Algorithmica manuscript No.
(will be inserted by the editor)

Algorithms for the Unit-Cost Stochastic Score
Classification Problem

Nathaniel Grammel - Lisa Hellerstein*
Devorah Kletenik - Naifeng Liu

Submitted June 25, 2020

Abstract Consider the following Stochastic Score Classification problem. A
doctor is assessing a patient’s risk of developing a disease and can perform
n different binary tests on the patient. The probability that test ¢ is positive
is p; and the outcomes of the n tests are independent. A patient’s score is
the total number of positive tests. Possible scores thus range between 0 and
n. This range is divided into subranges, corresponding to risk classes (e.g.,
LOW, MEDIUM, or HIGH risk). Each test has an associated cost. To reduce
testing cost, instead of performing all tests and determining an exact score,
the doctor can perform tests sequentially and stop testing when it is possible
to determine the patient’s risk class. The problem is to determine the order in
which the doctor should perform the tests, so as to minimize expected test-
ing cost. We address the unit-cost case of the Stochastic Score Classification
problem, and provide polynomial-time approximation algorithms for adaptive
and non-adaptive versions of the problem. We also pose a number of open
questions.

Keywords approximation algorithms, symmetric Boolean functions,
stochastic probing, sequential testing, adaptivity

Partial support for this work came from NSF Award IIS-1217968 (all authors), NSF Award
11S-1909335 (L. Hellerstein), and a PSC-CUNY Award, jointly funded by The Professional
Staff Congress and The City University of New York (D. Kletenik).

Nathaniel Grammel
University of Maryland, College Park, MD, USA E-mail: ngrammel@cs.umd.edu

*Lisa Hellerstein (corresponding author)
NYU Tandon School of Engineering, Brooklyn, NY, USA E-mail: lisa.hellerstein@nyu.edu

Devorah Kletenik
Brooklyn College (CUNY), Brooklyn, NY, USA E-mail: kletenik@sci.brooklyn.cuny.edu

Naifeng Liu
CUNY Graduate Center, New York, NY, USA E-mail: nliu@gradcenter.cuny.edu



2 Nathaniel Grammel et al.

1 Introduction

We consider the following Stochastic Score Classification (SSClass) problem.
A doctor wants to assess a patient’s risk of developing a certain disease and can
perform n different binary tests on the patient. Test ¢ has known probability
p; of yielding a positive result and the results of the n tests are independent.
The patient’s score is the total number of positive test results. Test results are
accurate, so the same test is never performed more than once on the patient.
The doctor needs to classify the patient into one of B risk classes, depending
on the score (e.g., LOW, MEDIUM, and HIGH risk). Each of these classes
corresponds to a contiguous range of scores. Each test performed incurs a
testing cost; we assume each test has unit cost.

To reduce testing cost, instead of performing all tests on a patient and
computing an exact score, the doctor will perform them sequentially, stopping
when the class becomes a foregone conclusion. For example, suppose there
are 10 tests and the MEDIUM class corresponds to a score between 4 and 7,
inclusive. If the doctor performed 8 tests, of which 5 were positive, the doctor
would not perform the remaining 2 tests, because the patient’s risk class will be
MEDIUM regardless of the outcome of the 2 remaining tests. The problem is
to determine the optimal (adaptive or non-adaptive) order in which to perform
the tests, so as to minimize the expected testing cost. Since we have assumed
unit-cost tests, this is equivalent to minimizing the expected number of tests.

In this paper, we present polynomial-time, constant-factor approximation
algorithms for three SSClass problems, in the unit-cost case: the general SS-
Class problem (for an arbitrary score classification problem), the SSClass prob-
lem for the Unanimous Vote function, and the SSClass problem for the k-of-n
function.

Formally, the Stochastic Score Classification (SSClass) problem is as fol-
lows. Given B + 1 integers 0 = a1 < ag < ... < ap < ag+1 =n+ 1, let class
j correspond to the scoring interval [0, +1,..., 541 — 1]. Thus B is the
number of classes. The «; values define an associated pseudo-Boolean score
classification function f : {0,1}" — {1,..., B}, such that f(Xy,...,X,) is the
class whose scoring interval contains the score ), X;. Fori € {1,...,n}, X; is
an independent Bernoulli random variable. Probability p; := Prob[X; = 1] is
given, and 0 < p; < 1. The value of X; can only be determined by performing
a test (or asking a query), which incurs a given testing cost ¢;, where ¢; > 0.
In this paper, we consider the unit-cost version of the SSClass problem, so we
assume each ¢; = 1.

An evaluation strategy for f is a sequential adaptive or non-adaptive order
in which to perform the tests. Testing must continue until the value of f can
be determined, i.e., until the value of f would be the same, no matter which
results were obtained for the remainder of the n tests. In an adaptive strategy,
the choice of the next test can depend on the outcomes of previous tests. An
adaptive strategy corresponds to a decision tree. A non-adaptive strategy is
a permutation of the tests. With a non-adaptive strategy, testing proceeds in
the order specified by the permutation until the value of f can be determined.



Algorithms for the Unit-Cost Stochastic Score Classification Problem 3

The goal of an algorithm for the SSClass problem is to find an evaluation
strategy for f with minimum expected total testing cost.

We consider both adaptive and non-adaptive versions of these problems,
in which the algorithm must find optimal adaptive or non-adaptive strategies,
respectively. In the adaptive version, the algorithm does not need to output
the full decision tree corresponding to the adaptive strategy (which may be of
exponential size). It is sufficient if the algorithm can implement the strategy
in an on-line setting, by computing the next test to perform, based on the
results obtained from the previous tests.

Before describing our results in detail, we discuss relevant prior work.

2 Prior work

The unit-cost adaptive SSClass problem was previously studied in the infor-
mation theory literature [BIILI3]. The main novel contribution there was to
establish an equivalence between verification and evaluation. Specifically, Das
et al. [B] showed that for the unit-cost adaptive SSClass problem, optimal
expected verification cost equals optimal expected evaluation cost.

In the algorithms literature, Deshpande et al. presented a dual-greedy 3-
approximation algorithm solving the Stochastic Boolean Function Evaluation
(SBFE) problem for linear threshold functions [6]. The general SBFE problem
is similar to the adaptive SSClass problem, but instead of evaluating a given
score classification function f defined by inputs «;, you need to evaluate a
given Boolean function f. The SBFE problem for linear threshold functions is
equivalent to a weighted version of the adaptive SSClass problem with only two
classes (B = 2), which allows each variable X; to have an associated integer
weight a;. The score is then the sum of the weights a; of the tests ¢ with
positive outcomes.

A k-of-n function is a Boolean function f such that f(z) =1iff 1 +... +
., > k. The SBFE problem for k-of-n functions is equivalent to the two-class
SSClass problem. It has been studied previously in the VLSI testing literature.
There is an elegant algorithm for the adaptive version of the problem, due to
Salloum, Breuer, and (independently) Ben-Dov, that computes an optimal
strategy [T4L2T5LM4].

While we have described the SSClass problem in the context of assessing
disease risk, score classification is also used in other contexts, such as assign-
ing letter grades to students, giving a quality rating to a product, or deciding
whether a person charged with a crime should be released on bail. In Machine
Learning, the focus is on learning the score classification function [20/I8\12]
22.[21]. In contrast, here our focus is on reducing the cost of evaluating the
classification function. We note that the SSClass problem differs from many
other stochastic probing problems previously considered (e.g. [I7[11]) because
of the requirement that testing must continue until the unique interval con-
taining the score has been determined.



4 Nathaniel Grammel et al.

3 Results and open questions

A table summarizing our approximation bounds can be found at the end of
this section.

Our first algorithm gives a 2-approximation for both the adaptive and
non-adaptive versions of the unit-cost SSClass problem. This is the best ap-
proximation bound known for both versions of the problem.

Our second algorithm is for a special case of the unit-cost, non-adaptive
version of the SSClass problem, where the problem is to evaluate what we call
the Unanimous Vote function. The Unanimous Vote function outputs POS-
ITIVE if X; = ... = X, = 1, NEGATIVE if X; = ... = X,, = 0, and
UNCERTAIN otherwise. Equivalently, it is a score classification function with
B = 3 and scoring intervals {0}, {1,...,n — 1} and {n}. Our algorithm pro-
duces a @-approximation to the optimal solution, where ¢ = 1+T‘/5 ~ 1.618
is the golden ratio. The Unanimous Vote function is closely related to the
Boolean consensus function, whose output is 1 iff its input variables are all
equal, and to its complement, the Boolean Not-All-Equal function. Our algo-
rithm can also be viewed as providing a ¢-approximation for a non-adaptive
version of the unit-cost SBFE problem for these Boolean functions.

Finally, our third algorithm is a 1.5-approximation algorithm for the unit-
cost, non-adaptive version of the SSClass problem where B = 2. Equivalently,
it is a 1.5-approximation algorithm solving a non-adaptive version of the unit-
cost SBFE problem for k-of-n functions.

For the Unanimous Vote and k-of-n functions, there are polynomial-time
exact algorithms for the adaptive versions (see Table . Our algorithms pro-
vide polynomial-time approximation algorithms for the non-adaptive version.

The proofs of our approximation bounds imply upper bounds of 2, ¢, and
1.5 for the adaptivity gaps of the corresponding problems.

Our first algorithm is simple. It outputs the strategy that performs a round
robin between two test orderings: one which performs the tests in decreasing
p; order, and the other which performs them in increasing p; order. Proving
that this achieves a 2-approximation requires some care.

Our p-approximation algorithm for the Unanimous Vote function is based
on an approximately optimal strategy for performing the remaining n—1 tests,
assuming the first test is given. This strategy performs the remaining tests by
initiating a round robin between the increasing and decreasing p; orderings,
and then stopping the round robin at a carefully chosen point to commit to
one of the two orderings, while abandoning the other. Our algorithm for the
Unanimous Vote function calculates the expected cost of this strategy for each
possible first test z; (which is a straightforward calculation), and chooses the
one with lowest expected cost.

To prove the 1.5 bound on k-of-n functions, we observe that the round
robin strategy underperforms relative to using either the increasing p; ordering
alone, or the decreasing p; ordering alone, whichever is cheaper.

There remain many intriguing open questions related to SSClass problems.
The first, and most fundamental, is whether the (adaptive or non-adaptive)



Algorithms for the Unit-Cost Stochastic Score Classification Problem 5

SSClass problem is NP-hard, even in the unit-cost case. It is unclear whether
this problem will be easy to resolve. We note that the NP-hardness of the
stochastic evaluation problem for Boolean read-once formulas has been open
since the 1970’s (cf. [I0l19]). Other open questions concern lower bounds on
approximation factors, and bounds on adaptivity gaps.

Some of the results in this paper appeared in preliminary form in a con-
ference paper [8]. The conference paper also included preliminary versions of
results on the SSClass problem with arbitrary costs; final versions of these
results, for associated Boolean function evaluation problems, have recently
appeared in a journal [9]. The results include polynomial-time O(logn) and
B —1 approximation algorithms for adaptive and non-adaptive versions of the
SSClass problem with arbitrary costs, and a simple exact algorithm solving the
adaptive SSClass problem for the special case of the Unanimous Vote function
(we present the unit-cost version of this algorithm in Section @ Additionally,
an example was given which demonstrates that the equivalence between op-
timal expected verification cost and optimal expected evaluation cost in the
unit-cost case does not extend to arbitrary costs.

In work that appeared subsequent to submission of this paper, Ghuge et
al. gave the first polynomial-time, constant-factor approximation algorithm
for both the adaptive and non-adaptive versions of the SSClass problem with
arbitrary costs [7]. Their algorithm also solves the weighted version of the
SSClass problem. Although Ghuge et al. do not try to optimize the constant
they obtain for their constant-factor approximation, the approach used in their
proof results in an approximation factor that is greater than 16. This contrasts
with the factor of 2 approximation we present in this paper for the less general
(unweighted) unit-cost SSClass problem.

Table 1 Results for the Unit-Cost SSClass Problem

adaptive non-adaptive
general (arbitrary score | 2-approx [Sec. H 2-approx [Sec. H
classification function)
unanimous vote exact algorithm [Sec.|§' (p-approx [Sec.|§
function
k-of-n function exact algorithm [14l2) | 1.5-approx [Sec. ﬂ
T54116]

4 Preliminaries

A partial assignment is a vector b € {0,1,*}". We use f° to denote the re-
striction of function f(z1,...,x,) to the variables x; with b; = *, produced by
fixing the remaining variables z; according to their values b;. We call f° the
function induced from f by partial assignment b. For £ € {0,1}, we use Ny(b)
to denote |{i | b; = £}|, the number of entries of b that are set to .



6 Nathaniel Grammel et al.

A partial assignment encodes what information is known at a given point
in a sequential testing environment. Specifically, for partial assignment b €
{0,1,%}™, b; = « indicates that test i has not yet been performed, otherwise
b; equals the outcome of test i. We sometimes refer to performing test i as
testing bit x;.

Suppose the probabilities p; for the n tests are fixed. We define the ex-
pected cost of an adaptive evaluation strategy for f: {0,1}" — {0,1} or
f:{0,1}" — {1,..., B} as follows. (The definitions for non-adaptive strategies
are analogous.) Given an adaptive evaluation strategy A for f, and an assign-
ment z € {0,1}", we use C'(A, x) to denote the sum of the costs of the tests
performed in using A on z. The expected cost of A is }° 1y, C(A, 2)p(z),
where p(z) = [[;—, p* (1 — p)' =% is the probability of x. We say that A is an
optimal adaptive evaluation strategy for f if it has minimum possible expected
cost.

Let L denote the range of f, and for £ € L, let X, = {zx € {0,1}" | f(z) =
C}. An adaptive verification strategy for f consists of |L| adaptive evaluation
strategies Ay for f, one for each ¢ € L. The expected cost of the verification
strategy is ), (ZIGX[ C(Ag,z)p(z)) and it is optimal if it minimizes this
expected cost.

If Ais an evaluation strategy for f, we call >y, C(A,z)p(x) the (-cost
of A. For £ € L, we say that A is £-optimal if it has minimum possible ¢-cost.
In an optimal verification strategy for f, each component evaluation strategy
A must be f-optimal.

A function f : {0,1}" — L is symmetric if its output on = € {0,1}"
depends only on Nj(z). The value vector for such a function f is the n + 1
dimensional vector v/, indexed from 0 to n, whose jth entry v]f is the value
of f on inputs x where N;(x) = j. We partition value vector v/ into blocks.
A block is a maximal subvector of v/ consisting of contiguous entries having
the same value. Using B to denote the number of blocks of the value vector,
we define aq,...ap to be the minimum indices of each of the blocks, where
0=o0a; < ay <...< ap, and we define ap;1 = n + 1. Block i of vf is
the subvector of v/ containing the entries in [a;,a;41). When f is a score
classification function, the blocks correspond to the score intervals.

We say that assignment = is in block i of v/ if Nj(x) is in the interval
[Oéia Oéz'+1)~

With each block i of v/, we associate a function f?, where fi(x) = 1 if
x is in block i, and fi(z) = 0 otherwise. A werification strategy for block i is

an evaluation strategy for f*. An optimal verification strategy for block i is an
evaluation strategy for f* with minimum 1-cost.

We will use the following simple fact.

Fact 1. For real numbers a,b > 0 and c¢,d > 0, % < max{%,g .



Algorithms for the Unit-Cost Stochastic Score Classification Problem 7

5 A 2-approximation for the unit-cost SSClass problem

We present and analyze a simple strategy for the unit-cost non-adaptive SS-
Class problem. We call it the Up-Down strategy.

In this section we will assume that the variables x; are indexed such that
P1L2P22> ... 2 Dn-
The Up-Down Strategy: Alternate (round robin) between the strategy that

tests the x;’s in the order z1,...,x,, and the strategy that tests the z;’s in
the reverse order, until the test outcomes are sufficient to determine the value
of f.

Thus if n is even, the Up-Down strategy executes the non-adaptive strategy
represented by the following permutation:

L1TnT2Tpn—1 - -Tp/2Tp /241

We will show that the expected cost of the Up-Down strategy is within
a factor of 2 of the expected cost of the optimal adaptive strategy for the
unit-cost SSClass problem. It follows that it is also within a factor of 2 of the
expected cost of the optimal non-adaptive strategy.

At a high level, our approach is to partition the 2™ possible assignments
according to the blocks to which they belong. For each block, we consider the
contribution made by the assignments belonging to that block, to the total
expected cost of a strategy. In order to compute the value of the function
on the assignments in a block, the strategy must verify that the assignments
belong to that block. That is, it must verify that the assignments have at least
a certain number of ones, and at least a certain number of zeros. We show that
for each block, the contribution made by the assignments in that block, to the
expected cost of the Up-Down strategy, is at most twice their contribution to
the expected cost of the optimal strategy. By summing over the blocks, we are
then able to show that the expected cost of the Up-Down strategy is at most
twice the expected cost of the optimal strategy.

We will make use of the following simple fact.

Fact 2. If X andY are random variables, and for all real numbers k, P[X <
k] < P[Y < k], then E[X] > E[Y].

We note that the above fact is one of the motivations behind the definition
of “stochastic dominance” in decision theory. (If P[X < k] < P[Y < k] for
all £ and the inequality is strict for some k, then X is said to stochastically
dominate Y.)

Theorem 1 The Up-Down strategy is a 2-approximation algorithm for both
the adaptive and non-adaptive versions of the unit-cost SSClass problem.

Proof. Consider an instance of the unit-cost SSClass problem. Let S be an op-
timal adaptive strategy for evaluating f. Let Z denote the Up-Down strategy.



8 Nathaniel Grammel et al.

We will show that the expected cost of Z is within a factor of 2 of the
expected cost of S, and is thus a 2-approximation for both the adaptive and
non-adaptive versions of the problem. Equivalently, we show that

Yo op@)C(zx)<2 > p(a)C(S,x) (1)

ze{0,1}" ze{0,1}"

Let M; denote the set of assignments in block j of vf. We will prove that
for each block 7,

> p)C(Z,2) <2 > p(x)C(S, ) (2)

reM; € M;

Summing over all blocks j then yields , proving the theorem.

We now prove . Consider block j of vf. Let Bj = ajy1 — 1. The as-
signments in block j are those that have at least a;; ones and at least n — 3;
ZEros.

Consider the execution of optimal strategy S on an assignment z in block
j. Strategy S must continue performing tests until it has enough information
to determine the value of f(z). Therefore, during its execution on z, at least
a; of the tests it performs must have outcome 1, and at least n — 3; must
have outcome 0. Otherwise, it will not have enough information to determine
whether = is in block j or in an adjacent block, and therefore will not have
enough information to determine f(z). Thus for all assignments x in block j,
C(S,z) > aj +n— By

The length of block j equals 8; — a; + 1. We have two cases, depending on
the length of block j.

Case 1: Block j has length at most n/2.

In this case, for all z € M;, C(S,z) > a; +n— 3; > n/2 + 1. Since the
Up-Down strategy (and, indeed any strategy) will perform at most n tests, we
have C(Z,z) < 2C(S, z) for all z € M;, so holds.

Case 2: Block j has length greater than n/2.

For this case, we will show that the following inequality holds for all k£ > 0.

Pr[(C(S,z) < k) A (x € M;)] < Pr[(C(Z,x) < 2k) A (x € Mj)] (3)
Equivalently,
Pr{(C(S,2) < k) | = € My)] < Prl(C(Z.a)/2 < k) | v € M)
Therefore, by Fact
E(C(Z,2)/2 |« € Mj)] <E[C(S,2) | = € M|

and follows immediately.

It remains for us to prove . For convenience, let v1 := a; and vg := n—p;.
If k < 11 + v, then Pr[(C(S,z) < k) A (z € M;)] = 0, because for z € M;,
C(S,z) > v1 + 1p. So for k < v1 + vy, trivially holds. Also, if k& > n/2,



Algorithms for the Unit-Cost Stochastic Score Classification Problem 9

then 2k > n and so clearly Pr[(C(Z, z) < 2k) A (x € M;)] = Pz € M;]. Thus,
when k > n/2, again trivially holds.

So suppose vg +v1 < k < n/2. Consider running the Up-Down strategy Z
for its first 2k steps. This consists of testing variables x1, za, ...,z (i.e., the k
tests with highest p;) as well as the variables x,,, Tp—1,...,Zn—k+1 (i€., the k
tests with the lowest p;). Let N- 1(22, x) denote the number of ones among the
variables x1,xa, ...,z (i.e., the number of ones obtained from performing the
k tests with highest p;) and let NO(Z,t, z) denote the number of zeros among
the variables x,,Zn—1,...,Tn—k4+1 (i-e., the number of zeros obtained from
performing the k tests with lowest p;). Similarly, let No(Zay, ) and Ny (Zag, x)
denote the number of zeros and ones obtained (respectively) from performing
the first 2k tests of Z. If v € M}, then Z terminates within its first 2k tests
if and only if at least v, of those tests have outcome 1, and at least vy have
outcome 0. Further, on a given assignment x, Z can only perform at least v
tests with outcome 1 and at least vy tests with outcome 0 if x € M.

We therefore have that:

Pr{(C(Z,z) < 2k) A (z € M;)]
Pr[(No(Zak, x) = vo) A (N1(Zag, ) > 11)]
[(
[

v

Pr[(No(Zt, ) > vo) A (N1 (Z],2) > 1))
= Pr[No(Z¢, ) > o] Pr[Ny(Z), 2) > 1]

where the inequality follows from the fact that No(Zog,x) > NO(Z,ﬁ,x) and
Ny (Zag,x) > Nl(Z,I, x), and the final equality follows from the independence
of tests and the fact that {x1,..., 2} and {&p_kt1,...2,} are disjoint (since
k < n/2 implies that k <n—k <n—k+1).

Next, we consider the first k steps of the optimal strategy S. Let No(Sk, )
and Np(Sk,x) denote the number of zeros and ones (respectively) obtained
from the first k tests of S on assignment z. Clearly, Pr[(C(S,z) < k) A (x €
Mj)] = Pr[(No(Sk, ) = vo) A (N1(Sk, ) = v1)].

Clearly

Pr[No(Z},x) > w) > Pr[No(Sk, ) > 1] (5)
Pr[Nl(Z,I,x) > 1] > Pr[Ny(Sk,z) > 14] (6)

because in order to maximize the probability of obtaining at least vy ones
(resp. Vg zeros) using k of the n tests, we must perform the k tests with the
highest (resp. lowest) p;.

Let Ay; denote the event [(No(Sk,z) > vo) A (N1(Sk,z) > v1)], Ao1 de-
note the event [(No(Sk,z) < vo) A (N1(Sk,x) > 11)], A1p denote the event
[(N1(Sk,z) < v1) A (No(Sk, ) > 1p)], and Agg denote the event [(No(Sk,z) <
vo) A (N1(Sk, ) < v1)]. We have assumed that k > vy + v4, so by performing
k tests, one is guaranteed to obtain at least 1 zeros or at least 11 ones. So



10 Nathaniel Grammel et al.

Pr[Ago] = 0. We have:

Pr[A11] =1 — Pr[A10] — Pr[Ap1] — Pr[Aoo]
=1—Pr[A;p] — Pr[Ao]
<1 —Pr[A19] — Pr[Ao1] + Pr[A10] Pr[Ap1] (7)
= (1 = Pr[Ao1])(1 — Pr[Ay])
= Pr[No(Sk, z) > vo] Pr[N1(Sk, z) > 1]

Combining with ,@, and , we get:

Pr[(C(Z,z) < 2k) A (z € M;)] Vo
Vo

Pr[N,(Z], ) > 1]
Pr[Ny(Sk,x) > 1]

vo) A (N1(Sk,x) > 11)]
) A (x € M;)]

r[No(Z}, x) >
r[No(Sk, x) >

[(No(Sk,z) >
[(C(S,z) <k

6 The Unanimous Vote function

In this section, we present our ¢-approximation algorithm solving the unit-
cost non-adaptive SSClass problem, in the special case of the Unanimous Vote
function.

Before presenting that algorithm, we first address the adaptive version of
the problem.

6.1 Adaptive evaluation of the Unanimous Vote function

The optimal adaptive strategy for evaluating the Unanimous Vote function
has a simple form. If the first test ; has outcome 0, the induced function on
the remaining variables is Boolean OR. In this case, it is clearly optimal to
test the remaining bits non-adaptively in decreasing p; order until either some
test has outcome 1 (implying that the value of the Unanimous Vote function
is UNCERTAIN), or all tests have been performed and have had outcome 0
(the value of the Unanimous Vote function is NEGATIVE). Symmetrically, if
the first test z; has outcome 1, it is optimal to perform the remaining tests
non-adaptively in increasing p; order, until either some test has outcome 0
(the value of the function is UNCERTAIN), or all tests have been performed
and have had outcome 1 (the value of the function is POSITIVE). We will
refer to this strategy as the x;-first adaptive strategy.

Suppose we call the first test in the z;-first adaptive strategy xg, and
renumber the remaining tests from 1 to n — 1 so that p; > p2 > ... > pp_1.
Then we can represent the strategy compactly as shown in Figure|l| (the leaves
of the tree, reached when the function value can be determined, are not shown).



Algorithms for the Unit-Cost Stochastic Score Classification Problem 11

Algorithmically, then, the only difficulty in computing an optimal adaptive
strategy is in determining which x; should be tested first. To address this
difficulty, the algorithm can just calculate the expected cost of the x;-first
adaptive strategy for each choice of x; (which is a straightforward calculation)
and then choose a strategy with minimum expected cost. Thus there is a
polynomial-time algorithm solving the adaptive version of the SSClass problem
for the Unanimous Vote function, with unit costs.

]
i | I'y
| [
3 Tp_3

Fig. 1 Optimal adaptive strategy for the Unanimous Vote function, if g is the first test

6.2 Non-adaptive evaluation of the Unanimous Vote function

We now consider the non-adaptive version of the problem. We begin by noting
that it is easy to achieve a 2-approximation for this version, as follows. Begin
by generating the n possible x;-first adaptive strategies, one for each z;. Then
convert each of these strategies into a non-adaptive strategy which performs
the same first test z;, and then performs the remaining tests using a round
robin (i.e., alternating) between the decreasing p; ordering of those tests (used
by the adaptive strategy when x; = 0) and the increasing p; ordering (used
when z; = 1).

Calculate the expected cost of each of the resulting non-adaptive strate-
gies. Because the round-robin at most doubles the number of tests performed
on each assignment in {0, 1}", relative to the tests that would have been per-
formed by the adaptive strategy, the resulting non-adaptive strategy having
minimum expected cost is a 2-approximation to the optimal adaptive strategy.

To reduce the approximation factor from 2 to ¢ = 12—‘/5 ~ 1.618, we use a
related but more nuanced approach. We call our p-approximation algorithm
the Truncated Round Robin (TRR) algorithm. As in the 2-approximation
algorithm, the TRR algorithm begins by generating the n different x;-first
adaptive strategies. For each of these strategies, it produces a corresponding
non-adaptive strategy. This strategy performs the first test x; of the adaptive
strategy, and then executes what we call a “truncated round robin” between



12 Nathaniel Grammel et al.

the decreasing and increasing p; orderings of the remaining tests. Finally, it
computes the expected cost of the n non-adaptive strategies, and outputs the
one with minimum expected cost.

To complete our description of the TRR algorithm, we now describe the
truncated round robin. Consider an x;-first adaptive strategy, after the renum-
bering of the tests, as shown in the tree in Figure[l| (so xg is the first test and
P1 > P2 > ... > pn1). Let “level I” refer to the tree nodes at distance ! from
the root; namely, x; and z,,_;. Following the first test z(, the standard round
robin (between the increasing and decreasing p; orderings of the remaining
tests) would proceed level by level, testing z; and z,_; in level I, until the
value of the Unanimous Vote function could be determined. Note that, in fact,
the standard round robin would terminate at or before level ("51] because at
this point all tests have been performed. Thus in each level “reached” by the
round robin, p; > p,_;.

In the truncated round robin we also proceed level by level, but we do

so in two phases. Fix ¢ to be a constant such that 0 < ¢ < % (To achieve

our approximation bound, we will set ¢ = % ~ 0.381966.) The first phase
concludes once we reach a level [ where p; > p,_; > 1—corc>p; > pn_y.
In the first phase, we test both x; and x,_;, testing first the variable whose
probability is closest to % In the second phase, we abandon the round robin
and instead continue down a single branch in the adaptive tree. Specifically,
at the start of the second phase, if p; > p,_; > 1 — ¢, then we continue down
the right branch, testing the remaining variables in increasing order of p;. If
¢ > p; > pn—i, then we continue down the left branch, testing the remaining
variables in decreasing order of p;.

Pseudocode describing the order of tests for the resulting non-adaptive
strategy is given in Strategy [Il In the pseudocode, “function value undeter-
mined” means tests so far were insufficient to determine the output of the
Unanimous Vote function. (The output, POSITIVE, NEGATIVE, or UNCER-
TAIN, is not shown in the pseudocode.) Pseudocode for the TRR algorithm
is given in Algorithm

Theorem 2 The Truncated Round Robin algorithm is a p-approximation al-
gorithm solving the non-adaptive, unit-cost SSClass problem, in the special
case of the Unanimous Vote function.

Proof. Consider the optimal adaptive strategy T. After performing its first
test, it follows the increasing or decreasing p; strategy, depending on whether
xo = 1 or xp = 0. If the other tests are numbered from 1 to n—1 so p; > py >
... = Pn—1, then T' is the tree in Figure [1} Let Cj,,., be the expected cost of
optimal adaptive strategy 7" and let z;- be its first test. Let ', ;44,1 De the
expected cost of the optimal non-adaptive strategy.

Let C; rrr be the expected cost of the non-adaptive strategy produced by
applying truncated round-robin to the z;-first adaptive strategy (Strategy
with first test z;). Let Crrr = min; C; rrr. Since the TRR algorithm (Algo-
rithm tries all possible first tests x;, Crrpr is the expected cost of its output
strategy. Further, Crrr < Ci+ TRE-



Algorithms for the Unit-Cost Stochastic Score Classification Problem 13

Strategy 1 truncated round robin strategy with first test x;

Input: Test probabilities p1,...,pn, first test x;

Renumber the tests so that zg is the first test z; and the remaining tests are numbered
from 1 ton —1so that p1 >p2 > ... > pp_1

Test bit zg
l + 1 //initialize level number

¢+ 35 ~0.381966
while p,,_; < 1—c and p; > ¢ and function value undetermined do
if |p; — 0.5] < |pp—; — 0.5| then
Test bit x; followed by z,,_;
else
Test bit x,,_; followed by x;
end if
l+1+1
end while//first phase: alternate branches of tree
if p; > pn_; > 1—c then
test remaining bits in increasing order of probabilities starting with x,, _; until function
value is determined
else if ¢ > p; > p,,_; then
test remaining bits in decreasing order of probabilities starting with z; until function
value is determined
end if //second phase: single branch in tree

Algorithm 1 g-approximation algorithm for Unanimous Vote

Input: Test probabilities pi,...,pn
for each test x; do
calculate the expected cost C; 7rpr of the truncated round robin strategy (Strategy
with z; as the first test
end for
Jj =argmin, C; TrR
return the truncated round robin strategy with first test x;

We will prove the following claim: Cj« rrr < @C:dapt, and so Crrr <
0O gape- Since the expected cost of the optimal adaptive strategy is bounded
above by the expected cost of the optimal non-adaptive strategy, the claim

also implies that Crrp < @C* which proves the theorem.

non—adapt’

We now prove the claim. Consider the non-adaptive strategy produced by
applying truncated round robin to the optimal adaptive strategy (i.e., Strat-
egy [1| with first test z;«). In what follows, we use the renumbering of the tests
where z is the first test z;«, and the remaining tests are numbered from 1 to
n—1s0p; >p2 >...> p,_1. Let £ be the level number at the start of the
second phase of the truncated round robin.

We will write the expected cost of the non-adaptive strategy as C;» rrr =
1+ E;+ (1 — Py)Es. Here, the 1 is for the first test, E; is the expected number
of bits tested in the first phase (i.e. in levels | < £), F5 is the expected number
of bits tested in the second phase (in levels [ > £), given that the second phase
is reached, and P; is the probability of ending during the first phase. Note that



14 Nathaniel Grammel et al.

the value of /¢ is determined only by the values of the p;, and is independent
of the test outcomes (as is required in a non-adaptive strategy).

We will write the expected cost of optimal adaptive strategy T as C;‘dapt =
1+ E{+(1— P])E}, where Ej is the expected number of bits tested in T" before
level ¢, P| is the probability of ending before level ¢, and E) is the expected

number of bits tested in levels ¢ and higher, given that ¢ was reached.
1+E1+(17P1)E2
T+E,+(1-P)E,"
Recall that since ¢ < 1/2, we have ¢ < 1—c. Also, the first phase ends if all bits
have been tested, which implies that for all [ in the first phase, | < [(n—1)/2]
SO prn—i < p;. We break the first phase into two parts: (1) The first part consists
of all levels | where p,—; < ¢ < 1—¢ <p;. (2) The second part consists of all
levels | where p; € (¢,1 —¢) or p,—; € (¢,1 — ¢), or both.

Let us rewrite the expected cost Eq as By = Ey1 + (1 — P11)E1,2. where
E1 1 is the expected cost of the first part of phase 1, F 3 is the expected cost
of the second part of phase 1, and P, ; is the probability of terminating during
the first part of phase 1. Analogously for the cost on tree T', we can rewrite
Bl =E1;+(1—P[;)E] 5. Then, the ratio we wish to upper bound becomes

_ 1+E1,1+(1—P171)E1‘2+(1—P1)E2
OB (AP B (1P EY
three ratios

To prove our claim, we will upper bound the ratio o :=

which we will upper bound by examining the

(1- P,)E,

0. — 1+ FE
! (1-P)E;

_ (1—Pi1)E12
1+ FE},

92 =
(1= Ppy)Er s

03 =

Note that if strategy 1" terminates in the first part of phase 1, then so does
the truncated round robin strategy. Thus if 17P1’71 = 0then 1-P; ; = 0. Also,
if 1— P/ =0, then 1 — P, = 0. By Fact |1} we now have o < max{61,62,03}
and we can upper bound « by upper-bounding the three values 67, 6> and 03.

For ratio 61, notice that the truncated round robin does at most two tests

3 / 1+ E4 1 14+2E7 .
for every tree level, so Fp; < 2E1,1, and thus 5, < B Also, the
142z )

function =, Is increasing in x for x > 0. For each branch in decision tree
T, for the levels in the first part of the first phase, the probability of getting
a result that causes termination is at least 1 — ¢. This is because in the first
part, p; > 1 —c¢ > ¢ > p,—;. If we are taking the left branch (because xo = 0)
we terminate when we get a test outcome of 1, and on the right (zg = 1), we
terminate when we get a test outcome of 0. Each bit tested is an independent
Bernoulli trial, so Ej ; < . Because 2% is increasing in x, we can assert

l1—c* 14+x
that

1+ By 14+20-¢7' 3-c

6, = = .
FTIHE, C1+11-ot 2-c

Next we will upper bound the second ratio 6. Let P(l) represent the
probability of reaching level [ in the truncated round robin. Further, let g
represent the probability of testing the second bit in level [ given that we have
reached level I. Observe that (1 — P; 1) E; 2 can be written as the sum over all
levels [ in phase 1, part 2 of P(I)(1 + ¢;). Note that in phase 1, the first bit
tested is the x; such that p; is closer to 0.5. Note also that in the second part



Algorithms for the Unit-Cost Stochastic Score Classification Problem 15

of the first phase, each level has at least one variable x; such that p; € (¢, 1—c¢)
and hence 1 — p; € (¢,1 — ¢) also. This means that the first test performed
in any given level in phase 1, part 2 will cause the truncated round robin to
terminate with probability at least c¢. So for each level [ in this part of the
truncated round robin, we have q; <1 —c.

Similarly, (1 — P[ ;)£ 5 is the sum over all levels [ which comprise phase
1, part 2 in the truncated round robin, of P’(l). Here, P'(l) is defined as the
probability of reaching level [ in tree T. We do not multiply by 1 + ¢; since in
executing 1" we only perform one test at each level.

Consider the execution of tree 7" on an assignment. If the execution ter-
minates upon reaching level [ in the tree, for | < ¢, then the truncated round
robin must terminate at a level I’ < [. That is, the truncated round robin
will terminate at level [ or earlier for the same assignment. Thus, we get that
P(l) < P'(l). Using this, we can achieve the following bound on the second
ratio (letting So denote the set of all levels included in the second part of phase

1):

6, — (1-P1)Er, 2ies, PO+ a1) < 2ies, POA+1-¢) =2-c

(1= P )E] 5 Yues, P T 2ies, P()

Finally, we wish to upper bound the last ratio, 3 = %. Recall that

¢ denotes the first level included in the second phase of the truncated round
robin. Without loss of generality, assume that ¢ > p; > p,_¢ so that in the
truncated round robin, the second phase tests the remaining bits in decreasing
order of p;. Thus, all bits x; tested in the second phase satisfy p; < ¢. (The
argument is symmetric for the case where py > p,—¢ > 1 —¢).

In this case, any assignments that do not cause termination in the truncated
round robin during the first phase, and that have 2o = 0 (i.e., they would go
down the left branch of T'), will follow the same path through the nodes in the
left branch, for levels ¢ and higher, that they would have followed in T'. (In
fact, tests from the right branch of the tree that were previously performed in
phase 1 of the truncated round robin do not have to be repeated.)

The numerator of the third ratio 63 is equal to the sum, over all assignments
x reaching level ¢ in the truncated round robin, of p(z)Cs(x), where Ca(x) is
the total cost of all bits tested in phase 2 for assignment x. Let Qg be the subset
of assignments reaching level ¢ in the truncated round robin which have g = 0
and let Q1 be the subset of assignments reaching level ¢ in the truncated round
robin which have xg = 1. Let Dy represent the sum over all assignments in
Qo of p(z)Ca(x) and let Dy represent the sum over all assignments in @1 of
p(z)Ca2(x). Then, letting S, represent the set of assignments reaching level ¢
in the truncated round robin, we can rewrite the numerator of the third ratio
as ZweSz p(l‘)CQ(J?) = EQIEQO p(ﬂ?)CQ(J?) + EwEQl p(-l?)Cz(l‘) = Do+ Ds.

The denominator of the third ratio is the sum, over all assignments  reach-
ing level £ in T, of p(z)C%(x), where C4(x) is the total cost of all bits tested by
T on assignment z at level £ and below. Let S} denote the set of assignments x
reaching level ¢ in tree T'. Next, observe that S, C S} since any assignment that



16 Nathaniel Grammel et al.

reaches level £ in the truncated round robin must also reach level £ in the tree.
If we define By = 3, .o, P(#)C5(z) and By = 3 o, p(z)C5(z), we can again
rewrite the denominator as ersg p(x)Cs(x) > >, s, P(x)Cs(x) = Bo + Bi.

The third ratio 63 can thus be upper bounded by 03 < E}:g;gz < ggigi .

For any = € @, the number of bits tested in level ¢ or below in the
truncated round robin is less than or equal to the number of bits tested on x
in level £ or below in the tree. Thus Dy < By.

For x € Q1, the number of bits tested at level ¢ or below in the truncated
round robin is at least one. Thus By > J;, where J; is the probability that a
random assignment x has x¢g = 1 and reaches level ¢.

Note that the truncated round robin will terminate on an assignment with
xo = 1 when it first tests a bit that has value 0. Also note that by our as-
sumption, each bit x; tested in level ¢ and below has probability p; < ¢ of
having value 1 and thus probability 1 —p; > 1 —c of having value 0 and ending
the truncated round robin. Since each bit tested is an independent trial, the
expected number of bits tested in level ¢ and below before termination is at
most (1—¢)~ L. Thus, D; < (1—c¢)~1J;. Together with the fact that Dy < By,

—1

we get ggigi < Bﬁf(;lo:_?l N Finally, we observe that since g—g = 1 and
—1

(170}71]1 < %_C, it follows that

93§D0+D1 < 1 .
B0+B1 176

Thus, we have three upper bounds: (1) 6; < g:z, (2) 2 < 2—¢, and
1

(3) 03 < 1= This gives us an upper bound on the ratio of the expected
cost of the truncated round robin to the tree 7', and thus an upper bound
on the approximation factor. This bound is simply the maximum of the three

1+E,+(1-P)E 3— 1 3—V6
TTET(1_P)E, < Max {fﬁ»Q ~6T1— 2
0.381966 causes all three upper bounds to equal . Thus, the truncated round
robin algorithm has an expected cost of no more than ¢ times the expected

cost of T'. Equivalently, Ci« rrr < ©Cj4,,;, which was the claim. O

upper bounds: } Setting ¢ =

7 Non-Adaptive evaluation of k-of-n functions

The Salloum-Breuer-Ben-Dov algorithm is an exact algorithm for the adaptive
evaluation of k-of-n functions. It is still open, however, whether there is a
polynomial-time exact algorithm for the non-adaptive version of the problem.

In this section, we present a polynomial-time approximation algorithm
achieving a 1.5 approximation factor for the non-adaptive version. Before de-
scribing the algorithm, we first point out some fundamental differences between
the adaptive and non-adaptive versions of the problem.

The exact algorithm for the adaptive version relies on two key facts: first,
that the cost of verification is equal to the cost of evaluation and second, that
the optimal ordering of tests depends only on the ranking (relative values) of



Algorithms for the Unit-Cost Stochastic Score Classification Problem 17

the probabilities p;, and not on their actual values (cf. [Bl5]). We begin by
showing that neither fact holds in the non-adaptive setting.

Claim In the non-adaptive setting, the optimal cost of evaluating a k-of-n
function can exceed the optimal cost of verifying the function.

Proof. Consider the 3-of-6 function defined on the probabilities [p1, ..., ps] =
[.5,.41,.29,.28, .18, .01].

The 1-optimal non-adaptive (or adaptive) strategy for this function is to
evaluate the variables in decreasing order of probabilities; the 0-optimal non-
adaptive (or adaptive) strategy is to evaluate variables in increasing order of
probabilities. These strategies yield a total expected verification cost of 4.52.

However the optimal non-adaptive evaluation strategy evaluates the vari-
ables in the order (x5, x4, 3, X6, T2, 1), with an expected cost of 4.81. O

Claim In the non-adaptive setting, an optimal evaluation strategy for k-of-n
functions depends not only on the ranking (relative values) of the probabilities
pi, but also on their actual values.

Proof. To demonstrate this claim, we consider evaluating the 3-of-6 function
with respect to two different vectors of probabilities: p = [p1,...,p,] where
p1L>p2 > ... > py; and pl = [p},...,p,] where p} > ph > ... > pl,. We show
that the optimal permutation for p is not optimal for p’ (with the probabilities
in p replaced by probabilities in p').

Let [p1,...,ps] = [.5,.41,.29,.28,.18,.01]. As stated above, the optimal
permutation for this function is (5, x4, x5, s, T2, 1) with an expected cost of
4.81. The non-adaptive strategy defined by decreasing order of probabilities,
(z1,...,26), is suboptimal, with an expected cost of 4.99.

In contrast, let p' = [.6,.5,.4,.3,.2,.1]. The optimal permutation for p’
orders the variables in decreasing order of proabaility, (x1,...,xs), and has
an expected cost of 4.93. The strategy (x5, x4, 23, T¢, T2, 21), optimal for p, is
suboptimal for p’, with an expected cost of 4.96. O

Because of the above differences, the approach used in the Salloum-Breuer-
Ben-Dov algorithm is not suitable for the non-adaptive problem. Our approx-
imation algorithm for the non-adaptive problem uses a different approach. It
relies on a dynamic programming algorithm that takes as input a non-adaptive
strategy for evaluating a k-of-n function and returns its expected cost. The
dynamic programming algorithm works by constructing an (n + 1) x (k+ 1)
table P and an (n + 1) x (n — k 4+ 2) table Q. For j < 4, table entry P][i, ]
stores the probability that the outcomes of the tests on z1,...,z; will consist
of exactly j ones and ¢ — j zeros. Table entry Q[i, j] stores the probability that
the outcomes of the tests on x1, ..., z; will consist of exactly j zeros and i — j
ones.

The base cases of the recurrence for P[i, j] are P[0,0] = 1, P[0, j] = 0 for
je{l,...,k}, and P[i,0] = [[,_,(1 —p,) for i € {1,...,n}. For the other i, j
entries, if j <4, P[i,j] = Pli— 1,5 — 1](p;) + Pli — 1, 5](1 — p;). A symmetric
recurrence holds for Q.



18 Nathaniel Grammel et al.

When evaluating a k-of-n function, testing stops immediately after the kth
positive test result, or immediately after the (n — &+ 1)th negative test result.
Let z = n — k 4 1. Thus the probability that testing stops immediately after
the ith test is (P[i—1,k—1] xp; + Q[i — 1,2 —1] x (1 —p;)). Thus the dynamic
programming algorithm outputs the quantity Y . (Pli—1,k—1] x p; + Qi —
1,z—1] x (1 —p;)) x i as the expected testing cost. We present the pseudocode
for the dynamic programming algorithm in Algorithm [2]

Algorithm 2 calculating expected cost of a non-adaptive k-of-n strategy

Input: permutation of variables x1,...,x, with probabilities p;, int k
Let z=n—k+1
Table P[0...n][0...k] //PJi,j] denotes the probability of having exactly j ones in
EAPRN: 7
P[0,0] + 1
P[0,5] <~ 0 for j € {1,...,k}
Pli,0] .1 (1 —pq) forie {1,...,n}
for i + 1 ton do
for j < 1to k do

if j > i then
Pli,j]=0
else
Pli,j] = Pli— 1,5 — 1)(p:) + Pli — 1,511 — ps)
end if
end for
end for

Table Q[0...n][0...2] //Q[i,j] denotes the probability of having exactly j zeros in
Tly...T5
Q[0,0] + 1
Q[0,5] <0 for j € {1,...,2}
Qli,0] 1., _y pa for i € {1,...,n}
for i < 1 ton do
for j < 1 to z do

if j > i then
Qlijl =0
else
end if
end for
end for
e= 3 (Pli— L k-1 xpi+Qli— 1,2~ 1] x (1—pi) x i
return c

We now present our 1.5-approximation algorithm for evaluating k-of-n
functions in the non-adaptive setting. Our algorithm simply uses the dynamic
programming algorithm to compute the expected cost of two different non-
adaptive strategies: the strategy that tests the bits in increasing p; order, and
the strategy that tests the bits in decreasing p; order. It then outputs the
strategy with smaller expected cost. Pseudocode is presented in Algorithm

We will show that Algorithm [3| achieves a 1.5-approximation for the non-
adaptive version of the k-of-n evaluation problem.



Algorithms for the Unit-Cost Stochastic Score Classification Problem 19

Algorithm 3 Non-adaptive evaluation of k-of-n functions

Input: test probabilities p1,...,pn
Let P1 denote the permutation of x1,...,zy, sorted in decreasing order of p; values
Let Py denote the permutation of x1,...,zn, sorted in increasing order of p; values
c1 = expected cost of P; (computed using Algorithm [2)
co = expected cost of Py (computed using Algorithm [2)
if ¢1 < ¢g then minperm = P; else minperm = Py
return minperm

For a given k-of-n function f, and test probabilities p1, ..., pn, let o denote
the probability that f = 1. Let A = k/n. We assume, without loss of generality,
that A > .

We begin by bounding the expected costs of the 0- and 1-optimal non-
adaptive strategies (which test the bits in increasing and decreasing p; orders
respectively) in terms of the expected cost of an optimal adaptive strategy. Let
OPT denote an optimal adaptive strategy and let Oopt and 1opt denote the 0-
and l-optimal non-adaptive strategies, respectively. We denote the expected
cost of a strategy S by E[S].

Lemma 1

E[OopT] < Ry = o+ (1—0)(1-))

E[OPT] = " oA+ (1-0)(1—A)
Proof. Clearly, E[0opt|f = 1] < n. So
E[0opt] = 0E[Oopt|f = 1]+ (1—0) E[0opT|f = 0] < on+(1—0)E[0opt|f = 0].
We also have that

E[OPT] = oE[OPT[f = 1]+ (1) E[OPT|f = 0] > oAn+(1-0) E[Ocpt|f = 0]

because any strategy must perform at least An tests when f = 1, and E[OPT|f =
0] > El0opr|f = 0.
Therefore:

Eloopr] _ on+ (1~ 0)E[Oopt|f = 0]
E[OPT] =~ gAn+ (1 — o)E[0opt|f = 0]
Because this expression increases as the value of E[Oopt|f = 0] decreases,
and because every strategy must perform at least (1 — A)n tests if f = 0, we
can upper bound this ratio:

ElOopr] _ on+(1-0)(1-Nn
E[OPT] = odn+ (1— 0)(1— \n’

The claim follows easily. O

A symmetric argument proves the analogous lemma:

Lemma 2
EllopT]

oA+ (-0
E[OPT] = R

S oA+ (1—o(1 =N

A




20 Nathaniel Grammel et al.

Theorem 3 Algorithm [3 is a 1.5-approzimation algorithm solving the non-
adaptive, unit-cost SSClass problem, in the special case of k-of-n functions.

Proof. Clearly, the strategy output by Algorithm |3 has an expected cost that
is at most a factor of min{Rg, Ry} larger than that of the optimal strategy.
We now argue that min{ Ry, Ry} < 1.5.

By definition, each p; is strictly between 0 and 1, so there is a non-zero
probability both that f = 0 and that f = 1. Therefore 0 < p < 1. Recall also
that 1/2 < X <1.

When A =1, Ry = 1 and min{Ro, R1} < 1.5 clearly holds. Assume there-
fore that 1/2 < A < 1.

Suppose Ry < R;. Then, because Ry and R; have the same denominator,

o+ (I—-0)(1 =2 <or+(1-0)

which implies ¢ < A. Combining this with the fact that 88—}2“ > 0 for the
possible values of p and A\, we can substitute A for ¢ in the expression for Ry
to get

A+ (1—=N)?
< ———=.
o< gy

As a function of A, this expression is maximized when A = %, and therefore
min{Ro,Rl} == RO S 1.5.

Now suppose Ry > R;. Combining this with the fact 83—121 < 0 for the
possible values of ¢ and A, we can substitute A for ¢ in the expression for R;
to get

A2 4 (1—=X) A+ (1))

R < - :
PEX LI A2+ (1-))?

This is the same expression that upper bounded Ry in the previous case,
and we again have min{ Ry, Ry} < 1.5. O

The bound in Theorem [3|is tight relative to the optimal adaptive strategy:
Consider a Majority function on n variables, where n is odd (i.e., a k-of-n func-
tion where n is odd and k = ”?*1 +1). Suppose ”Tfl variables have probabilities
p; very close to 1, an variables have probabilities p; very close to 0, and one
variable has a probability of p; = % Then the optimal adaptive strategy will
incur an expected cost of approximately ”7_1 + 1 and Algorithm (3| will incur
an expected cost of approximately %" + %. (In contrast, the Up-Down strat-
egy given in Section [5| will achieve an expected cost of approximately n here.)

However, it may not be tight relative to the optimal non-adaptive strategy.

Acknowledgements We thank an anonymous referee for suggesting we present our results
in terms of SSClass.



Algorithms for the Unit-Cost Stochastic Score Classification Problem 21

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Acharya, J., Jafarpour, A., Orlitsky, A.: Expected query complexity of symmetric

Boolean functions. In: IEEE 49th Annual Allerton Conference on Communication,
Control, and Computing, pp. 26-29 (2011)

Ben-Dov, Y.: Optimal testing procedure for special structures of coherent systems. Man-
agement Science (1981)

Boros, E., Unliyurt, T.: Diagnosing double regular systems. Annals of Mathematics and
Artificial Intelligence 26(1-4), 171-191 (1999). DOI 10.1023/A:1018958928835. URL
http://dx.doi.org/10.1023/A:1018958928835

. Chang, M.F., Shi, W., Fuchs, W.K.: Optimal diagnosis procedures for k-out-of-n struc-

tures. IEEE Transactions on Computers 39(4), 559-564 (1990)

Das, H., Jafarpour, A., Orlitsky, A., Pan, S., Suresh, A.T.: On the query computation
and verification of functions. In: IEEE International Symposium on Information Theory
(ISIT), pp. 2711-2715 (2012)

Deshpande, A., Hellerstein, L., Kletenik, D.: Approximation algorithms for stochas-
tic submodular set cover with applications to boolean function evaluation and min-
knapsack. ACM Trans. Algorithms 12(3), 42:1-42:28 (2016). DOI 10.1145/2876506.
URL http://doi.acm.org/10.1145/2876506

Ghuge, R., Gupta, A., Nagarajan, V.: Non-adaptive stochastic score classification and
explainable halfspace evaluation. CoRR abs/2111.05687 (2021). URL https://arxiv.
org/abs/2111.05687

Gkenosis, D., Grammel, N., Hellerstein, L., Kletenik, D.: The Stochastic Score Clas-
sification Problem. In: Y. Azar, H. Bast, G. Herman (eds.) 26th Annual European
Symposium on Algorithms (ESA 2018), Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 112, pp. 36:1-36:14. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, Dagstuhl, Germany (2018). DOI 10.4230/LIPIcs.ESA.2018.36. URL http:
//drops.dagstuhl.de/opus/volltexte/2018/9499

Gkenosis, D., Grammel, N., Hellerstein, L., Kletenik, D.: The stochastic boolean func-
tion evaluation problem for symmetric boolean functions. Discrete Applied Mathe-
matics 309, 269-277 (2022). DOI https://doi.org/10.1016/j.dam.2021.12.001. URL
https://www.sciencedirect.com/science/article/pii/S0166218X21004790

Greiner, R., Hayward, R.., Jankowska, M., Molloy, M.: Finding optimal satisficing strate-
gies for and-or trees. Artificial Intelligence 170(1), 19-58 (2006)

Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In: In-
ternational Conference on Integer Programming and Combinatorial Optimization, pp.
205-216. Springer (2013)

Jung, J., Concannon, C., Shroff, R., Goel, S., Goldstein, D.G.: Simple rules for complex
decisions. arXiv preprint arXiv:1702.04690 (2017)

Kowshik, H., Kumar, P.: Optimal computation of symmetric boolean functions in col-
located networks. IEEE Journal on Selected Areas in Communications 31(4), 639-654
(2013)

Salloum, S.: Optimal testing algorithms for symmetric coherent systems. Ph.D. thesis,
University of Southern California (1979)

Salloum, S., Breuer, M.: An optimum testing algorithm for some symmetric coherent
systems. Journal of Mathematical Analysis and Applications 101(1), 170 — 194 (1984).
DOI 10.1016,/0022-247X(84)90064-7. URL http://www.sciencedirect.com/science/
article/pii/0022247X84900647

Salloum, S., Breuer, M.A.: Fast optimal diagnosis procedures for k-out-of-n:g systems.
IEEE Transactions on Reliability 46(2), 283-290 (1997). DOI 10.1109/24.589958
Singla, S.: The price of information in combinatorial optimization. In: Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2523-2532.
SIAM (2018)

Tran, T., Luo, W., Phung, D., Morris, J., Rickard, K., Venkatesh, S.: Preterm birth
prediction: Deriving stable and interpretable rules from high dimensional data. In:
Conference on Machine Learning in Healthcare, LA, USA (2016)

Unliiyurt, T.: Sequential testing of complex systems: a review. Discrete Applied Math-
ematics 142(1-3), 189-205 (2004)


http://dx.doi.org/10.1023/A:1018958928835
http://doi.acm.org/10.1145/2876506
https://arxiv.org/abs/2111.05687
https://arxiv.org/abs/2111.05687
http://drops.dagstuhl.de/opus/volltexte/2018/9499
http://drops.dagstuhl.de/opus/volltexte/2018/9499
https://www.sciencedirect.com/science/article/pii/S0166218X21004790
http://www.sciencedirect.com/science/article/pii/0022247X84900647
http://www.sciencedirect.com/science/article/pii/0022247X84900647

22 Nathaniel Grammel et al.

20. Ustun, B., Rudin, C.: Supersparse linear integer models for optimized medical scoring
systems. Machine Learning 102(3), 349-391 (2016)

21. Ustun, B., Rudin, C.: Optimized risk scores. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1125-1134.
ACM (2017)

22. Zeng, J., Ustun, B., Rudin, C.: Interpretable classification models for recidivism predic-

tion. Journal of the Royal Statistical Society: Series A (Statistics in Society) 180(3),
689-722 (2017)



	Introduction
	Prior work
	Results and open questions
	Preliminaries
	A 2-approximation for the unit-cost SSClass problem
	The Unanimous Vote function
	Non-Adaptive evaluation of k-of-n functions

