Check for
Updates

Session 7A: Cryptography #3

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

Easy-to-Implement Two-Server based Anonymous
Communication with Simulation Security

Adam Bowers
University of Missouri
Columbia, USA
adamconaldbowers@gmail.com

Dan Lin
University of Missouri
Columbia, USA
lindan@missouri.edu

ABSTRACT

Anonymous communication, that is secure end-to-end and unlink-
able, plays a critical role in protecting user privacy by prevent-
ing service providers from using message metadata to discover
communication links between any two users. Techniques, such as
Mix-net, DC-net, time delay, cover traffic, Secure Multiparty Com-
putation (SMC) and Private Information Retrieval, can be used to
achieve anonymous communication. SMC-based approach gener-
ally offers stronger simulation based security guarantee. In this
paper, we propose a simple and novel SMC approach to establish-
ing anonymous communication, easily implementable with two
non-colluding servers which have only communication and storage
related capabilities. Our approach offers stronger security guaran-
tee against malicious adversaries without incurring a great deal
of extra computation. To show its practicality, we implemented
our solutions using Chameleon Cloud to simulate the interactions
among a million users, and extensive simulations were conducted to
show message latency with various group sizes. Our approach is ef-
ficient for smaller group sizes and sub-group communication while
preserving message integrity. Also, it does not have the message
collision problem.

CCS CONCEPTS

« Security and privacy — Pseudonymity, anonymity and un-
traceability.

KEYWORDS

anonymous communication, secure multiparty computation

ACM Reference Format:
Adam Bowers, Jize Du, Dan Lin, and Wei Jiang. 2022. Easy-to-Implement
Two-Server based Anonymous Communication with Simulation Security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9140-5/22/05....$15.00
https://doi.org/10.1145/3488932.3523264

831

Jize Du
University of Missouri
Columbia, USA
jdwrc@mail. missouri.edu

Wei Jiang
University of Missouri
Columbia, USA
wjiang@missouri.edu

In Proceedings of the 2022 ACM Asia Conference on Computer and Communi-
cations Security (ASIA CCS °22), May 30-June 3, 2022, Nagasaki, Japan. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3488932.3523264

1 INTRODUCTION

Secure end-to-end communication is an essential tool to protect
data confidentiality and personal privacy. Although this mechanism
prevents network providers from accessing user data, they still
know who is talking to whom from message metadata which can
disclose a great deal of information regarding an individual [13, 35].
Thus, only hiding the content of a conversation is not enough. To
prevent metadata from linking users and revealing their private
information, we can utilize anonymous communication tools. In
this paper, anonymous communication means the channel is:

(1) Secure end-to-end: The communication channel between any
two users, e.g., Alice and Bob, is secured. That is, only Alice
and Bob can access the information shared between them.

(2) Anonymous/unlinkable: Only Alice and Bob know they are
communicating with each other. A service provider knows
data was sent or received among a group of people, but it
does not know which two users are actually communicating.
The degree of anonymity depends on the size of the group.

Several methods based on Mix-net [9] have been proposed to create
anonymous communication, such as Loopix [33] and Karaoke [29].
To prevent traffic analysis [21], these solutions also incorporate
either time delay or covering traffic to hide communication patterns
among the users. Like Vuvuzela [38], their security guarantee is
related to Differential Privacy (DP) [5, 17] which offers a weaker
anonymity protection due to its small information leakage. Pung
[3] and MCMix [2] offer stronger anonymity guarantee by adopting
Private Information Retrieval (PIR) [12, 26] and Secure Multiparty
Computation (SMC) [19, 40] techniques respectively. Pung is com-
putationally secure. By “computational”, we mean the protocol does
not leak any information regarding the original messages assum-
ing probabilistic polynomially-bounded adversaries. MCMix can
theoretically achieves information theoretic security that assumes
the adversary has unlimited computing power. Both security guar-
antees are stronger than DP, but information theoretic security is
considered to be the strongest among the three models.

The current implementation of MCMix is not secure against ma-
licious adversaries who can arbitrarily diverge from the prescribed

https://doi.org/10.1145/3488932.3523264
https://doi.org/10.1145/3488932.3523264
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3488932.3523264&domain=pdf&date_stamp=2022-05-30

Session 7A: Cryptography #3

execution path of a protocol. More importantly, message loss is
inevitable under MCMix when multiple users simultaneously send
message to the same user. This can cause a situation where honest
users unknowing jam the system to deny communications among
other users. (Details are provided in Section 2.)

1.1 Our Main Contribution

The main goal of this paper is to propose simple and novel so-
lutions to implement an anonymous communication framework
with stronger security guarantees against malicious adversaries.
Specifically, we design novel broadcasting and secret sharing based
two-server protocols for achieving anonymous communication,
which possess several desirable properties:

e Stronger security: Our proposed protocols are information
theoretically secure when one server follows the protocol or
the two servers do not collude.

e Design simplicity: (1) Most operations are sending/receiving
messages which can be easily implemented with servers only
providing storage related functionalities. (2) The computa-
tions on the server side are minimal, and no communications
are required between the servers. (3) Only two non-colluding
servers are needed to implement the proposed protocols.

o Asynchronous dial protocol: The existing solutions require
the users being online and participating in the dial protocol
simultaneously. In our design, users do not need to be online
all the time, and no synchronization is needed among the
parties. Dial protocol allows two parties to establish a “hand-
shake” before starting the actual communication.

o Built-in support for subgroup communication: Suppose the
subgroup size is . The existing solutions need to go through
k rounds and incur k times of the baseline complexity. How-
ever, if ¥ < L%J our protocols can handle subgroup com-
munication in one round without incurring much additional
complexity, where n denotes the group size.

The main drawback of our protocols is adopting broadcasting as a
building block. For Bob to send a message to Alice within a group
of n users, the network will incur about n + 2 messages in our
approach. Comparing to some existing solutions, our approach
incurs higher message complexity when the group size becomes
large but possesses stronger security guarantees and is much easier
to implement. Detailed comparison is given in Section 2.

The rest of the paper is organized as follows: Section 2 presents
the existing anonymous communication platforms and discusses
their limitations. Section 3 provides an overview of the proposed so-
lution and the threat model. Section 4 presents the protocol details.
Section 5 provides security and complexity analyses, and exten-
sions for subgroup communication. Section 6 presents the empirical
results to show the scalability of the proposed solutions. Section 7
concludes the paper with lessons learned and future work.

2 RELATED WORK

There has been countless research related to anonymous commu-
nication. A good starting place is the survey on secure messaging
[37]. Here we group them into several categories based on their
underlining design principles and security guarantees.

832

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

2.1 Mix-Net and Differential Privacy

Mix-net [9] based solutions, Tor [16], Hornet [10], and information
slicing [22], aim to provide highly efficient anonymity from all but
a global adversary. Anonymity is not guaranteed if all links in the
network can be observed [21], but in exchange, they can scale to
millions of users and terabytes of traffic as shown by Tor.

The second set of works Vuvuzela [38], Alpenhorn [30], Stadium
[36], and Karaoke [29] were published in series. They achieve Dif-
ferential Privacy [5, 17] for encrypted conversation metadata and
the latest work, Karaoke, can scale to millions of users. This is done
by shuffling traffic between a subset of hundreds of servers and
verifying protocol execution. The users need to be online every
round, and a party is required to coordinate the start of rounds.
Alpenhorn uses an additional set of servers to derive a shared secret
between two users using identity-based encryption. XRD [28] in-
stead proposes a novel hybrid shuffle that relies on several separate
Mixnets to scale and ensures at least one hop in common between
all chains. Loopix [33] adopts time delay to hide traffic patterns
and a number of servers to improve system response time. cMix
[8] also employs mix-net design but can shuffle messages faster by
not using public key operations. All these solutions assume that at
least one server is honest and they offer a weaker security because
Differential Privacy, by definition, leaks a small amount of infor-
mation [2]. These solutions can protect message integrity through
authenticated channels, but they cannot achieve this for the ini-
tial messages that are used to set up the channels. Furthermore, a
general framework is proposed in [4] that analyzes the security of
anonymous communication protocols based on Differential Privacy.

2.2 SMC and PIR

Secure Multiparty Computation (SMC) and Private Information Re-
trieval (PIR) can also be used to achieve anonymous communication
with stronger security guarantees compared to Differential Privacy.
Pung [3], a PIR based technique, offers an anonymity of % where
n is the group size, but it assumes the existence of a dial protocol
to connect users and cannot verify message integrity. Talek [11]
is also based on PIR, but it assumes that a group of users shares
a common secret and it cannot detect message modifications by
malicious servers. Riffle [27] is an interesting middle ground in that
any user can access any message and download all messages, or just
download a particular message of interest using PIR. It can verify if
the servers behaved correctly during the message shuffling phase,
but it does not guarantee the users will receive the correct mes-
sages. Riposte [14] and Express [18] use distributed point functions
to implement anonymous communication. Riposte requires three
servers to prevent malicious behaviors. On the other hand, Express
only requires two servers and adopts symmetric key encryption and
message re-randomization to improve efficiency. To our knowledge,
both systems do not provide a mechanism to detect if a message
is modified by a malicious server. In addition, the mailbox owner
need out-of-band channels to distribute the address of a mailbox to
other communicating peers. AsynchroMix [31] and Spectrum [32]
both implement secure broadcasting and do not support end-to-end
anonymous communication.

MCMix [2] is the other anonymous communication protocol
based on SMC, but it is only secure under the semi-honest adversary

Session 7A: Cryptography #3

model where the servers follow the protocol. Thus, its security
guarantee is weaker than ours. MCMix utilizes an oblivious sorting
protocol [20] to pair up users during dial phase and swap their
messages during conversation phase. The protocol requires at least
three servers, and as long as two servers are honest and do not
collude, anonymity is guaranteed and bounded by the group size n.
However, message integrity cannot be verified or ensured which
our proposed protocol intends to solve. The message complexity
in the entire system is bounded by Q(Inlog n). These complexities
are for sending one or “more” messages. However, how many more
messages can be delivered each round is not clear due to the fact that
starvation could occur when multiple senders want to communicate
with the same recipient during each round.

In addition, MCMix has much higher communication round com-
plexity comparing to 1 round in our case. Furthermore, our protocol
allows efficient subgroup communication with amortized commu-
nication complexity O(n) which is more efficient than MCMix. In
summary, the mix-net design generally achieves differential pri-
vacy [5, 17] for encrypted conversation metadata against global
adversaries. Differential privacy offers weaker security guarantee
against the global adversary comparing to MCMix, Pung, and our
approach. Comparing to MCMix and Pung, our solution provides
detectability of malicious behaviors to ensure message integrity.

2.3 DC-Net and other Approaches

The DC-Net [7] inspired approaches, DiceMix [34], Verdict [15],
and Dissent-AT [39], enable a user to anonymously send a message
to a group of users, much like the Dining Cryptographers Prob-
lem. These approaches offer strong anonymity properties, but they
are not designed for point-to-point communication since all users
see every message. To make these solutions work in our problem
domain, each pair of users have to share a secret key, and a user
would need to decrypt every message. If one of the messages can be
decrypted successfully, then the user know he or she is the recipient.
This approach is inefficient since all keys and messages pairs have
to be examined to retrieve the actual messages.

Like our approach, Cloudtransport [6] uses major storage ser-
vices like Dropbox or Amazon. They argue that an authority would
not want to ban a service like Amazon that plays a significant role
in running the country’s infrastructure. Therefore, if citizens use
that service, the authority will not shut down the service without
harming themselves. Users create a rendezvous account within the
service. Then some bridge (a third party) uses the account to upload
a file on the user’s behalf. Finally, another user uses the bridge to
retrieve the file on the user’s behalf. The issue with this work is
that implementation details are not fully specified. For two users to
coordinate file exchange, they either need a third party to facilitate
exchanging information or need some kind of out-of-band commu-
nication. Moreover, it is unclear how to keep user’s information
secure and anonymous from these third parties.

3 DESIGN OVERVIEW

The core idea of the proposed solution is depicted in Figure 1. As
shown, Bob’s message m is represented with two shares, denoted by
my1, a random bit string of equal length to m, and my = m® my. The
two shares are stored separately at Server 1 and Server 2. Since each

833

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

share when viewed individually is random (or pseudo-random in
practice depending on the randomness of the generator), each alone
does not leak any information under the information-theoretical
model (or computational model in practice) regarding m aside from
the length of the message. The length can be hidden by padding
each share up to a maximum allowable message size. Then the
servers can deliver their own shares to users connected to Bob
in the network. By combining these shares locally, Bob’s friends
will be able to retrieve the actual message m. This setting can be
extended with more than two servers.

Server 1
m, p

\582 . M m :
W | ool
¥ |
—== m |

1

XZA

m=m;+m, m,

Server 2 k‘ Q
Vo

Figure 1: Two-Server Framework for Secure Messaging

The approach given in Figure 1 achieves data confidentiality
against the service providers as long as one of the servers follows
the protocol or the two servers do not collude. However, the ap-
proach is not sufficient to achieve end-to-end secure and anony-
mous communication since everyone connected to Bob will receive
his message. At the other extreme, Bob could send a unique mes-
sage to each user in one round of communication. This achieves
anonymity but increases the amount of messages Bob needs to
send. Ideally, if Bob wants to communicate with one person in the
group, he should only need to send a constant number of messages.
Thus, the key challenge is how to efficiently use secret sharing and
the two-server framework to build an anonymous communication
network between any two users in a group.

As the existing solutions, our protocol operates in round, and
each round includes sending and receiving messages. However,
unlike the existing solutions, during each round, our protocol allows
a user to send and receive messages to and from multiple other
users. In addition, the dial protocols (e.g., obliviously connecting
a pair of users before conversing) of the existing work require
participation of all users at the same time. On the other hand, our
dial protocol is asynchronous and independent from the messaging
protocol which provides extra flexibility in practice.

3.1 An Alternative Design based on
Broadcasting and PKI

It is possible to design a simple protocol utilizing broadcasting and
public key infrastructure (PKI), like BAR [25]. In this solution, all
users’ public keys are shared, and there is a single server. To send
a message m to user i, the sender encrypts m with the public key
pki of user i and sends the ciphertext Ej, (m) to the server. The
server collects and forwards these ciphertexts to all users. Thus,
each recipient receives Q(n) messages in each time step if there are
total n senders. Each user then tries to decrypt all of the messages
it received from the server in every round. This approach can be
improved in the following ways:

Session 7A: Cryptography #3

e PKI key management at user level is both expensive and
challenging. For instance, to make sure the legitimacy of
the public keys, the users have to send their keys through
different channels directly to the other users.

A malicious server can refuse to broadcast the messages to
users without being detected. Adding another server can
solve this problem assuming one of the servers is honest.
Our proposed solution also adopts the two-server setting;
however, we eliminate the need of PKI among the users.
Our approach, combining secret sharing and the two-server
setting, is theoretically more secure than the PKI-based solu-
tion, and it only assumes that the communication channels
between a server and a user is private. Although private
channels are commonly achieved using PKI in practice, more
secure solutions are possible, such as secure communication
based on quantum cryptography (SECOQC).

PKI can leak information on user identifies. If users want
to remain anonymous in addition to their communication
patterns, PKI may not be applicable.

3.2

The anonymous communication application generally classifies the
participating parties into three categories:

Threat Model and Assumptions

o Users: the entities who communicate with other users in the
same anonymity group or network.

e Servers: the entities who provide anonymous communica-
tion services to the users.

e Global adversary: who can observe the entire network traf-
fics and attempt to identify the end-to-end communication
links between any two users.

The standard threat model adopted by the existing solutions as-
sumes that the users are honest, at least one server follows the
protocol, and the global adversary does not collude with the servers.
Also, the communication channel between a user and a server is
private. To our knowledge, the existing solutions do not consider
the situations where both servers and users are malicious. Initially,
we adopt the same threat model as the existing work, and we later
discuss possible secure extensions of our protocol against both
malicious servers and users.

Since the servers only send/receive messages from the users
and manage the session keys (used for pair-wise communication
between two users), malicious behaviors regarding the servers may
include: not participating in the protocol, modifying the messages
and the session keys. A malicious global adversary can modify and
drop messages. A malicious user may eavesdrop on other users’ con-
versation. In summary, our initial solution provides the following
security guarantees when either server follows the protocol:

o Anonymity and confidentiality: Connection anonymity and
message confidentiality are achievable. Connection anonymity
refers to the fact that the servers and the global adversary
cannot predict the communication link between a pair of
users better than a random guess.

Detectability or verification: Malicious behaviors can be de-
tected. In other words, the users are able to verify the in-
tegrity of the received messages.

834

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

Later, we propose protocol extensions that combat malicious users
(while still assuming one of the servers is malicious) to prevent:

o Eavesdropping on other users: Our initial design assumes that
each user can only have one account at each sever. If a mali-
cious user creates multiple accounts at each server, the user
may be able to eavesdrop on other users’ communication;
that is, message confidentiality cannot be guaranteed if a
malicious user opens multiple accounts at each server. To
prevent this, we embed Diffie-Hellman key exchange pro-
tocol into the two-server framework that allows a user to
establish secure pairwise communication in the presence of
malicious users.

Framing the honest server: Malicious users may frame honest
servers by generating messages that do not follow the re-
quired message format. In this case, we need to adopt digital
signature schemes to authenticate the origin of the mes-
sages. However, we do not need PKI or a central certificate
authority, and the two servers and the users work together
to authenticate the keys.

Note that preventing server-user collusion is seemingly impossible
because a malicious message recipient can simply share the received
messages with a malicious server or other entities without being
caught. We are not aware of any existing solutions that can prevent
this type of collusion. Thus, our proposed solutions assume that
the servers and users do not collude and malicious behaviors are
limited to the aforementioned ones.

4 THE PROPOSED PROTOCOL

The proposed anonymous communication protocol is based on
secret sharing and the two-server framework presented in Figure 1.

4.1 Secret Sharing Scheme

Assuming m is a non-negative integer, to secretly share m between
two servers S1 and Sy, first randomly select a value m; from Z,,
where p denotes the domain size for the shares and is sufficient
large to accommodate m. Then my can be computed according
to m = mj + my mod p. The secret share m; is stored at S; for
1 < i < 2.If the shares are intended for Alice, S; will send m; to
her. By combining the two secret shares together, Alice can learn m.
Because m; is randomly generated, it does not leak any information
regarding the actual message m. In addition, due to the “+” and
“mod” operations, my is also randomly distributed in Zp. That is,
my alone does not reveal any information regarding m. Thus, m;
and my are called secret shares of m. The XOR operator @ can also
be used to generate secret shares in our protocol.

4.2 Illustration of the Main Idea

The proposed protocol consists of three phases: session key genera-
tion or dial protocol (one-time only for each communicating pair of
users, Section 4.3), message distribution (Section 4.4) and message
reconstruction (Section 4.5). Each session key is associated with
a specific message recipient, and it is generated by the message
sender. Each key can be used for multiple messages between the
sender and the recipient. Once the key is established, the conversa-
tion can begin. The proposed session key generation protocol has
the same purpose as the dial protocol in the literature. Unlike the

Session 7A: Cryptography #3

existing solutions, our protocol can be performed asynchronously
without requiring all users to participate at a specific time period.
Thus, our protocol is more flexible. To implement this, we could use
push or poll notification techniques utilized by E-mail applications.
A temporary storage is required at the servers’ side; however, the
storage can be very small since only one connection request to a
user needs to be buffered.

We consider a group of n users registered with two servers, and
their IDs can be the same across these servers. User IDs are managed
by the servers. If a new user joins the network and a user group, the
servers broadcast the user’s ID to the group. If a user already knows
his or her friend’s ID within the group, utilizing the network, the
user can send the friend a secure message to reveal his or her real
identity. If a user leaves a network or a specific group, the servers
will remove the user ID from the groups’ user lists.

To enable secure and anonymous pairwise communication using
broadcasting, the main idea is to divide or partition this group
of users into two randomly generated sub-groups. The message
recipient is placed into different sub-groups across the two servers.
The other users will be in the same sub-groups. In this way, only the
recipient gets two shares of the actual message, and the other users
get only one share of m. Thus, the resulting partitions/sub-groups
serves as a session key for a pair of users to communicate securely.

Here we provide a concrete example to illustrate the above idea.
Suppose there are a group of five users G = {uy, u2, us, ug, us}.
To achieve anonymous communication between any pair of users
in G, two disjoint sub-groups are generated by a random process
performed by the sender, e.g., Bob being one of the users:

e Randomly partition G into two random sub-groups G; and
Ga, such that G NGy = 0 and G; UGy = G.
Suppose u € G is the message recipient. Based on G; and Gy, the
partitions on S; and Sy are assigned as follows:

e On server S;: Gf‘ «— G7 and G;‘ — Gy
e On server Sy: without loss of generality, assuming u € Gy.
Remove u from G and add it to G The resulting sub-groups
are denoted by Gy and G,. GIS2 «— Gy and GSZ — Go.

Let’s assume u = us3 for this example, and G; = {uz, u3,us} and
Gy = {u1,us}. We have the following partition on each server:

. Gls1 = {ug,u3,us} and Gfl = {u1,uq}

o G = {uz,us} and Gy* = {u1, u3, uy}
The above group partitions can also be represented as a bit vector
assuming the ordering of the user IDs is known to the user. In our
example, the bit vector representations of the these partitions are
given below:

e GJ' = 01101 and G5' = 10010

e G* = 01001 and G,* = 10110
After the partitions are generated, Bob sends either the actual par-
titions or their vector representations to the servers. Suppose Bob
sends an [-bit message m to u3, then Bob creates random shares
with the following notation convention: m; indicates the shares of
the actual message m, and the subscript j is the server index.

e my <R {O,l}l and my «— m & my

e m] g {0,1}! and my <R {0, 1}

For u3 to receive m, Bob sends the following messages:

835

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

o my — (S1.Gy" = {uz,us, us})
o my — (S2.Gy* = {u1,u3, us})
e mj — (51,G§1 = {u1,us})
e my — (S, sz = {uz, us})

The shares mq and my are sent to S; and S respectively and dis-
tributed to the sub-groups to which u3 belongs. The random mes-
sage m is sent to the users in the sub-group indexed by 2 (i.e., Gg D
at server S1. The random message m;, is sent to the users in the
sub-group indexed by 1 (i.e., sz) at server Sy. At the end, each user
receives a pair of messages:

o uy: {maz, my) — my & mj

® U3: (ml,mz) — mq © ma

e us: (my,my) — mq ®mj

up: (my, my) — my & m,,

ug: {ma, m7) — my & mj
Obviously, only u3 receives my and my. As a result, us3 is able to
reconstruct m < my @ my. This example only illustrates the key
ideas, and it lacks implementation details such as, how does u3
know m is the actual message and how do the other users know
the messages they received are not the actual messages? These
questions will be answered in Section 4.4. The generated disjoint
sub-groups/partitions serve as a session key. Our formal group
partition algorithm is presented next.

Algorithm 1 Group-Partition(G, u) — (G5, G%2)

1: fori=1to2do
2 G0

3: end for

4: for each u; € Gdo
5 jer {12}
6 Gj < Gj U {u;}
7: end for

8 G5 — (Gy, Ga)

9: if u € G then

10: G — (Gy — {u},Go U {u})
11: else

122 G5 «— (Gy U {u}, Gy — {u})
13: end if

14: return (G, G%2)

4.3 Group Partition

Here we generalize the steps given in the previous example assum-
ing n > 2. The key steps are given in Algorithm 1. The number of
sub-groups is the same as that of the servers. Steps 1-3 initialize
each sub-group to an empty set. Steps 4-7 distribute elements in G
randomly to each of the two sub-groups, and the resulting set of
the sub-groups are denoted by G5!. Steps 9-13 generate G52 by re-
moving u from one sub-group and adding it to the other sub-group.

4.4 Generating Authenticated Messages

As illustrated in the previous example, the users in the same par-
tition receive the same message, and the number of messages a
user receives is the same as the number of servers, which is two. In
addition, the number of partitions is also equal to 2. Therefore, the
total number of messages that need to be generated by a sender is

Session 7A: Cryptography #3

four, two of which are the secret shares of the actual message m.
The rest of messages are randomly generated. Regarding the secu-
rity guarantee, two important issues need to be addressed when
generating these messages:
o The message recipient knows the message received is the
actual message.
o The recipient can detect if the message has been altered by
a malicious server.

To solve the above problems, we propose a way to construct an
authenticated message. Let m be a message:

o i = 1||m: if m is real, prepend 1 to it.

e 1 = 0||m: if m is random, prepend 0 to it.
Next we define a scheme to authenticate i where the main idea
is borrowed from [24]. Let g be a prime, such that i € Z; and

m < L%J The authentication function is given as:

1

C(m,r) = m=r mod q, where r €g Z:]’

Then the shares of the message is produced as follows:
o (mj, my) < Gen-Shares(C(rn, r)||r||m, p)
The Gen-Shares function produces secret shares of C(rn, r)||r||m
according to the scheme discussed in Section 4.1 and p or Z,, denotes
the share domain of m; and my. When m is very large, instead of
authenticating m directly, the authentication code can be computed
based on a cryptographic hash of m. Adding a hash computation to
our scheme is straightforward, and we will ignore this issue for the
rest of the paper.

Algorithm 2 Gen-Authenticated-Msg(m, p, q) — 21,22

Require: m is the actual message, p and q are primes, such that
p > ¢° to accommodate the three components of C(i, r)||r|| 7
1: M« 1||m
2: r €ER Z;
3: (my, mg) < Gen-Shares(C(r, r)||r||m, p)
4 fori=1to2do
s rlep{l....[2]-1}
6: rl." €R Z;
7 mp e Ol Il lollr
& ri—m;®m;
9 Zj « (ri,m;)
end for

-
@ 0

The steps for generating authenticated messages and their shares
are provided in Algorithm 2. The algorithm takes the actual message
m and two prime numbers such that p > ¢3, and m is less than L%J
Steps 1-3 produce authenticated actual message and its shares. Steps
4-10 produce authenticated random messages and their shares. The
purpose of each main step is discussed below:

e Step 1: prepend flag 1 to m to indicate m is an actual message.

e Step 2: generate a random number r, and it is used to authen-
ticate i1 in the next step.

e Step 3: first, compute the authentication code of 711, denoted
by C(r, r). Then two additive shares of C(r, r)||r||m are
generated in Zp, denoted by m; and ms.

e Step 5: r is randomly generated for representing the ith
random message.

836

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

e Step 6: r/” is randomly generated for committing or authen-
ticating r/.

e Step 7: first, r] is prepended with a 0 flag to indicate r; is a
random message. Then the commitment of 0| |rlf is computed.
The whole authenticated message is denoted by m;.

e Step 8: r; is generated by m; @ m;. Thus, r; and m; are two
shares of m?.

e Step 9: Z; denotes the shares of m} which will be distributed
to the users in the same sub-group.

Steps 5-9 are repeated one more time to produce another authenti-
cated random message and its additive shares.

4.4.1 Distributing Shares. Once the partitions and secret shares are
produced, the users are ready to communicate. Protocol 3 presents
the key steps that instruct the sender to deliver the shares of his
or her message to the servers which in turn send the shares to the
users in the same group. In this protocol, we need to pay special
attention to the two shares of m, each of which is distributed to one
partition at a particular server.

o Step 1(a): The sender permutes the ordering of r; and m; so
that server S; does not know which of the two messages is
related to the actual message. Without this step, the protocol
is still secure, but it makes easier to provide a simulation
based proof. See Section 5.1 for more details. The permuted
messages are denoted by (.

e Step 1(b): Based on 51 and z7, this step produces 52 as follows.
If the first message or component of 51 is my, then my needs
to be the second component of gjg This makes sure that only
the targeted user receives both m; and mj.

e Step 1(c): The notation (@71[1], Gfl) indicates that the mes-
sage §71 [1] is intended for users in GIS1 whose partition/sub-
group is managed by S1. The notation (&[1], GZS ') and Step
1(d) can be interpreted similarly.

e Steps 2 and 3: Each server delivers the message shares to
their intended users.

To prevent other users from receiving m, these users shall not
receive both shares of m. The way that the partitions are formed and
the shares are distributed enforces that only the message recipient
obtains both shares of m. This will be proved in Section 5.

4.5 Message Verification

When a user receives messages from the servers, the messages are
grouped by the sender’s ID and the message time-stamps. Here we
assume that m; and my have the same timestamps, and this can
be easily achieved by the sender’s local application. As mentioned
earlier, we only adopt additive secret sharing for the two-server
setting. In this case, after a user receives both shares m; and my of
a message, the user can reconstruct m < m; @ my where m repre-
sents either the actual message or a randomly generated message.
Let c||r||b||m be the reconstructed message, the user performs the
following verification steps:

o If C(b||m,r) = c and b = 1, accept the message.
o If C(b||m,r) = c and b = 0, ignore the message.
o If C(b||m,r) # c, malicious behavior is detected.

Session 7A: Cryptography #3

Protocol 3 Dist-Msg (z_i, 2, G5, GSZ)

Require: Denote z; = (r1,m;) and Zp = (rz, my). Let Z;(1) and
Z;(2) be the first and second element of Z; Denote G5! =
(G)',G3"y and G = (G}*,G3?)

1: Sender:

(a) Randomly permute the orderirlg of the elements of 27,
denote the resulting vector as {3
(b) G [1] = my:
o & (rams)
Otherwise:
) 52 «— <m2, rz)
(©) Send ({1[1],G}") and (%2[1], G5') to Sy
(d) Send ({1[2], G3?) and (2[2], G3?) to S
2: Server Si:
(a) Send 51 [1] to users in GlSl
(b) Send g:z[l] to users in Gfl
3: Server Sy:
(a) Send gyl [2] to users in sz
(b) Send 472[2] to users in GZS2

5 PROTOCOL ANALYSES AND EXTENSIONS

In this section, we present the detailed security analysis of our
protocol according to criteria given in Section 3.2. We will also
discuss protocol complexity and how to efficiently handle many-to-
one and one-to-many (sub-group) anonymous communications.

5.1 Security Analysis

First, we reiterate that sender anonymity is achieved via round
synchronization, the same approach as the existing solutions. That
is, the protocol operates in round, and all users participate in each
round which effectively disguise the actual senders and the com-
munication patterns. Additionally, the communication channels
between users and servers are private. As a result, the global adver-
sary who observes the entire network traffic cannot discover the
peer-to-peer communication links among the users and the actual
messages sent from users to servers, and vice versa.

The key functionality required at the servers is passing the mes-
sages around and no additional computations are needed. As a
result, the other security guarantees of the protocol is directly re-
lated to the underlying secret sharing scheme and how the shares
are distributed between the servers. First, we prove that our pro-
tocol achieves pair-wise communication. Then, we show message
confidentiality and connection anonymity are guaranteed through
the formal simulation based method.

CLaIM 1. Suppose the group partitions are generated using Al-
gorithm 1 and Algorithm 2, and the shares of m and other random
values are distributed according to Protocol 3. Then only u can receive
two shares of m, and the other users receive only one share of m.

Proor. According to Algorithm 1, the users can be classified into
two categories: u and {v; } where u is the targeted message recipient,

837

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

and {v;} denotes the set of users who remain in the same partition
across all servers. It is apparent that only u belongs two different
partitions or sub-groups between the two servers. According to
Protocol 3, m; and my are sent to users in two different partitions.
Therefore, it is clear that u receives all shares of m assuming no
faults occurred in the system. All users in {u;} are in the same
partition across all servers and receive either message pairs denoted
by 51 or g:)z which contains one valid share of m. O

The above claim is not valid when a malicious user can have multi-
ple accounts at each server which may allow the user to receive all
shares of the actual messages intended for other users. We address
this issue in Section 5.3. Next we prove that the servers do not
learn anything about the actual message based on the simulation
paradigm presented in [19]. In general, when considering malicious
adversaries, to prove a protocol is secure in literature of Secure Mul-
tiparty Computation (SMC) [19, 40], we need to show whatever an
adversary can learn in the real model (executing the real protocol)
is indistinguishable from what the adversary can learn from the
ideal model (computations are performed by a trusted third party).
Since our protocol does not return any values to the servers, our
proof can adopt a simplified version of the read-ideal paradigm. In
particular, we produce a simulator Sim that generates a simulated
view of an adversary, identical to the real view. More details are
provided below.

CraiM 2. Assume one server follows the protocol and the users do
not collude with the servers, Protocol 3 is information theoretically
secure against the servers. In other words, the servers learn nothing
about the actual message.

Proor. The servers receive two types of messages related to
either the session key (Algorithm 1) or message shares (Algorithm
2 and Protocol 3). We build a simulator Sim for simulating both
messages or views. Since our protocol is symmetric, Sim is the same
for either server, and it performs the following with input G (the
set of n) users and p (the domain size):

e Initialize G} and G; to be empty set.

e For each u; € G, Sim flips a fair coin: if it is head, u; is added
to Gl*. Otherwise, u; is added to G;.

e Randomly generate rj and r; from Zj.

The simulated view of an adversary consists of:
S IM —
o View'" =

b =11.61). (r5.G3)}
According to the protocol, the real view of an adversary consists of:
. s S; Zors Si
e Viewg, = {{Gtn.0}). (G0 03]
Partly because r7, 15, 51 [i] and 52[1'] are independently and identi-
cally distributed in Z,, and partly because Gl*, G;, Gfi, and Gfi are
L
Gp
> This implies that the adversary or each server does not

also independently and identically distributed, View>.'" is identical

to View7,
learn anything about the actual message during protocol execution.

Thus, Dist-Msg (Protocol 3) is information theoretically secure. O

CraM 3. Using the additive secret sharing scheme and one server
follows the protocol or the two servers do not collude, the proposed
protocol achieves detectability with probability 1 — %

Session 7A: Cryptography #3

ProoFr. In this proof, without loss of generality, we consider S;
is the malicious server. There are two cases that guide our analysis:
o The malicious server S; wants the recipient u to receive and
accept a specific message rm whose two shares are denoted
by rfll and r;lz.
o The malicious servers want the recipient u to receive and
accept any i that is different from m.
In either case, S; modifies the first share to replace the actual share
mq of m it received. As a result, u receives m; and my where my
is the non-modified share of m from server Sy. For u to accept a
specific 11 as a legitimate message, it must be the case that iy = mj.
Since my is uniformly random, Prob(ri; = my) = 1 !

Ima] =
Under the second case, since the only condition for u to accept

a message is to verify the commitment, the chance of a message,

constructed by randomly generated shares, resulting a consistent

commitment is given by L = é Consequently, combining the two

cases, any modification to the legitimate message can be detected
with probability bounded by 1 — % in the worst case. O

As acknowledged before, when the users are malicious and have
multiple accounts at each server, it is possible for these users to
eavesdrop on other users and frame an honest server. We propose
certain mechanisms to combat malicious users, and the detailed
discussion is give in Section 5.3.

5.2 Message Complexity

The local computation at each server is negligible comparing to
the communication cost. Thus, we only focus on message complex-
ity including the number of messages and rounds. Suppose each
message has a fixed size of s bits. Since the group partition needs
to be performed once for a recipient (but not for each message),
we separate the complexity into two phases: group partition and
sending a message. Assuming each set can be packed into one mes-
sage, then the sender sends two messages per server. Thus, the total
number of messages sent is four or 4s bits. On the server side, local
computation time is approximate to n since managing the grouping
information only needs to store user IDs once. Since each server
receives two messages or 2s bits, the total message complexity for
the entire system is the same as those of the sender. The protocol
requires only one round of communication between a sender and
the two servers.

For sending a message, the sender needs to generate four mes-
sages and two of them are shares of m. The senders sends two
messages to each server. Thus, the total number of messages sent
is four or 4s bits. For the other users (including the targeted re-
cipient), each of them receives two messages which is also the
message complexity for the users. Each server receives two mes-
sages from the sender and sends them to n users. Therefore, the
message complexity for each server is 2 + n or (2 + n)s bits.

5.3 Security Against Malicious Users

Our current design assumes that each user can only have one ac-
count at each server and has the same user ID at both servers. If a
user has multiple accounts at each server, it is possible for the users
to obtain messages intended for other users. Here we provide a
brief description on how to prevent malicious users from receiving

838

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

all secret shares of m. Under the Diffie-Hellman key exchange pro-
tocol, suppose g is a generator of Z?, where p is a prime, and g and
p public parameters. If Bob wants to send a confidential message
to Alice, the two parties first need to agree on a secret key which
encrypts the subsequent messages. Bob generates a random value x
from Z}, and sends g* to Alice under the proposed communication
framework. Bob also needs to embed some special information to
indicate this particular message is for establishing a secret key. Af-
ter receiving the message, Alice generates a random value y from
Z;;, and sends g¥ to Bob. Then both parties derive g*¥ as the secret
key for encrypting confidential messages between Alice and Bob.

Another change needs to be made is related to the session key
generation or group partitioning for Bob to send the message related
to g*. To ensure a malicious user who has multiple accounts does
not receive g*, instead of two partitions at each server, Bob creates
k partitions. The larger the k, the less likely the malicious user
obtains g*. The probability of disclosing g* to any malicious user
becomes 0 when Bob sets x = n. In this case, Bob needs to generate
more messages locally. However, this is one time cost, and the
amortized cost is negligible if Bob wants to establish shared keys
with a number of users which can be done all at once. On the other
hand, when Alice replies with g¥, she does not need to change the
standard partition protocol on her side.

5.3.1 Preventing Malicious Users from Framing Honest Servers. A
malicious user can frame innocent servers by intentionally gener-
ating messages that do not follow the required format, e.g., append
a bit to indicate the message type. To prevent this from happening,
we can require that when sending a message to the servers, each
user adds a digital signature of the message which can be verified
by the servers. As discussed in Section 3, PKI has several drawbacks
if adopted in our application domain. In what follows, we presents
key ideas on how a user can establish a trusted signing-verifying
key pair of any digital signature scheme without using PKI. The fol-
lowing steps are performed between a user (e.g., Bob) and the two
servers S and Sz each of whom has a publicly know public-private
key pair <pu5i,pr5i >:
e Bob generates a public-private key pair (puy, pry,) for a given
digital signature scheme agreed by participating parties.
Send puy, to both S; and S.
e Suppose S; receives kli; from Bob. If all three parties follow
the protocol, kllJ = ki = puy,.
e 51 and Sz exchange the keys received from Bob:
- 51 sends k})HSignpus] (k}?) to Sy, where Signy,,, (klly) is
S1’s signature of kll,.
- S, sends ki“SignPus2 (ki) to S1, where Signpus2 (ki) is
S2’s signature of kg.

o If kllJ * ki and the signatures cannot be verified by both
servers, reject the key and abort.

If the above steps executed successfully, the key puy, is established
between Bob and the two servers. Afterwards, the servers are re-
quired to verify the subsequent messages they receive from Bob
before forwarding them to the other users. If the messages cannot
be verified, they will be rejected. When forwarding the messages
to other users, each server also needs to append its signature to

Session 7A: Cryptography #3

the messages. The users verify the signatures before accepting the
messages from the servers. If the messages cannot be verified, the
protocol aborts. Next we analyze why the above steps can prevent
a malicious user from framing an honest server.

Without loss of generality, assume S; is honest, and Bob sends
Alice a message m. Let m; and my denote the shares of m. If m
cannot be verified by Alice and S; gets blamed for it, the following
steps have occurred:

e S; received my||Sig (m1) from Bob, and the signature
was verified.

e S; sent m{||SignpuS1

Dpuy,

(m1) to Alice who verified the signature
and accepted my
The verification, that proves S; innocence, proceeds as follows:

e Alice broadcasts miHSignpusl (my).
e 51 broadcasts ki||Signpusz (ki),_pub, and m1||Signpub (my).

e Honest users or servers can check that ki = pup, my = mj
and the signatures can be verified. Then this proves that S;
followed the protocol when sending the shares of m to Alice.

5.4 One-to-Many Communication

The existing solutions do not support efficient one-to-many anony-
mous communication in the sense that the message has to be sent
(received) to (from) one person within each round. Additionally,
message collisions cannot be avoided in MCMix. In other words,
if two or more users want to send messages to the same recipient,
some of these users will not be able to send any messages to their
intended recipients. This starvation behavior can persist through
each round of protocol execution. Clearly, assuming each user only
communicates with a different user (to avoid message collision)
during each round is not realistic and impractical, and we do not
know if this is fixable based on the current design of MCMix.

Our solution does not have the message collision problem and
can be easily modified to achieve efficient subgroup communica-
tion. Under one-to-many communication model, we consider two
different situations:

e Subgroup communication: a user wants to send the same
message to a subgroup of users.

o General one-to-many communication: a user wants to send
different messages to a subgroup of users.

5.4.1 Subgroup Communication. The goal of our previously pro-
posed partition algorithm is to generate random partitions given a
single message recipient. However, it is not clear if the algorithm
can produce the required randomness given a subgroup of users
whose size is a fraction of n. Here we propose a different partition
algorithm that works for a single user or a sub-group G, of users
whose size is bounded by % (i.e., |G| < [§]). The key ideas for
the new partition algorithm work as follows assuming n is divisible
by 2 for illustration purpose:

o First, we permute the group of users and evenly divide them
into two disjoint subgroups. During the permutation and
group division, G; remains in the same subgroup.

e Then, we swap G, with a subset of users with the same size
in another subgroup to produce the needed partitions for
different servers.

839

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

Algorithm 4 Group-Partition*(G, G;) — Gsl, GS2

Require: G is a group of n, G; € G (message recipients) and
IG-| < |71
1: Permute G and divide it into two equal size subgroups G; and
Gy while treating G; as an atomic element, i.e., |G1| = |G2| and
either G; € G or G; C Gy
2: Gfl «— G1 and Ggl — Gy

5 6% — (G7.G3)

4: if G; C G; then

5: G‘Z’ “—R Go and |GT| = |GT|
6: G{ — (G1 - G;)UG;

7. Gy (G2-G;)UG,

8: else

9 G; < Grand |G;| = |G|
10: G}« (G1-G;)UG,

11: Gé — (G2 - G;)UG;

12: end if

S S.
: G « G] and G* « G
6% (6.677)

The key steps of the modified group partition algorithm are given
in Algorithm 4.

e Step 1: G is randomly permuted while keeping G; as a single
element in G, and then divide G into two equal partitions G;
and Gy such that G; belongs to one of the sub-partitions.

o Steps 2-3: Assign G1 and G as the group partitions for server
S1, denoted by Gls1 and Gg ! respectively.

o Steps 4-7: If G; belongs to Gy, then randomly select a subset
G; from Gy, and swap G; and G; to create G| and G;.

o Steps 9-11: If G, belongs to G2, then randomly select a subset
G; from Gy, and swap G; and G; to create G| and G;,.

e Steps 13 and 14: Create partitions G for S,.

To enable subgroup communication, we also need to make a small
modification to message generation. Based on the partition algo-
rithm, we can observe that the partitions will not be the same across
the servers due to the swap operation. However, we can still make it
work by the strategies discussed below. In Algorithm 2, the senders
generate two pairs of messages: (r1, m1) and (rz, mz), such that

o my & my = C(1]|m, r)l|r|[1]|m

o ri @ m; =m} = C(0||r],r{)|r}'||0]|r], for i € {1,2}
The targeted user or message recipient u obtains both m; and my.
The users in the same partition receives either (ry, mi) or (rz, ma)
Due to the modified partition (Algorithm 4), the users in G; receives
r1 and ry. Since r; @ ry produces random value, the users in G;
cannot distinguish a real message from a message modified by one
of the malicious servers. In other words, these users lose the capa-
bility of verifying message integrity. Thus, we need to modify the
message generation algorithm by adding one more pair of messages
denoted by (r3, m3), such that ry @ ry @ r3 = C(0[|r3, r3")||r5]|0]|r3:

e r3 =11 ®r2®C(0||rs, r3)|r3"110] |75
m3 is a randomly generated dummy value. Then Protocol 3 can be
easily modified to ensure users in G; to receive ry, ry and r3. The
message reconstruction method discussed in Section 4.5 needs to

Session 7A: Cryptography #3

be slightly changed. Instead of receiving two shares in the original
protocol, now each user receives three shares, e.g., s1, s2 and ss3.
Thus, the users try four combinations, denoted by s; ® s; (i # j)
and s; @ s2 @ s3. If none of the combinations return a valid message,
the users detect cheating by the servers.

5.4.2 General One-to-Many Communication. To support general
one-to-many communication is straightforward in our design. Sup-
pose there are n total users and Alice wants to send different mes-
sages to k (1 < k < n) users denoted by n = {n1,...,nx} users.
Alice performs the following:

e Randomly partition the n users into x disjoint subgroups
G™,...,G"* and each subgroup contains around 2 users
andn; € GM for1 <i < k.

e In parallel and for each G”¢, applies the steps given in Algo-
rithms 1 and 2 Protocol 3.

Following these steps, the servers can learn the number of users (e.g.,
k) Alice is communicating in each round. In order to hide «, Alice
can pad G7¢ with additional users out of the n users. These noise
users will only receive authenticated random messages. For each
round, we can randomize the number of noise users. In addition, to
further randomize the process, Alice could distribute these x users
into multiple rounds.

5.4.3 Amortized Complexity. According to our modified protocol
for one-to-many communication, in each round, a user can send
and receive from many other users. The complexity of the existing
solutions is described per message sent. In this case, the communi-
cation complexity for our protocol becomes (kn?/x) where k is the
number of servers and k = 2 for our protocol. If k is a fraction of
n, then the complexity becomes O(kn) which is the same as most
mix-net based solutions. Whereas, the communication complexity
of MCMix is O(kln log n) for sending one message per party assum-
ing that each user sends message to a different recipient to avoid
message collisions. The round complexity is one round for our pro-
tocol, and k and O(k log n) rounds for mix-net based solutions and
MCMix respectively where « is the subgroup size.

6 PERFORMANCE EVALUATION

The efficiency and scalability of our proposed protocol is evaluated
in throughput and bandwidth with respect to the number of users in
the anonymity set. We also compare our performance with MCMix
[2] that offers information theoretic security.

6.1 Hardware Specifications

We have implemented the complete end-to-end logic for our proto-
col in C++ with no GUI elements. This was done in C++ gcc version
9.1.1, with GMP for secure random number generation along with
bit operations and Boost Asio 1.69.0 for network communication. To
evaluate the computational and bandwidth burden of our approach,
we utilized Chameleon Cloud [23] to handle deploying instances of
our image, Ubuntu 18.04.3 LTS. We ran instances each with 128GB
RAM, 48 Intel Xeon E5-2670 v3 2.3GHz processors, and 10 Gbps net-
work bandwidth. Two of these instances ran as a server to receive
and distribute messages. The other 5 instances simulated clients in
each experiment. These simulated clients shared a TCP connection

840

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

to avoid overloading the servers, but no batching of request or mes-
sage distribution was done in order to more realistically simulate
the cost of many communicating clients.

6.2 Experiment Set-up and Outcomes

In each experiment, active clients generate a grouping and sends
a message to themselves which allows us to easily estimate one
round of sending and receiving time. The evaluation adopts the
following parameters:

o Message size: fixed to 256 bytes to simulate common Twitter
message size.

e The p and q values in Algorithm 2 are 2048-bit and 6144-bit
respectively to accommodate the 256-byte message size.

e Latency: each client records message generation time, round-
trip message travel time, and message reconstruction time.

e Bandwidth: network traffics incurred by a 256-byte message.

o Group size: the number of users in a sub-group.

Each client simulator is scheduled as a cron task to start at precisely
the same time. First simulators generate and send a grouping for
every active user. When all groupings have been successfully sent,
the simulators generate and send an encrypted message for each
user. Throughout this process, the total run time is recorded for
each simulator and divided by its total simulated users to estimate
the average message latency for each user.

2000 =3—Average K=25%
X 1500
g
= 1000
500
0= = =
500 5000 10000 25000 50000
Group Size

Figure 2: Message Latency for users within a group

K=25%

=¥—=Average

500 1000 5000 10000

2500
Group Size

Figure 3: Message Latency for a million users active users
divided into groups of given size

In the first experiment, we want to see how the group sizes
affect the overall performance. Given a specific group size, the
experiment simulates one round of communication where each

Session 7A: Cryptography #3

user sends a message to one other user or a subgroup of users. The
average running time for delivering a message is shown in Figure
2. The solid line indicates the time for sending one message per
user, and the dashed line shows the average amortized cost for
each user to send messages to a subgroup of k users. We set k to
be 25% of each group size which is well within the | 7 | threshold.
When « increases, the amortized cost decreases. These results show
that when the group size increases, the running time increases
quadratically. However, the amortized cost remains linear and is
only affected by the subgroup size. Although the dashed line seems
flat, the actual cost increases slightly as the group size grows.

In the second experiment, we show a situation where a million
total users are divided into multiple groups of sizes varying from
500 to 10000. For example, for the group size of 500, the one million
users are distributed to 2000 groups, and the users only communi-
cate within their own groups. Since the total number of users is
fixed, the larger the group size, the smaller number of groups will
be produced. As shown in Figure 3, the latency increases with the
size of the anonymity set. The high communication latency is in
part caused by our simulation where we could only use several com-
puters to simulate interactions among a million users. In addition,
all simulations were performed by a single thread. In a real environ-
ment, the two storage servers would have very high parallelization
capability (with hundreds or thousands of computers running in
parallel), and users can interact with the servers simultaneously.
The latency should be much less in the real world. Furthermore,
as shown in Figures 2-4, the amortized latency is very small. Thus,
our solution is efficient for high traffic applications.

6.3 Comparing to MCMix

As mentioned early, mix-net based protocols are generally more
efficient but less secure comparing to SMC-based solutions. MCMix
is the only other SMC-based approach, and it has several key differ-
ences comparing to our proposed solution as discussed in Section
2.2. We implemented MCMix using the source provided at [1] and
calculated average messaging time shown in Figure 4. Note that
the figure only includes message latency and not the setup phase
for users. Clearly, above 10000 active users, MCMix starts to run
faster than our protocol. However, our amortized cost (by setting
Kk to be 25% of the total users within a group) is lower, especially
for large n. This experiment does not include the cost of MCMix’s
dialing phase which has significant cost. While dialing is not imple-
mented at the given source, the complexity is at least as expensive
as the messaging protocol itself. Figure 5 demonstrates the cost of
establishing communication (or the dialing phase) in MCMix and
our protocol. Clearly, our dialing protocol (i.e., group partitioning)
is significantly more efficient.

As acknowledged in our theoretical analysis, the main limitation
of our approach is its high bandwidth for very large anonymity set
as shown in Figure 6. The bandwidth is generated by each message
sent within a group of users with a specific size. As expected, the
bandwidth increases as does the group size.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a simple solution to achieve anonymous
communication secure against malicious adversaries. Comparing

841

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

2000 =¥ Confidant K=25% =@=McMix
% 1500
E 1000
500
0 &=/ 3
500 5000 10000 25000 50000

Group Size

Figure 4: Message Latency in a round of MCMizx, excluding
setup phase

400 =¢=Confidant =e=McMix
»
< 300
]
E 200
'—
100 e —"
gz 2 A A\ —A,f
L) ral ra Ll
500 5000 10000 25000 50000
Group Size

Figure 5: The average time for a user to establish informa-
tion needed to message in both approaches.

— 30
o
2
< 20
=
9
2 10
c
m
@ 90
500 5000 10000 25000 50000
Group Size

Figure 6: Server Bandwidth per message sent by a user
within a group of given size

to the existing solutions, our approaches are very easy to imple-
ment (e.g., requiring two independent servers with storage and
communication capabilities) and offer additional security guaran-
tees, such as, efficient detectability of message modification. To
show the feasibility of our approach, we implemented our solution
using Chameleon Cloud. The result shows the solution is salable for
smaller group sizes. For subgroup communications, our protocol is
efficient even for a large group.

The message complexity of our protocol for sending one message
per user is still high. As a future work, we will reduce the message
complexity by exploring random sampling techniques that may
allow selection of a subset users to produce the needed partitions
without decreasing the degree of connection anonymity. Another
direction is to add additional servers to achieve fault-tolerance.
That is, when one or more server fails, the rest of the servers can

Session 7A: Cryptography #3

still provide anonymous communication services. Although the
communication complexity will also increase, the trade-off between
efficiency and security may be necessary for certain situations.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Dan Bogdanov and Cybernetica
for providing the sharemind software and Chameleon Cloud for
providing the computing resource. The authors would also like
to thank Dr. Yuhong Nan and the anonymous referees for their
valuable comments and constructive suggestions. This work is
supported by the National Science Foundation under Grant No.:
DGE-1946619.

REFERENCES

(1]
2

(3

=

[4

=

[10]

[11]

[12]

[13

[14]

[15]

=
&

[17]

[18

[n.d.]. MCMix benchmarking code. https://github.com/druid/memix-benchmark.
Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias.
2017. MCMix: Anonymous messaging via secure multiparty computation. In The
USENIX Security Symposium. 1217-1234.

Sebastian Angel and Srinath Setty. 2016. Unobservable Communication over
Fully Untrusted Infrastructure. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA, 551-569. https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/angel

Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian Meiser, and Es-
fandiar Mohammadi. 2013. AnoA: A Framework for Analyzing Anonymous
Communication Protocols. In 2013 IEEE 26th Computer Security Foundations
Symposium. 163-178. https://doi.org/10.1109/CSF.2013.18

Avrim Blum, Cynthia Dwork, Frank Mcsherry, and Kobbi Nissim. 2005. Prac-
tical privacy: The SuLQ framework. In Proceedings of the 24" ACM SIGMOD
International Conference on Management of Data / Principles of Database Systems.
128-138.

Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov. 2014. Cloudtrans-
port: Using cloud storage for censorship-resistant networking. In International
Symposium on Privacy Enhancing Technologies Symposium. Springer, 1-20.
David Chaum. 1988. The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of Cryptology 1, 1 (01 Jan 1988), 65-75.
https://doi.org/10.1007/BF00206326

David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri
de Ruiter, and Alan T. Sherman. 2016. cMix: Mixing with Minimal Real-Time
Asymmetric Cryptographic Operations. Cryptology ePrint Archive, Report
2016/008. https://eprint.iacr.org/2016/008.

David L. Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Commun. ACM 24, 2 (Feb. 1981), 84-90. https://doi.org/10.1145/
358549.358563

Chen Chen, Daniele E Asoni, David Barrera, George Danezis, and Adrain Perrig.
2015. HORNET: High-speed onion routing at the network layer. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1441-1454.

Raymond Cheng, William Scott, Elisaweta Masserova, Irene Zhang, Vipul Goyal,
Thomas Anderson, Arvind Krishnamurthy, and Bryan Parno. 2020. Talek: Private
Group Messaging with Hidden Access Patterns. In Annual Computer Security
Applications Conference (ACSAC 20). Association for Computing Machinery, New
York, NY, USA, 84-99. https://doi.org/10.1145/3427228.3427231

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private
Information Retrieval. 7. ACM 45, 6 (Nov. 1998), 965-981. https://doi.org/10.
1145/293347.293350

David Cole. [n.d.]. We Kill People Based on Metadata. https://www.nybooks.
com/daily/2014/05/10/we-kill-people-based-metadata/

Henry Corrigan-Gibbs, Dan Boneh, and David Maziéres. 2015. Riposte: An
anonymous messaging system handling millions of users. arXiv preprint
arXiv:1503.06115 (2015).

Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. 2013. Proactively
Accountable Anonymous Messaging in Verdict. In The 22nd USENIX Security
Symposium. Washington, D.C., 147-162. https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/presentation/corrigan-gibbs

Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The second-
generation onion router. Technical Report. Naval Research Lab Washington DC.
Cynthia Dwork. 2009. Theory of Cryptography. Springer Berlin / Heidelberg,
Chapter The Differential Privacy Frontier.

Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh.
2021. Express: Lowering the Cost of Metadata-hiding Communication with
Cryptographic Privacy. In 30th USENIX Security Symposium (USENIX Secu-
rity 21). USENIX Association, 1775-1792. https://www.usenix.org/conference/

842

[19

[20

[21

[22

[23

[24

™~
S

[26

[27

[28

[29]

(31

[32

(33]

[34

[35

[36

[37

[38

[40

ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan

usenixsecurity21/presentation/eskandarian

Oded Goldreich. 2004. The Foundations of Cryptography. Vol. 2. Cambridge
University Press, Chapter General Cryptographic Protocols.

Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi.
2013. Practically Efficient Multi-party Sorting Protocols from Comparison Sort
Algorithms. In Information Security and Cryptology — ICISC 2012, Taekyoung
Kwon, Mun-Kyu Lee, and Daesung Kwon (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 202-216.

Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson.
2013. Users Get Routed: Traffic Correlation on Tor by Realistic Adversaries.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Com-
munications Security (CCS ’13). ACM, New York, NY, USA, 337-348. https:
//doi.org/10.1145/2508859.2516651

Sachin Katti Jeff Cohen Dina Katabi. 2007. Information slicing: Anonymity using
unreliable overlays. (2007).

Kate Keahey, Pierre Riteau, Dan Stanzione, Tim Cockerill, Joe Mambretti, Paul
Rad, and Paul Ruth. 2019. Chameleon: a Scalable Production Testbed for Computer
Science Research. In Contemporary High Performance Computing: From Petascale
toward Exascale (1 ed.), Jeffrey Vetter (Ed.). Chapman & Hall/CRC Computational
Science, Vol. 3. CRC Press, Boca Raton, FL, Chapter 5, 123-148.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster
Malicious Arithmetic Secure Computation with Oblivious Transfer. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’16). Association for Computing Machinery, New York, NY, USA, 830-842.
https://doi.org/10.1145/2976749.2978357

Panayiotis Kotzanikolaou, George Chatzisofroniou, and Mike Burmester. 2017.
Broadcast anonymous routing (BAR): scalable real-time anonymous communi-
cation. International Journal of Information Security 16, 3 (June 2017), 313-326.
https://doi.org/10.1007/s10207-016-0318-0

E. Kushilevitz and R. Ostrovsky. 1997. Replication is Not Needed: Single Database,
Computationally-private Information Retrieval. In Proceedings of the 38th An-
nual Symposium on Foundations of Computer Science (FOCS *97). IEEE Computer
Society, Washington, DC, USA, 364-. http://dLacm.org/citation.cfm?id=795663.
796363

Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2016. Riffle. Pro-
ceedings on Privacy Enhancing Technologies 2016, 2 (2016), 115-134.

Albert Kwon, David Lu, and Srinivas Devadas. 2019. XRD: Scalable Messaging
System with Cryptographic Privacy. CoRR abs/1901.04368 (2019).

David Lazar, Yossi Gilad, and Nickolai Zeldovich. 2018. Karaoke: Distributed pri-
vate messaging immune to passive traffic analysis. In The 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18). 711-725.

David Lazar and Nickolai Zeldovich. 2016. Alpenhorn: Bootstrapping Secure
Communication without Leaking Metadata.. In OSDI 571-586.

Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket
Kate, and Andrew Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical
Asynchronous MPC and Its Application to Anonymous Communication. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’19). Association for Computing Machinery, New York, NY, USA,
887-903. https://doi.org/10.1145/3319535.3354238

Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. 2021. Spectrum:
High-Bandwidth Anonymous Broadcast with Malicious Security. Cryptology
ePrint Archive, Report 2021/325. https://ia.cr/2021/325.

Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George
Danezis. 2017. The loopix anonymity system. In The 26th USENIX Security
Symposium. 16-18.

Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. 2017. P2P Mixing and
Unlinkable Bitcoin Transactions. In NDSS.

Bruce Schneier. [n.d.]. NSA Doesn’t Need to Spy on Your Calls
to Learn Your Secrets. ([n.d.]). https://www.wired.com/2015/03/
data-and-goliath- nsa-metadata- spying-your-secrets/

Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich.
2017. Stadium: A distributed metadata-private messaging system. In Proceedings
of the 26th Symposium on Operating Systems Principles. ACM, 423-440.

Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian
Goldberg, and Matthew Smith. 2015. SoK: secure messaging. In Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 232-249.

Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.
Vuvuzela: Scalable private messaging resistant to traffic analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles. ACM, 137-152.

David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.
2012. Dissent in numbers: Making strong anonymity scale. In The 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 12). 179-182.
Andrew C. Yao. 1986. How to generate and exchange secrets. In Proceedings of
the 27th IEEE Symposium on Foundations of Computer Science. IEEE, 162-167.

https://github.com/druid/mcmix-benchmark
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
https://doi.org/10.1109/CSF.2013.18
https://doi.org/10.1007/BF00206326
https://eprint.iacr.org/2016/008
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/3427228.3427231
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
https://www.nybooks.com/daily/2014/05/10/we-kill-people-based-metadata/
https://www.nybooks.com/daily/2014/05/10/we-kill-people-based-metadata/
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/usenixsecurity21/presentation/eskandarian
https://www.usenix.org/conference/usenixsecurity21/presentation/eskandarian
https://doi.org/10.1145/2508859.2516651
https://doi.org/10.1145/2508859.2516651
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/s10207-016-0318-0
http://dl.acm.org/citation.cfm?id=795663.796363
http://dl.acm.org/citation.cfm?id=795663.796363
https://doi.org/10.1145/3319535.3354238
https://ia.cr/2021/325
https://www.wired.com/2015/03/data-and-goliath-nsa-metadata-spying-your-secrets/
https://www.wired.com/2015/03/data-and-goliath-nsa-metadata-spying-your-secrets/

	Abstract
	1 Introduction
	1.1 Our Main Contribution

	2 Related Work
	2.1 Mix-Net and Differential Privacy
	2.2 SMC and PIR
	2.3 DC-Net and other Approaches

	3 Design Overview
	3.1 An Alternative Design based on Broadcasting and PKI
	3.2 Threat Model and Assumptions

	4 The Proposed Protocol
	4.1 Secret Sharing Scheme
	4.2 Illustration of the Main Idea
	4.3 Group Partition
	4.4 Generating Authenticated Messages
	4.5 Message Verification

	5 Protocol Analyses and Extensions
	5.1 Security Analysis
	5.2 Message Complexity
	5.3 Security Against Malicious Users
	5.4 One-to-Many Communication

	6 Performance Evaluation
	6.1 Hardware Specifications
	6.2 Experiment Set-up and Outcomes
	6.3 Comparing to MCMix

	7 Conclusion and Future Work
	Acknowledgments
	References

