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ARTICLE INFO ABSTRACT

Keywords: Genome engineering has been re-shaping plant biotechnology and agriculture. Crop improvement using the
CRISPR/Cas recently developed gene editing techniques is now easier, faster, and more precise than ever. Although
Genome editing considered to be a global food security crop, potato has not benefitted enough from diverse collection of these
E:é?;ilast techniques. Unique genetic features of cultivated potatoes such as tetrasomic inheritance, high genomic het-

erozygosity, and inbreeding depression hamper conventional breeding of this important crop. Therefore, genome
editing provides an excellent arsenal of tools for trait improvement in potato. Moreover, using specific trans-
formation protocols, it is possible to engineer transgene free commercial varieties. In this review we first describe
the past achievements in potato genome editing and highlight some of the missing aspects of these efforts. Then,
we discuss about technical challenges of genome editing in potato and present approaches to overcome these
difficulties. Finally, we talk about genome editing applications that have not been explored in potato and point

Agrobacterium mediated transformation

out some of the missing venues in literature.

1. Introduction

Potato ranks as the 4th most produced crop with 370 million tonnes
per year worldwide after maize, wheat, and rice. It is, however, 3rd to
rice and wheat in terms of consumption (FAO, 2019). Being rich in
carbohydrates, vitamins (C and B6) and minerals, potato plays a key role
in human nutrition. Starch in tubers is also utilized in food and non-food
related industrial applications including manufacturing of additive,
paper and textile products (Kraak, 1992). Unlike other major crops such
as maize, which benefit from about 1% genetic yield gain each year
(Duvick, 2005), potato yield improvement over the last century has been
marginal (Douches et al., 1996). This is because traditional breeding of
potato is a slow process that is hindered by many factors. Most of the
cultivated potatoes are tetraploids and have highly heterozygous ge-
nomes. Moreover, there are about fifty traits that influence the value of a
commercial cultivar (Eggers et al., 2021). This genetic complexity, along
with relatively long generation cycles and inbreeding depression (Zhang
et al., 2019a), make it extremely difficult to obtain the desired allelic
combination in the progeny. Likewise, introduction of new traits by
outcrossing to wild cultivars can lead to loss of allelic combination. In
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addition, potato production suffers from yield losses due to pests and
pathogens including late/early blight, bacterial wilting, and several
types of potato viruses. Overall, all these factors, together with ever
growing world population and deteriorating climate, necessitate the use
of new and accelerated breeding techniques to engineer novel traits into
potatoes.

Genome editing of potato was first accomplished using transcription
activator-like effector nucleases (TALENSs) (Sawai et al., 2014) (Table 1).
It was, however, surpassed later by the more recently developed clus-
tered regularly interspaced palindromic repeats (CRISPR)/CRISPR
associated protein (Cas) system (Jinek et al., 2012). This is mainly
because TALENs require specific protein engineering, which can be
costly and time consuming. In contrast, CRISPR/Cas systems are more
versatile, easy to design and are capable of multiplexing (Malzahn et al.,
2017). The most widely used CRISPR/Cas system comprises Cas9
nuclease from Streptococcus pyogenes (SpCas9) and a chimeric single
guide RNA (sgRNA) consisting of a 20-nt protospacer that determines
site specificity and a scaffold sequence essential for Cas9 binding. Cas9
acts as a sequence specific nuclease (SSN) and introduces a double
stranded break (DSB) at the target site, usually 3-bp upstream of the
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5'-NGG-3' protospacer adjacent motif (PAM). This DSB can be repaired
by two pathways: less common homology directed repair (HDR) or more
frequent non-homologous end joining (NHEJ) mechanism which often
introduces insertions/deletions (indels) at the target site, creating gene
knockout (KO) (Puchta, 2005). In addition to traditional CRISPR/Cas9
more sophisticated CRISPR/Cas methodologies, including base editing,
prime editing, and transcriptional activation/repression, have been
successfully employed in plants (reviewed in Pan et al., 2021; Molla
et al., 2021; Zhang et al., 2019b).

CRISPR/Cas9 mediated genome editing of potato was first reported
in 2015 by two different studies. One study (Wang et al., 2015) targeted
the auxin/indole-3-acetic acid family member gene (StIAA2) and the
other (Butler et al., 2015) targeted the acetolactate synthase 1 gene
(ALS1) using both a conventional T-DNA or a modified geminivirus
T-DNA to express genome editing agents. These two proof-of-concept
studies paved the road for succeeding endeavours of genome editing
in potato including base editing and prime editing (Table 1). Since then,
various CRISPR/Cas mediated genome editing approaches have been
applied in potato to alter traits including tuber quality, abiotic stress
resistance,  herbicide  tolerance, cooking properties and
self-compatibility.

2. Applications of CRISPR/Cas in potato
2.1. Starch quality

Starch in potato tubers constitutes 80% of the dry matter making it a
major caloric supply as well as an abundant resource for industrial ap-
plications. It is composed of amylose and amylopectin which are linear
and branched chains of glucose, respectively. Amylose consists of
glucose molecules mainly linked through a-1,4 bonding, whereas
amylopectin also includes clustered branching formed by «-1,6 linkage.
Amylose/amylopectin ratio of tuber starch differs between cultivars, but
roughly equals to 1:4 (Zeeman et al., 2010). This ratio determines
chemical and physical properties of starch allowing it to be processed
depending on the desired application. For example, amylose free waxy
starch is used in paper industry as a bonding agent and in food industry
as a bulking, thickening, or coating agent (Sarka and Dvoracek, 2017;
Maurer, 2009). In contrast, amylose rich, digestion resistant starch can

Table 1
Technical milestones in potato genome editing.
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be consumed as a healthier alternative to reduce caloric intake, improve
insulin resistance, and promote gut health (Keenan et al., 2015; El
Kaoutari et al., 2013).

Thus far, efforts to manipulate starch quality of potato tuber by
CRISPR/Cas mediated genome editing predominantly focused on
knocking out granule bound starch synthase 1 (GBSS1), the gene
responsible for amylose synthesis (Table 2). The rationale behind
creating waxy phenotype tubers is to reduce the number of chemical and
physical post-harvest treatments required to separate amylose and
amylopectin, thereby making the whole starch processing economically
and environmentally more feasible. GBSS1 has been an attractive target
and model gene for many genome editing studies in potato due to
technical reasons as well. Although complete KO of all the alleles is
required to observe the waxy phenotype, it is still relatively easy to
engineer this trait as GBSS1, unlike many other starch related genes, is
the only isoform that controls this phenotype. Moreover, amylose free
starch granules, when stained with iodine, can be easily distinguished by
their red-brown color from wildtype (WT) granules which produce a
dark blue color due to presence of amylose.

GBSS1 has been targeted using anti-sense RNA (Visser et al., 1991)
and RNAi (Otani et al., 2007) approaches, and more recently using
CRISPR/Cas9 with the aim of generating transgene free waxy tubers. To
achieve this, plasmid DNA coding Cas9 and sgRNAs was transiently
transformed into protoplasts, and plants were regenerated (Andersson
et al., 2017). 29 of the mutated lines were genotyped in detail and only
three of them (10%) were identified to harbour inserts of plasmid origin.
Moreover, one of the regenerants coming from a particular trans-
formation event had all copies of the GBSS1 gene mutated and starch
from microtubers of this line displayed the waxy phenotype. In a sub-
sequent study (Andersson et al., 2018), the authors used Cas9 ribonu-
cleoproteins (RNPs) including either synthetically (cr-RNP) or in vitro
transcribed RNA (ivt-RNP) to transform protoplasts, thus avoiding
foreign DNA integration. Frequencies of total KOs (with all copies of
GBSS1 mutated) obtained by transformation of plasmid DNA, cr-RNP
and ivt-RNP were 3%, 2% and 25 or 9%, respectively, with the experi-
mental conditions tested (25% or 40% PEG). All the cr-RNP lines
(including those with mono-, bi-, tri or tetra-allelic mutations), as ex-
pected, were transgene free, but just one of the lines was a total KO. In
contrast, none of the KOs generated by plasmid DNA transformation

Pre-2015

Sequence of potato genome
revealed by Potato Genome
Sequencing Consortium (Potato
Genome Sequencing et al.,
2011)

TALEN mediated gene editing in
potato (Sawai et al., 2014)

2019

Cas9 mediated multiplex gene
editing in potato through
transient expression in
protoplasts and subsequent
regeneration of mutant plants
(Tuncel et al., 2019)

Base editing (C to T) in potato
using PmCDA1-CBE and
generation of transgene free
mutant plants through
Agrobacterium mediated
transformation (Veillet et al.,
2019b)

Cas13a mediated RNA targeting in
potato (Zhan et al., 2019)

2015

TALEN mediated targeted
mutagenesis in potato through
transient expression in
protoplasts and subsequent
regeneration of mutant plants
(Nicolia et al., 2015)

CRISPR mediated gene editing in
potato (Wang et al., 2015; Butler
et al., 2015)

2020

Targeted mutagenesis and base
editing (C to T) in potato using
Cas9 and/or PmCDA1-CBE from
Staphylococcus aureus (SaCas9)
(Veillet et al., 2020)

2016

TALEN mediated targeted
T-DNA insertion into
potato genome (Forsyth

et al., 2016)

Gemini virus replicon
mediated homologous
recombination in potato
using TALEN and CRISPR

2017 2018
CRISPR mediated gene editing CRSIPR mediated gene editing in
in potato through transient potato through ribonucleoprotein
expression in protoplasts and delivery into protoplasts and
subsequent regeneration of subsequent regeneration of transgene
transgene free mutant plants free mutant plants (Andersson et al.,
(Andersson et al., 2017) 2018)
Base editing (C to T) in potato
protoplasts using nCas9 and human
APOBEC3A (A3A-CBE) fusion (Zong
et al., 2018)

(Butler et al., 2016)

2021

Cas9 mediated homology
directed repair using donor
plasmid with geminivirus
origin (Hegde et al., 2021)

2022 Future directions

Prime editing in potato (Perroud e Targeted insertion

et al., 2022) Epigenome editing

Regulation of gene expression (e.g.,
CRISPR mediated gene activation
or interference)

Tissue specific gene editing
Organelle genome editing
Commercial non-transgenic po-
tatoes with:

Improved yield

More nutritional content (e.g.,
vitamins, antioxidants)

Reduced SGAs

Enhanced tolerance to abiotic stress
(e.g., drought, cold)
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Table 2
Summary of CRISPR/Cas applications in potato genome editing.
Target gene Delivery method Editing agent ~ Genotype Phenotype Cultivar Reference
Starch quality
GBSSI Protoplast (plasmid DNA) Cas9 Tetra allelic KO in 2% of Decrease in amylose content Kuras (Andersson et al., 2017)
regenerants
GBSSI Protoplast (RNP) Cas9 Tetra allelic KO in 2-3% of Decrease in amylose content Kuras (Andersson et al., 2018)
regenerants
GBSSI A. tumefaciens Cas9 Tetra allelic mutation in Decrease in amylose content Sayaka (Kusano et al., 2018)
28% of regenerants
GBSSI Protoplast A3A-CBE Heterozygous mutations N/A Desiree (Zong et al., 2018)
GBSSI/SBEII A. tumefaciens Cas9 N/A Low/high amylose Xushu22, (Wang et al., 2019)
Taizhong6
GBSSI Protoplast (plasmid) Cas9 Tetra allelic mutation in Decrease in amylose content Desiree & (Johansen et al., 2019)
35% of regenerants Wotan
GBSSI A. tumefaciens, protoplast Cas9, Tetra allelic mutations with ~ Decrease in amylose content Desiree, Furia (Veillet et al., 2019a)
PmCDA1-CBE both methods
GBSSI A. tumefaciens Cas9, No mutation N/A Desiree (Veillet et al., 2020)
PmCDA1-CBE
GBSSI A. tumefaciens Cas9 Tetra allelic Decrease in amylose content Yukon Gold (Toinga-Villafuerte et al.,
TXYG79 2022)
SBE1, SBE2 A. tumefaciens, protoplast Cas9 Tetra allelic mutations in Diverse range of starch Desiree (Tuncel et al., 2019)
both genes phenotypes
SBE1, SBE2 Protoplast Cas9 Tetra allelic mutations in High amylose starch Desiree (Zhao et al., 2021)
both genes
SBE3 A. tumefaciens Cas9 Tetra allelic Low amylose Sayaka (Takeuchi et al., 2021)
SS6 A. tumefaciens Cas9 Tetra allelic N/A Desiree (Sevestre et al., 2020)
GWD1 Protoplast Cas9 N/A N/A Wotan, Saturna (Carlsen et al., 2021)
Carotenoid biosynthesis
PDS A. tumefaciens Cas9 N/A Bleached (albino) leaves Desiree (Banfalvi et al., 2020)
PDS A. tumefaciens Cas9 Biallelic (7%) Bleached whole plantlets DMF1 (Butler et al., 2020)
Cooking properties (browning)
PPO2 Protoplast Cas9 Tetra allelic (24%) Reduced browning Desiree (Gonzalez et al., 2019)
PPO2 A. tumefaciens, protoplast Cas9 Tetra allelic Reduced browning Desiree (Gonzalez et al., 2021)
(46%)
Glycoalkaloid content
16DOX A. rhizogenes Cas9 Tetra allelic (8%) No detectable SGAs Mayqueen (Nakayasu et al., 2018)
SSR2 A. tumefaciens Cas9 Multi allelic 66% of WT tuber Atlantic (Zheng et al., 2021)
Biotic stress tolerance
P3, CI, NIB, CP A. tumefaciens Casl3a N/A Improved resistance to PVY Desiree (Zhan et al., 2019)
elF4E1 Protoplast Cas9 Tetra allelic Partial resistance to PVY Desiree (Lucioli et al., 2022)
DMR6-1 A. tumefaciens Cas9, Multiallelic N/A Desiree (Veillet et al., 2020)
PmCDA1-CBE
DMR6-1 Protoplast Cas9 N/A N/A Wotan, Saturna (Carlsen et al., 2021)
CCOAOMT A. tumefaciens Cas9 Tetra allelic HDR in 1% Improved resistance to late Russet Burbank (Hegde et al., 2021)
regenerants blight
DND1, CHLI, A. tumefaciens Cas9 Tetra allelic (0.7-18%) Improved resistance to late Desiree, King (Kieu et al., 2021)
DMR6-1 blight Edward
RNase III A. tumefaciens Casl3 N/A Improved resistance to sweet Xushu 29 (Yu et al., 2022)
potato virus disease
Abiotic stress tolerance
MYB44 A. tumefaciens Cas9 Multiallelic No phenotypic effect Desiree (Zhou et al., 2017)
Herbicide tolerance
ALS1 A. tumefaciens, geminivirus Cas9 Multiallelic N/A Desiree, (Butler et al., 2015)
replicon (GVR) MSX914
ALS1 A. tumefaciens, geminivirus ~ Cas9 Multiallelic Improved herbicide Desiree, (Butler et al., 2016)
replicon (GVR) resistance MSX914
ALS1 A. tumefaciens PmCDA1-CBE Multiallelic Improved herbicide Desiree (Veillet et al., 2019b)
resistance
ALS1 A. tumefaciens Prime Editor Monoallelic Improved herbicide Desiree (Perroud et al., 2022)
2 resistance
Self-compatibility
S-RNase A. tumefaciens Cas9 Multiallelic Self-compatible plants Phureja S15-65 (Ye et al.,, 2018)
S-RNase A. tumefaciens Cas9 Multiallelic Self-compatible plants DRH-195 and (Enciso-Rodriguez et al.,
DRH-310 2019)
Sli A. tumefaciens Cas9 Multiallelic Self-incompatible plants B665 and B663 (Eggers et al., 2021)
Development
IAA2 A. tumefaciens Cas9 Multiallelic N/A Doubled (Wang et al., 2015)
monoploid
IT1 A. tumefaciens Cas9 Tetra allelic Loss of tuberization Phureja S15-65 (Tang et al., 2022)
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were transgene free, an outcome that differed from the previously re-
ported results (Andersson et al., 2017). Interestingly, majority of the
ivt-RNP KO lines had also fragments of DNA insertions originating from
either the template DNA used to transcribe sgRNA or chromosomal
DNA. Only one of the ivt-RNP KOs was transgene free indicating that
even small amounts of DNA carried over from sgRNA transcription can
be integrated into genome during NHEJ repair. These two pioneering
and proof of concept studies described that GBSS1 can be fully muta-
genized by delivery of plasmid DNA or RNPs into protoplasts and that
transgene free waxy tubers can be obtained by subsequent regeneration
of potato plants. However, because the authors primarily focused on the
editing outcomes and generating transgene free plants, neither study
investigated any possible off-target editing scenario. In addition, both
studies lacked in depth biochemical analyses including quantification of
amylose, amylopectin, and starch content from tubers of mature plants.
Such biochemical measurements, including amylose content and vis-
cosity properties of starch, were performed in a more recent study
(Toinga-Villafuerte et al., 2022). The authors generated a stable KO line
of GBSS1 by Agrobacterium mediated transformation, which essentially
had no detectable amylose in tubers. This study, however, did not report
whether total starch amount in the edited tubers was affected due to the
decrease in amylose content.

GBSS1 was also targeted as a model gene to assess editing efficacy of
various Cas9 mutagenesis systems in potato. For instance, one study
(Kusano et al., 2018) fused translational enhancer sequence dMac3
(Aoki et al., 2014) to Cas9 gene to improve editing at the GBSS1 locus.
This significantly improved both the number of mutagenesis events and
number of lines carrying mutations in all alleles of gbss1, presumably
due to the increase in available Cas9 protein. However, direct evidence
showing an enrichment in Cas9 mRNA and/or protein levels was
missing. Although amylose content in tubers of selected KO lines
decreased compared to that of WT, there was still considerable amount
amylose present in the tubers. This was most likely due to presence of
alleles with small in frame deletions that could express a fully/partially
functional protein. Moreover, the authors tested dMac3 in stable lines
generated by Agrobacterium mediated transformation. It would be
interesting to see if dMac3 could also improve editing efficacy during
plasmid-based transient expression in protoplasts. In a parallel study
(Johansen et al., 2019), the authors tested if replacing the AtU6 pro-
moter, which is conventionally used to express sgRNAs in dicots, with
the native StU6 promoter could boost sgRNA expression, thus enhance
editing efficacy at the GBSS1 gene. In fact, editing frequency improved
about 9-fold at protoplast level, which in turn translated into 35% of the
regenerated plants being tetra-allelic mutants.

First base editing (C to T) in potato was demonstrated at protoplast
level by targeting GBSS1 along with the ALS gene (Zong et al., 2018).
The authors attached human cytidine deaminase APOBEC3A and uracil
glycosylase inhibitor (UGI) to Cas9 nickase (nCas9) to create the
A3A-CBE fusion. A3A-CBE and six sgRNAs, targeting the GBSS1 gene,
were transiently expressed from cauliflower mosaic virus (CaMV) 35 S
and AtU6 promoters, respectively. Two heterozygous mutants, out of 31
regenerated plants, were identified to have base conversions at one of
the target sites (StGBSS-T6). Although the mutant plants did not have
any indels or undesired edits at the target site, frequency of C to T
conversion was low and no tetra-allelic mutants were recovered. Hence,
no further biochemical analysis of starch was reported. In a subsequent
study (Veillet et al., 2019a), GBSS1 was targeted by a fusion of nCas9
and P. marinus cytidine deaminase (PmCDA1) to introduce precise point
mutations in functionally important motifs that could lead to loss of
function of the enzyme. Two mutants, out of 48 stable regenerants, had
unusual C,7 to G.17 conversion in all alleles and had no other unin-
tended mutations at the target site. This nucleotide substitution resulted
in L99V mutation in KTGGL motif and in turn, mutant microtuber sec-
tions stained red-brown with iodine and lacked amylose as determined
by size exclusion chromatography (SEC). Interestingly, if the authors
included an UGI in their construct, typical C to T base editing would be
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observed which would in turn result in C.17T.16A.15 to T.17T.16A.15 silent
mutation (L99L). Recently, superior performance of the AtU3 promoter
over the AtU6 promoter was reported for base editing in other dicot
plants like poplar (Li et al., 2021) and tomato (Randall et al., 2021). It is
promising to use AtU3 promoter to drive sgRNA expression for further
improved base editing efficiency in potato.

Amylose rich potatoes are also valuable due to their potential health
benefits. When cooked, potato starch with unmodified amounts of
amylose and amylopectin (1:4 ratio) is easily digested in the upper gut
and consequently trigger rapid release of glucose molecules which spike
blood sugar level. Repeated cycles of this scenario can eventually lead to
development of insulin resistance and worsen conditions of people with
obesity and type II diabetes. Starch with high amylose content is more
resistant to digestion due to reduced availability of non-reducing ends,
sites where a-amylases attack and release glucose. In addition, linear
amylose molecules, upon cooking (heating) and cooling, form a-helices
that are also resistant to degradation by a-amylases in the upper gut.
Therefore, consuming resistant starch with high amylose content (and
amylopectin with longer chains of glucose) can help better control of
glucose homeostasis and reduce caloric intake as well (Keenan et al.,
2015). Moreover, resistant starch that is not digested in the small in-
testine serves as food and energy source for healthy bacteria in the lower
gut. Its fermentation by gut microbiota produces short chain fatty acids
(SCFAs) which are considered crucial for gut-brain communication and
are also essential for maintenance of gut, and overall metabolic health
(Blaak et al., 2020; Silva et al., 2020).

Efforts to generate potato tubers containing digestion resistant starch
aimed to reduce the activity of starch branching enzyme 1 and 2 (SBE1,
SBE2) that are responsible for introduction of a-1,6 glycosidic bonds in
amylopectin (Table 2). Large reductions in total SBE activity in tubers
were achieved through antisense RNA (Schwall et al., 2000) and RNAi
(Andersson et al., 2006) approaches. Starches from tubers described in
these studies had altered properties, were high in amylose content and
resistant to digestion (Schwall et al., 2000; Zhao et al., 2018; Karlsson
etal., 2007; Blennow et al., 2005). Recently, SBEs were targeted by Cas9
mediated mutagenesis in two different studies to generate transgene free
tubers with amylose rich, resistant starch. In the first study (Tuncel et al.,
2019), the authors targeted sbel and sbe2 genes either individually or
together through Agrobacterium mediated transformation of stem ex-
plants and through transient expression of plasmid DNA in protoplasts.
Tetra allelic mutants of either isoform was obtained through Agro-
bacterium transformation, but no double KO line was recovered with this
approach. Despite starch granules from tubers of these stable lines had
altered morphologies, they had only minor changes in the level of
branching. Although amylose content was not measured directly, one of
the protoplast regenerated lines (identified as double KO) had granules
with deep fissures across the hilum, a phenotype indicative of high
amylose content which was similar to those generated by antisense RNA
(Schwall et al., 2000) or RNAi (Hofvander et al., 2004) approaches. The
degree of starch branching in this extreme phenotype was half that of the
WT. Interestingly, both sbel and sbe2 isoforms, presumably, retained
partial enzyme activity as one of the alleles of each isoform had six bp
long deletions that were in frame with the coding sequences. Moreover,
this line was determined as transgene free based on the absence of Cas9
gene, though possible integrations from other parts of the plasmid were
not investigated. In a second study (Zhao et al., 2021), RNP delivery of
CRISPR/Cas9 into protoplasts was used to generate three groups of
mutants with two of the mutants in group three identified to harbour
tetra allelic mutations in both isoforms. Starches from tubers of these
lines were essentially composed of amylose (>95%) and had no
detectable amylopectin. Consequently, these lines had significantly
decreased tuber yield, tuber size and dry matter.

2.2. Tuber browning

Browning of potatoes can happen through cold induced sweetening,
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accumulation of reducing sugars such as glucose and fructose during
cold storage of tubers, and subsequent exposure of these sugars to heat
processing (e.g., cooking). The brown tissue changes texture and flavour
that is not preferred by consumers. Moreover, the reducing sugars can
react with free amino acids at elevated temperatures and form acryl-
amide through nonenzymatic Millard reaction. Acrylamide is a cancer-
causing agent, therefore poses serious health concerns (Bethke and
Bussan, 2013; Sowokinos, 2001). One of the enzymes involved in cold
induced sweetening is vacuolar invertase (VLNV) which converts su-
crose to glucose and fructose (Sowokinos, 2001). The VLNV gene was
targeted by TALEN mediated mutagenesis to produce potatoes with
improved cold storage and processing traits. Transgene free potaotes,
with tubers accumulating significantly lower amount of reducing sugars
and acrylamide, were obtained through protoplast regeneration (Clasen
et al., 2016).

In addition to non-enzymatic browning, potatoes can also undergo
enzymatic browning through oxidation which also reduces nutritional
quality of tubers. This process occurs when quinones, produced by the
action of polyphenol oxidases (PPOs), self-polymerize or react with free
amino acids to form brown-colored molecules (Taranto et al., 2017).
PPO2, the main isoform that accounts for 55% of total PPO activity in
tuber (Chi et al., 2014), was targeted by RNP delivery of Cas9 and
sgRNAs into protoplasts to reduce browning (Gonzalez et al., 2019).
10% of the regenerants had tetra allelic mutations, and reductions up to
69% and 73% in PPO activity and browning were achieved, respectively
(Table 2). Comparable results were obtained in a follow-up study where
the authors compared editing efficacy of different transformation ap-
proaches (Agrobacterium vs protoplast) using PPO2 as the model gene
(Gonzalez et al., 2021). The question arises whether further reductions
in browning can be achieved by multiplexed editing of other isoforms
(PPO1, PPO3 and PPO4) that make-up rest of the PPO activity in tuber
(Chi et al., 2014), or whether both types of browning (enzymatic and
non-enzymatic) can be eliminated by targeting PPO and VLNV genes
together.

2.3. Steroidal glycoalkaloid content

Like browning, another undesired trait in potatoes is the presence of
high concentrations of steroidal glycoalkaloids (SGAs) which are mainly
composed of a-solanine and a-chaconine in commercial cultivars.
Although these compounds are primarily found in flowers, sprouts, and
leaves, they also accumulate in tubers, mainly in peel (Friedman, 2006).
However, SGA content can increase several folds in tuber flesh due to
wounding, mechanical stress, or high light during post-harvest handling
and storage (Friedman and McDonald, 1999). Since they can be toxic to
humans at high concentrations, 200 mg/kg of tuber fresh weight is
considered as the safe threshold for consumption. Therefore, it is
important to create varieties with low tuber SGA content.

Because cholesterol serves as precursor in production of SGAs, sterol
side chain reductase 2 (SSR2), the enzyme responsible for synthesis of
cholesterol, was targeted using TALEN (Sawai et al., 2014). Only one
stable line with tetra allelic mutations in the SSR2 gene, and not those
retaining a WT copy, had significantly reduced SGA content (10% that of
the WT) in leaves. However, SGA content from tubers of this line was not
reported. In a recent study, SSR2 was targeted using CRISPR/Cas9, but
tetra allelic mutants could not be obtained (Zheng et al., 2021). Though
SGA reductions up to 34% in tuber flesh was reported, some of the lines
had more SGA in tubers and leaves compared to WT (Table 2). In
another study, 2-oxoglutarate dependent dioxygenase (St16DOX), an
enzyme involved in later steps of SGA synthesis, was targeted using
CRISPR/Cas9 (Nakayasu et al., 2018). Two edited lines containing tetra
allelic mutations had no detectable a-solanine and a-chaconine in hairy
roots. Overall, no transgene free potatoes with tubers containing
significantly reduced SGAs have been produced so far. In addition, there
will be more genes available to target as our understanding of the SGA
pathway expands.
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2.4. Biotic stress tolerance

Substantial yield losses in potato can occur due to biotic stress. One
of the most devastating pathogens of potato is potato virus Y (PVY)
which can cause up to 80% yield loss (Quenouille et al., 2013). Because
PVY is an RNA virus, CRISPR/Cas systems that target RNA can be used to
engineer plants resistant to this pathogen. One such system, composed of
Casl3a from Leptotrichia wadei (LwaCas13a), was described being as
efficient as traditional RNAi to knock-down select genes with more
specificity in mammalian cells and rice protoplasts (Abudayyeh et al.,
2017). Another Cas13a variant from Leptotrichia shahii (LshCas13a) was
adopted to potato to target four different RNA regions that are all
conserved among three different strains, PvY?, PVYN and PVYNC, and
that encode for proteins P3 and Cl (viral factors), Nlb (viral replicase)
and CP (capsid) (Zhan et al., 2019). Each RNA region was targeted
separately using four different constructs. Stable transgenic lines with
the highest expression of LshCas13a/sgRNA were challenged against the
PVY strains and no disease symptoms were observed upon infection of
the leaves. Interestingly, lines with intermediate expression of LshCa-
s13a/sgRNA displayed mild symptoms of PVY infection, indicating an
inverse correlation between the transgene expression and severity of
symptoms (Table 2). Broad spectrum resistance to different potato vi-
ruses (e.g., PVA, PVS and PVY) can be engineered using the same
methodology with multiplexing. It should, however, be noted that this
type of virus resistance trait requires transgene integration. Alterna-
tively, a recent study targeted the translation initiation factor eIF4E1, a
host protein that is used by PVY for replication after infecting the cells,
and therefore can provide recessive resistance when mutated (Lucioli
et al., 2022). Interestingly, the first generation of transgenic potatoes
had only two of the elF4E1 alleles mutated, thus were susceptible to
PVYN™, Re-transfection and re-generation of the protoplasts isolated
from the first generation of mutant plant yielded two full KO lines which
were partially resistant to PVYN '™ infection. In a parallel study (Yu et al.,
2022), the authors targeted RNase III viral protein of sweet potato
chlorotic stunt virus (SPCSV) which, by co-infection with feathery
mottle virus, causes sweet potato virus disease (SPVD) that can lead to
significant yield losses (Loebenstein, 2015). Stable lines expressing
another Casl3 variant, Cas13d from R. flavefaciens (RfxCas13d), and
gRNA targeting RNase III did not show viral symptoms when infected.

Potato late blight, undoubtedly the most devastating disease that
caused the historic Irish famine and can practically wipe out an entire
field, is caused by the pathogen Phytophthora infestans and, typically,
controlled by several series of pesticide applications. One way to tackle
late blight disease is to reduce the activity of susceptibility genes (S-
genes) in potato that are triggered upon infection and colonization by
P. infestans. Two such genes, StDMR6-1 (downy mildew resistance) and
StCHL1, were identified as best S-gene candidates for future breeding
applications (Kieu et al., 2021). Stable transgenic lines that are tetra
allelic mutants of these genes displayed enhanced resistance to
P. infestans infection but were not fully resistant to the disease. There-
fore, the obvious next step would be to generate double KOs of both
genes through plasmid or RNP delivery to obtain transgene free, fully
resistant potatoes.

Another way to fight late blight disease is to introduce gain of
function traits into commercial cultivars. Conventionally, this can be
achieved by introgression of resistance genes (R-genes) from wild potato
relatives that are resistant to late blight (Zhu et al., 2012; Ghislain et al.,
2019). However, this is a time-consuming process and can result in trait
loss in the progeny. In a recent study, Cas9 mediated HDR was used to
replace an SNP in caffeoyl-CoA O-methyltransferase (StCCoAOMT)
gene, which eliminated a premature stop codon and restored full-length
protein (Hegde et al., 2021). This, in turn, increased expression of
downstream R-genes and conferred partial late blight resistance in
transgenic plants. The authors used two different plasmids, one to ex-
press Cas9/sgRNA and another to provide repair template, in 1:1 ratio
during Agrobacterium mediated transformation. The HDR repair



A. Tuncel and Y. Qi

template was expressed using a geminivirus based vector to increase its
abundance and availability during the double stranded break repair
(Baltes et al., 2014). Seven transgenic lines (out of 145) were identified
as HDR positive in all four alleles, of which two had proper integration of
template without any indels. The ratio of correct HDR events (1.4%)
suggests that HR happens at relatively low frequency in potato, albeit at
a sufficient level for a tetraploid organism. It is, therefore, intriguing to
ask if the HDR outcome can be improved by use of protoplasts.

2.5. Herbicide tolerance

Engineering herbicide resistance into potato through CRISPR/Cas, so
far, solely focused on the ALS1 gene with the aim of assessing various
genome editing tools rather than generating herbicide resistant po-
tatoes. Certain mutations in ALS protein confer reduced herbicide sus-
ceptibility (Nandula et al., 2020; Okuzaki et al., 2007; Yu et al., 2010;
Kochevenko and Willmitzer, 2003) which enables easier screening of
successful editing events by using herbicides as a secondary selection
pressure. Therefore, the ALS gene became a playground for testing more
precise editing techniques such as HDR, base editing, and prime editing.

In one of the early studies, two such mutations were introduced into
StALS1 through HDR by expressing SSNs (TALEN and Cas9) and the
repair template from plasmids with geminivirus replicon (GVR) (Butler
et al., 2016). However, mutants with desired mutations were obtained
when the repair template also contained the nptll gene allowing only
regenerants with the proper template integration to survive on kana-
myecin selection media. This clearly shows that HDR frequency was very
low, and that a secondary selection marker was needed to identify HDR
events causing plants to be transgenic. Interestingly, modifications in
StALS1, thus herbicide susceptibility, improved in offspring events
propagated from parental regenerants indicating the somatic nature of
the HDR.

ALS was also targeted to test the efficacy of cytidine base editing in
potato (Veillet et al., 2019b). Both isoforms of StALS (StALS1 and
StALS2) were targeted at a conserved region using one sgRNA to create
Pro186 and Prol184 mutations, and a base editor with target activation
induced cytidine deaminase (Target-AID) (Shimatani et al., 2017). The
authors replaced kanamycin selection with herbicide chlorsulfuron after
two weeks to enrich transgene free mutant population. Twenty regen-
erants were recovered with majority of the mutations (75%), not sur-
prisingly, being indels due to lack of a UGI in the construct. One of the
indel free mutants had C-9 of the target region converted in all eight
alleles. Therefore, co-editing of an ALS gene, together with a primary
target, seems to be a promising approach to generate transgene free
plants.

In a more recent study, Pro186Ser mutation in StALSI and 2 genes
was attempted using prime editing (Perroud et al., 2022). This time the
authors switched majority of explants to chlorsulfuron selection one
week after the Agrobacterium transformation. No mutation was detected
at the target loci of stable regenerants that were selected by kanamycin.
Only one plant coming from the chlorsulfuron selection had the inten-
ded mutations in one of the alleles and appeared to be mosaic. These
results clearly indicate that the prime editing in potato occurred at a
very low frequency and that further optimizations are necessary to
improve editing efficacy.

2.6. Self-compatibility

Commercially produced potato cultivars can be self-compatible (SC)
but conventional inbreeding is a long and tedious process in these cul-
tivars due to tetrasomic inheritance which makes obtaining the best
allele combinations extremely difficult. Out-crossing with wild relatives
to introduce desired traits (e.g., disease resistance) into elite cultivars
can also result in loss of existing traits and introduction of undesired
ones (e.g., high SGA content). In contrast, most wild species of potato are
diploid which makes them ideal for inbreeding as it is relatively easier to
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stack favourite traits in progeny with diploids. Tuber yield, quality and
resistance could be improved if selfing was possible. Majority of wild
species, however, are self-incompatible (SI) rendering self-pollination
virtually impossible (Watanabe, 2015). SI is controlled by the single,
multi-allelic S-locus composed of the S-locus RNase (S-RNase) and
S-locus inhibitor (Sli) genes. The S-RNase protein is expressed in style
and inhibits growth of self-pollen tubes, hence self-fertilization. Sli genes
encode S-locus F-box proteins in pollens, which in SC species or cross
pollinators, counter act S-RNase protein thereby allowing pollen tube
growth and fertilization at ovary (Porcher and Lande, 2005; Takayama
and Isogai, 2005; Kubo et al., 2010).

Taking these facts into consideration, it could be possible to convert
SI species into SC varieties by knocking-out the S-RNase gene. Indeed,
two different studies targeted conserved regions of S-RNase alleles to
knock out this gene using CRISPR/Cas9 (Enciso-Rodriguez et al., 2019;
Ye et al., 2018). The resulting mutants had multi-allelic mutations in the
S-RNase gene and were SC. The plants were able to self-fertilize and
subsequently generated berries. Moreover, the trait was heritable and
the Cas9 gene was segregated out in some of the T1 seeds indicating that
non-transgenic progeny can be obtained. In a following study (Eggers
et al., 2021), function of the Sli gene was investigated by targeting it
with Cas9 to convert SC varieties into SI. Furthermore, the authors
identified a 533 bp insert in the promoter of the Sli gene from SC vari-
eties that enabled its expression in pollens. This region can be intro-
duced into promoters of the Sli genes of SI potatoes by targeted insertion
to make them SC in future breeding efforts.

3. Technical challenges in delivery methods and genome editing
of potato

3.1. Agrobacterium mediated delivery

Agrobacterium mediated transformation of stem or leaf explants is
one of the most widely used methods for delivering genome editing
agents into potato. This technique, like any other method, has pros and
cons for generating mutant plants (Fig. 1). In general, Agrobacterium
mediated transformation is a well-established and robust technique
which can provide high transformation efficiency with many cultivars.
Since T-DNA is integrated into the host genome, Cas protein and sgRNA
(s) are expected to be expressed perpetually which can help improve
editing in succeeding clonal propagates. This can be beneficial, espe-
cially, if multiplexing is aimed for and complete modification of all al-
leles (e.g., total KO) is desired, because it is relatively harder to obtain a
TO mutant with all the intended modifications due to tetraploidy of
many cultivars. Such a phenomenon was observed in plants with so-
matic mutations from secondary events displaying reduced herbicide
susceptibility (Butler et al., 2016). However, continuous expression of
Cas protein and sgRNA(s) might also increase the chances of off-target
modifications (Zhang et al., 2015). It is also possible that editing level
might not improve within the clonal progeny due to transgene silencing
(e.g., methylation or multiple T-DNA copy integration) (Finnegan and
Mcelroy, 1994; Gelvin, 2017).

The main disadvantage of using Agrobacterium mediated trans-
formation with potato is stable integration of T-DNA since tubers are
vegetatively propagated. Back-crossing with parental line to segregate
the transgene is time-consuming and can result in trait loss. One way to
avoid stable integration during Agrobacterium transformation is to
remove the selection pressure associated with the T-DNA from culture
media shortly after transformation. This might, however, lead to
incomplete editing (non-tetra allelic mutations) and chimerism, though
both can also happen in plants regenerated under continuous selection
(Banfalvi et al., 2020). Alternatively, diploid varieties that are already
engineered to be SC can be used as model plants to perform stable
transformation and, later, backcrossed to obtain transgene free plants.
Another drawback of stable transformation is that some potato species
are recalcitrant to Agrobacterium transformation, a problem that can be
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 Transgene free plants + Fast and easy application
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through cell sorting
* No plasmid design needed if RNPs are

used

» More prone to somaclonal variation * Not well established in potato

* More tissue culture work * Possible virus RNA contamination
* Requires better maintenance of + Cargo limitations

aseptic conditions

» Some species are recalcitrant to

transformation

Fig. 1. Pros and cons of each delivery/transformation method used in potato genome editing.

overcome using alternative Agrobacterium strains and/or plant tissue.
For example, one study (Butler et al., 2020) used A. rhizogenes strain
MSU440 to transform hairy roots, tissues that can grow
hormone-independent and have high genetic stability.

3.2. Protoplast transformation

In contrast to stable transformation, transient delivery of plasmid
DNA or RNPs into protoplasts provides the opportunity to obtain
transgene free potatoes. Moreover, editing at off-targets are significantly
reduced, particularly with the RNP approach (Svitashev et al., 2016;
Liang et al., 2017) (Fig. 1). One of the shortcomings of the protoplast
approach is the number of regenerants that needs to be screened since
selection pressure cannot be applied during tissue culture. A fluorescent
protein can be attached to Cas nuclease and fraction of transformed
protoplasts can be enriched by cell sorting before proceeding with
regeneration to reduce subsequent screening workload (gDNA extrac-
tion and sequence analysis of target regions). In addition, screening can
be performed at the callus stage to determine mutations ahead of
plantlet regeneration. It should also be noted that physical separation of
protoplasts (e.g., embedding into sodium alginate) after transformation
is important to keep edited cells from mixing with untransformed cells.
Otherwise, heterozygous calli composed of edited and unedited cells can
lead to chimeric shoots, a phenomenon explained by multicellular origin
of organogenesis (Faize et al., 2010; Poethig, 1989; Marcotrigiano,
1986). Recent evidence indicates that somatic embryos are formed by
rearrangement of group of peripheral callus cells rather than originating
from a single totipotent cell (Feher, 2019; Su and Zhang, 2014).
Therefore, it is possible for a mixed population of edited and untrans-
formed/unedited cells to cluster together when grown in liquid media
and develop into a heterozygous callus that can eventually give rise to
chimeric shoots.

The major drawback of the protoplast approach is the prevalence of
somaclonal variation which occurs due to prolonged exposure of plant
material to tissue culture conditions. These variations include single
nucleotide deletions (Miyao et al., 2011), epigenetic changes (Stroud
et al., 2013; Han et al., 2018), chromosomal deletions and/or rear-
rangements, and aneuploidy (Lee and Phillips, 1988). Drastic changes in
genome structure can be easy to detect at the phenotypic level (e.g., in
potato: thicker, smaller, greener and crinkled leaves, stronger stem, and

stunned overall plant growth). Regenerants with minor variations can be
phenotypically indistinguishable from parental lines, although they
might also possess genetic instability. Indeed, aneuploidy and structural
changes in chromosomes were observed in all the fifteen protoplast re-
generated potato plants, whereas only 18% of the plants regenerated
from Agrobacterium mediated transformation had large scale copy
number changes (Fossi et al., 2019). Therefore, it is particularly essential
to investigate the presence of potentially adverse somaclonal changes in
a genome edited plant obtained through protoplast regeneration.
Extended periods of tissue culture should be avoided and use of hor-
mones that are known to promote somaclonal variation (e.g., 2,
4-dichlorophenoxyacetic acid) should be minimized to reduce
genomic instability (Karp, 1990). Alternatively, one can simultaneously
edit a target gene and activate morphogenic genes that can promote
faster plant regeneration in the absence of hormones (Pan et al., 2022).

3.3. Virus induced genome editing

Regardless of the method of choice (Agrobacterium or protoplast),
generating genome engineered plants requires months of labor-intensive
tissue culture work. Recent developments in virus induced genome en-
gineering (VIGE), however, are promising to significantly shorten the
timeframe and to reduce the tissue culture workload. In a pioneering
study (Maher et al., 2020), new meristematic growth was induced at cut
shoot apices of N. benthamiana by inoculating the wound site with
Agrobacterium carrying viral replicons, which expressed certain devel-
opmental regulators, along with luciferase reporter and sgRNA targeting
the PDS gene. Because the plants were already (constitutively)
expressing Cas9 the newly emerged shoots from the cut site had the PDS
gene edited. The experiment was replicated in potato using the lucif-
erase gene only but the newly developed shoots, although expressed the
reporter gene, had abnormal phenotypes indicating that optimization of
regulator(s) expression is necessary. In a follow-up study (Ellison et al.,
2020), the sgRNA was mobilized by fusing it to Arabidopsis Flowering
Locus T (FT) mRNA which can move from leaves to apical meristem (Li
et al., 2018). Inoculation of the same Cas9 transgenic N. benthamiana
leaves with Agrobacterium containing the mobilized sgRNA, which was
expressed through tobacco rattle virus (TRV), resulted in PDS muta-
genesis in the seeds and T1 progeny.

The problem of not being able to deliver Cas9 gene and sgRNAs
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together due to cargo limitations of viral vectors was overcome by using
an engineered Sonchus yellow net virus (SYNV) (Ma et al., 2020).
Modified SYNV vector harbouring the PDS sgRNA and Cas9 was deliv-
ered into N. benthamiana leaves through Agrobacterium infiltration.
Systemic mutagenesis of PDS was observed, except in the seeds, and
heritable mutations were obtained through tissue culture of infected
somatic cells. Intriguingly, in 10% of the mutant regenerants no viral
RNA was detected based on RT-PCR results indicating that these lines
were virus free, and that the virus was eliminated in progenitor cells
after infection and mutagenesis. In another study (Ariga et al., 2020),
potato virus X (PVX) was utilized to deliver both gRNAs and Cas9
together into N. benthamiana leaves. 60% of the shoots regenerated from
agroinfiltrated leaves under non-selective conditions had targeted mu-
tations with 18% of them having Cas9 gene integrated into genome.
Interestingly, 12% of the shoots were negative for PVX RNA, as deter-
mined by RT-PCR, and for Cas9 gene as determined by PCR, indicating
that they were in fact virus and transgene free.

In light of the abovementioned studies, conducted employing
N. benthamiana as the model organism, VIGE could be also applied to
potato provided that potato is a compatible host for the viruses. One
strategy, as previously proposed (Dinesh-Kumar and Voytas, 2020), is to
express the mobile sgRNAs together with Cas gene from SYNV or PVX
vectors. This could enable, upon infection of the leaves, movement and
expression of the editing elements in the shoot apical meristem leading
to newly grown shoot tips to have the desired mutations. The shoot tips
could then be excised, re-grown in rooting medium and clonal propa-
gates (regenerated individually from auxiliary buds) of these edited
plants could be screened for absence of virus RNA and transgene. This
strategy, however, would require maintenance of aseptic conditions
throughout the process which can be a challenge. It is also possible,
though, that the editing could occur in stolon meristem resulting in
newly formed tubers to be gene edited which would eliminate the need
for sterile conditions. This could be achieved by hijacking mobile factors
in potato such as self-pruning 6 A (StSP6A) protein, homolog of the
Arabidopsis FT, and BEL1-like transcription factor (StBEL5) mRNA. Both
StSP6A protein and StBEL5 mRNA are expressed in leaves, then move to
stolon tips and initiate tuberization (Navarro et al., 2011; Banerjee et al.,
2006; Hannapel et al., 2017). StSP6A protein (partially or fully) could be
attached to Cas and/or StBEL5 RNA could be fused to sgRNA to facilitate
the transport of these editing elements into stolon meristem. Another
approach could be to induce callus directly from the infected leaf using a
selection free media as recently described (Ariga et al., 2020). The re-
generated shoots could then be screened for the presence of mutations
and, absence of transgene and virus RNA. Although this approach still
requires tissue culture, regenerants would be less likely to suffer from
somaclonal variation compared to protoplast derived plants (Fig. 1).

3.4. Complications due to genomic architecture of potato

Potato genome is highly complex due to its polyploidy and hetero-
zygous allele composition. In a recent study (Sevestre et al., 2020), the
authors constructed SNP map of Desiree, a tetraploid model cultivar, by
re-sequencing its genome and comparing it to that of the
doubled-haploid clone (Potato Genome Sequencing et al., 2011). The
comparative analysis revealed high sequence divergence between the
genomes of two different cultivars as well as differences within the
genome of Desiree including variations of 1 SNP per 68 bp, 1 deletion
per 1753 bp and 1 insertion per 1173 bp. This level of heterozygosity
complicates sgRNA design as extra caution is needed to make sure that
the sequence of a target region is identical between all alleles. Therefore,
simple sequence analysis of PCR amplicons covering the target region
prior to any genome editing experiment in potato is highly recom-
mended. Presence of SNPs between different alleles of a gene, however,
can also be exploited in numerous ways. Allele specific KOs can be
created to investigate the function of a particular gene copy or to explore
dosage effects in many traits. For instance, potato plants that were tetra
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allelic mutants for the StDND1 gene were resistant to late blight but had
a weaker phenotype (Kieu et al., 2021). Bi- or tri-allelic mutants of this
S-gene can be generated by allele specific targeting that could result in
plants with a similar level of resistance, yet WT like morphology. In fact,
RNAI lines of StDND1 did not have a weaker phenotype, presumably due
to incomplete silencing (Sun et al., 2016). Likewise, a gradient enzyme
activity can be attained by targeting certain alleles of SBEs thereby fine
tuning the starch structure.

Editing efficacy is influenced by many factors including GC content
and structure of sgRNA, target locus, and epigenetic status of target
region (Bortesi et al., 2016; Weiss et al., 2022). Related research within
the context of potato genome editing has been limited to few studies.
One such study with protoplasts investigated whether targeting 5’ is
more effective than targeting 3’ region of a gene (Carlsen et al., 2021).
The rationale behind the authors’ hypothesis was that 5’ end of a gene
would be more accessible to Cas9 and sgRNAs because this region, in
general, has a relatively more open chromatin structure compared to the
middle and 3’ end which are more tightly packed and, therefore, are less
accessible (Li et al., 2007; Schubeler, 2015). Two genes, DMR6-1 and
GWD1 (glucan, water dikinase 1), were targeted by RNP delivery of Cas9
and several different sgRNAs. Editing efficacy at 5’ region was signifi-
cantly higher for GWD1 but not for DMR6-1. The authors explained the
lack of difference in editing efficiency between the 5’ and 3’ ends by
speculating that DMR6-1 chromatin structure could already be in open
state or that it could be transcriptionally activated in response to cell
wall removal and re-synthesis during protoplast treatment. Although
this study investigated an interesting hypothesis, it was difficult to reach
a decisive conclusion, because the sample group was limited to two
genes and editing efficiencies conferred by different protospacers were
not accounted. Nevertheless, it is crucial that multiple gRNAs are tested
for effectiveness at the protoplast level before proceeding with the
actual gene editing experiments.

4. Prospects of CRISPR/Cas mediated genome editing of potato

Majority of the CRISPR/Cas mediated genome editing attempts in
potato, so far, used SpCas9 to knock out gene(s) of interest with rela-
tively good success rates. Still, SpCas9 system can be further optimized
for targeted mutagenesis. This is essential particularly if the genome
edited, transgene free potatoes are aimed for commercialization.
Currently, the most feasible path to such an end-product appears to be
through genome editing by RNPs at the protoplast level followed by
plant regeneration. However, this approach, as discussed in the previous
section, is vulnerable to somaclonal variation which might reduce plant
vigour and yield in the field due to inadvertent genomic instabilities.
Therefore, several regenerants with the desired mutations need to be
obtained and screened to identify the ones with the least (none, if
possible) somaclonal variation. This requires tremendous tissue culture
work which can be reduced, in one way, using highly efficient sgRNAs.
Chemical modification of sgRNAs can provide better protection against
degradation by RNases and enhance their stability, thus improve overall
editing efficacy (Allen et al., 2021). Another approach to boost editing
efficacy in potato could be through enhancing activity of Cas9 by tem-
perature optimization (LeBlanc et al., 2018).

Although loss of function mutagenesis through conventional SpCas9
targeting has proven to be essential for functional genomics and for
altering traits to a certain extent, more efficient, precise, and diverse
CRISPR/Cas systems are needed to be tested in potato. One study used
Staphylococcus aureus Cas9 (SaCas9) which has a 5-NNGRRT-3' PAM
requirement (Veillet et al., 2020). The authors also developed a cytidine
base editor (CBE) based on SaCas9 to target StGBSSI and StDMR6-1
genes. However, no plants with mutations in StGBSSI gene were ob-
tained and only a handful of mutants for StDMR6-1 were recovered,
indicating the need for more robust Cas9 variants with diverse PAMs
that can efficiently edit target genes in potato. Likewise, there are
currently only a few proof-of-concept studies that utilized base and
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prime editors with limited success. Therefore, base editing and prime
editing systems in potato require significant improvement with regards
to efficacy and precision (Molla et al., 2021). With the development of
highly efficient CBEs such as those based on A3A-Y130F (Li et al., 2021;
Randall et al., 2021; Ren et al., 2021a) and adenine base editors (ABEs)
such as ABE8e (Yan et al., 2021; Ren et al., 2021b), we anticipate such
high-performance base editors will further promote base editing appli-
cations in potato.

Unlike Cas9 based systems, Casl12a, a class 2 type V endonuclease,
has not been utilized in potato genome editing so far, although the most
popular Casl2a from Lachnospiraceae bacterium, LbCasl2a, has been
demonstrated in various crops including rice (Wang et al., 2017; Xu
et al., 2017), maize (Lee et al., 2019), tomato (Bernabé-Orts et al.,
2019), and citrus (Jia et al., 2019). In contrast to Cas9, Casl2a recog-
nizes canonical TTTV PAM or a relaxed version, TTV (Zhang et al.,
2021), and uses a short CRISPR RNA (crRNA) which makes it suitable for
multiplexing, and cost efficient for RNP delivery (Zhang et al., 2022). In
addition, Cas12a introduces DSBs distant from PAM enabling recurrent
cutting/editing that results in larger deletions (Zetsche et al., 2015; Tang
et al., 2017). Furthermore, Cas12a offers more specificity and less off
targeting compared to Cas9 (Kim et al., 2016; Tang et al., 2018).
Although Cas12a shows reduced nuclease activity at lower temperatures
(e.g., 22 °C) that are relevant for plant tissue culture and genome edit-
ing, improved editing was achieved by growing Arabidopsis and maize
plants at elevated temperatures (e.g., 28-29 °C) (Malzahn et al., 2019)
or by using a temperature tolerant LbCasl2a (ttLbCasl2a) variant
(Schindele and Puchta, 2020). These properties make Casl2a an
attractive tool for genome editing in potato, particularly with respect to
multiplexing, RNP approach, and if larger deletions are desired. For
example, expression of a particular gene can be fine-tuned by targeting
its promoter and generating small to large deletions in this region using
Cas12a, as previously done using Cas9 (Rodriguez-Leal et al., 2017).

The current and novel CRISPR/Cas tools could be used for improving
yield and nutritional content of tubers. One such venue that has not been
necessarily explored in potato is abiotic stress tolerance (Table 2). For
instance, down regulation of the gene coding for cap-binding protein 80
(CAP80) using artificial microRNAs resulted in transgenic potato plants
with improved drought tolerance (Pieczynski et al., 2013). The CBP80
gene can certainly be targeted using CRISPR/Cas9 to generate transgene
free plants. Although PDS gene was targeted in potato to assess trans-
formation protocols owing to its easily detectable albino phenotype in
knock-out plants (Banfalvi et al., 2020; Butler et al., 2020), carotenoid
pathway has not been truly manipulated using novel genome editing
approaches to enhance vitamin content of tubers. Most commercial
potatoes are not rich in vitamin A and boosting its level in tubers could
help fighting vitamin A deficiency. One way to increase beta-carotene
level, the potent pro-vitamin A metabolite, could be to target
beta-carotene hydroxylase (BCH) gene. In fact, silencing of BCH by using
RNAI lead to tubers with more than 300 pg of beta-carotene per 100 g
fresh weight (Van Eck, 2007). Likewise, ascorbate (vitamin C) levels in
tubers were increased up to three-fold when polyubiquitin promoter was
used to express GDP-L-galactose phosphorylase (GGP or VTC2A) gene
that is responsible for catalyzing the first committed step of ascorbate
biosynthesis in plants (Bulley et al., 2012). The same promoter (or a
different one) from potato can be replaced with the native promoter of
GGP gene by CRISPR/Cas mediated HDR or targeted insertion. In
addition, tuber yield could be improved by boosting tuber formation.
Tuberization is a complex process that involves many genes which either
promote or suppress the pathway (reviewed in (Hannapel et al., 2017);
Dutt et al., 2017). For instance, down-regulation of sucrose transporter 4
(StSUT4) gene, a negative regulator of tuberization, by RNAI resulted in
improved tuber yield (Chincinska et al., 2008) making it a promising
candidate for targeted mutagenesis. Recently, a transcription factor
named identity of tuber 1 (IT1) was identified to be exclusively
expressed in the stolon and interact with the StSP6A protein (Tang et al.,
2022). CRISPR/Cas9 mediated mutagenesis of the StIT1 gene caused
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branching of the stolons instead of tuberization indicating its key role in
tuber initiation. It is intriguing to ask whether up-regulation of the same
gene (i.e., through CRISPR/Cas mediated promoter engineering) would
stimulate tuberization and increase tuber yield.

Moreover, CRISPR/Cas systems can aid regulation of gene expression
(activation and/or interference), epigenome editing, and tissue specific
editing. Recently, TALE based organelle genome editing has been re-
ported (Molla et al., 2021; Nakazato et al., 2022; Forner et al., 2022;
Kazama et al., 2019). Applications of these tools will further enhance
genome engineering capability in potato. For example, it will be inter-
esting to test the use of CRISPR-Combo (nulla) for improved genome
editing in potato by augmenting plant regeneration. Furthermore, de-
livery of editing reagents by viral vectors and nanomaterials (Demirer
et al., 2021) will expand the opportunities for obtaining transgene free
potatoes that are less likely to harbour somaclonal variations. Devel-
opment and optimization of these novel genome editing platforms for
potato breeding will provide researchers with more flexibility to engi-
neer new traits with higher efficiency and accuracy. After US, UK, Japan,
and India’s looser policies on the regulatory restrictions of genome
edited crops and with more public acceptance, other countries are likely
to follow. This will open-up a new era in plant breeding and present
opportunities for trait improvement more than ever.
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