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Abstract

Substantial amounts of work are required to
clean large collections of digitized books for
NLP analysis, both because of the presence
of errors in the scanned text and the presence
of duplicate volumes in the corpora. In this
paper, we consider the issue of deduplication
in the presence of optical character recogni-
tion (OCR) errors. We present methods to
handle these errors, evaluated on a collection
of 19,347 texts from the Project Gutenberg
dataset and 96,635 texts from the HathiTrust
Library. We demonstrate that improvements in
language models now enable the detection and
correction of OCR errors without considera-
tion of the scanning image itself. The inconsis-
tencies found by aligning pairs of scans of the
same underlying work provides training data
to build models for detecting and correcting
errors. We identify the canonical version for
each of 17,136 repeatedly-scanned books from
58,808 scans. Finally, we investigate methods
to detect and correct errors in single-copy texts.
We show that on average, our method corrects
over six times as many errors as it introduces.
We also provide interesting analysis on the re-
lation between scanning quality and other fac-
tors such as location and publication year.

1 Introduction

The HathiTrust and Gutenberg corpora are critical
resources for literary analysis and NLP research,
providing legal access to tens of thousands of texts
for research purposes.

Both were constructed from scanned texts, with
manual correction in the case of the Gutenberg
corpus. These efforts for the Gutenberg Project
have begun as early as the 1970s when there was
a foreseeable need to digitize open-domain books.
Furthermore, the HathiTrust dataset also was con-
structed from a compilation of books from multiple
libraries from universities and states, and adds a
substantial amount of extra content.

Gutenberg ID Incorrect Sentence
3005 He returned hone
5798 I dod not smoke.
12773 Which would he absurd
44223 ...pleaded tie major
53604 What did he clo?

Table 1: Examples of errors detected in Project Guten-
berg books by our method

However, when compiling a library of books
from multiple sources, many challenges arise in
maintaining a well-structured catalog with minimal
redundant data. Quite often, a popular book will
appear in multiple sources of differing quality.

In this paper, we describe a major effort to clean
and organize these texts to provide a stronger foun-
dation for NLP research in literary texts. Our main
contributions are:

* OCR correction of previously scanned texts
— Book scanning technologies are a mix of
vision and language analysis, with language
models used to correct the visual processing
errors and ambiguity inherent in the scanning
process. Language models are now substan-
tially more powerful than available at the time
the bulk of the Gutenberg/HathiTrust corpora
were collected. We employ these language
models for detecting and correcting scanning
errors, yielding much cleaner texts for down-
stream analysis. These cleaned texts will be
made available to the research community sub-
ject to the limits enforced by Project Guten-
berg and HathiTrust.

With these models, we find errors in hun-
dreds of Gutenberg books. Some examples
are shown in Table 1.

We do note that it may not be so clear cut at
times due to intentional misspellings in dia-
logue. For example, "Tat will pe wrong" is a
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legitimate sentence (dialogue) in Malcolm by
George MacDonald, but is detected as an error.
In general, we find approximately 18.9% of
our detected errors in HathiTrust books to be
within quotes, and we see that books with
unusually high error rates in quotes gener-
ally stem from OCR errors found on question
marks ("P’ instead of °?’) or books with heavy
vernacular English such as “On the Plantation”
by Joel Chandler Harris (ex. “kaze I'm dat ole
dat I ain’t ™).

We show that on average, our model fixes
more than six times as many errors as it in-
troduces. Even among the “errors” the model
introduces, much of them may actually im-
prove downstream NLP tasks even if the new
words may be against the author’s original
intentions. This is particularly true in books
with heavy accented English.

Alignment analysis of repeatedly-scanned
books — We leverage the presence of several
thousand books which have been scanned two
or more times across the union of the Guten-
berg/HathiTrust, permitting us to pinpoint ex-
actly where differences exist in each pair of
texts. By employing the language-based OCR
correction models described above, we can
identify the correct variant of the text with
high confidence, providing training data to
improve correction models. Our alignment
procedure permits us to identify the better of
the two versions and construct a single canon-
ical text of higher quality than either of the
input source texts — as well as train models to
clean up singleton texts.

We collect 8,430,587 aligned differences,
which were split into a training and test dataset
for our models and provide them for public
use, again subject to limits enforced by Guten-
berg and HathiTrust.

Analysis of scanning errors — Our alignment
methodology provides detailed information
about the causes of observed scanning errors
in the HathiTrust corpus. We identify defect
levels as a function of library/location, pub-
lication date, and character signatures. We
show one such result in Table 2, which shows
the quality of a subset of books from different
libraries. In general, we find that location is

ID Location | Count | Year | Quality
nyp NYPL 2071 | 1903 | 0.879
miun | Univ. MI 6 1905 | 0.879
mdp | Univ. MI | 1740 | 1904 | 0.866
nncl | Columbia 44 1893 | 0.852
uva | Univ. VA 143 | 1904 | 0.847
pst PSU 24 1895 | 0.844
njp | Princeton | 437 | 1893 | 0.841
ucl ucC 446 | 1898 | 0.837
wu | Univ. WI 78 1999 | 0.824
inu Univ. IN 98 1897 | 0.819
coo Cornell 36 1905 | 0.773
umn | Univ. MN 12 1904 | 0.762
ien | NW Univ. 2 1920 | 0.733
ncO1 UNC 118 | 1894 | 0.715
uc?2 ucC 1290 | 1901 | 0.705
uivo | Univ. IL 42 1883 | 0.694
loc | Congress 46 1901 | 0.669
dull Duke 43 1891 | 0.649
hvd | Harvard 23 1832 | 0.566

Table 2: Quality of sampled books by location - blue
means the books were digitized by Google, red means
the books were digitized by the Internet Archive, yel-
low means the books were locally digitized (at the loca-
tion specified). The ‘Year’ column shows the average
publication year, which explains the lower quality for
books scanned by Harvard, since these are significantly
older.

not as big of a factor as the source that dig-
itized their books, primarily Google versus
the Internet Archive. These results shed in-
teresting light on the history of printing, and
serve to create prior distributions for improved
scanning technologies.

2 Background
2.1 Project Gutenberg

Project Gutenberg is one of the oldest online li-
braries of free eBooks that currently has more than
60,000 available texts (Gutenberg, n.d.). Given the
wide range of languages and topics available, we
restrict ourselves to English fiction, which narrows
the scope of text to about 19,347 books. For each
book, in addition to the text, we are given the title,
author, and subject as metadata.

2.2 HathiTrust

The HathiTrust digital library is a collaborative
effort between academic and research libraries to
provide a unified corpus of books that currently

4218



number over 8 million book titles (HathiTrust Dig-
ital Library). By filtering down to English fiction
books in this dataset using provided metadata (Un-
derwood, 2016), we get 96,635 books along with
extensive metadata including title, author, and pub-
lishing date.

2.3 Related Work

OCR post-analysis. OCR post-detection and
correction has been discussed extensively and can
date back before 2000, when statistical models
were applied for OCR correction (Kukich, 1992;
Tong and Evans, 1996). These statistical and lexi-
cal methods were dominant for many years, where
people used a combination of approaches such
as statistical machine translation with variants of
spell checking (Bassil and Alwani, 2012; Evershed
and Fitch, 2014; Afli et al., 2016; Kissos and Der-
showitz, 2016; Schulz and Kuhn, 2017; Coustaty
etal., 2018). These approaches were also combined
with a human aspect, where an interface could be
presented to a human corrector that provide aligned
text. A human corrector can then efficiently correct
mistakes in bulk (Taghva and Stofsky, 2001; Vobl
etal., 2014).

We also make note of other data cleaning models
that have relied on automatas or generative models
(Kolak et al., 2003; Pasula et al., 2003; Mayfield
et al., 2009; Llobet et al., 2010; Abedjan et al.,
2016; Lew et al., 2021). Methods such as PClean
work off of Bayesian principles and probabilistic
programming to identify likely errors in a specific
domain.

In addition to these models, there have been anal-
ysis and visualizations on the OCR errors them-
selves on digital libraries (Chiron et al., 2017b).
Jatowt et al. (2019) show interesting statistical anal-
ysis of OCR errors such as most frequent replace-
ments and errors based on token length over several
corpora . These provide insight into the most com-
mon sources of errors and also show how different
sets of documents each present their own individ-
ual features. It is shown that one cannot generalize
assumptions about OCR to all domains.

ICDAR Competitions. With growing interest in
these fields, the ICDAR Competition on Post-OCR
Text Correction was hosted during both 2017 and
2019 (Chiron et al., 2017a; Rigaud et al., 2019).
These competitions called for participants to sub-
mit their best models for both OCR detection and
correction with a provided training dataset that

aligned dirty text with ground truth. The differ-
ence in the models submitted between these two
years highlight the advancements in natural lan-
guage processing.

In ICDAR 2017, the top OCR correction mod-
els focused on neural methods. Neural machine
translation had been shown to outperform statisti-
cal machine translation on many tasks, and the top
team’s approach explored both these models and
combined results from multiple sources (Amrhein
and Clematide, 2018). In the 2019 competition,
the best performing team was CCC, using BERT
for fine tuning and character-level machine transla-
tion for error correction. Many others have began
to build off of this same structure. For example,
Nguyen et al. (2020) present post-OCR approaches
based on a contextual language model (BERT) and
neural machine translation (NMT) on aligned text,
as done by CCC. They improve upon them by ap-
plying static word embeddings to improve error
detection, and applying length difference heuristics
to improve correction output.

Vernacular English. Another related direction
connected to OCR errors is analysis of text with
vernacular English. In general, different dialects
in English do not affect understanding for native
English speakers as much as they affect current
NLP systems. This has been considered by Tan
et al. (Tan et al., 2020), proposing a new encod-
ing scheme for word tokenization to better capture
these variants. One can also consider applying
OCR correction models that work at a token level
to normalize such texts into proper English as well.

Language Models. Separate from OCR errors,
we also make use of concepts in language models.
Language models have provided a means to evalu-
ate the likelihood of various phrases. Traditionally,
this was done with n-gram models (Bengio et al.,
2003), but this has been replaced with neural lan-
guage models. With the advent of transformers in
the form of BERT and RoBERTa, language models
have progressed even further (Devlin et al., 2018;
Liu et al., 2019). In recent years, masked language
model scoring illustrates a way make use of the
transformer architectures to provide scoring of sen-
tences (Salazar et al., 2019). There have also been
advances in deeper models such as GPT2 that pro-
vide even stronger results as well (Radford et al.,
2019).
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3 Alignment Methods

We focus on a collection of books from the
HathiTrust dataset of which we have 96,635. Our
first task was to find duplicate books and to align
the content such that we could find the differences.

3.1 Deduplication

Given a large collection of text, we first identify
which texts should be grouped together as a “dedu-
plicated” set. We refer to a deduplicated set of
books as a set of texts in which each text corre-
sponds to the same overall content. There may be
variations in the content due to editing or OCR
differences, but the majority of the text should be
similar.

To check for similarity, we use the contents of
the books with the n-gram overlap as a metric. In
our case, we process the texts into a set of five-
grams and impose at least a 50% overlap between
two sets of five-grams for them to be considered
the same. In practice, duplicate books have an over-
lap ratio close to 100%, and different books have
overlap ratios close to 0%, so the 50% threshold is
insensitive to small changes.

One can consider checking similarity between
book titles and authors as a way to deduplicate
books, but this is not a practical approach. Ti-
tles of the same book can vary with different edi-
tions; thus, fuzzy matching becomes a necessity.
However, it becomes unclear at what threshold one
should consider it a match. If it is too strict, books
that should be clustered might be missed while if
it is too loose, then there may be too many false
positives between books of similar titles. There
may also exist annotation errors in the metadata as
well, which requires looking into the actual content
of the book.

To avoid comparing each text to every other text,
which would be quadratic in the corpus size, we
first group books by author and compute the pair-
wise overlap score between each book in each au-
thor group. To then deduplicate the sets, we treat
the problem as finding the connected components
in a graph, where the nodes are books and edges
exist between books that were found to be similar.

Anthologies There is one issue regarding books
that contain the contents of many other books (an-
thologies). We first filter these books out to avoid
situations that break transitivity. For example, if
book A includes book B and book C in its contents,
we would get that book A is similar to book B and

I ‘ kndr ‘ ft ‘ it ‘ isn’t ‘ my ‘ business
I ‘ know ‘ ‘ it ‘ isn’t ‘ my ‘ business

Table 3: Example of text alignment - the words "I" and
"it" are aligned and the bold words between them are
the differences.

book C, but book B and C may not be similar to
each other. Thus, to differentiate between antholo-
gies and books that are legitimate duplicates, we
consider the titles and lengths of the books in com-
mon. If there are no common tokens among the
titles and the parent book is longer than the others,
we consider the parent book an anthology. We also
filter out books that are of the form "Works, Works
of ..., The complete writings of ..., The novels of
..." and related variants. In total, we find 11,382
anthologies out of our HathiTrust dataset of 96,634
books and 106 anthologies from our Gutenberg
dataset of 19,347 books.

3.2 Text Alignment

Given the set of deduplicated books, our task is to
now align the text between books. More concretely,
the task is: given two tokenized books of similar
text (high n-gram overlap), create an alignment
between the tokens of both books such that the
alignment preserves order and is maximized. At
its core, this problem is simply a longest common
subsequence problem done at a token level. We
show an example of such an alignment in Table 3.
The only problem is that the running time of the
dynamic programming solution is proportional to
product of the token lengths of both books, which
is too slow in practice.

To remedy this problem, we employ the use of
“anchor” tokens, which are tokens that occur only
once in a book. Some examples of such tokens are
the words “systematic”, “rampacious”, “affix” in
Oliver Twist. They are singleton words that tend
to be more specific in meaning. For an average-
length book, there only exist a few thousand of
these tokens, and thus, we can first align the book
according to these tokens. Since the contents of
the books are similar, the anchor tokens for both
books should also be similar. Thus, we run the
full dynamic programming solution between the
anchor tokens of both books, which can be done
much faster than the book in its entirety. Once we
have the alignment between the anchor tokens, we
can then run the dynamic program between each
aligned anchor token. In general, these distances
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Correct Incorrect Baseline | BERT | RoBERTa | GPT2
...had no doubt ...has no donbt v v v v
...I had laid my head ...I bad laid my head X v v v
...clinging flakes of froth | ...clinging takes of froth X X 4 v
...the senor ...the sefior X X X 4
Accuracy of models over 1000 human annotated pairs: | 0.712 0.761 0.794 0.853

Table 4: Examples of extracted pairs with results from different models with accuracy scores over 1000 pairs(the
annotators and models judge the phrase in the context of the full sentence).

are quite short and thus, the overall running time
improves dramatically. Note that anchor n-grams
would also work if there is not enough anchor to-
kens.

3.3 Rating Sentence Pairs

Given the alignment between a pair of books, we
now identify where the differences lie. For each
consecutive aligned token, we check whether there
is a gap in alignment in either of the books. At
every point where a gap lies, we capture those areas
as token-wise differences as well as the sentences
in which these differences lie.

The main question now is: given two similar sen-
tences with some small difference between them,
which sentence is “more” correct? Generally, these
differences can be attributed to OCR errors, typ-
ically random letters or punctuation appearing in
text. Other times, it may be errors where letters are
replaced such as ‘m’ by ‘in’ or ‘2° by ‘?’.

Baseline. We first consider a baseline of a dic-
tionary lookup. Given a sentence, we consider the
ratio of tokens that are in a dictionary ! to the total
number of tokens in the sentence . We consider
the sentence that has a higher ratio to be the better
sentence; if equal, we select randomly.

However, this is quite often not sufficient as the
ratio tends to be roughly equal for both sentences.
This can be attributed to the differences in both sen-
tences being out of dictionary, such as when a name
gets misspelled or both being in the dictionary such
as when both are legitimate words (ex. ‘but’ versus
‘nut’ as errors). Additionally, there may be multi-
ple errors in the same sentence, resulting in skewed
ratios. Also, sentences may not always be of the
same length due to OCR errors among sentence-
defining punctuation such as periods. Due to these
factors, we turn towards stronger models.

"We use the NLTK English dictionary.

Language Models. Thus, we rely on language
models, particularly models based on modern trans-
former architectures. In this context, we can apply
language models to compute the likelihood of a
given sentence based on the probability of each
token within it. For a given sentence, we compute
its likelihood by passing it through a given lan-
guage model and compute the log sum of token
probabilities normalized by the number of tokens,
to avoid biasing on sentence length. Thus, given
two sentences, we can compute the normalized log
likelihood for both and choose a winner based on
the greater value.

Evaluation. For our experiments, we test the
baseline along with three language models based
on BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), and GPT2 (Radford et al., 2019). For all of
these models, we use the pretrained models without
any fine tuning. For the test set, we procure a ran-
dom set of 1000 pairs of sentences from our corpus,
and manually annotate which sentence is better for
each one. We note that there are 93 pairs that were
deemed ambiguous by the human annotators; thus,
they were not included in the final evaluation. Ta-
ble 4 shows the results for this human annotated
set with some examples.

Analysis. While the baseline performed re-
spectably compared to random guessing (0.5), we
find that GPT2 performs the best out of all the meth-
ods. Thus, we apply GPT2 as the main language
model for determining the correct sentence. We do
note that it is possible for both sentences to contain
errors, but we can still apply the same methodology
to judge which of the two is less severe.

3.4 Determining Best Books

Given a pair of duplicate books, we consider the
task of identifying the one that is of better quality
from an OCR perspective. By applying the text
alignment and sentence evaluations described in
the prior subsections, we compute a list of aligned
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sentence pairs between the two books with the like-
lihood scores for each one. We can convert these
scores into a confidence by normalizing with soft-
max.

Formally, given two books B; and By with n
aligned sentences, we consider p;, ¢; as the respec-
tive confidence scores for the i*" aligned sentence
pair (p; + ¢ = 1).

The simplest method to determine the better of
the two books then would be to take the majority
count. Whichever book is favored more among all
the sentence pairs can be considered the winner.
Concretely, we compute the probability that book
1 is better than book 2 as:

count(p; > ¢i)
n

PI‘[Bl > BQ] = (D

If this is greater than 0.5, B; is declared the winner;
otherwise, By is the winner. Often, this works
well but when the number of errors are relatively
balanced between both books, then we need to
consider the confidence scores themselves.

To address this issue, we apply a Bayesian updat-
ing approach. Recall that the posterior probabilities
are proportional to the product of the likelihood
and prior. As the prior, we use Equation 1, and we
compute the log posterior for B; (B3 is analogous)
as:

Z logp; +log

(comlezw
i=1 n

— ) ;
log likelihood 0g prior

The final winner is decided by comparing the
final two log posteriors, and choosing the book
corresponding to the larger value.

So far, we have only discussed comparisons be-
tween two given books. However, a general set
of duplicates may contain more than two books.
To find a winner among an arbitrary sized set of
books, we employ a tournament strategy. We use
our Bayesian approach to find the winner between
distinct pairs of books, and the winner of each pair
face off, and so on until there is only one winner. It
is the final winner of the tournament that is marked
as the canonical text of the set.

We apply our method on the full 96,635
HathiTrust texts, and find 58,808 of them to be
a duplicate to another book in the set. Among the
duplicates, we identify 17,136 canonical books.

Golden Dataset. To evaluate our approach, we
create a golden dataset based on an alignment be-
tween Gutenberg and HathiTrust. By applying
the same deduplication methods discussed in Sec-
tion 3, we create a test dataset of 6,694 paired
books. In this set, we use the Gutenberg version
as the ground truth since Gutenberg books are of
higher quality due to human editors compared to
HathiTrust books. To evaluate our method for
choosing a canonical book, we apply it on our
golden dataset to see how often it selects Gutenberg
over HathiTrust as the better copy. We find that it
selects the Gutenberg version 6,059 times out of
the total 6,694 books, showing that our method pre-
ferred Gutenberg 90.5% of the time. This agrees
with our understanding that Gutenberg books are
of higher quality.

4 OCR Errors in Single-Copy Texts

We now consider OCR errors for single copy texts.
In this setting, we cannot use any alignment tech-
nique as the books live in isolation. For this case,
we train models for both OCR error detection and
correction using the 17,136 sets of duplicate books
and their alignments. All models were run on a
compute server with 2.30 GHz CPU and TeslaV 100
GPU. No hyperparameter tuning was done on any
models; default values were run for all models.

4.1 Detecting OCR Errors

For OCR detection, we want to be able to iden-
tify which tokens in a given text can be marked
as an OCR error. This is a classic token classifica-
tion problem; thus, we train ROBERTa-large with a
token classification head for 3 epochs.

Receiver Operating Characteristic

=
o

o
-

Tue Positive Rate

o
)

— AUC=0.95

=)
=1

0'2 0'4 DVG 0‘8 10
False Positive Rate

o
°T
\

Threshold | Precision Recall
0.25 0.699 0.701
0.5 0.787 0.618
0.75 0.853 0.506
0.95 0.916 0.234

Figure 1: ROC and metrics for OCR detection at vari-
ous thresholds (in general, we value precision over re-
call)
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Sentence Ground Truth | Generated Score | Precision
... speaking as gently , as if he had been | cradle robe 0.263 0.776
lying in a satin <ocr> eradle </ocr> .
... know of your brother ’s <ocr> apph- | application approbation 0.398 0.829
cation n </ocr> to me ?

. was to <ocr> seck </ocr> a home | seek find 0.512 0.868
with some friends ...

. and <ocr> dryexposition n </ocr> | dry exposition dry exposition 0.658 0.905
of the glories of the house ...

. in finding <ocr> tlie </ocr> auger | the the 0.998 0.992
holes .

Table 5: Examples of generated OCR corrections - score represents the confidence in the generated text and
precision is calculated across the test set with the corresponding score as a threshold

The training data is derived from our aligned
books from before. For each sentence pair, we
choose the lower-scoring sentence as the sentence
with the OCR error and annotate the tokens as ei-
ther O or 1, where 1 represents an error. We note
that tokenization in RoBERTa further breaks down
the tokens to sub-tokens. In cases where the word
that is marked with an OCR error is broken down
into sub-tokens, we label each sub-token as an er-
TOf.

We perform a train-test split at the book level,
and sample a training set of 2,080,328 sentences,
half of which have no OCR errors and half of which
do.

Figure 1 shows the ROC curve and metrics on the
test set. We find that with a high enough threshold,
we can opt for a high precision with relatively few
mistakes. If the goal is to improve the quality of a
book, we prefer to optimize precision over recall as
it is more important to be confident in the changes
one makes as opposed to trying to catch all of the
errors in a book. Empirically, we found a threshold
of 0.95 to provide a good balance between priori-
tizing precision while finding a non-trivial number
of errors.

4.2 Correcting OCR Errors

For OCR correction, we now assume we have the
output of our detection model, and we now want to
generate what the correct phrase should be. We
model this as a sequence-to-sequence problem,
where the input is a sentence containing an OCR er-
ror and the output is what the corrected form should
be. To do this, we train a base-T5 seq2seq model
(Raffel et al., 2019) with a language modeling head
for conditional generation, for 3 epochs.

We use special <OCR> and </OCR> tags to de-
note the start and end of the OCR error location
within a sentence respectively. For generation, we
use greedy search decoding to generate the most
likely sequence of tokens.

We train this model over the same dataset as
OCR detection. We note that our training is per-
formed only on text with errors, annotated with the
special <OCR> tokens. We also score the generated
text from a O to 1 scale. To do this, we simply take
the minimum probability across the sequence of
generated tokens.

Analysis. Table 5 shows examples of generated
OCR predictions along with their score. We now
consider thresholds above which we accept the gen-
erated text. The precision is calculated across the
entire test set with the corresponding score in its
row as a threshold. Note that precision increases
with higher thresholds. Empirically, we choose a
threshold of 0.95.

One key point to note is that traditionally, many
OCR correction models have been character-based,
but with recent advances in transfer learning, we
find that recent token-based models have significant
advantages in terms of memory as well as perfor-
mance. With access to more context, token-based
models have the advantage that they can make sen-
sible predictions that work as synonyms even if
the edit distance from the original text may be far.
This may not be completely desirable in certain
situations where the original words used need to be
preserved (e.g. analyzing an author’s vocabulary),
but in many cases, this may actually be beneficial
for NLP analysis/downstream tasks. Quantifying
the improvement on several downstream tasks will
be an interesting extension to consider. We do note
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that when the model suggests replacements that are
semantically similar (e.g. “seek” to “find”), but not
structurally (e.g. “tlie” to “the”), then it tends to
have lower confidence scores.

Threshold=0.95

1200 5 22 Errors Corrected
=1 Errors Introduced

1000

800

600

Number of Books

400

200

Number of Errors

Threshold=0.95

=== above=611,below=5628 Rl
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10t . i
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v T st e —
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10° 44 T e s e . ; .
100 10t 107 10°
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Figure 2: The top figure shows a histogram for the num-
ber of errors corrected/introduced. The red bars show
how many errors we introduce and the blue bars show
how many we correct. The third dark color represents
an overlap of the red and blue bars. The bottom fig-
ure shows a scatter plot, where each point represents
a book. The red line is the identity; thus, points below
show books with more fixes than introduced errors, and
points above show books with more errors than fixes.

Figure 2 shows the results of OCR correction
on our golden test set. In general, we show that
we introduce far fewer errors in many books (red
bars tend to be more clustered towards the y-axis)
compared to how many we correct (blue bars are
spread towards the right, indicating that we are
correcting many errors for many books). We find
that on average, we correct more than six times
as many errors as we introduce — about 61.3 OCR
error instances corrected compared to an average
9.6 error instances we introduce. We remark that
this is a pessimistic metric as we are only rewarding
ourselves for an exact match to our silver-standard
“ground truth” based on our ranked sentence pairs.
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Figure 3: Publication year of books versus quality

5 Analysis of Scanning Quality

Quality by Location. The HathiTrust library is
a collection of books from multiple sources, mostly
composed of universities. We explore whether
there are differences in the quality of books depend-
ing on location. From Section 1, Table 2 shows the
quality of books on a subset of books from differ-
ent libraries. We define the quality of a book to be
the percentage of sentences out of the total that do
not contain any OCR error. From a presentation on
HathiTrust Data in Detail?, we find that some of
the books were digitized by Google, others were
digitized by the Internet Archive, and few were
digitized locally. Overall, we find that the qual-
ity of books digitized by Google were of higher
quality than the Internet Archive. The exception is
Harvard, but this is due to the fact that their books,
on average, were published much earlier than the
rest of the corpus, and consequently, are of lower
quality.

Quality by Publication Year. We also look at
the quality of scans by publication year. Figure 3
shows this relation. In general, we see that quality
has improved over the years with many books being
of high quality in the early 1900s. Prior to that
point, the quality of books was spread out more
uniformly.

Top Character Replacements. Finally, we look
at common substitutions for characters. Figure 6

https://www.hathitrust.org/documents/
HTRC-UnCamp2012-York-201211.pdf
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Char | 1 2 3 |Char | 1 2 3
a the “ an n - ’
b by be s 0 of 7 to
c ’ “ * P -

d - a , q a o
e - he , r 7?7 - s
f ? 1 ! S - ,
g - , ; t 7 - !
h he a it u “ a up
i 1 ? 1 v . «
i | w | -
k it a - X "1 X
1 ! I 1 y - , by
m in my -— z a ?

Table 6: Top replacements for each lower case charac-
ter - darker colors represent higher frequency of occur-
rence

show the top 3 replacements for each character.
Each cell is color-coded by a normalized frequency
across all substitutions. We see that some of the
most common OCR errors are ‘j° with *;” and ‘I’
with ‘I’

6 Conclusion

In this paper, we demonstrated how to improve the
quality of an important corpus of digitized books,
by correcting transcription errors that generally oc-
cur due to OCR. Our key idea to provide ground
truth was to identify thousands of duplicate books
(titles scanned in different locations and of uncer-
tain quality). We aligned them at the token level to
find where the differences occur, and used modern
language models to determine which book copy is
of higher quality. Additionally, we used this align-
ment as training data to train a model for correcting
OCR errors in singleton books (books without any
duplicates).

We showed that our methods correct over six
times as many errors as it introduces, and also
demonstrate that our errors tend to be semantically
sensible. Through our efforts, we produced a sub-
stantially better version of over 50,000 distinct ti-
tles from the Hathitrust and Guttenberg as a founda-
tion for future NLP research as well as show some
interesting analysis from post-OCR processing.
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