


learn dynamic embeddings for these large-scale dynamic networks

under this typical use case.

Speci�cally, we study the following dynamic embedding problem:

We are given a subset ( = {E1, E2, . . . , E: } and an initial graph GC

with C = 0. Between time C and C + 1, there are edge events of

insertions and/or deletions. The task is to design an algorithm to

learn embeddings for : nodes with time complexity independent

on the number of nodes = per time C where : ≪ =. This problem

setting is both technically challenging and practically important.

For example, in the English Wikipedia graph, one need focus only

on embedding movements of articles related to political leaders,

a tiny portion of whole Wikipedia. Current dynamic embedding

methods [10, 28, 47, 49, 50] are not applicable to this large-scale

problem setting due to the lack of e�ciency. More speci�cally,

current methods have the dependence issue where one must learn all

embedding vectors. This dependence issue leads to per-embedding

update is linear-dependent on =, which is ine�cient when graphs

are large-scale. This obstacle motivates us to develop a new method.

In this paper, we propose a dynamic personalized PageRank

embedding (DynamicPPE) method for learning a subset of node

representations over large-sale dynamic networks. DynamicPPE

is based on an e�ective approach to compute dynamic PPVs [45].

There are two challenges of using Zhang et al. [45] directly: 1) the

quality of dynamic PPVs depend critically on precision parameter

n , which unfortunately is unknown under the dynamic setting; and

2) The update of per-edge event strategy is not suitable for batch

update between graph snapshots. To resolve these two di�culties,

�rst, we adaptively update n so that the estimation error is indepen-

dent of =,<, thus obtaining high quality PPVs. Yet previous work

does not give an estimation error guarantee. We prove that the

time complexity is only dependent on 3̄ . Second, we incorporate

a batch update strategy inspired from [13] to avoid frequent per-

edge update. Therefore, the total run time to keep track of : nodes

for given snapshots is O(:3̄<). Since real-world graphs have the

sparsity property 3̄ ≪ =, it signi�cantly improves the e�ciency

compared with previous methods. Inspired by InstantEmbedding

[30] for static graph, we use hash kernels to project dynamic PPVs

into embedding space. Figure 1 shows an example of successfully

applying DynamicPPE to study the dynamics of social status in the

English Wikipedia graph. To summarize, our contributions are:

(1) We propose a new algorithm DynamicPPE, which is based

on the recent advances of local network embedding on static

graph and a novel computation of dynamic PPVs. DynamicPPE

e�ectively learns PPVs and then projects them into embedding

space using hash kernels.

(2) DynamicPPE adaptively updates the precision parameter n so

that PPVs always have a provable estimation error guarantee.

In our subset problem setting, we prove that the time and space

complexity are all linear to the number of edges< but indepen-

dent on the number of nodes =, thus signi�cantly improve the

e�ciency.

(3) Node classi�cation results demonstrate the e�ectiveness and ef-

�ciency of the proposed. We compile three large-scale datasets

to validate our method. As an application, we showcase that

2Two English Wikipedia articles are accessible at https://en.wikipedia.org/wiki/
Donald_Trump and https://en.wikipedia.org/wiki/Joe_Biden.

learned embeddings can be used to detect the changes of Chi-

nese cities during this ongoing COVID-19 pandemic articles on

a large-scale English Wikipedia.

The rest of this paper is organized as follows: In Section 2, we

give the overview of current dynamic embedding methods. The

problem de�nition and preliminaries are in Section 3. We present

our proposedmethod in Section 4. Experimental results are reported

in Section 5. The discussion and conclusion will be presented in

Section 6. Our code and created datasets are accessible at https:

//github.com/zjlxgxz/DynamicPPE.

2 RELATEDWORK

There are two main categories of works for learning embeddings

from the dynamic graph structure data. The �rst type is focusing

on capturing the evolution of dynamics of graph structure [49].

The second type is focusing on both dynamics of graph structure

and features lie in these graph data [38]. In this paper, we focus

on the �rst type and give the overview of related works. Due to

the large mount of works in this area, some related works may not

be included, one can �nd more related works in a survey [22] and

references therein.

Dynamic latent spacemodels The dynamic embeddingmodels

had been initially explored by using latent space model [18]. The

dynamic latent space model of a network makes an assumption

that each node is associated with an 3-dimensional vector and

distance between two vectors should be small if there is an edge

between these two nodes [32, 33]. Works of these assume that the

distance between two consecutive embeddings should be small. The

proposed dynamic models were applied to di�erent applications

[17, 34]. Their methods are not scalable from the fact that the time

complexity of initial position estimation is at least O(=2) even if

the per-node update is log(=).

Incremental SVD and random walk based methods Zhang

et al. [48] proposed TIMERS that is an incremental SVD-based

method. To prevent the error accumulation, TIMERS properly set

the restart time so that the accumulated error can be reduced.

Nguyen et al. [28] proposed continuous-time dynamic network em-

beddings, namely CTDNE. The key idea of CTDNE is that instead

of using general random walks as DeepWalk [29], it uses temporal

random walks contain a sequence of edges in order. Similarly, the

work of Du et al. [10] was also based on the idea of DeepWalk. These

methods have time complexity dependent on = for per-snapshot

update. Zhou et al. [49] proposed to learn dynamic embeddings by

modeling the triadic closure to capture the dynamics.

Graph neural network methods Trivedi et al. [38] designed a

dynamic node representation model, namely DyRep, as modeling

a latent mediation process where it leverages the changes of node

between the node’s social interactions and its neighborhoods. More

speci�cally, DyRep contains a temporal attention layer to capture

the interactions of neighbors. Zang and Wang [44] proposed a neu-

ral network model to learn embeddings by solving a di�erential

equation with ReLU as its activation function. [24] presents a dy-

namic embedding, a recurrent neural network method, to learn

the interactions between users and items. However, these methods

either need to have features as input or cannot be applied to large-

scale dynamic graph. Kumar et al. [24] proposed an algorithm to



learn the trajectory of the dynamic embedding for temporal inter-

action networks. Since the learning task is di�erent from ours, one

can �nd more details in their paper.

3 NOTATIONS AND PRELIMINARIES

Notations We use [=] to denote a ground set [=] := {0, 1, . . . , =−

1}. The graph snapshot at time C is denoted as GC
(

V
C ,EC

)

. The

degree of a node E is 3 (E)C . In the rest of this paper, the average

degree at time C is 3̄C and the subset of target nodes is ( ⊆ VC . Bold

capitals, e.g. G,] are matrices and bold lower letters are vectors

w, x . More speci�cally, the embedding vector for node E at time

C denoted as wC
E ∈ R

3 and 3 is the embedding dimension. The 8-

th entry of wC
E is FC

E (8) ∈ R. The embedding of node E for all )

snapshots is written as]E = [w
1
E ,w

2
E , . . . ,w

)
E ]
⊤. We use =C and<C

as the number of nodes and edges in GC which we simply use =

and< if time C is clear in the context.

Given the graph snapshot GC and a speci�c node E , the person-

alized PageRank vector (PPV) is an =-dimensional vector 0C
E ∈ R

=

and the corresponding 8-th entry is cCE (8). We use pCE ∈ R
= to stand

for a calculated PPV obtained from a speci�c algorithm. Similarly,

the corresponding 8-th entry is ?CE (8). The teleport probability of the

PageRank is denoted as U . The estimation error of an embedding vec-

tor is the di�erence between true embeddingwC
E and the estimated

embedding ŵC
E is measure by ∥ · ∥1 :=

∑=
8=1

�

�FC
E (8) − F̂

C
E (8)

�

�.

3.1 Dynamic graph model and its embedding

Given any initial graph (could be an empty graph), the correspond-

ing dynamic graphmodel describes how the graph structure evolves

over time. We �rst de�ne the dynamic graph model, which is based

on Kazemi and Goel [22].

De�nition 1 (Simple dynamic graph model [22]). A simple dy-

namic graph model is de�ned as an ordered of snapshots G0,G1,

G2, . . . ,G) where G0 is the initial graph. The di�erence of graph

GC at time C = 1, 2, . . . ,) is Δ�C (ΔVC ,ΔEC ) := �C\�C−1 with

ΔV
C := VC\VC−1 and ΔE

C := EC\EC−1. Equivalently, ΔGC corre-

sponds to a sequence of edge events as the following

ΔGC =
{

4C1, 4
C
2, . . . , 4

C
<′

}

, (1)

where each edge event 4C8 has two types: insertion or deletion, i.e,

4C8 = (D, E, event) where event ∈ {Insert,Delete} 3.

The above model captures evolution of a real-world graph nat-

urally where the structure evolution can be treated as a sequence

of edge events occurred in this graph. To simplify our analysis, we

assume that the graph is undirected. Based on this, we de�ne the

subset dynamic representation problem as the following.

De�nition 2 (Subset dynamic network embedding problem). Given

a dynamic network model
{

G0,G1,G2, . . . ,G)
}

de�ne in De�nition

1 and a subset of target nodes ( = {E1, E2, . . . , E: }, the subset dynamic

network embedding problem is to learn dynamic embeddings of )

snapshots for all : nodes ( where : ≪ =. That is, given any node

E ∈ ( , the goal is to learn embedding matrix for each node E ∈ ( , i.e.

]E := [w
1
E ,w

2
E , . . . ,w

)
E ]
⊤ wherewC

E ∈ R
3 and E ∈ (. (2)

3The node insertion can be treated as inserting a new edge and then delete it and node
deletion is a sequence of deleting its edges.

3.2 Personalized PageRank

Given any node E at time C , the personalized PageRank vector for

graph GC is de�ned as the following

De�nition 3 (Personalized PageRank (PPR)). Given normalized

adjacency matrix]C = J−1C GC where JC is a diagonal matrix with

�C (8, 8) = 3 (8)C and GC is the adjacency matrix, the PageRank vector

0C
B with respect to a source node B is the solution of the following

equation

0C
B = U ∗ 1B + (1 − U)0

C
B]

C , (3)

where 1B is the unit vector with 1B (E) = 1 when E = B , 0 otherwise.

There are several works on computing PPVs for static graph

[1, 2, 5]. The idea is based a local push operation proposed in [2].

Interestingly, Zhang et al. [45] extends this idea and proposes a

novel updating strategy for calculating dynamic PPVs. We use a

modi�ed version of it as presented in Algorithm 1.

Algorithm 1 ForwardPush [45]

1: Input: pB , rB ,G, n, V = 0

2: while ∃D, AB (D) > n3 (D) do

3: Push(D)

4: while ∃D, AB (D) < −n3 (D) do

5: Push(D)

6: return (pB , rB )

7: procedure Push(D)

8: ?B (D) += UAB (D)

9: for E ∈ Nei(D) do

10: AB (E) += (1 − U)AB (D) (1 − V)/3 (D)

11: AB (D) = (1 − U)AB (D)V

Algorithm 1 is a generalization fromAndersen et al. [2] and there

are several variants of forward push [2, 5, 26], which are dependent

on how V is chosen (we assume V = 0). The essential idea of forward

push is that, at each Push step, the frontier nodeD transforms her U

residual probability AB (D) into estimation probability ?B (D) and then

pushes the rest residual to its neighbors. The algorithm repeats this

push operation until all residuals are small enough 4. Methods based

on local push operations have the following invariant property.

Lemma 4 (Invariant property [19]). ForwardPush has the follow-

ing invariant property

cB (D) = ?B (D) +
∑

E∈+

AB (E)cE (D),∀D ∈ V. (4)

The local push algorithm can guarantee that the each entry of

the estimation vector ?B (E) is very close to the true value cB (E).

We state this property as in the following

Lemma 5 ([2, 45]). Given any graph G(V,E) with pB = 0, rB = 1B

and a constant n , the run time for ForwardLocalPush is at most
1−∥rB ∥1

Un and the estimation error of cB (E) for each node E is at most

n , i.e. |?B (E) − cB (E) |/3 (E) | ≤ n

4There are two implementation of forward push depends on how frontier is selected.
One is to use a �rst-in-�rst-out (FIFO) queue [11] to maintain the frontiers while the
other one maintains nodes using a priority queue is used [5] so that the operation cost
is O(1/nU) instead of O(log=/nU) .



The main challenge to directly use forward push algorithm to

obtain high quality PPVs in our setting is that: 1) the quality pB
return by forward push algorithm will critically depend on the

precision parameter n which unfortunately is unknown under our

dynamic problem setting. Furthermore, the original update of per-

edge event strategy proposed in [45] is not suitable for batch update

between graph snapshots. Guo et al. [13] propose to use a batch

strategy, which is more practical in real-world scenario where there

is a sequence of edge events between two consecutive snapshots.

This motivates us to develop a new algorithm for dynamic PPVs

and then use these PPVs to obtain high quality dynamic embedding

vectors.

4 PROPOSED METHOD

To obtain dynamic embedding vectors, the general idea is to obtain

dynamic PPVs and then project these PPVs into embedding space

by using two kernel functions [30, 42]. In this section, we present

our proposed method DynamicPPE where it contains two main

components: 1) an adaptive precision strategy to control the esti-

mation error of PPVs. We then prove that the time complexity of

this dynamic strategy is still independent on =. With this quality

guarantee, learned PPVs will be used as proximity vectors and be

"projected" into lower dimensional space based on ideas of Verse

[39] and InstantEmbedding [30]. We �rst show how can we get high

quality PPVs and then present how use PPVs to obtain dynamic

embeddings. Finally, we give the complexity analysis.

4.1 Dynamic graph embedding for single batch

For each batch update Δ�C , the key idea is to dynamically maintain

PPVs where the algorithm updates the estimate from pC−1E to pCE and

its residuals from rC−1E to rCE . Our method is inspired from Guo et al.

[13] where they proposed to update a personalized contribution

vector by using the local reverse push 5. The proposed dynamic

single node embedding, DynamicSNE is illustrated in Algorithm 2.

It takes an update batch ΔGC (a sequence of edge events), a target

node B with a precision nC , estimation vector of B and residual vector

as inputs. It then obtains an updated embedding vector of B by the

following three steps: 1) It �rst updates the estimate vectorpCB and r
C
B

from Line 2 to Line 9; 2) It then calls the forward local push method

to obtain the updated estimations, pCB ; 3) We then use the hash

kernel projection step to get an updated embedding. This projection

step is from InstantEmbedding where two universal hash functions

are de�ned as ℎ3 : N→ [3] and ℎsgn : N→ {±1} 6. Then the hash

kernel based on these two hash functions is de�ned as �ℎsgn,ℎ3 (x) :

R
= → R

3 where each entity 8 is
∑

9 ∈ℎ−1
3
(8) G 9ℎsgn ( 9). Di�erent

from random projection used in RandNE [47] and FastRP [6], hash

functions has O(1) memory cost while random projection based

method has O(3=) if the Gaussian matrix is used. Furthermore,

hash kernel keeps unbiased estimator for the inner product [42].

5One should notice that, for undirected graph, PPVs can be calculated by using the
invariant property from the contribution vectors. However, the invariant property
does not hold for directed graph. It means that one cannot use reverse local push to get
a personalized PageRank vector directly. In this sense, using forward push algorithm
is more general for our problem setting.
6For example, in our implementation, we use MurmurHash https://github.com/
aappleby/smhasher

In the rest of this section, we show that the time complexity

is O(<3̄/n) in average and the estimation error of learned PPVs

measure by ∥ · ∥1 can also be bounded. Our proof is based on the

following lemma which follows from Guo et al. [13], Zhang et al.

[45].

Lemma 6. Given current graph GC and an update batch ΔGC , the

total run time of the dynamic single node embedding, DynamicSNE

for obtaining embeddingwC
B is bounded by the following

)C ≤
∥rC−1B ∥1 − ∥r

C
B ∥1

UnC
+

∑

D∈ΔGC

2 − U

U

?C−1B (D)

3 (D)
(5)

Proof. We �rst make an assumption that there is only one edge

update (D, E, event) in ΔGC , then based Lemma 14 of [46], the run

time of per-edge update is at most:

∥rC−1B ∥1 − ∥r
C−1
B ∥1

UnC
+
ΔC (B)

UnC
, (6)

where ΔC (B) =
2−U
U

?C−1B (D)
3 (D)

. Suppose there are : edge events in

ΔGC . We still obtain a similar bound, by the fact that forward push

algorithm has monotonicity property: the entries of estimates ?CB (E)

only increase when it pushes positive residuals (Line 2 and 3 of Al-

gorithm 1). Similarly, estimates ?CB (E) only decrease when it pushes

negative residuals (Line 4 and 5 of Algorithm 1). In other words, the

amount of work for per-edge update is not less than the amount of

work for per-batch update. Similar idea is also used in [13]. □

Algorithm 2 DynamicSNE(GC ,ΔGC , B,pC−1B , rC−1B , nC , U)

1: Input: graph GC ,ΔGC , target node B , precision n , teleport U

2: for (D, E, op) ∈ Δ�C do

3: if op == Insert(D, E) then

4: Δ? = ?C−1B (D)/(3 (D)C − 1)

5: if op == Delete(D, E) then

6: Δ? = −?C−1B (D)/(3 (D)C + 1)

7: ?C−1B (D) ← ?C−1B (D) + Δ?
8: AC−1B (D) ← AC−1B (D) − Δ?/U

9: AC−1B (E) ← AC−1B (E) + Δ?/U − Δ?

10: pCB = ForwardPush(pC−1B , rC−1B ,GC , nC , U)

11: wC
B = 0

12: for 8 ∈ {E : ?CB (E) ≠ 0, E ∈ VC } do

13: FC
B (ℎ3 (8)) += ℎsgn (8)max

(

log
(

?CB (8)=
C
)

, 0
)

Theorem 7. Given any graph snapshot GC and an update batch Δ�C

where there are<C edge events and suppose the precision parameter

is nC and teleport probability is U , DynamicSNE runs in O(<C/U
2 +

<C 3̄
C/(nU2) +<C/(nU)) with n

C
= n/<C

Proof. Based lemma 6, the proof directly follows from Theorem

12 of [46]. □

The above theorem has an important di�erence from the previ-

ous one [45]. We require that the precision parameter will be small

enough so that ∥pCB − 0
C
B ∥1 can be bound ( will be discussed later).

As we did the experiments in Figure 2, the �xed epsilon will make

the embedding vector bad. We propose to use a dynamic precision





5 EXPERIMENTS

To demonstrate the e�ectiveness and e�ciency of DynamicPPE,

in this section, we �rst conduct experiments on several small and

large scale real-world dynamic graphs on the task of node classi�-

cation, followed by a case study about changes of Chinese cities in

Wikipedia graph during the COVID-19 pandemic.

5.1 Datasets

We compile the following three real-world dynamic graphs, more

details can be found in Appendix C.

Enwiki20 English Wikipedia Network We collect the internal

Wikipedia Links (WikiLinks) of English Wikipedia from the begin-

ning of Wikipedia, January 11th, 2001, to December 31, 2020 9. The

internal links are extracted using a regular expression proposed in

[8]. During the entire period, we collection 6,151,779 valid articles10.

We generated the WikiLink graphs only containing edge insertion

events. We keep all the edges existing before Dec. 31 2020, and sort

the edge insertion order by the creation time. There are 6,216,199

nodes and 177,862,656 edges during the entire period. Each node

either has one label (Food, Person, Place,...) or no label.

Patent (US Patent Graph) The citation network of US patent[14]

contains 2,738,011 nodes with 13,960,811 citations range from year

1963 to 1999. For any two patents D and E , there is an edge (D, E)

if the patent D cites patent E . Each patent belongs to six di�erent

types of patent categories. We extract a small weakly-connected

component of 46,753 nodes and 425,732 edges with timestamp,

called Patent-small.

Coauthor We extracted the co-authorship network from the

Microsoft Academic Graph [35] dumped on September 21, 2019. We

collect the papers with less than six coauthors, keeping those who

has more than 10 publications, then build undirected edges between

each coauthor with a timestamp of the publication date. In addition,

we gather temporal label (e.g.: Computer Science, Art, ... ) of authors

based on their publication’s �eld of study. Speci�cally we assign

the label of an author to be the �eld of study where s/he published

the most up to that date. The original graph contains 4,894,639

authors and 26,894,397 edges ranging from year 1800 to 2019. We

also sampled a small connected component containing 49,767 nodes

and 755,446 edges with timestamp, called Coauthor-small.

Academic The co-authorship network is from the academic net-

work [36, 49] where it contains 51,060 nodes and 794,552 edges.

The nodes are generated from 1980 to 2015. According to the node

classi�cation setting in Zhou et al. [49], each node has either one

binary label or no label.

5.2 Node Classi�cation Task

Experimental settings We evaluate embedding quality on bi-

nary classi�cation for Academic graph (as same as in [49]), while

using multi-class classi�cation for other tasks. We use balanced

logistic regression with ℓ2 penalty in on-vs-rest setting, and report

the Macro-F1 and Macro-AUC (ROC) from 5 repeated trials with

10% training ratio on the labeled nodes in each snapshot, excluding

dangling nodes. Between each snapshot, we insert new edges and

keep the previous edges.

9We collect the data from the dump https://dumps.wikimedia.org/enwiki/20210101/
10A valid Wikipedia article must be in the 0 namespace

We conduct the experiments on the aforementioned small and

large scale graph. In small scale graphs, we calculate the embed-

dings of all nodes and compare our proposed method (DynPPE.)

against other state-of-the-art models from three categories11. 1)

Random walk based static graph embeddings (Deepwalk12 [29],

Node2Vec13 [12]); 2) Random Projection-based embedding method

which supports online update: RandNE14 [47]; 3) Dynamic graph

embedding method: DynamicTriad (DynTri.) 15 [49] which mod-

els the dynamics of the graph and optimized on link prediction.

Table 1: Node classi�cation task on the Academic, Patent

Small, Coauthor Small graph on the �nal snapshot

Academic Patent Small Coauthor Small

F1 AUC F1 AUC F1 AUC

3 = 128

Static

method

Node2Vec 0.833 0.975 0.648 0.917 0.477 0.955

Deepwalk 0.834 0.975 0.650 0.919 0.476 0.950

Dynamic

method

DynTri. 0.817 0.969 0.560 0.866 0.435 0.943

RandNE 0.587 0.867 0.428 0.756 0.337 0.830

DynPPE. 0.808 0.962 0.630 0.911 0.448 0.951

3 = 512

Static

method

Node2Vec 0.841 0.975 0.677 0.931 0.486 0.955

Deepwalk 0.842 0.975 0.680 0.931 0.495 0.955

Dynamic

method

DynTri. 0.811 0.965 0.659 0.915 0.492 0.952

RandNE 0.722 0.942 0.560 0.858 0.493 0.895

DynPPE. 0.842 0.973 0.682 0.934 0.509 0.958

Table 2: Total CPU time for small graphs (in second).

RandNE-I is with orthogonal projection, the performance

is slightly better, but the running time is signi�cantly in-

creased. RandNE-II is without orthogonal projection.

Academic Patent Small Coauthor Small

Deepwalk16 498211.75 181865.56 211684.86

Node2vec 4584618.79 2031090.75 1660984.42

DynTri. 247237.55 117993.36 108279.4

RandNE-I 12732.64 9637.15 8436.79

RandNE-II 1583.08 9208.03 177.89

DynPPE. 18419.10 3651.59 21323.74

Table 1 shows the classi�cation results on the �nal snapshot.

When we restrict the dimension to be 128, we observe that static

methods outperform all dynamic methods. However, the static

methods independently model each snapshot and the running time

grows with number of snapshots, regardless of the number of edge

changes. In addition, our proposed method (DynPPE.) outperforms

other dynamic baselines, except that in the academic graph, where

DynTri. is slightly better. However, their CPU time is 13 times

11Appendix D shows the hyper-parameter settings of baseline methods
12https://pypi.org/project/deepwalk/
13https://github.com/aditya-grover/node2vec
14https://github.com/ZW-ZHANG/RandNE/tree/master/Python
15https://github.com/luckiezhou/DynamicTriad
16We ran static graph embedding methods over a set of sampled snapshots and estimate
the total CPU time for all snapshots.
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A PROOF OF LEMMAS

To prove Lemma 4, we �rst introduce the property of uniqueness

of PPR 0B for any B .

Proposition 10 (Uniqueness of PPR [3]). For any starting vector

1B , and any constant U ∈ (0, 1], there is a unique vector 0B satisfying

(3).

Proof. Recall the PPR equation

0B = U1B + (1 − U)J
−1
G0B .

We can rewrite it as (O −(1−U)J−1G)0B = U1B . Notice the fact that

matrix O − (1 − U)J−1G is strictly diagonally dominant matrix. To

see this, for each 8 ∈ V, we have 1−(1−U)
∑

9≠8 |1/3 (8) | = U > 0. By

[25], strictly diagonally dominant matrix is always invertible. □

Proposition 11 (Symmetry property [27]). Given any undirected

graph G, for any U ∈ (0, 1) and for any node pair (D, E), we have

3 (D)cD (E) = 3 (E)cE (D). (8)

Proof of Lemma 7. Assume there are) iterations. For each for-

ward push operation C = 1, 2, . . .) , we assume the frontier node

is DC , the run time of one push operation is then 3 (DC ). For total

) push operations, the total run time is
∑)
8=1 3 (D8 ). Notice that

during each push operation, the amount of ∥rC−1B ∥1 is reduced at

least nU3 (DC ), then we always have the following inequality

nU3 (DC ) < ∥r
C−1
B ∥1 − ∥r

C
B ∥1

Apply the above inequality from C = 1, 2, to ) , we will have

nU

)
∑

C=1

3 (DC ) ≤ ∥r
0
B ∥ − ∥r

)
B ∥1 = 1 − ∥rB ∥1, (9)

where rB is the �nal residual vector. The total time is then O(1/nU).

To show the estimation error, we follow the idea of [26]. Notice

that, the forward local push algorithm always has the invariant

property by Lemma 4, that is

cB (D) = ?B (D) +
∑

E∈+

AB (E)cE (D),∀D ∈ V. (10)

By proposition 11, we have

cB (D) = ?B (D) +
∑

E∈+

AB (E)cE (D),∀D ∈ V

= ?B (D) +
∑

E∈+

AB (E)
3 (D)

3 (E)
cD (E),∀D ∈ V

≤ ?B (D) +
∑

E∈+

n3 (D)cD (E),∀D ∈ V = ?B (D) + n3 (D),

where the �rst inequality by the fact that AB (E) ≤ n3 (E) and the

last equality is due to ∥cD ∥1 = 1. □

Proposition 12 ([45]). Let G = (+ , �) be undirected and let C be a

vertex of + , then
∑

G ∈+
cG (C )
3 (C )

≤ 1.

Proof. By using Proposition 11, we have
∑

G ∈+

cG (C)

3 (C)
=

∑

G ∈+

cC (G)

3 (G)
≤

∑

G ∈+

cC (G) = 1.

□

B HEURISTIC METHOD: COMMUTE

Weupdate the embeddings by their pairwise relationship (resistance

distance). The commute distance (i.e. resistance distance) �DE =

�DE + �ED , where rescaled hitting time �DE converges to 1/3 (E).

As proved in [41], when the number of nodes in the graph is large

enough, we can show that the commute distance tends to 1/3E +

1/3D .

Algorithm 4 Commute

1: Input: An graph G0 (V0, E0) and embedding]0, dimension 3 .

2: Output:])

3: for 4C (D, E, C) ∈
{

41 (D1, E1, C1), . . . , 4
) (D) , E) , C) )

}

do

4: Add 4C to GC

5: If D ∉ + C−1 then

6: generatewC
D = N(0, 0.1 · O3 ) orU(−0.5, 0.5)/3

7: If E ∉ + C−1 then

8: generatewC
E = N(0, 0.1 · O3 ) orU(−0.5, 0.5)/3

9: w
C
D =

3 (D)
3 (D)+1

w
C−1
D + 1

3 (D)
w
C
E

10: w
C
E =

3 (E)
3 (E)+1

w
C−1
E + 1

3 (E)
w
C
D

11: Return])

One can treat the Commute method, i.e. Algorithm 4, as the �rst-

order approximation of RandNE [47]. The embedding generated by

RandNE is given as the following

[ =

(

U0O + U1G + U2G
2 + . . . + U@G

@
)

X, (11)

where G is the normalized adjacency matrix and O is the identity

matrix. At any time C , the dynamic embedding of node 8 of Commute

is given by

w
C
8 =

3 (D)

3 (D) + 1
w
C−1
8 +

1

3 (D)
w
C
E

=
1

3 (D) + 1
w
0
8 +

1

|N (8) |

∑

9 ∈N(8)

1

3 (D)
w
C
E

C DETAILS OF DATA PREPROCESSING

In this section, we describe the preprocessing steps of three datasets.

Enwiki20: In Enwiki20 graph, the edge stream is divided into

6 snapshots, containing edges before 2005, 2005-2008, ..., 2017-

2020. The sampled nodes in the �rst snapshot fall into 5 categories.

Patent: In full patent graph, we divide edge stream into 4 snap-

shots, containing patents citation links before 1985, 1985-1990,...,

1995-1999. In node classi�cation tasks, we sampled 3,000 nodes

in the �rst snapshot, which fall into 6 categories. In patent small

graph, we divide into 13 snapshots with a 2-year window. All the

nodes in each snapshot fall into 6 categories.Coauthor graph: In

full Coauthor graph, we divide edge stream into 7 snapshots (before

1990, 1990-1995, ..., 2015-2019). The sampled nodes in the �rst snap-

shot fall into 9 categories. In Coauthor small graph, the edge stream

is divided into 9 snapshots (before 1978, 1978-1983,..., 2013-2017).

All the nodes in each snapshot have 14 labels in common.
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