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Abstract—As deep-learning based image and video manipula-
tion technology advances, the future of truth and information
looks bleak. In particular, Deepfakes, wherein a person’s face
can be transferred onto the face of someone else, pose a serious
threat for potential spread of convincing misinformation that is
drastic and ubiquitous enough to have catastrophic real-world
consequences. To prevent this, an effective detection tool for
manipulated media is needed. However, the detector cannot just
be good, it has to evolve with the technology to keep pace with
or even outpace the enemy. At the same time, it must defend
against different attack types to which deep learning systems are
vulnerable. To that end, in this paper, we review various methods
of both attack and defense on Al systems, as well as modes of
evolution for such a system. Then, we put forward a potential
system that combines the latest technologies in multiple areas as
well as several novel ideas to create a detection algorithm that
is robust against many attacks and can learn over time with
unprecedented effectiveness and efficiency.

1. INTRODUCTION

Historically, recorded media has been regarded as a firm,
reliable source of information. Whatever the content may be,
one could generally trust that the things said in the audio, or
the actions performed in the video, truly did happen. These
sources are so trusted they are used to keep records and even
as evidence in criminal proceedings. In recent years, photo
and audio manipulation has grown more advanced, and can
even go completely unnoticed by humans who neglect to look
very hard. However, such manipulations can still typically be
detected by algorithms. The advent of artificial intelligence
puts even this level of security under threat. Al-based media
manipulation has the potential for unparalleled levels of stealth
and subtlety. This danger grows ever stronger as Deep Neural
Networks (DNNs), Generative Adversarial Networks (DNNs),
and basic computing power grow in size, complexity, and
ubiquity.

The possibility for anyone with sufficient hardware and time
to create extremely convincing fake videos of nearly anybody
could be considered a threat even to core principles of the
modern world, like democracy and security. It is no secret
that cleverly manufactured, inflammatory misinformation can
spread like wildfire on the internet, affecting the opinions of
millions in mere days, while the truth of the matter lags behind,
spreading slower because it is less interesting, and affecting
still fewer minds simply because the misinformation reached
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that mind first. This is undeniably already the case with
flimsy pieces of evidence such as out-of-context or completely
fabricated quotes. If even video, a format widely thought to be
hard evidence, is corrupted by malintent, it calls into question
the safety of everyone.

Deepfake, perhaps the most well-known Al-based video
manipulation tool, can be used to swap a victim’s face into
arbitrary scenes. This could be exploited to, among countless
other things, create fake news regarding political figures,
cause chaos in the financial market, incite public discontent
and violence, or even inflame political and religious tensions
between nations. Anybody could be made to say anything.

In such a future, one would hope that it is at least still pos-
sible to detect even the most advanced Deepfakes. However,
this is insufficient to assuage the aforementioned concerns
if the capability only lies with those who have extensive
computing resources. It is necessary in such a world that
the public themselves have easy access to software that can
detect all sorts manipulated media. Even still, being an Al-
based technology, Deepfake algorithms can improve in quality
automatically to fool existing detectors. As such, it is also
necessary that the detection technology is able to not only
keep up with this rapid evolution with its own Al technology
while maintaining its defenses against older algorithms, but
also outpace the attackers, getting ahead of existing Deepfake
algorithms with predictive learning.

The detectors must also be robust against common attacks
on Al systems. Attacks on machine learning systems can be
broadly classified into three categories: (1) adversarial input
attacks; (2) data poisoning and backdoor attacks; and (3)
model stealing attacks. In a model stealing attack, an attacker
seeks to extract some or all of a trained model to use for
themselves. This sort of threat is hardly germane to the topic
at hand, though, since a Deepfake detection algorithm being
in the hands of as many people as possible is a public good.
The challenges in the area of defense against attackers for
Deepfake detection algorithms largely relate to the first two
types.

All of the aforementioned open problems need to be pon-
dered to preserve the integrity of images and videos shared
online.

The rest of the paper is organized as follows. Section
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Fig. 1: A demonstration of how a noise mask can be subtly applied to an image with little visible change, but massively alter
it in the eyes of a computer. Photo by Artistic Frames on Unsplash.

II discusses the existing adversarial input attacks and how
Deepfake detectors may defend against such attacks. Section
IIT discusses the data poisoning attacks and some possible
defense mechanisms that Deepfake detectors could adopt.
Section IV presents the challenges faced by Deepfake detectors
to achieve self-learning and self-evolving down the road.
Section V introduces an envisioned comprehensive Deepfake
detection system that integrates the desired capabilities in the
previous sections. Finally, Section VI concludes the paper.

II. DEEPFAKE DETECTORS FACE
ADVERSARIAL INPUT ATTACKS

Adversarial Inputs would logically be the most common
method of attack on a DeepFake detection system, since an
attacker’s goal is to camouflage a fake sample as legitimate
and this is the most direct way to do so. Because such a
detector would rely on a large dataset of existing DeepFakes,
it would be vulnerable to perturbed fake images that mask the
signature features of a certain type of DeepFake [1]. As noted
by Szegedy et al. [2] in their initial study of such attacks, a
subtle, cleverly designed noise mask injected into the image
can hide these features from the detector while remaining
nearly unnoticeable to the human eye. This presents the most
immediate threat to the system, so defenses against this type
of attack are especially needed.

A. Background about Adversarial Input Attacks

Adversarial inputs are produced through the process of
adversarial training. The earliest such method was realized
by Goodfellow et al. [3] and dubbed the Fast Gradient Sign
Method (FGSM). This method exploits the then newly discov-
ered linearity of deep learning models in higher dimensional
space, which makes them vulnerable to simple perturbations.
Later, Kurakin et al. [4] analyzed FGSM on the ImageNet
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dataset and found that it was successful at changing the
classifier’s top pick 63-69% of the time. In the few years
since then, numerous other techniques of creating adversarial
samples have emerged.

While the basic one-step method creates perturbations by
taking a single large step down in the direction with the
steepest gradient, a reasonable adjustment would be to take
several smaller steps, adjusting the direction between each
one, to ensure the perturbation continues to follow the steepest
gradient descent direction. This Basic Iterative Method (BIM)
is notably more effective but also more costly in terms of
computation [5].

In some cases, perturbation of even a single pixel, which
could be dismissed as a small image error by the common
consumer, can be sufficient to cause misclassification [6].
Further, the method to create these adversarial samples utilizes
differential evolution, meaning it does not rely on the target
model’s parameters to function. This method, fittingly dubbed
the One Pixel Attack achieves up to 70% success at inducing
misclassification.

Rather than attempting to modify a minimal number of
pixels (lp), one can also try to minimize the total difference
(l), total square difference (l3), or maximum single pixel
difference (I.) between the original and perturbed image. By
restricting the (lp), (I2), and (l,) norms, Carlini and Wagner
[7] created another method of generating perturbations that
aims to make the changes as imperceptible as possible while
still accomplishing the desired effect on classification.

Yet another algorithm, known as DeepFool [8], expands on
the work of Carlini and Wagner and is able to perturbations
that are notably smaller than those produced by FGSM, while
maintaining a similarly high fooling rate. It is even possible
to produce perturbations that are effective regardless of the
image they are applied to, as is the case with the Universal
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Perturbations for Steering to Exact Targets (UPSET) algorithm
[9]. These perturbations are a universal and generic way to
steer any image toward a target class, so one need not even
waste the time considering the content of the input image when
producing adversarial samples. UPSET is able to produce a
perturbation for each possible class, and when applied to an
image not belonging to that class, the perturbation will reliably
cause it to be misclassified as that target class regardless of
image content or model.

B. Defending Against Adversarial Input Attacks

These types of attacks present the most immediate threat to
the detection system, so defending against this sort of attack is
critical. Since methods like FGSM rely on knowledge of the
model’s gradient to construct their perturbations, it could be
effective to obscure this knowledge. In particular, one could
make a model that is non-differentiable, such as a decision
tree or nearest neighbor classifier. Unfortunately, this defense
is rather simple to thwart, as the attacker can train a surrogate
model that does have a gradient based the decisions of the
target model, then craft their perturbations toward the surrogate
to form a reasonably effective attack on the target.
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Fig. 2: The Training Process for an adversarial perturbation
generator against a target model with hidden or nonexistent
gradient

One of the most rudimentary defenses is to apply a generic
transformation to all input samples that aims to mitigate poten-
tial adversarial perturbations before running them through the
detector. This transformation could be compression, random-
ized resizing, or padding, to name a few [13]. In fact, many
social media and video hosting sites already employ these sorts
of transformations anyway, just to save space. All of these
have been shown to be effective at reversing the accuracy drop
from the perturbations to some extent, but are insufficient to
provide robust protection. For example, Dziugate et al. [14]
found that JPG compression, while effective at reducing the
adversarial nature of small perturbations, quickly became less
effective as the perturbations grew larger. It was also found that
JPG compression has the very low impact on clean accuracy
compared to other input transformations.
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(a) Original Image

(b) JPEG Compressed

Fig. 3: A comparison between an original and a JPEG com-
pressed image. Because the two are nearly identical, it follows
that JPEG compression has little impact on clean accuracy, and
this is indeed what the data supports [13].

Total Variance Minimization (TVM) is another type of
transform that can help mitigate perturbations. A compressed
sensing approach combining pixel dropout with TVM works
by randomly selecting a small set of pixels, then reconstructing
a simpler image that is consistent with those pixels. Because
perturbations tend to be small and localized, the reconstructed
image is usually free of them. The resultant image also tends to
be blurry/blocky, similar to compression. Other than that, this
method is also reasonably effective for small and/or localized
perturbations. TVM has the most impact on clean accuracy of
the input transformations discussed here.

Image Quilting is one of the more complicated transfor-
mations [16]. It utilizes a large database of image patches as
a reference. When an image is given to the image quilting
algorithm, it is first split into a predefined grid. Then, for
each grid point, the algorithm finds a patch in the database
that closely matches that part of the image, usually by finding
the K nearest neighbors and selecting one at random. Because
the patch database is under the control of the defending party,
it is free of any adversarial perturbations. This method has
proven the most effective of the three in a black-box setting
with relatively large perturbations. Image Quilting has more
impact on clean accuracy than JPG compression, but less than
TVM [13].

While input transformations are a reasonably effective first
line of defense, as they force the adversarial perturbations into
a more visible range, they are not solutions on their own for
two reasons. For one, they are not capable of actually detecting
the perturbations, just blindly attempting to remove them.
Second, there is a massive trade-off between their effectiveness
as a defense and the model’s clean accuracy, since these
methods necessarily alter every image, even unperturbed ones.
It seems that more complex and adaptive strategies are needed.
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Fig. 4: A diagram depicting the process of defensive distilla-
tion wherein a classifier is trained from the softmax probability
outputs of another classifier.

Rather than modifying the input data in an attempt to
sterilize it, the next logical step would be to fortify an existing
model. From this arises the idea of defensive distillation [17].
Suppose an existing model classifies a dataset X into target
classes Y. The model’s final layer is a softmax which produces
a probability spread over Y based on the input’s predicted
labels. Now, suppose one trains a new model on dataset X,
but rather than using the target class labels of the dataset -
in this case, legitimate or illegitimate - one instead uses the
probability spread output by the original model to train the
new one. These new labels encode more information about
X’s membership to each target class compared to the simple
one-hot labels with which the original model was trained. The
motivation behind all of this is to smooth the model, converting
hard binary class labels to soft targets. Afterward, one can
replace the original model with the smoothed one, which
has the added benefit of possibly throwing off adversarial
perturbations that were trained for the original model [18,
19]. Unfortunately, modern adversarial perturbation creation
strategies produce attacks that are highly transferable, meaning
the same perturbation can fool several different models. The
smoothed models produced by defensive distillation are simply
too similar to the original to evade modern adversarial attacks
[20]. This sort of universality is the next hurdle to overcome.

Even two separate models with different architectures and
trained on entirely disjoint datasets can often be fooled by the
exact same adversarial perturbation. This is the cause of failure
for a large number of potential solutions, so the question
becomes how to diminish transferability. Hosseini et al. [21]
demonstrate the effectiveness of a so-called NULL Labeling
Method. The idea here is to allow the classifier the freedom
the label an input as NULL rather than classifying it normally.
The model is then trained with both clean samples, labeled
as they normally would be, as well as adversarial samples,
labeled as NULL. However, clean data can also be perturbed,
usually through digital compression. If the algorithm assigns
all perturbed data to NULL, it will severely impact its clean
accuracy. To alleviate this, the algorithm is designed in such a
way that the NULL probability assigned to each input repre-
sents how strongly the classifier believes it to be adversarial.
NULL labelling is among the most effective known strategies
for defending against adversarial inputs.
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Hussain et al. [27] have shown that state-of-the-art Deepfake
detectors are vulnerable to adversarial attacks in the case
where the attacker has full or even partial knowledge of the
detector. However, little research has been conducted into the
effectiveness and practicality of the various methods of defense
against said attacks for this specific task. Chen et al. [28]
proposed an interesting solution called MagDR (mask-guided
detection and reconstruction) which involves iterating inputs
through a process of detecting perturbations, removing them,
and then reconstructing the image. MagDR shows promising
results against modern adversarial inputs. However, the authors
also admit that their method could become irrelevant quickly,
with the increasing ability of attackers to generate more
’natural’ perturbations.

III. DEEPFAKE DETECTORS FACE
DATA POISONING AND BACKDOOR ATTACKS

In general, data poisoning attacks aim to contaminate the
model’s training dataset with samples designed to impact the
trained model’s accuracy. Within the subfield of data poisoning
attacks, one can further classify them into targeted and non-
targeted varieties.

The non-targeted attacks aim to decrease the overall ac-
curacy of the model by causing general confusion during
training. These are relatively simple to detect because the
overall accuracy drop can be spotted and its cause pinpointed
and discarded.

Targeted attacks, however, are far stealthier. They aim to
affect the classification of just a specific type of sample, in
this case, to camouflage a specific type of Deepfake into being
perceived as genuine. To be specific, one could accomplish this
by flooding the training data with genuine images that have
been edited to include a certain human-imperceptible feature
that the algorithm can easily identify and associate with the
real images, then use the same feature in a Deepfake genera-
tion algorithm to sneak falsified images through the detector.
Such attacks are far harder to detect because they ideally only
lower detection accuracy toward the attacker’s manufactured
images and nothing else, making them virtually undetectable
in advance of the attack. As it stands, no generally applicable
defense against all data poisoning attacks has been developed.

Backdoor attacks work on a similar principle to data
poisoning attacks in that they aim to modify the model’s
behavior, but the exact way they do so is slightly different.
While data poisoning attacks seek to lower a model’s overall
accuracy or its accuracy to a specific type of input, backdoor
attacks don’t aim to affect the model’s clean accuracy at
all. In fact, it is in their best interest to do so as little as
possible to remain undetectable. Instead, these sorts of attacks
aim to inject a spurious association between a certain label
and a symbol/perturbation (trigger) that can be placed into
a sample. Ideally, the model’s clean accuracy is unaffected,
but any samples with the trigger will be misidentified as
the chosen label. Fortunately, it has been shown that the
computational time needed to defend against backdoor attacks
largely depends on the number of labels the model can choose.
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Attackers against a theoretical Deepfake detector would really
only have incentive to try to pass their samples as legitimate,
meaning that is the only class that needs such robust defenses,
so defending against backdoor attacks will present little issue.

IV. DEEPFAKE DETECTORS FACE GROWING PAINS

Identifying the optimal mechanism of evolution for a long
running detection algorithm is critically important to its long
term effectiveness. For reference, the AV-TEST institute esti-
mates that the number of new malicious programs identified
daily could be as high as 350,000 [19]. If even a tiny fraction
of those contribute to production of fake visual content, that is
a daunting rate of change to tackle. Since Deepfake technology
is capable of evolving and changing over time, so too should
a good detector be capable of adapting to that change.

Retraining the detector each time a new type of Deepfake
is identified, however, is not only cumbersome and inefficient,
but also ineffective, since it is likely many Deepfakes of a new
type will slip by before they are identified. It would be much
more desirable to have a detector that can be modified with
new identifying capabilities over time. However, this is not as
simple a task as it may seem, as any attempt at an adaptive
Al system must overcome two major hurdles: catastrophic
forgetting and data hunger.

A. Catastrophic Forgetting

When catastrophic forgetting occurs, it means that new
information added to a system has caused previously learned
information to collapse while trying to accommodate it. As
such, over time, such a detector may keep up with the newest
Deepfakes, but it will leave itself vulnerable to outdated types
that it was at one point capable of spotting. There have been
several interesting attempts at preventing this issue [22-24].

Perhaps the most intuitive way to assuage forgetting would
be to do as humans do, rehearse. Rehearsal-based methods
involve keeping a subset of stored samples to pepper into the
new training material, that way the model learns to keep up
with both the old and new material. This is not without its
downsides, though. Cycling the same stored samples can lead
to overfitting in the old material, which in practice is just
about as bad as forgetting it entirely. The larger the number of
stored samples, the less of a threat this poses, but at the same
time, the more time is spent distracted from training on new
material. Another potential avenue relies on regularization. By
adding a new term to the loss function, these methods aim to
consolidate previous knowledge while learning with new data.
However, this too has limitations, as it can impact learning
rate and detection accuracy.

In an ideal environment where architecture size is of no
concern, parameter isolation methods become feasible. In this
environment, certain branches or parts of a model can be
masked in or out for different tasks. The parts of the model
that retain old information can be frozen during training to
prevent forgetting. Taking this idea to its highest degree, one
could even dedicate an entire copy of a model to separate
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tasks, with a task oracle at the head of the system designating
which copy will process what data.

B. Data Hunger

To make matters worse, the problem of data hunger - the
tendency for an adaptive system to require a very large number
of unique samples before it can learn new information - is a
major problem for a Deepfake detector. If one relies on waiting
for a Deepfake type to become widespread for the system to be
able to recognize it, massive amounts of misinformation could
be spread in the intervening period. Detectors need to be able
to learn with as few novel samples of a new type as possible.
It would seem that this would require a drastic increase in
the learning rate, which would only exacerbate the previous
problem of catastrophic forgetting. In that sense, there is a
tradeoff between stability and adaptability of an algorithm.

The balance between these two values is a difficult one to
maintain, but there are some emerging methods that may allow
it to be done effectively. Few-shot learning is one such method;
it aims to exhibit humanlike perception of an image. Even a
small child can learn what, say, a cow looks like from a single
image and from just that be capable of telling cows from non-
cows in the real world with high rates of success. Few-shot
learning has shown some early promise, achieving above 98%
accuracy at classifying 4800 classes of handwritten characters
in the 1-shot case, and above 99.5% accuracy in the 5-shot
case. However, this is with 28 x 28 grayscale images. The
results for even 84 x 84 color images were significantly lower,
at roughly 50% for 1-shot and 70% for 5-shot [25]. There has
yet to be any study on this method’s effectiveness in Deepfake
detection. Clearly, this technology does have major limitations,
but as algorithms and computational power improve, learning
to identify new types of high-quality Deepfakes with just a
few examples could be feasible.

V. AN ENVISIONED COMPREHENSIVE DEEPFAKE
DETECTOR - DEEPDETECT

As should be clear by this point, no perfect solution to
the major problems of deep learning systems is known. To
be more precise, no implementable, computerized solution
is known. The distinction is important because there is still
one more system of Deepfake detection that outperforms all
other current algorithms in training speed, retention of learned
information, and consistency. That system is the human brain
[26]. Korshunov and Marcel found that humans still beat
out algorithms in identifying Deepfakes, with an AUC score
of about 87% compared to top algorithms which averaged
around 72%. The human brain is capable of several things
that machine learning systems are not as good at. Namely,
humans can integrate newly learned information into their
existing knowledge base with incredible efficiency. We can
also imagine possible future scenarios to better prepare our-
selves for what may come. Lastly, we can draw shockingly
accurate conclusions from a comparatively minuscule amount
of data. It seems, then, that it could be a promising avenue of
research to explore development of a system that mimics the
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Fig. 5: An illustration demonstrating the three different modes of evolution of DeepDetect

way humans, learn, remember, and think. Following this idea,
we envision the following new Deepfake Detection system,
namely DeepDetect, which incorporates various techniques so
as to remember the knowledge learned in the past, incremen-
tally updated with present knowledge, and predict potential
threats in the future.

A. Remembering the Past

To compensate for its imperfect recall abilities, the human
brain has developed a keen eye for relations and patterns. It
can identify objects and experiences that are similar to what
it already knows and smoothly integrate the new knowledge
into its memory bank. To translate this sense for relationships
into a deep learning system is clearly no trivial matter, but
it could prove highly beneficial to the efficiency of a long-
running system. This budding subfield of research is known
as group-based multi-task learning.

One open issue in multi-task learning is how to identify in-
terrelated learning tasks automatically. In terms of DeepDetect,
the challenge is to identify the related types of Deepfakes in
order to leverage the combination of their collected samples for
joint training. An intuitive starting point would be to develop a
group identifier which partitions existing Deepfake types into
groups that demonstrate similar principles and are generated
by the same type of GAN or synthesizer. The latter is simple
enough to implement, but from there, further study is required
on both real and synthetic examples (discussed in subsection
C) to identify discriminating features between groups. Some
common identifiable features of modern Deepfakes include
face wobble/distortion, waviness in a person’s movements,
inconsistencies between speech and mouth movements, erratic
light and shadow, unnatural eye direction, etc. Once these
features are extracted, one can define metrics to quantify
contents of and inter-type similarity between groups. Doing so
allows comparison between new images and existing groups,
so incoming samples can not only be funneled down the
optimal path through the system (discussed next), but also
be integrated seamlessly into the model’s perception of that

group.
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B. Learning in the Present

The next question one may ask of the above system is what
happens when an incoming sample is nothing like any of the
existing groups. At that point, because of how the system is
structured, it is simple to extend the group identifier to allow
for a new group. The average features of that group are not
final, since at the start only one sample exists therein, but
if and when more similar images arrive, they can be added
to the group. Few-shot learning could be utilized to extract
the features of these new groups as quickly and accurately as
possible with the limited data.

This group-based similarity score system can be used
to construct a system with several methods of evolution,
hopefully allowing it to learn as effectively and efficiently
as possible. These methods (illustrated in Figure 5) are: (i)
Node-level expansion which absorbs new knowledge into
existing nodes; (ii) Network-level expansion which increases
the number of nodes in a single network; (iii) Multi-network
combination which integrates deep neural networks with dif-
ferent specialties. In this process, dubbed DeepMixture for its
expected performance at integrating knowledge, each mode of
expansion serves and different purpose, and is applied in a
different scenario.

In the previously discussed event that a new type of Deep-
fake is identified that is similar in principles to existing and
known types, as measured by the group identifier, node-level
expansion will be applied. The best matching group will be
fine-tuned with samples from the new type. Once that is done,
a new output for this group can be added to indicate the newly
identified type.

If the newly identified type is instead significantly different
from existing types, the process is somewhat more involved.
The envisioned steps are the following: First, compare the new
type T with all groups currently in the network to find the most
similar one, denoted G. Though the similarity between G and T
may not be significant enough to allow G to absorb T directly,
few-shot learning will still be able to take advantage of their
minor similarities to speed up the learning process for the new

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on July 28,2023 at 20:38:54 UTC from IEEE Xplore. Restrictions apply.



A ~
,-"'l‘ '-\ Fake Images Un‘;hangec‘ \
/ With Injections ™ ™,
AR / NN
a > . | i Y
~._ Fake Image 1 Adversarial “'I, "| "|
“~Samples” Fake Image | Detector | |
/ 4 Generator - ) /
.l‘" T "'\ \ / f_.ﬁ
F e b Fake or Real /
{ \ . -
L I
//)/
2 h a (2)
// Train Synthetic Fake Images Train \‘\\
S With or Without 7\ Y
,-"’ Injections  / N \'-\
f ; / \
Fake Images That are »"I Synthetic i | \
Misclassified as Real Image | Detector | |
| Generator e / /
| - / /
\"\\ Petection Resu\tg\ /,-" /-"’
\\ //

Fig. 6: Training DeepDetect to predict emerging fake image types and defend against attacks

type. Specifically, the initialization from G is used to initialize
the learning of the detector for the new type T. This new
detector will then be integrated into the current DeepDetect
network.

The final and most aggressive way for the DeepDetect
to grow quickly and expand its capabilities is to absorb
other detection networks with different specialties in Multi-
Network Combination. The idea is that as time passes, various
other Deepfake detectors will be developed by many different
groups of researchers. These detectors may, intentionally or
not, specialize in detecting certain types of Deepfakes while
also maintaining the ability to detect common types. If said
detector is more effective in one area than DeepDetect, it could
be beneficial to learn a mixture network, the outputs of which
are a union of all detectors to be integrated. This integration
process is not trivial as it will involve the design of algo-
rithms for comparing networks, removing overlapping nodes
and outputs, and adjusting node weights while maintaining
detection accuracy. The first concrete step is to add a special
output labeled “not-in-network” to each individual network.
This output is used when an image appears that does not
belong to any known malicious types in the current detector.
Second, an algorithm must developed that can compare the
network structures of the candidate detectors and identify
dominant nodes for the common outputs. A similarity function
will quantify the network similarity in terms of the amount of
common nodes and outputs. Provided the similarity score is
above a certain threshold, a network merger attempt will occur.
The process will only be finalized if the resultant detector can
demonstrate similar or better accuracy to before the merger.

C. Imagining the Future

One potential avenue to defend and improve the envisioned
DeepDetect is to try to predict potential Deepfakes and ad-
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versarial injections in order to find the detector’s possible
vulnerabilities. This could be done with a dual generator
system to create candidate adversarial inputs, Deepfakes with
injected noise. The idea is illustrated in Figure 6. In one
part of the system, the detector is used to train a generator
that creates adversarially perturbed fake images with tiny
changes in perturbations from the collected existing types of
Deepfake images. The goal is to generate noises that will
keep the sample from exhibiting any of the features of known
Deepfake types. The generator is graded on its effectiveness
at camouflaging fake images to be perceived as genuine. At
this point, no changes are made to the detector yet. Those
images that are misclassified as real are fed as input to the
second generator, which would generate fake images both with
and without injections for the detector to try to identify. This
second generator will alternate training with the detector in
a GAN environment, with the generator trying to fool the
detector, and the detector working to identify both unperturbed
and perturbed Deepfake images.

In the event that an adversarial Deepfake gets through the
system’s defenses and becomes part of the training dataset, it
is imperative that it does not affect the detector too strongly.
Generally, it can be assumed that such images would make
up only a very small portion of the dataset, so it would stand
to reason that each one would be designed to have maximum
impact on the detector’s training. In that case, one effective
countermeasure would be to employ a network smoothing
algorithm to reduce the variations of gradients from both
original and adversarial Deepfakes. This makes the detector
less sensitive to the occasional straggler that may taint the
data. Another strategy could be to define a fingerprint vector
for a training image in terms of the variations of nodes induced
by the image. Then, one can explore if there is any outlier
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fingerprint and conduct unlearning to remove its impact.

VI. CONCLUSION

In this paper we examined the potential challenges one
might encounter when trying to develop a long-lasting Deep-
fake detection algorithm. We explored different types of ad-
versarial attacks and how to defend against them, as well as
more general hurdles faced by any system intended remain
relevant in the face of an evolving adversary. We then put
forward the framework for a new system that utilizes the latest
advancements in multiple fields as well as novel strategies to
integrate them practically. In future work, we intend to develop
said algorithm and demonstrate its effectiveness not only as a
defense against modern Deepfakes, but as an intelligent system
capable of evolving and outpacing the opposing technology.
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