigation, there are integrative and mul-
timodal imaging data approaches. These are especially
associated in brain to imaging tools such as MRI that
offer multiparametric solutions and interpretations.

As examples of emerging concepts falling into these
new developments there are imaging habitats that cap-
ture tumor heterogeneity through differentiated TME
features whose characterization translates into complex
and highly contextualized data fusions. New targeted
computational inferences are here needed.

Saliency maps were also addressed to assign pheno-
typic relevance to the brain regions and delineate predic-
tively the features value for an assessment of the risk of
relapse, again requiring consideration of contextual char-
acteristics to be suitably represented in computational
models.

We then addressed an interesting space, atlas-driven
radiomics, which complements the traditional targeted
radiomics. The latter is based on consolidated main steps
which include building tumor segmentations, extract-
ing features from ROI and classifying patients based on
them. As an alternative, we showed that the use of brain
atlases allows the design of interpretable templates that
can become implementable tools depending on their
definition and how their structures adapt to the various
contexts, brain regions in our case.
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We illustrated the potential use of such templates
with GBM patients, and we easily foresee their gen-
eralizability to other brain cancers, always with the
possibility of visualizing parcellation maps through
applied computational tools, i.e., biclustering or simi-
lar. Concerning the value of this type of analysis for
clinical scopes, the associations between brain regions
and radiomic features can become more significant
with the scale of the study, in which case features dis-
tributions classified by brain regions and patients may
become informative for stratification purposes. Finally,
the characterization that the template maps offer is
useful for monitoring the disease evolution, and in
such regard, concepts like imaging habitats and sali-
ency are extremely informative and deserve further
investigation.
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