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Abstract

Precise fundamental atmospheric stellar parameters and abundance determination of individual elements in stars
are important for all stellar population studies. Non–local thermodynamic equilibrium (non-LTE; hereafter NLTE)
models are often important for such high precision, however, can be computationally complex and expensive,
which renders the models less utilized in spectroscopic analyses. To alleviate the computational burden of such
models, we developed a robust 1D, NLTE fundamental atmospheric stellar parameter derivation tool, LOTUS, to
determine the effective temperature Teff, surface gravity glog , metallicity [Fe/H], and microturbulent velocity vmic

for FGK-type stars, from equivalent width (EW) measurements of Fe I and Fe II lines. We utilize a generalized
curve of growth method to take into account the EW dependencies of each Fe I and Fe II line on the corresponding
atmospheric stellar parameters. A global differential evolution optimization algorithm is then used to derive the
fundamental parameters. Additionally, LOTUS can determine precise uncertainties for each stellar parameter using
a Markov Chain Monte Carlo algorithm. We test and apply LOTUS on a sample of benchmark stars, as well as stars
with available asteroseismic surface gravities from the K2 survey, and metal-poor stars from the Gaia-ESO and R-
Process Alliance surveys. We find very good agreement between our NLTE-derived parameters in LOTUS to
nonspectroscopic values on average within Teff =±30 K, and glog =±0.10 dex for benchmark stars. We provide
open access of our code, as well as of the interpolated precomputed NLTE EW grids available on Github (the
software is available on GitHub3 under an MIT License, and version 0.1.1 (as the persistent version) is archived in
Zenodo) and documentation with working examples on the Readthedocs book.

Unified Astronomy Thesaurus concepts: Stellar physics (1621); Stellar atmospheres (1584); Astronomical
techniques (1684); Spectroscopy (1558); Stellar abundances (1577); Effective temperature (449); Surface gravity
(1669); Metallicity (1031); Fundamental parameters of stars (555); Stellar photospheres (1237)

Supporting material: machine-readable tables

1. Introduction

Precise characterization of stellar spectra is a key ingredient for
understanding several fields of modern astrophysics, including
the physical and chemical properties and abundances of stars
(Asplund et al. 2009; Jofre et al. 2019), galactic formation, and
evolution (Audouze & Tinsley 1976; McWilliam 1997; Kobaya-
shi et al. 2006), as well as macro and microphysical phenomena
near the surface of stars (Miesch & Toomre 2009; Linsky 2017).
This accurate level of characterization is also needed for the
detection of extrasolar planets when using radial velocity
methods (Vanderburg et al. 2016).

With the current inflow of stellar spectra from ongoing and
future large observational spectroscopic surveys including,
SDSS-V (Kollmeier et al. 2017, R∼ 2000 and ∼22,500),
LAMOST (Liu et al. 2020, R∼ 7500; Cui et al. 2012; Deng
et al. 2012; Zhao et al. 2012, R∼ 1800), APOGEE (Ahumada
et al. 2020, R∼ 22,500), RAVE (Steinmetz et al. 2020,
R∼ 7500), GALAH (De Silva et al. 2015, R∼ 28,000), as well
as the upcoming WEAVE (Dalton et al. 2016, R∼ 5000 and
R∼ 20,000), 4MOST (de Jong et al. 2019, R∼ 20,000), and

PLATO (Miglio et al. 2017), stellar spectroscopy will be
providing ∼105 of golden opportunities to study the chemical
and dynamical properties of stars in the Galaxy to help
understand its buildup history and evolution.
Atmospheric fundamental stellar parameters, including the

effective temperatyre Teff, surface gravity glog , metallicity
[Fe/H], and microturbulent velocity vmic, as well as chemical
abundances of stars, are determined from the observed spectra
of a given star by fitting theoretical synthetic spectra based on
assumptions of geometric structures (1D versus 3D), radiative
transfer assumptions (local thermodynamic equilibrium, here-
after LTE; versus non–local thermodynamic equilibrium,
hereafter NLTE). Two classical methods are commonly used
to derive stellar atmospheric parameters from stellar spectra:
either (1) by iteratively fitting the observed spectra to synthetic
spectral models until a best-fit match is met at the corresp-
onding stellar parameters or (2) by measuring chemical
abundances determined from Fe I and Fe II lines from
equivalent widths (EW) measurements, and employing optim-
ization of excitation and ionization equilibrium by changing the
stellar parameters iteratively until trends with excitation
potential energies (χ) and reduced equivalent widths (REWs;

( )llog EW ) of the lines are minimized. While the former
method of spectral synthesis might outperform the latter in
crowded spectral regions or spectra dominated by strong lines
( ( )l > -log EW 4.5), the EW method generally requires less
calculation time and resources than synthetic spectra, making it

The Astronomical Journal, 165:145 (19pp), 2023 April https://doi.org/10.3847/1538-3881/acb7f0

© 2023. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms

of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

3
https://github.com/Li-Yangyang/LOTUS

1



a simpler and more widely applied tool to measure atmospheric
stellar parameters and chemical abundances.

Classical radiative transfer models for deriving stellar
parameters and chemical abundances from observed spectra
are most often LTE. Under LTE, the gas and chemical particles
throughout the stellar atmosphere satisfy the Saha–Boltzmann
excitation and ionization balance equations. Several stellar
atmospheric parameter tools implementing classical 1D and
LTE approximations for spectroscopic analyses already exist
and are widely used (e.g., MATISSE; Recio-Blanco et al. 2006;
MyGIsFOS; Sbordone et al. 2014; the APOGEE pipeline
ASCAP; Garcia Perez et al. 2016; GALA; Mucciarelli et al.
2013; DOOp; Cantat-Gaudin et al. 2014; ARES; Sousa et al.
2015; StePar; Tabernero et al. 2019; FASMA; Tsantaki &
Andreasen 2021; and iSpec; Blanco-Cuaresma et al. 2014;
Blanco-Cuaresma 2019).

The LTE assumption utilized by all of these tools is,
however, not physically motivated when applied to evolved
giants and/or metal-poor stars (Lind et al. 2012; Ezzeddine
et al. 2017; Mashonkina et al. 2017; Amarsi et al. 2020).
Inelastic collisional interactions between atoms and electrons or
neutral hydrogen in the atmospheres of cool stars usually drive
the local conditions in these atmospheres toward LTE. In
metal-poor and giant stars, the limited electron donors from
metals are not able to induce enough collisions to maintain the
collisional equilibrium in the line-forming regions (Hubeny &
Mihalas 2014), which drive line formation away from LTE
(Mihalas & Athay 1973; Bergemann et al. 2012). Quantified
deviations in abundances and stellar atmospheric parameters
from LTE are commonly known as NLTE effects
(Asplund 2005), which are mainly driven by deviations from
statistical equilibrium or kinematic equilibrium.

A small number of radiative transfer codes have started
taking NLTE effects into account for the determination of
chemical abundances, including PySME (Wehrhahn 2021),
which is based on the spectroscopic analysis code spectroscopy
made easy (SME; Piskunov & Valenti 2017). Kovalev et al.
(2019) has implemented NLTE departure coefficients in the
synthesis tools, allowing NLTE spectral synthesis for certain
corresponding absorption lines. More recently, an NLTE
version of Turbospectrum (Plez 2012) has been released
(Gerber et al. 2023), which also has NLTE departure
coefficients incorporated in their 1D, LTE spectral synthesis
models. However, both codes allow NLTE corrections for only
some elements via spectral synthesis, and stellar parameters
still need to be derived independently or iteratively via full
spectral fitting, which can be prone to degeneracies. Therefore,
a tool that can automatically derive stellar parameters
incorporating NLTE models, taking into account stellar
parameter dependencies, is highly needed, which is the main
motivation of this work and paper.

In this work, we present a fast, automatic, and robust
spectroscopic analysis tool, a (non-) LTE optimization tool for
uniform derivation of stellar atmospheric parameters (LOTUS).
LOTUS allows the derivation of Teff, glog , [Fe/H], and vmic

based on EW measurements input of Fe I and Fe II lines from
stellar spectra. Either or both LTE and NLTE modes can be
chosen for the benefit of comparisons. As compared to
traditional full NLTE calculations for each model, LOTUS
can significantly shorten the time of the determination of stellar
parameters using the NLTE assumption from several hours or
even days (Hauschildt et al. 1997) to ∼15–30 minutes for each

star. A Markov Chain Monte Carlo (MCMC) analysis is also
implemented to precisely estimate the uncertainties of the
derived parameters. We test and apply LOTUS on several
benchmark stars, and stellar surveys with available nonspec-
troscopic atmospheric parameters (from asteroseismology or
interferometry) for comparison and validation of our results.
The rest of the paper is organized as follows: In Section 2,

we present a detailed description of LOTUS, and describe the
input models for our NLTE calculations, as well as a
description of the different modules of the code. In
Section 3, we test our code and apply it to derive and compare
the derived parameters of benchmark stars, and stars with
nonspectroscopic derived parameters. In Section 4, we apply
the code to a large sample of metal-poor stars and discuss the
NLTE effects obtained via LOTUS. In Section 5, we present a
discussion on the caveats and limitations of the code, and
finally, in Section 6, we present a summary of our results and
conclude.

2. General Description

LOTUS is designed to derive the fundamental atmospheric
stellar parameters Teff, glog , [Fe/H], and vmic of FGK-type
stars, by implementing observed measurements of EW for Fe I
and Fe II lines as input. An example of a user input EW line list
is shown in Listing (1) below. The transition wavelength
(obs_wavelength in Å), element and ionization stage (Fe I
or Fe II), measured EW (obs_ew in mÅ), and excitation
potential excitation potential (EP; obs_ep in eV) are required.

Listing 1. Examples of an input file format of observed EW
measurements for Fe I and Fe II lines provided by users for
LOTUS. obs_wavelength are in Å, obs_ew in mÅ, and
obs_ep in eV].

obs_wavelength,element,obs_ew,obs_ep

4787.8266,FeI,44.2,3.00

4788.7566,FeI,65.5,3.24

4789.6508,FeI,83.3,3.55

6456.3796,FeII,59.2,3.9

...

LOTUS has three general modules of functionality. In a
general overview, (i) Fe I and Fe II abundances are derived by
interpolating a generalized curve of growth (GCOG) for each
line in a precomputed grid of theoretical EW in both LTE and
NLTE, following Boeche & Grebel (2016). (ii) The stellar
parameters are then derived by minimizing the slopes for
excitation and ionization equilibrium, iteratively using a global
minimization module, and finally, (iii) the uncertainties of the
derived atmospheric parameters are estimated utilizing an
MCMC algorithm. We describe each of these modules in detail
in Section 2.2 below, after listing the input and radiative
transfer models used in Section 2.1.

2.1. Input Models

2.1.1. Stellar Atmosphere Models

LOTUS incorporates 1D, LTE MARCS stellar atmospheric
models (Gustafsson et al. 1975, 2008), covering a wide range
of stellar parameters typical for FGK stars.
Spherical atmospheric models were used for glog < 3.5;

otherwise, plane-parallel models were adopted. The grid of
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MARCS model atmosphere available online4 offers reasonable
coverage for the stellar parameters; however they exhibit wide
gaps in effective temperature (steps of ∼250 K), surface gravity
(steps of ∼0.5 cgs), and metallicity (steps of ∼0.25–0.50 dex)
to optimally explore the parameter space. We utilize the
MARCS interpolation subroutine iterpol_marcs.f5 writ-
ten by Thomas Masseron, to produce a higher-resolution grid,
with our final parameter grid ranging from 4000 to 6850 K for
Teff (steps of 50 K), glog from 0.0 to 5.0 (steps of 0.1), [Fe/H]
from −3.5 to +0.5 (steps of 0.5), and vmic from 0.5 to 3.0
km s−1

(steps of 0.5 km s−1
).

2.1.2. Iron Model Atom

Computing theoretical NLTE Fe I and Fe II EWs requires the
input of a comprehensive iron model with up-to-date radiative
and collisional atomic data. For our EW grid calculations, we
adopt a well-tested Fe I/Fe II model atom containing 846 Fe I
and 1027 Fe II lines Ezzeddine et al. (2016, 2017, 2020). The
atom includes absorption line transitions spanning the near-UV
to the near-IR, extending the range of wavelength from ∼1000
to 105 Å. The model also carefully considers hydrogen
collision and electron collision processes from quantum atomic
data, particularly implementing ion-pair production and
mutual-neutralization processes from Barklem (2018). Exten-
sive details on the buildup of the atom and the corresponding
atomic data are presented in Ezzeddine et al. (2016), Ezzeddine
et al. (2020).

2.1.3. Non-LTE Radiative Transfer Computations

We utilized the NLTE radiative transfer code MULTI2.3 to
solve for statistical equilibrium populations and derive the
theoretical NLTE EW for the Fe I and Fe II lines in our atom.
The code utilizes the approximate lambda iteration (Rybicki &
Hummer 1991) to iteratively determine the populations using
the comprehensive Fe I/Fe II model atom described in
Section 2.1.2. MULTI2.3 also solves for LTE populations
using the classical Saha and Boltzmann equations, which is
output as a departure coefficient, bi, where
bi= ni(NLTE)/ni(LTE) (Wijbenga & Zwaan 1972), where n
is the level population for the corresponding line transition i.

2.1.4. Line List Selection

The line list selection is crucial for the accurate derivation of
Fe I and Fe II chemical abundances and stellar parameters using
the EW method, especially for cooler stars (e.g., FGK stars)
because they have much denser spectral line regions containing
blended lines. Therefore, we choose a comprehensive list of
Fe I and Fe II from the Gaia-ESO line list (Jofre et al. 2014;
Heiter et al. 2015, 2021), covering the wavelength ranges from
4750 to 6850Å and from 8500 to 8950Å. Additional lines
from the R-Process Alliance (RPA) survey (e.g., Hansen et al.
2018; Sakari et al. 2018; Ezzeddine et al. 2020; Holmbeck et al.
2020) have also been added to account for lines common in
metal-poor stars, with corresponding atomic data and refer-
ences in Roederer et al. (2018). We combine iron lines from
both line lists, removing any duplicates in the process. Our final
line list is presented in Table 1. Future LOTUS releases should

be easily able to extend the line lists to bluer and redder lines in
the UV and IR, respectively.

2.2. Key Modules

Below we describe in detail the key components and
modules of the LOTUS functionalities. An illustrated flow
diagram of the workings of the code is also shown in Figure 1,
demonstrating the connection between the different modules.

2.2.1. EW Interpolation Module

Traditional curve of growth (COG) methods to derive
chemical abundances usually employ simplistic models,
typically computed at fixed Teff, glog , [Fe/H], and vmic for
each line. For some lines, however, EW can have strong
dependencies on multiple atmospheric stellar parameters in a
given parameter space. Figure 2 demonstrates these dependen-
cies, where EW variation from our computed NLTE grid is
shown as a function of Teff glog and vmic for the Fe I line at

4070.768Å (left panel), and the Fe II lines at 6247.545Å (right
panel), respectively. The metallicity for both plots has been

Figure 1. A flow diagram describing the working modules of LOTUS. Three
main modules are used to derive the stellar parameters and their uncertainties:
(i) an interpolation module, (ii) a global minimization module, and (iii) an
uncertainty estimation module. Input includes EW measurements of Fe I and
Fe II of the absorption lines measured in the spectra. Users can define the
number of σ clipping required to remove outliers (see Section 2.4.3 for details).
Additionally, a halt condition for the value of the smallest allowable
minimization function threshold can also be defined by users (see Section 2.4.3
for details).
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fixed at [Fe/H]=−2.00 for demonstration purposes. We
observe that, at a fixed [Fe/H], increasing Teff will decrease
EW of the Fe I line, while EW being mostly insensitive to glog
variation; for Fe II lines, however, increasing Teff will increase
EW while increasing glog will decrease EW. For both lines,
EW will increase as vmic increases, as vmic delays the saturation
by spreading absorption into a wider wavelength band. These
EW-stellar parameter dependencies have been qualitatively
proven in Chapter 17.5 of Hubeny & Mihalas (2014). Thus, to
take into account such important dependencies in our codes,
which can affect our derived abundances and thus our stellar
parameter derivation, we compute a GCOG for each Fe I and
Fe II line in our line list. We define the GCOG for any given
line i as follows:

( ) ( )nT AgGCOG : , log , , EW Fe .i ieff mic

A GCOG is thus a generalization of the well-known COG
onto a higher-dimensional mapping of EWaA(Fe) Alterna-
tively, COGi can be obtained by fixing Teff glog and vmic for a
given GCOG. GCOGs have been implemented in previous
studies such as Osorio et al. (2015), Boeche & Grebel (2016).
We thus provide interpolated GCOGs, which are stored as
libraries in our code for every line in our line list (see
Section 2.1.4). The GCOGs are then utilized in the optim-
ization module afterward to derive the Fe I and Fe II
abundances.

2.3. Abundance Determination Module

To derive the Fe I and Fe II abundances, we fit multivariate
polynomials to the GCOG of each line, by
deriving the relationship between the iron abundance of the
line with Teff, glog , vmic, and EW, denoted as ( )A Fe

( )n=P T g, log , , EWeff mic . The detailed form of P can be
written as follows:

( ) ( ) ( ) ( ) ( )å
+ + + 

a T g vlog EW , 1
i i i i n

i i i i
i i i i

eff mic

1 2 3 4

1 2 3 4
1 2 3 4

where im (m= 1, 2, 3, 4) is the polynomial power of each of the

3 stellar parameters (Teff, glog , and vmic) as well as EW.

Possible values for im are positive integers, where the sum of all

the powers should less than or equal to the power degree of the

polynomial n. ai i i i1 2 3 4
is the product of the polynomial

coefficients of all the variables. The criteria for choosing n

depends on the behavior of theoretical GCOG models within a

range of stellar parameters and is described in more details in

Section 2.3.1 below.

2.3.1. Selection of Interpolator

We choose the line list utilized to derive stellar parameters to
be dependent on the spectral type of the star, as some lines can
be blended or strong in cool high metallicity stars, whereas
these same lines could also be blend-free and weaker for hotter,
metal-poor stars. Therefore, the multivariate polynomial
functions defined in Section 2.3 used to derive the abundances
determined from Fe I and Fe II lines depend on the choice of
line list for each spectral type. We thus pay special attention to
the choice of interpolator by identifying the best selection of
line list per spectral type (or stellar parameters). Therefore,
instead of interpolating in the whole parameter space for all the
lines, we predefine that the GCOGs fit only the abundances
determined from the lines we preselected and chose to use
within tested intervals of stellar parameters, according to an
initial guess of spectral types that the users can insert as an
input in the code. Our choice of the intervals of different stellar
parameters for each spectral types is listed in Table 2. For
example, if an initial guess is chosen such that the target star is
a metal-poor G giant, the multivariate polynomial will fit the
abundance of each line versus other atmospheric parameters
using the grid points falling into the range of Teff from 5200 to
6000 K, glog from 0.0 to 3.0, and [Fe/H] from −2.0 to −0.5.
In order to choose the best interpolator per spectral type (i.e.,

the optimal n) among several multivariate polynomials as
defined in Equation (1), we use a Bayesian Information Criteria
(BIC) to select the best polynomial function for each line based
on the mean residual differences between the theoretical EWs

Figure 2. Computed NLTE EW dependence as a function of Teff, glog , vmic for the Fe I line at 4070.77 Å, and EP = 3.24 eV (left), and the Fe II line at 6247.55 Å with
EP = 3.89 eV (right). Both lines have been computed at a fixed [Fe/H] = −2.0.
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at the nodes of our precomputed NLTE grid (computed at a
combination of Teff, glog , [Fe/H], and vmic), to the EWs
interpolated at these parameters. We assume that the optimal
model is among the polynomials with degree= 2,3,4,5. The
BIC was calculated such as follows:

( ) ( )= +n
n

k nBIC ln
SSR

ln , 2⎛⎝ ⎞⎠
where SSR is the sum of the squared residuals between the

theoretical EWs and the interpolated EWs from models at

specific nodes of the grid, and n is the sample size (here we

choose n= 4000 nodes in each spectral type interval). k is a

free parameter (including coefficients and slope intercept),

which can be calculated as k= +Cd
d

4, where d is the degree of

the polynomial, and 4 is chosen as the number of dependent

variables for each interpolated EW (namely, Teff, glog , [Fe/H],
and vmic).

We thus chose the best interpolator for each spectral type
interval as that with the lowest BIC value. In Figure 3, we show
the differences between the interpolated EW using the lowest
BIC interpolator as compared to the (noninterpolated) EW
directly from MULTI2.3, categorized as a function of stellar
spectral types (x-axis) and metalicities (different panels). We
observe that there exist no clear dependencies between
differences and spectral types and metalicities. The average
of differences is within 0.01 for all stellar spectral types and
metalicities. We predefine the default interpolated EW
uncertainty (also a threshold for the lowest acceptable BIC)
in LOTUS as 6 mÅ for each line. However, we also design the
code to allow users to input their acceptable uncertainty limits,
in which case LOTUS will drop a given Fe I or Fe II from the
line list if the computed BIC is larger than this uncertainty, and
will subsequently be excluded from the lines used to derive the
stellar parameters in the optimization module.

2.3.2. EP Cutoff

The NLTE abundances derived from low-excitation potential
Fe I can yield larger abundances as compared with those
derived from high-excitation Fe I and Fe II lines, especially
using 1D atmospheric models (Amarsi et al. 2016). Such
differences can reach up to 0.45 dex for some Fe I lines, and
can affect our derived stellar parameters as documented in
several studies including Bergemann et al. (2012), Lind et al.

(2012) as well as others. We thus follow previous literature
studies by introducing low-excitation potential cutoffs for Fe I
lines with EP(Fe I)< 2.7/2.5/2.0 eV for stars with [Fe/H]
<−0.5, depending on the number of Fe I and Fe II lines
measured in the stars and the optimization convergence criteria
(see Section 2.4); we conduct no cutoffs for stars with
[Fe/H]>−0.5.

2.4. Optimization Module

Once reliable line list and interpolators per spectral types of
input target stars have been chosen, as explained in
Section 2.3 above, the derived iron abundances from Fe I
and Fe II lines are fed into the optimization module with an
initial guess of the general type of the target star. We note that
users do not need to specify an initial guess of each stellar
parameter, as it suffices to only chose an initial guess of the
spectral type as an input to LOTUS, which is then assigned the
corresponding interpolation parameters interval as indicated
in Table 1.

2.4.1. Optimization Conditions

The general principle of optimization is to adjust the stellar
parameters iteratively to derive optimal combinations of stellar
parameters that can satisfy the following three conditions: (i)
excitation equilibrium, or minimizing the trend (i.e., slope) of
the Fe I abundances as a function of excitation potential EP, (ii)
ensuring ionization equilibrium or minimizing the differences
between the abundances derived from the Fe I and Fe II lines,
and (iii) minimizing the trend (i.e., slope) between the
abundances derived from the Fe I lines versus the
REWs, REW= ( )llog EW .
Therefore, we derive Teff by ensuring excitation equilibrium,
glog by ensuring ionization equilibrium, and vmic by minimiz-

ing the trend between Fe I abundances versus line strength
(REW). [Fe/H] was then determined by averaging the
abundances derived from the Fe I and Fe II abundances.

2.4.2. Targeted Optimized Object Function

In order to find the best combination of stellar parameters
that satisfy the optimization conditions defined in Section 2.4.1
within our parameter grid, we first combine these conditions
into an object function  , such as follows:

¯ ¯
( )

s s s
= + +

-c

c -


s s A A
, 3

,1

,1

2

REW,1

REW,1

2
1 2

1 2

2

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where the subscripts “1” and “2” correspond to Fe I and Fe II,

respectively. sχ,1 is the slope between Fe I abundances and EP,

and σχ,1 is its uncertainty, sREW,1 is the slope between the Fe I

abundances and REW, and σREW,1 is its uncertainty. Ā1 and Ā2
are the mean abundances for Fe I and Fe II, respectively, while

σ1−2 is the standard deviation of the differences between Ā1
and Ā2 . A converged solution is obtained at the combination of

Teff, glog , [Fe/H], and vmic, which minimizes  globally.

2.4.3. Global Minimization

To find the global minimization fit parameters within our
grid, we adopt a differential evolution algorithm implementing
a global minimization search. The goal is to minimize  by
starting with an initial population of candidate solutions, which

Table 1

Fe I and Fe II Line List Selected for LOTUS (See Section 2.1.4 for Details)

Species λ(Å) Elow(ev) loggf

Fe I 3440.61 0.00 −0.67

Fe I 3440.99 0.05 −0.96

Fe I 3447.28 2.20 −1.02

Fe I 3450.33 2.22 −0.90

Fe I 3451.91 2.22 −1.00

K K K K

Fe II 6149.24 3.89 −2.84

Fe II 6247.56 3.89 −2.44

Fe II 6369.46 2.89 −4.11

Fe II 6432.68 2.89 −3.57

Fe II 6456.38 3.90 −2.19

(This table is available in its entirety in machine-readable form.)
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are iteratively improved by retaining the fittest solutions that

yield a lower  values, until convergence for the best-fit

parameters is met (Storn & Price 1996). The advantage of a

differential evolution algorithm is that it has the benefit of

handling nonlinear and nondifferentiable multidimensional

objective functions while requiring few control parameters

to steer the minimization. For our code, we select 100 initial

populations (sets of solutions) with a combined rate of 0.3,

which is a crossover probability that depends on how fast the

algorithm moves to the next generation of populations. We

try different weights between 0.8 and 1.2, to maintain a

proper searching radius, at the same time making sure it does

not slow down the convergence speed. We adopt ~ - 10 5

as the absolute tolerance for each iteration. After each

iteration, we perform a 3σ clipping on the abundances

determined from the Fe I and Fe II lines to remove outliers.

We adopt 3 iterations of outlier removing in total as a

default; however, this number can be defined by the users

depending on the quality of their EW measurements. An

example of HD122563 with derived abundances of Fe I and

Fe II versus REW and EP at optimal atmospheric parameters

is shown in Figure 4.

2.5. Uncertainty Estimation Module

Since  is a function of the stellar parameters, it can be
described as ( ) (q =  T , logg,eff vmic). We can keep track of
how  changes along the perturbations around the optimal
solution θ*= ( *Teff , logg

*, vmic
*

); *Teff , logg
*, and vmic

* are the
parameters at the optimal solution. Indeed,  resembles a
likelihood function, which can be used to estimate the
uncertainties on each of our derived stellar parameters from
the Hessian matrix such as follows:

( ) ( ( ) ) ( )q q= -* *SE diag , 41

where the Hessian matrix for our objective function can be

written as

( ) ( ) ( )q
q q

q=
¶

¶ ¶
   i j, 1 , 3. 5

i j

For [Fe/H], we adopt the standard deviation of the Fe I lines as

the uncertainty.
However, in the above uncertainty framework, one strong

assumption is that the standard errors obtained are symmetric
around the mean values. This is only true if the probability

Figure 3. Differences (in mÅ) between the interpolated EWs (using interpolators chosen at the lowest BIC values) and the EWs from NLTE theoretical calculations
computed directly using MULTI2.3. Each violin plot shows the distribution of the means of such differences for a random 4000 nodes within the spectral type
interval of the precomputed EW library. Red lines are marked as the means of the distributions while purple lines are for the medians. The differences are shown for
different metallicity ranges as indicated in each panel.
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distribution function of the derived parameters is a normal
distribution. Normally, this is not the case. We, therefore, use a
Bayesian framework to robustly determine the uncertainties on
our derived stellar parameters. First, we construct a log-
likelihood function using the same terms as in Equation (3)
such as follows:

( ) ( ) ( )å p= - +



s

n
nlog

1

2
log 2 , 6

i

i

i

i

3

2

⎜ ⎟
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⎝

⎞
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⎤
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where ni can be written as

( )s= +n f s , 7i i i
2 2 2

where si represent the slopes sχ,1, sREW,1, and ¯ ¯-A A1 2

individually, while σi is the corresponding standard deviation.

Introducing f will compensate the underestimation of the

variance of each parameter assuming such an additional term is

proportional to the model itself.
We then perform the slice sampling algorithm (Neal 2003),

which is a type of MCMC implemented in PyMC3, to complete
the estimation of the posterior probability of each parameter.
This method adjusts the step size automatically on every
proposed candidate to match the profile of the posterior
distribution without the need to choose a transition function.
Such a framework ensures higher efficiency as compared to
classical MCMC algorithms, such as Metropolis and Gibbs
(Metropolis & Ulam 1949; Geman & Geman 1984). For all
stellar parameters, we derive a normal distribution around the
mean optimized value obtained from the global minimization
module described in Section 2.4.3, and a standard deviation
determined from the standard errors of the Hessian matrix.

We use the logarithmic of f as an input variable to the MCMC
sampler with a uniform distribution ranging from −10 to 1. In the

sampling process, we consider 4 running chains with each
containing 1000 draw steps and 200 tunes steps. Figure 5 shows
the output from our posterior distribution of the stellar parameters
and their uncertainty regions for a benchmark metal-poor star,
HD122563. On the same plot, we also show the optimized
parameters derived using our global optimization module (blue
lines intersection), which agree very well (Figures 6 and 9).

3. Testing LOTUS

We test LOTUS by deriving the atmospheric stellar
parameters of benchmark stars with well-constrained nonspec-
troscopic and fundamental stellar parameters, to quantify the
precision of our derived parameters and their uncertainties.
Below we present the results of these tests. We list the derived
stellar parameters (Teff, glog , [Fe/H], and vmic) using LOTUS
in LTE and NLTE of all the stars considered from Section 3.1
to 3.4 below, the sources of the EW, the number of Fe I and
Fe II lines, and the excitation potential cutoffs for each star in
Table 3.

3.1. HD122563, HD140283, and Arcturus

The two metal-poor standard stars HD122563, HD140283,
and the benchmark giant Arcturus have been widely analyzed
independently in the literature. Their stellar parameters have
therefore been derived spectroscopically (using 1D, 3D, LTE,
and NLTE assumptions, or a combination of each), as well as
using nonspectroscopic methods and fundamental equations
(e.g., using photometric calibrations, asteroseismology, or
interferometric angular diameters). All three stars are dubbed
benchmark stars that have been selected as comparison standards
for the largest stellar surveys, especially in the Gaia-ESO
spectroscopic survey (Jofre et al. 2014; Heiter et al. 2015). We

Figure 4. Iron abundances determined from Fe I (black circles) and Fe II (red circles) line vs. reduced equivalent widths (upper panel) and excitation potential energies
χ (lower panel) for selected lines in the metal-poor benchmark star HD122563. The parameters indicated on the top are the optimal values derived using the global
minimization (differential evolution) algorithm in LOTUS. Dotted lines are the best linear fits to the Fe I lines in each panel. The labels at the upper left corner of each
panel are the slopes of the fits and their corresponding standard deviations.
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adopt EW measurements of each benchmark star from literature
publications as follows: HD122563 (Frebel et al. 2013),
HD140283 (Frebel et al. 2013), Arcturus (Jofre et al. 2014).
Frebel et al. (2013) measured their EW from high-resolution
spectroscopic observations (R∼ 35,000 in the blue and ∼28,000
in the red) of HD122563 and HD140283, obtained with the
MIKE spectrograph (Bernstein et al. 2003) on the Magellan–
Clay telescope at Las Campanas. A R� 70,000 spectrum was
used to derive EW for Arcturus from the Very Large Telescope
(VLT) spectrum (Jofre et al. 2014). We derive the stellar
parameters of each star and their uncertainties using LOTUS. We
then compare our NLTE and LTE parameters with several
independent determinations from the literature, as shown in
Figure 6.

HD122563. We derive Teff= 4620± 59 K, glog = 1.21±
0.19, vmic= 1.89± 0.06 km s−1, and [Fe/H]=−2.76± 0.05
in NLTE, and Teff= 4528± 42 K, glog = 0.66±
0.12, vmic= 1.84± 0.03 km s−1, and [Fe/H]=−2.98± 0.03.
Creevey et al. (2012) derived Teff= 4598± 41 K using an

angular diameter observed with CHARA interferometry and
Palomar interferometeric observations. Heiter et al. (2015)
derived Teff= 4587± 60 K based on the angular diameters and
bolometric fluxe calibrations, and glog = 1.44± 0.24 from
fitting evolutionary tracks. Karovicova et al. (2018)
updated CHARA interferometry with more data and derived
an effective temperature of Teff= 4636± 37 K. Later in
Karovicova et al. (2020), they updated their data reduction
pipeline and derived a new Teff= 4635± 34 K. Our NLTE Teff
derived for HD122563 agrees very well with Teff determined in
these studies using interferometric angular diameters, within
∼30 K, while the LTE Teff deviated by ∼100 K from the
reference values.
And for glog results from the recent updated asteroseismic

analysis are in agreement with the NLTE values in our work,
which is close to the upper limit of 1σ confidence interval.
For glog , Creevey et al. (2012) used evolutionary track

models to derive glog = 1.60± 0.04 for HD122563, while
Creevey et al. (2019) utilized the Hertzsprung telescope

Figure 5. Marginalized posterior distributions of the stellar parameters of HD122563 based on the log-likelihood function in Equation (6). 1σ, 2σ, and 3σ uncertainty
regions are denoted as solid contours in the 2D plot. The histograms show the marginalized posterior distributions for each parameter, respectively. Blue intersecting
lines show the values obtained from our global optimization module.
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Figure 6. Comparison of our derived stellar parameters, Teff, glog , and [Fe/H], using LOTUS to reference literature values derived nonspectroscopically (for
Teff and glog ) for HD122564, HD140283, and Arcturus. The mean NLTE values (red dashed lines) with their 1σ confidence intervals (red shadow areas) and
our mean LTE values (blue dashed lines) with their 1σ confidence intervals (blue shadow areas), compared to to reference stellar parameters (black dots with
error bars) for references on the x-axis. References are as follows: Q1996 for Quirrenbach et al. (1996); G1999 for Griffin & Lynas-Gray (1999); L2008 for
Lacour et al. (2008); R2011 for Ramirez & Allende Prieto (2011); C2012 for Creevey et al. (2012); F2013 for Frebel et al. (2013); H2015 for Heiter et al.
(2015); C2015 for Creevey et al. (2015); A2016 for Amarsi et al. (2016); K2018 for Karovicova et al. (2018); C2019 for Creevey et al. (2019); K2020 for
Karovicova et al. (2020).
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(SONG network node) to accurately measure the surface
gravity of HD122563 using asteroseismology for the first time,
and derived glog = 1.39± 0.01. In their paper, they also
compare to Gaia Data Release 2 parallax-based

glog = 1.43± 0.03, which shows high consistency between
these methods. Karovicova et al. (2020) also used evolutionary
track models to derive glog = 1.404± 0.03 for the same star.
Our LOTUS glog = 1.22 in NLTE matches within ∼0.1 dex the
asteroseismic and parallax glog in Creevey et al. (2019),
whereas the LTE value is 0.6 dex lower. This gives us strong
confidence in LOTUS’ ability to derive NLTE surface gravities
from spectroscopic observations.

We then compare our NLTE and LTE [Fe/H] with those
derived by Frebel et al. (2013) in 1D, LTE; and with those
derived by Amarsi et al. (2016) in 3D, NLTE. Our NLTE [Fe/
H] agrees with that determined in both studies within error
bars, although Amarsi et al. (2016) derived a higher [Fe/
H]=−2.5, which is likely due to considering 3D effects in
their study.

HD140283. We derive Teff= 5681± 67 K , glog = 3.58±
0.16, vmic= 2.17± 0.16 km s−1, and [Fe/H]=−2.64± 0.05
in NLTE, and Teff= 5689± 59 K, glog = 3.29± 0.17,
vmic= 2.09± 0.14 km s−1, and [Fe/H]=−2.72± 0.04 in
LTE. Heiter et al. (2015) derived a mean Teff= 5774± 77 K
for the subgiant in their Gaia-ESO benchmark sample from
photometric calibrations. Additionally, Creevey et al. (2015)
used the VEGA interferometer on CHARA to determine
Teff= 5534± 103 K (using AV= 0.0 mag), and
Teff= 5 647± 105 K (using AV= 0.1 mag). Karovicova et al.
(2018) similarly derived an updated Teff= 5787± 48 K from
additional interferometric data points, and afterwards updating
their values to 5792± 55 K in Karovicova et al. (2020). Our
LTE and NLTE Teff for HD140283 agree with the interfero-
metric values derived in Creevey et al. (2015) within 120 K and
those derived in Karovicova et al. (2018, 2020) within 80 K.

Heiter et al. (2015) derived glog = 3.58± 0.11 using
fundamental relations and adopting independently derived
parallax for the star. Creevey et al. (2015) also derived a mean

glog = 3.69± 0.03, similarly from a combination of parallax
and evolutionary track models. Both glog determined by
parallax methods in Heiter et al. (2015), Creevey et al. (2015)
agree well with our NLTE value to within 0.05 dex.
Karovicova et al. (2020) derived glog = 3.65± 0.0 from
evolutionary models. Our LTE values is, unexpectedly,
0.3 dex lower.

Similar to HD122563, we compare our [Fe/H] with 1D,
LTE and 3D, NLTE abundances in Frebel et al. (2013), Amarsi
et al. (2016), respectively. Given that both studies derived their
abundances by fixing Teff and glog , while ours were derived
simultaneously using the global optimization method adopted
in LOTUS, we warrant serious direct comparison with their
values. Nevertheless, our NLTE values agree very well with
that derived in Frebel et al. (2013) within 1σ, whereas it is
0.3 dex lower as compared to Amarsi et al. (2016).

Arcturus. We derive Teff= 4306± 41 K, glog = 1.61±
0.15, vmic= 1.79± 0.02 km s−1, and [Fe/H]=−0.63± 0.04
in NLTE, and Teff= 4364± 47 K, glog = 1.68± 0.17,
vmic= 1.76± 0.02 km s−1, and [Fe/H]=−0.64± 0.05 in
LTE. For Teff Quirrenbach et al. (1996) used the MkIII
Optical Interferometer on Mt. Wilson to determine Arcturus’
angular diameter and derived Teff= 4303± 47 K. Griffin &
Lynas-Gray (1999) collected all literature results of

interferometry observations up to their study and derived

Teff= 4290± 30 K. Lacour et al. (2008) used the International

Occultation Timing Association 3 telescope interferometer in

the H band to derive Teff= 4295± 26 K. Additionally,

Ramirez & Allende Prieto (2011) fit theoretical spectral energy

distributions (SEDs) from visible blue bands to mid-infrared to

derive Teff= 4286± 30 K. Finally, Heiter et al. (2015) derived

a mean of 4274± 83 K from different interferometric measure-

ments, even though they warranted against using Arcturus as a

benchmark given the large dispersion they obtained. All

interferometric Teff agree very well with our NLTE Teff to

within ∼20 K. Our LTE value is, however, ∼80 K higher.
Ramirez & Allende Prieto (2011) derived glog =

1.66± 0.05 from HIPPARCOS parallax and isocrhone fitting,

while Heiter et al. (2015) derived a fundamental

glog = 1.64± 0.09 based on seismic mass, and

glog = 1.82± 0.15 from a compilation of parallax-based

measurements. Our NLTE glog agrees very well with both

results, whereas our LTE values are 0.1 dex higher.
Griffin & Lynas-Gray (1999) derived [Fe/H]=

−0.68± 0.02 by comparing theoretical 1D, LTE SEDs with

observed flux. Ramirez & Allende Prieto (2011) used a

differential abundance analysis relative to the solar spectrum to

derive [Fe/H]=−0.52± 0.04. Our NLTE and LTE [Fe/H] are
within 0.05 dex from each other, and agree well with the values

derived in Griffin & Lynas-Gray (1999) while being ∼0.1 dex

as compared to differential abundance analysis in Ramirez &

Allende Prieto (2011).

3.2. GES Metal-poor Stars

We also test LOTUS on five metal-poor benchmark stars

proposed by Hawkins et al. (2016) from the Gaia-ESO survey

(GES). They determined Teff via the infrared flux method

(IRFM; Casagrande et al. 2011) using multiband photometry

and glog by fitting to evolutionary stellar models. The Fe I and

Fe II EWs for the sample stars were adopted from Hawkins

et al. (2016), who used different EW measurements from

different pipelines from the GES survey to derive their

parameters. We use their EPINARBO EWs derived with the

FAMA pipeline following Magrini et al. (2013), as those were

derived consistently. We compare our derived Teff and glog

using LOTUS to those in Hawkins et al. (2016) using the same

Fe I and Fe II lines. We find that our NLTE parameters are on

average within 5± 29 K from their Teff and 0.11± 0.06 for

glog on average, whereas our LTE parameters are within

18± 22 K and 0.22± 0.08 dex for Teff and glog respectively.

Star-by-star comparisons are shown in Figure 7. Our NLTE

parameters agree better with the nonspectroscopic parameters

from Hawkins et al. (2016), as compared to LTE.
A larger glog dispersion is obtained for HD106038, though,

with [Fe/H]=−1.25 of −0.25 and −0.45, for both our NLTE

and LTE results, respectively. With a 3D, NLTE analysis, and

Gaia EDR3 parallax, Giribaldi et al. (2021) derived

glog = 4.29± 0.04, which is in excellent with our NLTE

glog = 4.29± 0.08. Additionally, only 35 Fe I lines used by

Hawkins et al. (2016) were used to derive the stellar parameters

in LOTUS, which decreases the accuracy of optimal values (see

Section 5 for more details).
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3.3. GES-K2 Stars

We also test LOTUS by deriving atmospheric stellar

parameters of a sample of Kepler-2 (K2) star sample, which

was also observed using a high-resolution UVES

spectrograph on the VLT as part of the GES survey. Worley

et al. (2020) combined the high-resolution spectroscopic

observations from UVES, photometry, and precise asteroseis-

mic data from K2 to derive self-consistent stellar parameters for

these stars, which represent a good nonspectroscopic sample to

compare our stellar parameters derived with LOTUS to.
We adopt the EW measurements from Worley et al. (2020)

derived from high-resolution UVES spectroscopic observa-

tions. We chose a total of 52 stars from their sample. The

majority of the stars in the sample are metal-rich with [Fe/H]
>−0.5. Only six stars have [Fe/H]<−0.5. Worley et al.

(2020) used the IRFM to determine photometrically calibrated

Teff for all their stars following Casagrande et al. (2010, 2011).
The average uncertainties reported in Worley et al. (2020)

for Teff and glog of the GES-K2 stars are±65 K and±0.02,

respectively. We note that these values are close to our

parameter grid resolution. We derive the stellar parameters for

the 52 GES-K2 stars using LOTUS. Our results for glog and

Teff as compared to Worley et al. (2020) are shown in Figure 8

as a function of [Fe/H]. We find that the average differences

between the LOTUS parameters are D̄Teff= 74± 6 K, and D̄
glog = 0.14± 0.01 in LTE, and D̄Teff= 16± 6 K, D̄
glog = 0.10± 0.01 in NLTE. Both LTE and NLTE parameters

agree well with the photometric and asteroseismic parameters

from Worley et al. (2020) within their error bars; however our

NLTE parameter derivations agree better for both Teff and

particularly for glog .

3.4. CHARA Interferometry Stars

Finally, we apply and test LOTUS on a sample of stars
with effective temperatures derived homogeneously from
interferometric angular diameters observed by CHARA from
Karovicova et al. (2020, 2021a, 2021b) in Figure 9. Karovicova
et al. (2020) presented a study of interferometric observations of
ten late-type metal-poor dwarfs and giants, whereas Karovicova
et al. (2021a, 2021b) showed a similar analysis for several metal-
rich stars. For three of their stars (namely, HD122563,
HD140283, and HD175305), we have already presented their
analysis in Sections 3.1 and 3.2. We, therefore, do not include
the analysis of these stars again in this section. EW measure-
ments of the total 12 stars were adopted from different literature
sources including Takeda et al. (2005), Morel et al. (2014),
Heiter et al. (2015), Takeda & Tajitsu (2015), and Liu et al.
(2020). The average uncertainties of the interferometric Teff
estimated by Karovicova et al. (2020, 2021a, 2021b) are within
1%. The authors derived their glog values by fitting Dartmouth
isochrones (Dotter et al. 2008) to their interferometric Teff. They
thus derive median uncertainties for glog of 0.09 for their metal-
poor star sample, 0.05 for their dwarf sample, and 0.07 for the
giants–subgiants sample.
We find that on average the differences in Teff and glog

between the reference values (Karovicova et al.
2020, 2021a, 2021b) and those derived with LOTUS are within
26 K and 0.01 in NLTE, respectively. The NLTE parameters
derived for all the stars agree within 1σ as compared to the
reference values, except for the glog value of HD121370 with
[Fe/H]= 0.29, which deviated by 0.12 for LTE and 0.18 for
NLTE. Heiter et al. (2015), however, reported a seismic glog
for this star of 3.83± 0.02 dex, which agrees very with our
NLTE result of 3.91± 0.06 within 1σ.

Figure 7. Differences in glog and Teff between values derived using LOTUS versus reference values from Hawkins et al. (2016) for five GES metal-poor stars in their
sample. Blue circles are LTcE differences, while red squares are NLTE. Dashed lines in both panels are the zero baselines. Average systematic offsets are included in
the text of each panel.
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4. Non-LTE Corrections

The stars presented in Section 3 for testing LOTUS on

benchmark stars with Teff and glog derived using nonspectro-

scopic methods cover a limited range of metallicities (mostly

with [Fe/H]>−1.0), as well as mainly dwarfs and subgiant

stars. However, NLTE stellar parameter “corrections” (also

known as NLTE effects, defined as ΔNLTE= parameter

(NLTE) - parameter(LTE)) have been shown in the literature to

be more significant and important for evolved (giants and

supergiant) metal-poor stars Lind et al. (2012), Ezzeddine et al.

(2017). Thus, to be able to test our derived NLTE “corrections”

on a larger, more metal-poor sample of giant stars, we derive

LTE and NLTE stellar parameters for the RPA giant metal-

poor star sample from Hansen et al. (2018), who derived the

stellar parameters of 107 metal-poor stars ([Fe/H]<−1.0)

selected based on their r-process enhancement from several

surveys. The EW measurements for Fe I and Fe II lines were

adopted from Hansen et al. (2018), measured from their du

Pont spectroscopic observations. We thus add the RPA sample

stars to our test sample stars presented in Section 3, resulting in

a significant sample covering a wide representative range of

stellar parameters from Teff= 4000 to 6500 K, glog = 0.0 to

4.5, and [Fe/H]=−3.0 to −0.5. The derived stellar parameters

for the RPA stars, in LTE and NLTE, are also listed in Table 3.
We derive the NLTE corrections for [Fe/H] (denoted asΔ[Fe/

H]) for the full sample of stars. We plot the results as a function of

[Fe/H]LTE in Figure 10. As expected, Δ[Fe/H] increases toward
lower metallicities. Such effects have been shown in multiple

previous studies as well (for, e.g., Mashonkina et al. 2011;

Bergemann et al. 2012; Lind et al. 2012; Amarsi et al. 2016;

Ezzeddine et al. 2017). Ezzeddine et al. (2017) derived a linear
relation between the NLTE correction for [Fe/H], Δ[Fe/H], and
[Fe/H](LTE) from 20 ultra metal-poor stars with [Fe/H]<−4.0,
such as follows:

[ ] [ ] ( )D = - -Fe H 0.14 Fe H 0.15. 8LTE

They found that their relationship can also be extended for
metal-poor benchmark stars at −4.0< [Fe/H]<−2.0. It is
therefore useful to rederive this equation using our full stellar
sample analyzed uniformly using LOTUS, for comparison.
Following Ezzeddine et al. (2017), we rederive the relation
between Δ[Fe/H] and [Fe/H](LTE) using our sample of stars.
We rederive the relation by (i) choosing only the stars with
[Fe/H](LTE)<−0.5, and (ii) using the stars with [Fe/H]
(LTE)<−2.0. We thus derive Δ[Fe/H]=

( )[ ] ( )

[ ]

( )[ ] ( )

[ ]

( )

-  - 
< -

-  - 
< -

0.06 0.01 Fe H 0.06 0.02 ,

for Fe H 0.5

0.16 0.02 Fe H 0.32 0.06 ,

for Fe H 2.0.
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LTE
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⎧
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The two relations from these equations for Δ[Fe/H], as well

as that derived in Ezzeddine et al. (2017), which are shown in
Figure 10, fit to our test sample stars from Section 3 as well as
the RPA sample. We find that, even though the three relations
agree within uncertainties (colored bands in Figure 10), they
can, however, yield slightly different NLTE corrections
depending on the metallicity range for which they were fit.
For, e.g., our relation derived using stars with [Fe/H]<−2.0
underestimates the NLTE [Fe/H] correction as compared to
Ezzeddine et al. (2017) by ∼0.1 dex at [Fe/H]=−2.0, while

Figure 8. Same as in Figure 7 for the GES-K2 sample stars from Worley et al. (2020).
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using the relation derived with [Fe/H]<−0.5 can under-

estimate the NLTE correction up to 0.2 dex. This demonstrates

that, while these relations can provide useful first-order

estimates of the NLTE corrections, a complete NLTE analysis

(e.g., using LOTUS) is needed for precise estimation of the

corrections, as the former can be dependent on the incomplete

sample of stars or metallicity range.

Similarly, we derive ΔNLTE corrections for Teff, glog , and

vmic for our sample stars. Again, we define the NLTE

correction for Teff as ΔTeff= Teff(NLTE) - Teff(LTE), for

glog as Δ glog = glog (NLTE) - glog (LTE), and for vmic as

Δvmic= vmic(NLTE) - vmic(LTE). To best represent these

corrections as a function of the other stellar parameters, we

divide our sample into box plots grouped into different Teff and

Figure 9. Same as in Figure 7 for the CHARA sample stars from Karovicova et al. (2020, 2021a, 2021b).

Figure 10. NLTE corrections Δ[Fe/H] vs. [Fe/H]LTE determined for this work’s star sample using LOTUS. Different markers indicate stars from different studies as
indicated. The yellow dashed line is a linear fit from Ezzeddine et al. (2017) for stars with [Fe/H] < −4.0. The blue dotted–dashed line is our fit to the stars for [Fe/
H] < −0.5, and the black dotted line is our fit to the stars with [Fe/H] < −2.0.
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glog bins, as a function of [Fe/H] on the x-axis. The results are

shown in Figure 11.
In what follows, we discuss the NLTE corrections we obtained

for each parameter as a function of the other parameters, namely

Teff, glog and [Fe/H]. We also compare our result to the

theoretical NLTE stellar parameter corrections derived by Lind

et al. (2012). We note, however, that our comparisons are affected

by the fact that our analyzed stars do not cover exactly the same

parameter space as theirs, and that our stellar parameters have

been derived by LOTUS simultaneously, i.e., taking into account

their interdependencies, as explained in details in Section 2,

whereas Lind et al. (2012) derived their Δ NLTE corrections for

each parameter independently, by fixing all the others. As shown

in Figure 11, we find that the Teff derived in NLTE is generally

higher than those in LTE for very metal-poor ([Fe/H]< −2.5)

supergiants and giant stars ( glog < 2.0), with NLTE corrections

up to 100 K, whereas lower Teff are obtained in NLTE as
compared to LTE as glog and [Fe/H] increases. Lind et al.

(2012) derived their Teff using both excitation and ionization

equilibrium by fixing gravity and other stellar parameters in the

process. Similarly, they also restrict their Fe I line transitions to

certain cutoffs, choosing only lines with EP> 3.5 eV. They found

that their ionization ΔTeff yielded lower LTE Teff as compared to
NLTE (see their Figure 5), whereas their excitation ΔTeff yielded

Figure 11. Box plots showing the NLTE corrections of stars considered in this work for stellar parameters Teff, glog , [Fe/H], and vmic as derived using LOTUS. Box
plots are color-coded for two ranges of Teff for each glog range, indicated at the top of each column. For intervals with only one star from our sample, boxes are
replaced with dots and their error bars.
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negligible positive corrections for Teff< 4500. More pronounced
negative corrections were obtained for horizontal branches,
supergiants, and extremely metal-poor stars, which are not
covered in our sample stars. As noted above, our derived Teff
using LOTUS implement the contribution from both excitation
and ionization equilibrium, by taking into account their Teff- glog
interdependencies. In that context, a thorough comparison of our
ΔTeff results to either excitation or ionization theoretical
corrections derived by Lind et al. (2012) is not very useful;
however, similar to their results, we generally find that the NLTE
corrections for the bulk of our stars are affected by less than 50 K
(and up to 100 K) in the considered parameter range, which is
within our derived uncertainties.

We also derive Δ glog for our sample stars. As expected, the
NLTE corrections for glog increase toward lower gravities,
lower metallicities, and higher temperatures. On average, our
corrections are ∼+ 0.3−0.5 for [Fe/H]<−2.0, ∼+0.1−0.3
for −2.0< [Fe/H]<−1.0, for giants and supergiant stars with

glog < 2.0, with outliers reaching up to 1.0 dex. For stars with
glog > 2.0, the NLTE corrections can be up to ∼0.3 depending

on metallicities. These results broadly agree with the theoretical
corrections derived in Lind et al. (2012). It can thus be
concluded that LTE analyses can strongly underestimate the
surface gravities of stars, particularly for warmer metal-poor
giants, and should thus be reliably derived in NLTE for reliable
consequent stellar population analyses.

Finally, the NLTE corrections for vmic are generally small
and are within 2.0 km s−1 from those derived in LTE. The
corrections are mainly positive for lower metallicity giants and
supergiant stars, as in particular their Fe I lines are more
strongly affected by NLTE, which leads to lower microturbu-
lent velocities in LTE as compared to NLTE. Our results are
generally consistent with the Δvmic derived by Lind et al.
(2012) from their theoretical models.

5. Caveats

We have so far described and demonstrated that LOTUS can
be used as a reliable tool to derive NLTE and LTE atmospheric
stellar parameters. There are, however, some caveats that
warrant pointing out which can affect the results, particularly
for stars occupying certain parameter spaces in our grids.

EW interpolation. A key component of LOTUS is its
interpolation module that expresses the EW as a function of stellar
parameters, using the GCOG. As explained in Section 2.3.1, we
conduct thorough tests to choose the best polynomial interpolator
for each spectral type. However, we find that some models are not
adequate to reliably fit the GCOG, particularly for parameter
regions where EW variations have smaller dependencies on stellar
parameters. This is demonstrated in Figure 2, where the EW of the
Fe I line at 4077Å varies less strongly with vmic at higher Teff and
lower glog . Thus, the iron abundances derived from these
interpolated models can deviate up to 0.5 dex in abundances from
those computed directly from MULTI2.3 output (i.e., noninterpo-
lated EWs). Such large offsets are likely due to lower than optimal
orders of polynomials chosen for some spectral types in these
parameter regions (see Section 2.3.1 for details), where the EW of
those lines is not sensitive to the variation of atmospheric stellar
parameters, or is too small (close to zero) at most atmospheric
stellar parameters. We emphasize, though, that the number of such
lines is limited and should not impact the statistical properties of the
interpolation performance for the lines considered in our line list, as
shown in Figure 3.

Number of Fe I lines and S/N. The derived atmospheric stellar
parameters could be affected by the number of Fe I and Fe II lines
utilized in the parameter optimization in LOTUS. We, therefore,
investigate the derived uncertainties of the stellar parameters using
LOTUS as a function of the number of Fe I lines and the signal-to-
noise ratio (S/N) as shown in Figure 12. To demonstrate our
results over a representative statistical sample of stars covering a
wide range of S/N, we use the full star sample from Section 4,
supplemented by metal-poor stars from Ezzeddine et al. (2020),
which cover higher S/N values (S/N> 100) than those in Hansen
et al. (2018). We can see in Figure 12 that the uncertainties
derived for each stellar parameter as a function of the number of
Fe I and S/N decrease as a function of increasing the number of
Fe I and increasing the S/N. For stars with Nlines> 100 or stars
with Nlines< 100 and S/N> 100, the uncertainty is <50 K for
Teff,<0.1 dex for glog ,<0.05 dex for [Fe/H], and<0.02 km s−1

for vmic. For stars with Nlines< 100 and S/N<60, however, the
uncertainties can reach up to 200K for Teff, 0.5 dex for glog ,
0.3 dex for [Fe/H], and 0.2 km s−1 for vmic. It is notable to
mention, though, that higher uncertainties are more strongly
correlated to lower S/N (<40). We thus recommend that users try
to utilize good-quality EW measurements for their Fe I (and Fe II)
lines to obtain reliable results and smaller uncertainty derivation in
LOTUS. This is particularly useful if the number of measured EW
lines for a star is too small (<100). Additionally, as the number of
Fe II lines usually detected in cool FGK stellar spectra can be
smaller than the number of Fe I lines (on the order of 5–25 lines,
depending on the [Fe/H] of the star), we moreover recommend
that users try to maximize the number of Fe II EW line
measurements in the stars, if possible, to increase the precision
of the parameter determination. In future work, we plan to test
LOTUS on a sample of low-resolution spectroscopic observations
(as compared to high-resolution data for the same stars) to
accurately quantify the effects of the spectral resolution on the
results of the stellar parameters derived by LOTUS.
K-type stars. The atmospheric stellar parameters, particularly
glog , derived for K-type stars using LOTUS can have larger

uncertainties than those derived for other spectral types. Tsantaki
et al. (2019) noted that glog determined for K-type stars using
ionization balance between Fe I and Fe II lines is underestimated
depending on the choice of Fe II lines used in the optimization.
We investigate this effect on our GES-K2 sample, in which most
of the stars are K-type giants or subgiants. We find that both our
NLTE and LTE results can indeed overestimate the surface
gravities up to 0.1 dex as compared to asteroseismic values,
depending on the selection of Fe II lines.
3D models. Because our atmospheric stellar models are

limited to 1D, our determined iron abundances might suffer
from 3D effects due to atmospheric inhomogeneities, hor-
izontal radiation transfer, as well as the differences in the mean
temperature stratification (Amarsi et al. 2016) between 1D and
3D models. The latter can lead to underestimated abundances
derived from Fe I and Fe II lines, on average up to 0.1 dex in
1D, NLTE as compared with Fe abundances derived using 3D,
NLTE. Such effects are, however, more strongly pronounced
for Fe II lines than than those for Fe I as explained in Amarsi
et al. (2016). We find that adding a 0.1 dex correction for our
1D, NLTE [Fe/H] for HD122563 brings it closer to the 3D,
NLTE [Fe/H] derived in (Amarsi et al. 2016).
On the other hand, we find that a difference of 0.2 dex as

compared to Amarsi et al. (2016) is still present when adding
the same [Fe/H] correction for HD140283. This can be
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explained by the stellar parameter differences adopted in both
studies, as well as the difference between line lists. However, as
noted in Amarsi et al. (2016), Amarsi et al. (2022), 3D
corrections can nevertheless be smaller than the NLTE
corrections determined for low metallicity evolved stars.
Therefore, including 1D, NLTE corrections in the determina-
tion of Fe I and Fe II lines can significantly improve the derived
stellar parameters as compared to 1D, LTE.

6. Summary and Conclusions

We present the open-source code, LOTUS, developed to
automatically derive fast and precise atmospheric stellar
parameters (Teff, glog , [Fe/H], and vmic) of stars in 1D, LTE,
and 1D, NLTE using Fe I and Fe II equivalent width
measurement from stellar spectra.

LOTUS implements a GCOG interpolation to derive
abundances from a precomputed grid of theoretical NLTE
EW in a high-resolution and dense spectral parameter space.

The GCOG takes into account the EW dependencies on stellar

atmospheric parameters. A global differential evolution optim-

ization algorithm, tailored to the spectral type of the star, is then

used to derive the fundamental stellar parameters. In addition,

LOTUS can be used to estimate precise uncertainties for each

stellar parameter using a well-tested MCMC algorithm.
We tested our code on several benchmark stars and stellar

samples with reliable nonspectroscopic (from asteroseismic,

photometric, and interferometric observations) measurements

for a wide range of parameter space typical for FGK stars. We

find that our NLTE-derived stellar parameters for Teff and glog

are within 30 K and 0.1 dex for benchmark stars including the

metal-poor standard stars, HD140283 and HD122563, as well

as Arcturus. We also test LOTUS on a large sample of Gaia-

ESO (GES) dwarf stars from Hawkins et al. (2016) and GES-

K2 with asteroseismic gravities from K2, as well as stars with

CHARA interferometric observations. Similarly, we find that

LOTUS performs very well in reproducing the

Figure 12. Derived stellar parameter uncertainties as a functions of the number of Fe I lines and S/N in our sample of stars from Section 4, in addition to metal-poor
stars with high S/N from Ezzeddine et al. (2020).
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nonspectroscopic Teff and glog on average within <20 K and

<0.1 dex in NLTE, as compared to ∼70 K and ∼0.2 dex

in LTE.
Moreover, we apply LOTUS on a large sample of metal-poor

stars from the RPA (Hansen et al. 2018). We use the RPA

sample as well as the test sample stars to derive NLTE stellar

parameter corrections for our stars and review the Δ[Fe/H]
versus [Fe/H](LTE) relation derived in Ezzeddine et al. (2017).
We find that our NLTE corrections agree with theoretical

corrections predicted by Lind et al. (2012), where general

trends of corrections were found to increasing toward metal-

poor evolved stars, as expected.
We test LOTUS thoroughly for its performance for different

spectral types and parameter space. We find that, despite some

caveats discussed in Section 5, LOTUS can overall be reliably

used to provide fast and accurate NLTE derivation for a wide

range of stellar parameters, especially metal-poor giants, which

can be strongly affected by deviations from LTE. We thus

strongly recommend that the community use it to apply for the

spectroscopic analyses of stars and stellar populations.

We provide open community access to LOTUS, as well as

the precomputed interpolated LTE and NLTE EW grids

available on Github , with documentation and working

examples on the Readthedocs .
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Appendix A
Line List of Fe I and Fe II in LOTUS

Appendix B
Derived Stellar Parameters of the Target Stars in this Work

Table 2

Interpolation Intervals Chosen for Different Stellar Types Considered in LOTUS

Stellar Parameter Types Intervals

Teff (K) K [4000, 5200]
G [5200, 6000]
F [6000, 6850]

logg supergiant [0.0, 0.5]
giant [0.5, 3.0]

subgiant [3.0, 4.0]
dwarf [4.0, 5.0]

[Fe/H] very metal-poor [−3.5, −2.0]
metal-poor [−2.0, −0.5]
metal-rich [−0.5, 0.5]

17

The Astronomical Journal, 165:145 (19pp), 2023 April Li & Ezzeddine



Table 3

Derived Stellar Atmospheric Parameters of the Target Stars

LTE NLTE

Star Name Teff glog [Fe/H] vmic NFei NFeii χFei Cutoff Teff glog [Fe/H] vmic NFei NFeii χFei Cutoff

(K) (cgs) (dex) (km s−1
) (ev) (K) (cgs) (dex) (km s−1

) (ev)

HD122563 4528 ± 42 0.66 ± 0.12 −2.98 ± 0.03 1.84 ± 0.03 72 20 2.7 4620 ± 59 1.21 ± 0.19 −2.76 ± 0.05 1.89 ± 0.06 72 20 2.7

HD140283 5689 ± 59 3.29 ± 0.17 −2.72 ± 0.04 2.09 ± 0.14 96 15 2.0 5681 ± 67 3.58 ± 0.16 −2.64 ± 0.05 2.17 ± 0.16 96 15 2.0

Arcturus 4364 ± 47 1.68 ± 0.17 −0.64 ± 0.05 1.76 ± 0.02 70 8 0.0 4306 ± 41 1.61 ± 0.15 −0.63 ± 0.04 1.79 ± 0.02 70 8 0.0

GES Metal-poor Stars (1)

HD102200 6167 ± 52 3.98 ± 0.09 −1.26 ± 0.02 0.62 ± 0.09 33 4 2.5 6057 ± 75 4.02 ± 0.09 −1.26 ± 0.04 0.98 ± 0.28 37 4 2.5

HD106038 6108 ± 51 4.05 ± 0.07 −1.42 ± 0.02 0.59 ± 0.07 35 5 2.5 6124 ± 60 4.29 ± 0.08 −1.35 ± 0.03 0.8 ± 0.18 37 5 2.5

HD175305 5113 ± 84 2.51 ± 0.25 −1.47 ± 0.05 1.61 ± 0.2 45 6 2.5 5059 ± 70 2.56 ± 0.2 −1.43 ± 0.04 1.61 ± 0.17 45 6 2.5

CHARA Interferometry Stars (2)

HD131156 5538 ± 46 4.55 ± 0.1 −0.2 ± 0.03 0.99 ± 0.05 90 9 0.0 5501 ± 47 4.53 ± 0.1 −0.2 ± 0.03 1.04 ± 0.05 90 9 0.0

HD146233 5845 ± 38 4.39 ± 0.08 0.04 ± 0.02 0.91 ± 0.04 68 6 0.0 5788 ± 39 4.37 ± 0.08 0.04 ± 0.03 0.96 ± 0.04 68 6 0.0

HD186408 5842 ± 46 4.33 ± 0.1 0.03 ± 0.03 1.1 ± 0.03 96 11 0.0 5783 ± 49 4.31 ± 0.09 0.03 ± 0.03 1.15 ± 0.04 96 11 0.0

GES-K2 Stars (3)

22074607−1055493 4833 ± 44 2.32 ± 0.13 −1.03 ± 0.03 1.22 ± 0.02 138 16 2.7 4778 ± 42 2.33 ± 0.13 −0.99 ± 0.03 1.23 ± 0.02 138 16 2.7

22172723−1633039 4597 ± 28 2.1 ± 0.1 −0.82 ± 0.02 1.32 ± 0.01 136 15 2.5 4540 ± 26 2.08 ± 0.09 −0.81 ± 0.02 1.36 ± 0.01 136 15 2.5

22094505−1051031 4371 ± 60 2.04 ± 0.18 −0.5 ± 0.05 1.57 ± 0.03 134 13 0.0 4299 ± 46 1.95 ± 0.15 −0.49 ± 0.05 1.6 ± 0.04 133 13 0.0

R-Process Alliance Stars (4)

J03193531−3250433 6353 ± 24 3.0 ± 0.05 −2.97 ± 0.01 2.81 ± 0.15 11 5 2.7 6345 ± 201 3.75 ± 0.05 −2.77 ± 0.1 2.8 ± 0.15 11 5 2.7

J02401075−1416290 6041 ± 116 4.4 ± 0.19 −0.89 ± 0.08 0.87 ± 0.12 35 9 1.2 5991 ± 107 4.34 ± 0.18 −0.85 ± 0.08 0.74 ± 0.13 35 9 1.2

J00233067−1631428 5354 ± 175 2.93 ± 0.47 −2.53 ± 0.12 2.12 ± 0.2 28 13 2.7 5297 ± 24 3.0 ± 0.05 −2.45 ± 0.03 1.7 ± 0.17 28 13 2.7

Note. References: (1) Hawkins et al. (2016); (2) Karovicova et al. (2020, 2021a, 2021b); (3) Worley et al. (2020); (4) Hansen et al. (2018).
† For HD121370, the parameters are obtained with the average of runs inputting 3 different EW line lists: EPINARBO in Heiter et al. (2015), BOLOGNA in Heiter et al. (2015), and Takeda et al. (2005). In LTE, there

are NFeI = 79, 121, 46; NFeII = 6, 9, 4 lines in these three line list respectively; in NLTE, NFeI = 79, 121, 47; NFeII = 6, 9, 4.

(This table is available in its entirety in machine-readable form.)
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