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Abstract
Defending against novel, repeated, or unpredictable attacks, while avoiding attacks on the ‘self’,
are the central problems of both mammalian immune systems and computer systems. Both
systems have been studied in great detail, but with little exchange of information across the
different disciplines. Here, we present a conceptual framework for structured comparisons
across the fields of biological immunity and cybersecurity, by framing the context of defense,
considering different (combinations of) defensive strategies, and evaluating defensive
performance. Throughout this paper, we pose open questions for further exploration. We hope
to spark the interdisciplinary discovery of general principles of optimal defense, which can be
understood and applied in biological immunity, cybersecurity, and other defensive realms..

Introduction
Securing cyber-systems is one of the central challenges of the 21st century. Within the past five
years, cyber attacks have disrupted U.S. oil supplies, leaked personal data of 50 million cell
phone users, and rerouted Ukrainian Internet traffic through Russian communication
infrastructure, just to name a few examples. Future consequences could be even more
catastrophic, from severe disruption of financial markets to the demise of democratic
governments to inadvertent nuclear war. Although cybersecurity experts have made tremendous
progress enhancing the security of computers1 and networks over the course of decades,
attackers often appear to be one step ahead, rapidly deploying innovative methods to overcome
the latest defensive strategies, and we are still devising piecemeal solutions. Continued creative
inspiration for new principles and designs of defensive systems is both timely and likely to be
valuable.

A promising source of this inspiration is the study of biological immune systems. As National
Medalist of Technology Carver Mead notes, "As engineers, we would be foolish to ignore the

1 We use 'computer' as a shorthand for computing devices, including routers, servers, smartphones, etc.
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lessons of a billion years of evolution.” Indeed, the deep history of coevolution between
parasites and vertebrate hosts produced a fully distributed immune system that deploys a
remarkable diversity of defenses against an equally remarkable diversity of parasitic attackers,
from viruses less than 10nm long to tapeworms exceeding 10m (Jackson et al 2009). The
challenges faced by the vertebrate immune system share many key similarities with those faced
in cybersecurity: both systems must recognize attackers that are diverse, dynamic, and
evolving; both must root out these attackers without excessive waste or damage to self; both
must handle uncertainties about when, where, and how attacks will occur; and both must be
effective at the scales ranging from individuals (e.g. a single human or a single computer) to
populations (groups of humans, networks of computers).

Both biological immunity and cybersecurity are examples of complex adaptive systems (CASs),
in which patterns at high levels of organization emerge from localized interactions and selection
processes operating on diverse agents at lower levels of organization, and feed back to affect
those lower-level processes (Levin 1998). In immunity, it is the self-organized interactions of
numerous cells and molecules that collectively dictate organism- and population-scale infection
outcomes. In cybersecurity, analogous interactions of hardware, code, and human users
collectively dictate security successes and failures, even at national and global scales.
Moreover, while the ability to freely engineer computer systems appears to contrast with the
constraints of evolutionary processes that occur across generations, engineering and evolution
may ultimately share more similar dynamics and outcomes than most observers would expect
[Box 1]. This suggests that strategies for defense that have been optimized by billions of years
of evolution may also succeed in the engineered context of cybersecurity.

Looking to immunology for insights into computing security is not a new idea (Forrest et al.
1994; Kephart et al. 1995; Forrest et al. 1996; Hofmeyr et al. 2000, Wooley and Lin 2005).
For example, intrusion detection systems (IDSs) originally monitored computers for malicious
activity using a process called signature detection, in which patterns of system activity were
compared to a database of known intrusive patterns. In 1996 an anomaly-detection system
inspired by vertebrate immunity (Forrest et al. 1996) was created to instead automatically learn
normal system behavior via direct observation and to respond adaptively to unfamiliar patterns,
eliminating reliance on a database of predetermined patterns. Subsequently, to further lower the
rate of damaging false positives, process Homeostasis (pH) was invented (Somayaji and
Forrest 2000) which mimics costimulatory receptors on T cells—an important mechanism to
prevent false-positive immune responses. As IDS were designed for entire networks, further
immune-inspired features were incorporated, such as negative selection of detectors (for flexible
distributed execution), a secondary response (to respond to previously seen attacks more
quickly), diversity of pattern presentation (to avoid single points of failure), and avidity (to further
control false positives) (Hofmeyr and Forrest 2000).

Nonetheless, these success stories are decades old: the many developments in both computing
and biotechnology since then warrant a fresh look at how insights from immunology could be
leveraged to better protect computer systems. For example, cloud-based computing
applications are increasingly built from self-sufficient containers, which can interact, reproduce,
and be destroyed, just like biological immune cells. This suggests that other aspects of the
evolved immune system could be replicated in cybersecurity settings. Furthermore, the medical
utility of burgeoning biotechnologies from CRISPR/Cas9 to mRNA vaccines are revealing new
principles of immune action and suggest new interventions more generally in CASs.

Therefore, our goal is to renew interest in the following question: How can biological immunity
reveal general principles of optimal defense, which might be successfully applied to provide
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CASs, including cybersecurity systems, a decisive upper hand against attackers? In the
subsequent sections, we provide a framework for studying connections between cyber and
immune defense. Each section contains several topics to guide cross-system comparisons,
along with related questions to spur future research. These questions are intended to transcend
mere comparisons of systems and inspire general principles, in pursuit of a unified and broadly
applicable theory of defense across biological and computing systems.

I. Framing the Context of Defense
When drawing analogies between the defensive systems of biological immunity and
cybersecurity, the context in which defense occurs must be carefully considered. This context
includes the goals of defense, the goals of attack, and the environment in which attacks and
defense occur.

The Goals of Defense. Here we primarily consider the vertebrate immune system as a model
of biological defense. Having evolved by natural selection, the vertebrate immune system has
only one “goal” or function, in the broadest sense: to enhance the lifetime reproductive output of
the host organism. There is no direct selection towards other goals. This explains several
seemingly disadvantageous aspects of biological immunity. For example, the lack of selection
for post-reproductive survival may explain immunosenescence, i.e. the gradual dysregulation
and dysfunction of immunity in old age (Peters et al 2019). The lack of selection for host comfort
may explain why some parasites are tolerated, i.e. allowed to persist as chronic infections with
their negative impacts only partially mitigated (Roy and Kirchner 2000; Medzhitov et al 2012).

At face value, cybersecurity defenses might appear to address a broader array of goals. The
devices and software that protect both individual computers as well as entire networks must not
only prevent infection2, but also limit costs on several other fronts. For example, the monetary
expense of installation, upgrades, and operation must not be too high, and efficient run-times of
legitimate applications must not be sacrificed.

However, in reality, the apparent contrast in the breadth of goals between cyber and biological
defenses is not nearly so sharp. By limiting costs to individual and institutional users, cyber
defense systems are ultimately designed to attract more users and/or to enable an institution to
persist successfully through time. In other words, a cybersecurity system’s broad array of
proximate goals largely serves the ultimate goal of ensuring continued representation in the
future, analogous to natural selection. Following the same logic in the opposite direction, in
order to maximize lifetime reproductive output, immune systems must meet a wide variety of
proximate goals. Just as cybersecurity systems must limit costs, immune systems must not
consume too much caloric energy or limiting nutrients. Just as cybersecurity systems must not
hinder legitimate applications, immune systems must not interfere with other crucial biological
functions. Indeed, the vertebrate immune system not only defends against parasites but
participates in other biological functions, including wound repair (Ellis et al 2018), cognitive
behavior (Salvador et al 2021), and more. Thus, we argue that the structure of goals is quite
similar between biological and cyber defense.

Open Questions: Can parallel ultimate and proximate goals between cyber and immune
defenses be measured to suggest the relative utility of analogies in specific cases?

2 Although not all cyber-attacks involve spreading malware, we use ‘infection’ in the cyber context to
mean any attack that compromises all or part of a cyber system.
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The Goals of Attack. As with defense, evolution by natural selection in biological systems
ultimately selects for the reproductive capacity of attackers. We consider as biological attackers
all parasites and pathogens that infect vertebrate hosts, encompassing an enormous diversity of
viruses, bacteria, fungi, protozoa, nematodes, and other organisms. Once again, the ultimate
determinants of fitness (e.g. growth in the current host and transmission to new hosts) are
served by a variety of proximate goals, which vary from parasite to parasite: stealing host
resources (e.g. hookworm consumption of host blood (Periago & Bethony 2012)); triggering host
physiological mechanisms that facilitate transmission (e.g. induction of coughing by rhinoviruses
(Atkinson et al 2016) or induction of vomiting by noroviruses (Booth 2014)); manipulating host
behavior (e.g. rabies driving host aggression and biting (Jackson 2016)); or even killing the host
(e.g. Ebola causing hemorrhaging and death (Kucharski & Edmunds 2014)).

Cyber attacks, in contrast, can and do have a broader array of goals. These goals include
stealing data or credentials, stealing or extorting money, triggering system failures, manipulating
human behavior (e.g. through phishing or the spread of misinformation), or even seeking the
collapse of corporations or governments. While the numerous proximate goals of cyber attacks
do not always serve an ultimate goal of persistence into the future, diversity in the nature and
intent of cyber attacks nonetheless mirrors diversity in the strategies of biological parasites.

Unlike defensive systems, which typically balance many goals, individual attackers often pursue
only a small subset of the numerous possible goals. Thus, analogies between cyber and
biological attackers must be drawn carefully. For example, a spyware cyber attack, which aims
to maximize the amount of data siphoned from a computer over an extended period of time,
where fitness might be measured as the volume of leaked data, may be more accurately
compared to herpesviruses than to Ebola virus. Whereas the human herpesvirus
Cytomegalovirus maximizes its total reproduction by escaping detection during intermittent
periods of latency (Chaturvedi et al 2020), Ebola virus maximizes its total reproduction (spread)
by destroying its host quickly and horrifically (with blood loss aiding in infection of others)
(Sofonea et al 2018). The latter strategy would undermine the intent of spyware, which cannot
continue to gather data from an incapacitated computing system.

Open Questions: What are the analogues of evolutionary fitness that can be used to understand
the success of cyber attacks, or their probability of being observed again in the future?

The Role of Third Parties. Both immune systems and cybersecurity systems are embedded in
wider ‘ecosystems,’ where attackers and defenders are not the only relevant actors. In both
arenas, the interplay between attack and defense is often mediated by “third parties” - those
who are unintentionally or unwittingly exploited to benefit one side or the other by enabling,
exacerbating, or mitigating the threat of attack. Classic examples of third parties in human
immune defense include disease vectors such as mosquitoes and ticks, as well as animal
reservoirs where zoonotic infections evolve independently of human immunity (e.g. pigs and
birds for new influenza strains, bats for Covid-19). At wider scales of public health, other third
parties may include those who manage land use and wildlife, ship biological materials, develop
vaccines, etc, as these activities all impact the risk and/or severity of infection. Third parties are
equally diverse in cybersecurity, including those who produce and sell hardware, provide
network connectivity, manage storage and application servers, become unwitting participants in
distributed denial-of-service attacks, or simply use the internet. For example, in the 2016 U.S.
election cycle, those who posted minority political opinions on social media became third parties
when Russian hackers amplified their posts to distort public perception of the political climate
(Berghel 2017a).

5



It often seems that third parties are disproportionately exploited by attackers, particularly to
increase the number of victims they can target. As such, a better understanding of third-party
influences is an opportunity for major improvements in defensive systems, where insights from
biological defense might translate to cybersecurity settings.

Consider malaria (the disease caused by the unicellular protozoan Plasmodium falciparum) - a
widespread cause of morbidity and mortality in many developing countries (WHO 2022). Malaria
achieves high rates of transmission among human hosts via the bites of mosquitoes (Anopheles
species specifically). Here, mosquitoes are arguably a third party exploited by the protozoan
attacker of human immune systems.

In direct combat between attack and defense, the human immune system can rarely clear all the
infecting P. falciparum protozoans from the body. Neither evolution nor drug treatments nor
vaccines, even the most promising recent vaccine candidates (e.g. Datoo et al 2022; RTS
partnership 2014) have yet resulted in sterilizing immunity against malaria (though there are
some signs that vaccine-induced immunity in combination with drugs may come close; e.g.,
Pasini et al 2022). Worse yet, mosquito-borne transmission causes widespread infection in
areas with temperature, precipitation, and land use conducive to mosquito breeding
(Greenwood 1989). However, reliance on mosquitoes for transmission also presents unique
opportunities for a different defense strategy: decreasing infection risk in the first place. Where
individuals use insecticide-treated bed nets to prevent mosquito bites, malaria infection risk is
significantly reduced (Galappaththy 2013; Bhatt et al 2015). Further defenses at levels of
organization higher than the individual (e.g. regulating the trade of commodities that harbor
mosquito eggs, reduction of mosquito habitat via reforestation, etc.) are also effective, and we
discuss considerations of system scale in the next section. But bed nets alone mirror a principle
that is already well-appreciated in cybersecurity: avoiding contact with malicious code altogether
is the best defense. For example, exposure can be minimized by avoiding interfaces with
hardware produced by third parties.

Open Questions: Does lack of control over third party behavior inherently favor exploitation by
attackers? Or can probabilistic descriptions of third party behavior be leveraged to favor
defense?

System Scale. As CASs, both biological immunity and cybersecurity span a range of temporal,
spatial, and organizational scales. Immune systems comprise molecules that act within
nanoseconds, produced by cells that interact in local tissue zones over minutes, whose
interactions lead to emergent outcomes for the whole organism over many days. Similarly, cyber
outcomes emerge from the action of individual pieces of code operating at multiple levels. For
example, low-level assignment of Internet packet headers combined with high-level
Completely-Automated-Public-Turing-Tests-to-Tell-Humans-and-Computers-Apart (CAPTCHAs)
improve security in large networks. Such cross-scale activities can sometimes interact to create
non-linearities in system behavior which can lead to sudden and/or unexpected outcomes,
especially when faced with spatially and temporally heterogeneous attacks.

While evolution by natural selection is expected to tune cross-scale interactions to minimize
sudden negative outcomes in a probabilistic sense, uncertainty in the exact nature of attacks
means that catastrophe is always possible (Graham et al 2022). For example, during bacterial
infection, immune cells are transported by the bloodstream to sites of local infection, where they
secrete inflammatory molecular signals to help kill the bacteria. But too many sites of local
infection can allow these same molecular signals to accrue in the bloodstream, rapidly
expanding their spatial scale and ultimately causing septic shock and death rather than healthy
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recovery (Rossaint & Zarbock 2015). In terms of temporal scales, during some respiratory
infections, such as Covid-19, immune mechanisms that cause symptoms are evoked after viral
shedding has already begun (He et al 2020). While this timing leads to successful recovery of
the individual host with minimal tissue pathology, it also leaves the host unable to curb
transmission to other sites before it is too late.

As these examples demonstrate, it is crucial to understand the potential for propagation of
unanticipated effects and interference between defensive strategies operating at different
biological scales (Frank 2007). These issues are equally relevant in cybersecurity settings. For
example, implementation of two-factor authentication at the institutional level may actually
compromise security at the level of individual computers if it lulls individual users into being less
vigilant about creating strong passwords (Herley 2009). Shutting down an infected computer
may prevent the spread of malware but also cause disruptions in routing across a broader
network. Progress toward stronger holistic cybersecurity will require improved understanding of
how specific strategies affect higher and lower scales of organization.

While mismatched scales can present a challenge for effective defense, they also present
opportunities for new defensive strategies. In particular, heterogeneity at one scale of
organization can be leveraged to achieve protection at another, by making the particular
defenses an attacker will encounter unpredictable. The many billions of B and T lymphocytes of
the vertebrate immune system each expresses a unique receptor, generated by randomized
DNA somatic recombination (Burnet 1957). This hinders an evolving parasite population from
anticipating which of its peptides is likely visible to immune surveillance. Because such
changing or varied defensive structures are not always achievable within the body or lifetime of
one host, heterogeneity can also be deployed across a population. Each vertebrate host also
expresses several out of hundreds of possible major histocompatibility complex (MHC) alleles,
which are responsible for presenting parasite molecular structures to the aforementioned T
lymphocytes. As a result of variation across hosts, a mutation which helps a parasite escape
detection in one host may actually increase its probability of detection in the next host. Just as
heterogeneity among attackers creates uncertainty and makes defense difficult, so too does
heterogeneity in defense strategy impose adverse uncertainty on attackers.

The benefits of heterogeneity in defense are appreciated in the realm of cybersecurity as well.
Users of uncommon operating systems are serendipitously shielded from attack simply because
they are not part of the largest, and therefore most attractive, pools of potential targets (Geer et
al 2003). There are several examples of intentionally engineered heterogeneity such as
N-variant systems (Cox et al 2006), address-space randomization (Bhatkar 2003), instruction
set randomization (Barrantes et al., 2003), and platform diversity (Okhravi et al, 2012). All of
these strategies leverage unpredictability, sometimes explicitly mimicking biology by 'genetically'
altering each code copy or layout. However, biological immunity appears to deploy
heterogeneity as a defense more ubiquitously and spanning more organizational layers than
does cybersecurity. In the technology market, economic and logistical factors provide strong
incentives for standardization, which can curtail the appeal of heterogeneity. This creates a
tradeoff in cybersecurity which would be beneficial to break.

Open Questions: How can unpredictability in defense be generated at multiple organizational
scales and which mechanisms are most effective? What dynamic cross-scale feedbacks are
required to stabilize such systems? Should engineered heterogeneity be implemented across a
wider range of scales in cybersecurity and how much heterogeneity is sufficient?
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II. Choosing Defensive Strategies
As CASs, both immunity and cybersecurity comprise many interacting components and
mechanisms. While these mechanisms are inextricably linked by their feedbacks and influences
on one another, we and others (e.g. Schmid-Hempel 2012) find it useful to assort individual
defense mechanisms into 5 general strategic “layers.” (Table 1). Which defensive layers are
used, how they are implemented, and how they are wired together into a single self-organized
system, surely depends on the context of defense, as described above. Here we explore
several other crucial factors that influence these choices.

Table 1. General layers of defense.

Layer Definition Examples from
Biological Immunity

Examples from
Cybersecurity

Avoidance Preventing exposure
to attacks

Shunning sick individuals,
disgust response toward
waste and detritus

Blocking access to
blacklisted websites,
end-to-end encryption for
messages

Blockade Preventing entry of
attack upon exposure

Skin, mucous membranes,
anti-viral cell states

Firewalls, passwords,
cryptography

Detection Recognizing an attack
upon entry

Toll-like receptors, T cell
receptors, immunoglobulin

Virus scanner, intrusion
monitoring, anomaly
detection.

Alleviation Reducing the harm
caused by an attack

Tissue-repair macrophages,
granuloma formation

Slowing down suspicious
programs, reinstalling
compromised software,
changing passwords,
replacing infected hardware

Counterattack Expelling or destroying
the attacker

Killer T cells, inflammatory
macrophages, neutrophils, B
cell antibody secretion,
eosinophil toxic granules

Take-down requests for
counterfeit websites,
censorship, content
moderation

Resource Costs. Maintaining and deploying any defensive system has costs, i.e. it consumes
resources that could have been used for other purposes. For example, antivirus software can
increase the run-time of legitimate software, effectively reducing the computing time available
for other tasks. Secreting antibodies in response to infection uses proteins that could have been
invested in organismal growth or reproduction. While underinvesting in defense leaves a system
vulnerable to attacks, overinvesting in defense leaves the user of the system ill-equipped to
perform other important tasks. Thus, the cost of a defense strategy should be commensurate
with the risks faced. Although this principle is simple, accurately following it is not, due to the
difficulty in quantitatively predicting risks posed by inherently unpredictable attacks. Natural
selection acting on immune systems uses the evolutionary history of attack risk to calibrate
investment in defense (Urban et al 2013; Cressler et al 2015). Even so, ongoing variance or
sudden shifts in attack risk often cause hosts to invest incorrectly in specific instances; for
example, the mammalian immune system is prone to overproduce inflammatory cytokines,
resulting in severe immunopathology (Graham et al 2022). Similarly, attack history can be used
to forecast future risk in cybersecurity, but correct calibration of defenses cannot be guaranteed
in every case. Infamously, after a period of relative calm and correspondingly low investment in
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cyber defense, in 2017 Equifax experienced a security breach that leaked the information of 147
million people (Berghel 2017b).

If the risk of attack is difficult to predict, then detection and counterattack layers that are rapidly
induced after an attack occurs may be favored over a blockade layer that is constantly active.
This is partially because the former strategy consumes resources less frequently than the latter
(Frank 2002; Westra et al 2015). However, other facets of resource limitation may prioritize
defensive layers in the opposite order. In many cases, defense is an impure public good:
successful defense of one organism benefits others in its population, and successful defense of
one computer benefits others in its network. For example, one person in an office who is
vaccinated against Covid-19 and regularly updates their software reduces the risk of infection
for his/her coworkers in both arenas. One individual detecting and neutralizing attackers can
reduce the need for other individuals to do so, reducing their resource costs and creating a
‘free-rider’ problem that disincentives widespread investment in defense.

Open Questions: What (combinations of) defensive layers minimize aggregate resource costs?
How can limited resources best be distributed across multiple defense layers? How are such
strategies affected by the broader context of defense?

Sensitivity Tradeoffs. In both organisms and computers, some ingressions are dangerous, but
the majority are not (e.g., food, e-mail messages, most software updates).  Fighting innocuous
ingressions can be as costly as permitting dangerous ingressions. As a result, the sensitivity of
defense must be carefully tuned.  False positives occur when the immune system attacks an
innocuous substance or its own uninfected cells, or when a cybersecurity program denies a user
or authorized code legitimate access to data or other resources. False negatives occur when an
immune or cybersecurity system fails to respond to a genuine attack . Reducing false positives
often increases  false negatives, creating a sensitivity tradeoff that constrains the design of
defensive systems (Metcalf et al 2017).

Different defensive contexts call for different sensitivity levels. Users of email spam filters
typically prefer never to have legitimate mail withheld, even if it means that they are exposed to
some junk mail – a balance tipped in favor of false negatives. Meanwhile, managers of servers
containing top secret data might prefer multiple checkpoints that slow legitimate accesses, in
order to completely block illegitimate attempts – a balance tipped in favor of false positives.
Interestingly, the advancement of medical technology and hygiene to treat or prevent infections
(e.g. the rapid development of mRNA vaccines (Hogan & Pardi 2022)) has outpaced the
treatment of autoimmunity, such that false negatives may be relatively less risky than false
positives today than during earlier human evolutionary history. The optimal level of sensitivity
may determine which defensive layers are chosen and how they are implemented. Generally,
the more layers a defensive system uses, the more sensitive it becomes, because there are
more opportunities for an ingression to be blocked, regardless of whether the ingression is
harmful or benign.

Ideally, the sensitivity tradeoff could be blunted by simultaneously reducing false positives and
false negatives. Several features of the vertebrate immune system accomplish this to some
degree, suggesting analogous strategies for cybersecurity. Consider T cells as a detection layer.
After exiting the thymus, multiple “peripheral” checkpoints throughout the lifetime of a T cell
delete cells that either respond to self or fail to respond to any invader (ElTanbouly & Noelle
2021), reducing both false positives and false negatives. This suggests that ongoing learning
based on continually updated signatures of self and attack could be more fully harnessed in
cybersecurity. T cells that detect a perceived threat proliferate, while competing with surrounding
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regulatory cells for secreted growth signal. The outcome of this competition determines whether
or not a full immune response is elicited, and it is a crucial mechanism to prevent spontaneous
autoimmunity (Wong et al 2021). This suggests that majority voting processes among multiple
autonomous detectors, each biased toward different levels of sensitivity, may outperform a
single trained detector.

Open Questions: What algorithms can simultaneously reduce false positives and false
negatives? Which defensive strategies are best-suited to implement these algorithms?

Decentralization. A fundamental problem in defense is that attackers have many more frequent
opportunities to update their strategies than do defenders. Cyber attackers can privately test
many attack strategies before launching the best one, and parasites have much shorter
generation times and larger effective population sizes than hosts. This imbalance creates a
fundamental asymmetry between attacker and defender. By decentralizing the task of defense
to numerous distributed autonomous agents, a defensive system can partially close this gap in
evolution rate by allowing the agents to evolve as a single defensive response unfolds. Indeed,
the vertebrate immune system is composed of hundreds of lymph nodes and trillions of
autonomous cells, many of which (specifically B and T lymphocytes) undergo positive selection
during the course of a single infection. Given the growth of large networked enterprise systems
and trends toward lightweight container-based processes spread across numerous processors,
cybersecurity may also begin to realize the advantages of decentralization (Hofmeyr & Forrest
2000).

With the advantages of decentralization come several challenges, which impact the holistic
design of a defense system. For example, coordinated action of distributed autonomous agents
requires communication among these agents. The nodes comprising modern computer
networks continually exchange packets of information, and immune cells constantly secrete
signaling molecules called cytokines that modulate the behavior of surrounding cells.
Decentralization vastly increases the number of signaling events, and every signaling event is
an opportunity for subversion (Schmid-Hempel 2008), such as spoofing or man-in-the-middle
attacks. Defensive systems must expect and preempt such attacks. One approach is to base
strategic decisions on the time-integrated sum of many agents’ signals, where high stochastic
variability is added to the signaling output of each individual agent. As a result, subversion of
any individual signaling event is swamped by group-level noise and is less likely to affect the
downstream decision. Indeed, parasites often spoof or sequester cytokine signals to promote
ineffective immune counterattacks, but high variability in cytokine secretion rates of individual T
cells can prevent such mistakes (Schrom et al 2020). Even if an attacker does successfully
subvert an entire signaling axis, other approaches can mitigate the consequences. By
increasing the number of signaling axes used and the complexity with which they are integrated,
defensive systems can create signaling logics that are much more challenging for attackers to
manipulate toward a desired outcome (Chastain et al 2012). This might partially explain the vast
complexity of cytokine signaling networks (Altan-Bonnet & Mukherjee 2019).

If successful adaptations by decentralized agents are retained after an attack has been cleared
and used to improve performance in the future, then the defense system is said to have learned.
Whenever a defensive system persists on a longer timescale than the duration of an attack, as
in both vertebrate immunity and cybersecurity, learning is desirable (Mayer et al 2016). But the
optimal dynamics of learning can vary according to the attack landscape and the goals of
defense, among other factors. For example, receptor repertoire updating in the vertebrate
immune system follows a Bayesian scheme which optimally balances the weights it assigns to
new vs. past attacks according to the sparsity of parasite molecular signatures and the expected
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host lifespan (Mayer et al 2019). It is not clear how the current gold standard in machine
learning—neural networks— should be optimized for cybersecurity, given the diversity of
adversarial strategies that can be used to sabotage performance. For example, in a
phenomenon called “catastrophic forgetting,” manipulating the order in which training samples
are fed to a neural network can cause predictable downstream failures. Some progress has
been made toward overcoming catastrophic forgetting by condensing individual memories into
small independent units and then entrenching these units (Hurtado et al 2021). These strategies
inadvertently mimic B and T cells, which are the small independent units of immune memory
that become entrenched via clonal expansion and differentiation into long-lived subtypes.
Further analogies should be explored to improve other facets of adversarial learning in
cybersecurity.

Importantly, the examples discussed here are constrained to single layers of defense. Noisy
cytokine signaling precipitates a choice between different varieties of alleviation or counterattack
layers. Neural network learning has been used in detection of genuine attacks vs. innocuous
activity (Sarker 2021). However, the benefits and challenges of decentralized defense certainly
span across defensive layers. For example, a memory formed during the detection of a bizarre
attack that bears no resemblance to normal activity might be translated into an avoidance
heuristic that prevents future contact with such an attack altogether, allowing it to be deleted
from the detection memory to free more space for future learning. The amount of damage
caused by different attacks might drive learning to tune the balance between alleviation and
counterattack in the future.

Open Questions: How can communication across different layers of defense enable holistically
optimal decentralized learning? What signaling logics are needed to protect this communication
from sabotage?

Complexity. As CASs, it is no surprise that immune and cybersecurity systems are themselves
complex: they contain many intricately interacting mechanisms. The vertebrate immune system
includes multiple mechanisms within each of the five broad layers of defense (Table 1), and
even the immune systems of much simpler organisms such as corals and bacteria achieve at
least four of these layers (Pinzon et al 2014, Westra et al 2015). The repeated evolution of
multi-layer defense systems suggests an advantage of complexity in defense. This is echoed by
the cyber principle of defense-in-depth, which says more layers and mechanisms lead to fewer
successful attacks. The common intuition for this principle is independent redundancy: if one
defensive mechanism fails, another can compensate for it. But pure redundancy is rarely an
evolutionarily stable outcome, and must be complemented by features like diversity and
modularity that provide adaptive capacity (Levin 1999); hence immune mechanisms that appear
redundant in any given infection may have partially overlapping but not completely identical
uses, more broadly (Nish & Medzhitov 2011). This suggests that multifaceted defense systems
could evolve simply because no single mechanism can prevent all attacks, and redundancies
across different mechanisms in specific cases are merely serendipitous side effects, rather than
adaptative drivers.

In fact, complex interactions among multiple layers of defense could even evolve with no
benefits whatsoever. The theory of constructive neutral evolution explains complexity in cell
biology as the result of a ratchet. Given multiple proteins, there are more possible mutations that
increase than decrease their interdependence, and the former mutations are less likely to be
reversible, so random chance inevitably leads to higher degrees of interdependence (Lukes et
al 2011). Scaling this argument up, the addition of each new layer or mechanism of defense
means that existing layers or mechanisms are underutilized, reducing the selective pressure for
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their continued independent functioning. Thus, sophisticated multi-layer defense systems could
arise by natural selection without providing long-term advantages over simpler defenses, and
perhaps even proving more costly in terms of resources (Frank 2007). Because the engineering
of cybersecurity systems may follow similar patterns as biological evolution, deliberately or
inadvertently (Box 1), it is important to understand whether defensive complexity evolves due to
inherent optimality, constraints on otherwise preferable simpler systems, or the inevitability of
runaway complexity.

Open Questions: Is defensive complexity ever advantageous? If so, under what circumstances,
and how much is optimal?

III. Evaluating the Performance of Defense
However well designed and adapted a defense system may be, the unpredictability and
continual evolution of new attacks means that monitoring and updating defense will always be
necessary.  In both cybersecurity and immunity, new defenses inspire new attacks and vice
versa.  Below we consider specific factors that are particularly useful for evaluating defensive
systems and predicting their future performance.

Co-evolutionary Patterns. The invention of new attack strategies in response to new
defensive strategies and vice versa is a coevolutionary process called an arms race. Both
attacks and defense systems gradually become more sophisticated and potent. Arms races can
follow a range of trajectories, several extreme cases of which are useful to consider. Improved
defensive capability may become so deterrent that the threat of attack largely vanishes.
Conversely, attackers may unleash a catastrophic assault that leaves the defensive system
overrun and unable to make future updates. Between these extremes, investment in attack and
defense may escalate so far that both parties pay wastefully high resource costs that exceed
the actual risk and reduce overall fitness. Or attack severity may plateau at a low enough level
that alleviation is more cost-effective than counterattack, leading to chronic infections that are
simply tolerated by the defender.

The ability to predict which trajectory an arms race is following in real time would be extremely
beneficial in the evaluation and preemptive improvement of defensive strategies. Such
prediction is sometimes possible using data from vertebrate immunity, thanks to the genomic
signatures left by evolving facets of attack and defense. For example, time series of viral and
antibody sequences in chronic HIV infections can be used in time-shifted neutralization assays
to characterize how well the immune system tracks the evolving virus, which in turn may predict
patient prognosis (Nourmohammad et al 2016). Similarly detailed data documenting gradual
and reciprocal changes in attack and defense strategy are available in cybersecurity settings
such as vulnerability databases, records of software updates, and Internet measurement.
Analogous to HIV sequencing data, records of which sites are queried, blocked, and accessed
from within China have been used to quantify the performance of the Great Firewall of China,
ultimately predicting whether this strategy for national censorship is likely to remain effective
(Crandall et al 2007; King et al 2013).

Open Questions: Can coevolutionary patterns predict likely outcomes in cybersecurity:
catastrophic attacks, unnecessary expenditure on defense, or prudent tolerance of low-risk
ingressions?

Worst-Case Scenarios. Coevolutionary prediction may reveal only the most probable
scenarios; however, the magnitude of the worst-case scenario, even if its probability is quite
small, is also relevant for the performance of a defense system. A 1% probability of contracting
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a common cold or of receiving a spam email may be acceptable, but a 1% probability of fatal
systemic infection or of a compromised control system in a nuclear reactor is not. In other
words, investment in defense ought to be tailored to the attack risk profile, i.e. the probability
distribution across the range of possible attack severities. Experimental evolution studies in the
model nematode organism Caenorhabditis elegans reveal that prevalent mild infection is not
sufficient to warrant hosts paying high costs for defense, but deadly infection does drive the
evolution of high-cost defense (Morran et al 2011). This suggests that the most important part of
a risk profile for deciding defense investment is the rightmost tail: how severe are the worst-case
attacks, and how probable? Unfortunately, both measures are notoriously difficult to estimate in
cybersecurity, and the calculus can change over time.

Open Questions: What other information besides attack history can be used to construct
accurate risk profiles? How should the uncertain right tail of a risk profile be conservatively
estimated to best balance costs with prevention of worst-case scenarios?

Changes in the Context of Defense. If a defense system is carefully designed for a specific
context, then unanticipated changes to that context may cause catastrophe. Thus, vigilance in
monitoring not only defensive performance but also potential changes to the context of defense
is essential. Contextual changes can be externally driven. For example, shifting political
alliances among nations may change the origin, and thus the resources and techniques
available, for cyberattacks. Contextual changes can also be driven by the defense system itself,
in the form of unintended consequences. Antibodies generated during infection with one strain
of Dengue or Zika virus actually prevent de novo generation of antibodies during an infection
with a second Dengue strain, eliminating one of the key layers of defense and typically leading
to more severe disease (Katzelnick et al 2020). In another example, imagine that avoidance of
malaria-carrying mosquitos via bed nets were not only to succeed, but also to impose strong
selective pressure for the Plasmodium falciparum protozoan to survive in other biting insects,
perhaps with much wider geographic ranges. The context of defense would have changed
drastically - a new third actor is involved, the spatial scale of attack has changed, and many new
populations of people are at risk.

Unfortunately, changes to the context of defense appear difficult or impossible to predict,
especially if they are not direct feedbacks of defensive action itself. While both biological
immunity and cybersecurity are CASs with many components that span spatial and temporal
scales, any predictive model of their behavior must nonetheless specify relevant components,
their interactions, other aspects of their context, in advance. Unknown external forces that alter
these assumptions cannot be fully accounted for in model predictions.

However, some approaches may aid in the evaluation and updating of defensive systems. A
purely data-driven approach is to observe the time and trajectory taken by the defensive system
to return to a stable, protected state after each attack. This may reveal critical slowing down: a
phenomenon in which slower and slower returns to equilibrium predict that the system dynamics
are gradually approaching a tipping point, where outcomes will suddenly become drastically
different (Nazarimehr et al 2020). For example, chronic inflammation during old age markedly
slows the rate at which cellular debris can be cleared from tissues after infection or injury,
increasing the risk of tissue degeneracy and ultimate mortality (Sanada et al 2018). More
generally, the cause of a gradual shift in system dynamics - perhaps external forces changing
the context of defense - can remain entirely unknown, and yet an impending catastrophe can be
predicted. In cybersecurity, early detection of critical slowing down can spur periods of greater
investment in explicitly researching the context of defense, to adaptively modulate efforts.
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Theoretical approaches are also available, in the form of sensitivity analyses. By identifying
which (combinations of) parameters exert the strongest influences on model behavior and
prediction uncertainty, sensitivity analyses can highlight which components and interactions in a
defensive system are likely to be least robust against external forcing from contextual changes.
Knowing such vulnerabilities, even without knowing which specific contextual changes to
anticipate, could suggest further safeguards to prevent sudden failures in defense.

Open questions: What design features of defensive systems make them least susceptible not
only to unpredictable attacks, but even to unpredictable changes in context?

Conclusion
Across evolved biological immunity and engineered cybersecurity, we find meaningful parallels
in how the defensive contexts are framed, strategies chosen, and performance evaluated.
Especially as technological advances allow these two defensive systems to resemble one
another more closely, we believe that carefully drawn analogies between these systems can
reveal general principles of defensive design to protect  against unpredictable attacks. Lists of
proposed principles already exist in some fields (e.g., Bergstrom & Antia 2006, Segel & Cohen
2001), but their generality across systems has not been examined in depth, either theoretically
or practically. We hope the open questions articulated above will spark collaborative study,
whether by sharing data and analytical techniques or constructing theoretical models. Finally, as
general defensive design principles emerge, we hope to see them vetted and successfully
deployed in other realms, such as national defense against domestic and international terrorism,
and public health defense against zooneses and epidemics.
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Box 1: Engineered vs. Evolved Systems

The most glaring difference between biological defense systems and cyber systems is how they
have arisen: One system was produced by a natural evolutionary process and the other by human
ingenuity.  We argue that the division between these two processes is ambiguous, that modern
engineering processes have more in common with evolutionary processes than is commonly believed,
and that inadvertent evolutionary dynamics are particularly relevant in computer security.

At first glance, the goal-directed nature of engineering, with designs produced by intelligent
beings, is quite different from biological evolution, where natural selection responds to undirected random
variations and drift.  For example, Jacob (1977) argues that evolution through natural selection is akin to
tinkering and fundamentally different from the work of the master craftsman: "The engineer works
according to a preconceived plan in that he foresees the product of his efforts," "The objects produced by
the engineer approach the level of perfection made possible by the technology of the time."  But no one
would argue that today’s computer systems approach perfection, nor that our software infrastructure,
which is so vulnerable to attack, was produced according to a preconceived plan, even if, as humans, we
can indeed foresee some futures.

In practice, engineering and evolution share many features, and it is often challenging to
distinguish between the two.  Many of today's engineered systems were produced at least in part by
natural evolutionary processes.  An obvious example is Arnold's Nobel Prize winning work using directed
mutation in chemistry to optimize protein function (Romero and Arnold 2009). Similarly, in computing,
tinkering is the norm, and clean slate design is unusual.  That is, we rarely get to go back in time and
redesign systems from scratch.  Why?  Many systems are required to maintain backward compatibility,
both for communication and networking and also for user experience; it is more expensive and
error-prone to redesign from scratch than to reuse existing components.  This is similar to evolutionary
processes, which can only "work" (evolve) with components and processes already in place, the very
arguments that underlie Jacob's thesis. Despite these constraints, evolutionary processes sometimes
create large shifts that can be seen on the macro scale in punctuated equilibrium (Gould and Eldredge
1972) and on the micro scale in microbes that evolve the ability to digest new carbon sources (Elena and
Lenski 2003)—more akin to the large-scale shifts we might associate with foresight and design, but that
require neither.

We hypothesize that simple inspection of an artifact cannot always reveal the process that
produced it and that at best we can make a probabilistic guess, which prompts us to ask: What are the
distinct properties of engineered and evolved systems that are reflected in the designs they produce?
One can even imagine a kind of Turing test that asks how one could  distinguish between a product of an
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evolutionary process versus an engineered process?  What are the hallmarks of each?  Suppose, for
example, that you were presented with an immune system, a cryptography system, and a modern
enterprise software system with all of its defenses, would you be able to distinguish whether each was
evolved or engineered?
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