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Abstract

The remarkable recent advances in protein structure prediction have enabled computational modeling of
protein structures with considerably higher accuracy than ever before. While state-of-the-art structure pre-
diction methods provide self-assessment confidence scores of their own predictions, an independent and
open-access system for protein scoring is still needed that can be applied to a broad range of predictive
modeling scenarios. Here, we present iQDeep, an integrated and highly customizable web server for pro-
tein scoring, freely available at http://fusion.cs.vt.edu/iQDeep. The underlying method of iQDeep employs
multiscale deep residual neural networks (ResNets) to perform residue-level error classifications, and
then probabilistically combines the error classifications for protein scoring. By adjusting the error resolu-
tions, our method can reliably estimate the standard- or high-accuracy variants of the Global Distance
Test metric for versatile protein scoring. The performance of the method has been extensively tested
and compared against the state-of-the-art approaches in multiple rounds of Critical Assessment of Tech-
niques for Protein Structure Prediction (CASP) experiments including benchmark assessment in CASP12
and CASP13 as well as blind evaluation in CASP14. The iQDeep web server offers a number of conve-
nient features, including (i) the choice of individual and batch processing modes; (ii) an interactive and
privacy-preserving web interface for automated job submission, tracking, and results retrieval; (iii) web-
based quantitative and visual analyses of the results including overall estimated score and its residue-
wise breakdown along with agreements between various sequence- and structural-level features; (iv)
extensive help information on job submission and results interpretation via web-based tutorial and help
tooltips.

© 2023 Elsevier Ltd. All rights reserved.

accuracy estimation category’ with various deep
learning-based methods performing well. Among

Introduction

Protein scoring is a critical component of protein
structure prediction.’™ Protein scoring has been
gaining noticeable attention in the Critical Assess-
ment of Protein Structure Prediction (CASP) exper-
iments under the accuracy estimation category.®™
Promising progress has been made in the CASP14

0022-2836/© 2023 Elsevier Ltd. All rights reserved.

them is our previously published method QDeep,
introducing several new advances for the first time
including the incorporation of the deep residual neu-
ral networks (ResNets) architectures for protein
scoring, effective integration of predicted inter-
residue interaction with other sequential and
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structural features, and the use of ensemble learn-
ing. With rapid new developments in the field of pro-
tein structure prediction,'®'? however, the scoring
resolution used in our original QDeep method no
longer represents the state of the art. Recent
advances in deep learning-based protein structure
prediction methods such as AlphaFold2'° have
enabled computational prediction of protein with
considerably higher accuracy than what has been
achieved before. As such, the development of
high-resolution protein scoring methods commen-
surate with the increasing accuracy of structure pre-
diction methods is of critical importance.

While our original QDeep method uses the Global
Distance Test Total Score (GDT-TS)'® as the
ground truth metric, the recent advances in struc-
ture prediction’'''*" "¢ and refinement’’*' make
the high-accuracy variant of the Global Distance
Test (GDT-HA)*? more suitable as the ground truth
metric.  State-of-the-art methods such as
AlphaFold2'® and RoseTTAFold'" attain very high
accuracy in terms of GDT-TS, but the GDT-HA met-
ric reveals subtle performance differences between
the methods (Supplementary Figure S1) due to
the sensitivity of GDT-HA to minor structural devia-
tions. As such, a high-resolution scoring function
that can estimate the GDT-HA metric with high fide-
lity can capture minute structural differences in
structural models predicted from the state-of-the-
art protein structure prediction methods, enabling
improved model selection and ranking (Supple-
mentary Text S2). Furthermore, an integrated pro-
tein scoring framework that can alternate between
the standard and high accuracy variants of the Glo-
bal Distance Test on-demand in order to control the
scoring resolution, can enhance the versatility of
protein scoring by covering a broad range of predic-
tive modeling scenarios. Open availability of such a
versatile method via a publicly accessible web ser-
ver has the potential for broad dissemination and a
field-wide impact.

Here we present iQDeep, an integrated and fully
configurable web server for protein scoring using
multiscale deep learning models. iQDeep employs

multiscale deep residual neural networks
(ResNets) to perform residue-level error
classifications at multiple predefined error

resolutions, and then probabilistically combines
the predictions from the multiscale error classifiers
for protein scoring. Building on the original QDeep
method, we train a new set of ResNet classifiers
to perform residue-level ensemble error
classifications at finer-grained error resolutions
explicitly targeting the GDT-HA metric. The
residue-level error classifications from the
multiscale ResNets can then be probabilistically
combined for quantitating the accuracy of a
predicted protein model. By adjusting the
resolutions and probabilistic combination of the
multiscale ResNets, our method can reliably
estimate the standard- or high-accuracy variants

of the Global Distance Test metric for protein
scoring. The interactive and privacy-preserving
web interface of iQDeep allows customizable job
submission, tracking, and results retrieval with
quantitative and visual analysis along with
extensive help information on job processing and
results interpretation. The performance of the
underlying methods has been rigorously tested
and compared against the state-of-the-art
approaches in multiple rounds of CASP
experiments including benchmark assessment in
CASP12 and CASP13 and blind evaluation in
CASP14. The iQDeep web server is freely
available at https://fusion.cs.vt.edu/iQDeep.

Results and discussion

Our previously published method QDeep?® per-
formed quite well on CASP12 and CASP13 bench-
marking datasets. Additionally, it has been tested in
a strict blind mode in CASP14 under the group
name “Bhattacharya-QDeep”. We use the CASP14
dataset to evaluate the performance of iQDeep and
compare it against 25 groups participating in the
CASP14 accuracy estimation category, including
our own group “Bhattacharya-QDeep”. The
CASP14 benchmarking dataset consists of 10,494
models for 70 targets submitted by the CASP14 ter-
tiary structure predictors. Given the progress made
in protein structure prediction, we use the high-
accuracy variant of the Global Distance Test
(GDT-HA) as the ground truth metric for evaluation.
For performance assessment, we use twofold eval-
uation criteria: (1) the ability to reproduce the
ground truth scores, and (2) the ability to distinguish
acceptable from incorrect models.

Reproducing ground truth scores

To evaluate the ability to reproduce the ground
truth scores, we calculate the global Pearson
correlation (Pearson r) and the average absolute
difference (AGDT-HA) between the estimated
scores and the ground truth GDT-HA scores for all
models in the CASP model pool. Meanwhile,
higher Pearson r and lower AGDT-HA indicate an
enhanced ability to reproduce the ground truth
scores. Figure 1 shows the performance of
iQDeep and the groups participating in the
CASP14 accuracy estimation category, including
our own group “Bhattacharya-QDeep” employing
the original QDeep method. The results
demonstrate that iQDeep achieves state-of-the-art
performance. For example, iQDeep attains a
Pearson r of 0.646, outperforming “Bhattacharya-
QDeep”, and better than most of the CASP14
predictors except “BAKER-ROSETTASERVER”,
“BAKER-experimental”, “3DCNN_prof”, and
“RaptorX-QA” groups.'”**** Remarkably, iQDeep
attains the lowest AGDT-HA of 0.119, which is sig-
nificantly better than second best performer
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Figure 1. Reproducibility of ground truth scores for iQDeep and 25 groups participating in the CASP14 accuracy
estimation category in terms of (A) global Pearson correlation coefficient and (B) average absolute difference
between the estimated scores and the ground truth GDT-HA scores in the CASP14 dataset.” iQDeep is not a

participating group in CASP14.

“RaptorX-QA”, let alone our previously published
method QDeep implemented in “Bhattacharya-QD
eep”. It is interesting to note that “BAKER-ROSET
TASERVER” and “BAKER-experimental”’, despite
attaining high Pearson r, underperform in terms of
AGDT-HA. In contrast, iQDeep and two CASP14
groups “RaptorX-QA” and “3DCNN_prof” deliver
consistent performance. In summary, iQDeep exhi-
bits an excellent all-round ability to reproduce
ground truth scores.

Distinguishing acceptable from incorrect
models

In addition to reproducing the ground truth scores
with high fidelity, the ability to discriminate between
acceptable and non-acceptable prediction is
critically important. We measure the separation
between acceptable (GDT-HA > 0.3°°) and incor-
rect models using a receiver operating characteris-
tic (ROC) curve. As shown in Figure 2, the Area
under the ROC Curve (AUROC) of iQDeep and
our CASP predictor “Bhattacharya-QDeep” employ-
ing the original QDeep method achieved AUROC of
0.826 and 0.812, respectively. Once again, iQDeep
outperforms our previously published method
QDeep. The AUROC ofiQDeepis only slightly
lower than the top performing CASP predictor
“BAKER-ROSETTASERVER”, and better than
multiple well-known CASP groups includinq
“ProQ2”,*#° “ProQ3",° “ProQ3D”, and “VoroMQA”.
Overall, iQDeep can reliably discriminate between
acceptable and incorrect predictions.

Materials and methods

Overview of iQDeep pipeline

Figure 3 shows the flowchart of iQDeep
webserver consisting of front-end and back-end
modules. The front-end module performs the input
validation, allows users to select customizable job
parameters, monitors the job processing, and
enables results retrieval with quantitative and
visual analysis. The back-end module processes
the job, manages the job queue, and ensures web
storage management and retrieval of job-related
metadata. Users are able to protect the privacy of
their jobs by selecting a private mode of job
processing and results retrieval.

Front-end module. The front-end of the web
server provides an interface for job submission,
performs input validation, and returns the results
back to the user. While the default job submission
mode requires minimum user input that includes a
valid protein structure and a job name, users can
perform on-demand customization of the job
parameters including selecting the scoring mode,
scoring resolution, and job privacy. Users may
select “single” or “batch” scoring mode for
processing just a single or a pool of models,
respectively. The scoring resolution parameter
provides users the choice of selecting a specific
set of multiscale deep learning models trained at
error resolutions targeting the GDT-TS metric as
implemented in our original QDeep work (scoring
resolution “standard”), or the newly introduced



M.H. Shuvo, M. Karim and D. Bhattacharya

Journal of Molecular Biology 435 (2023) 168057

1.0 1

0.8

o e .

0.6

0.4 A

True Positive Rate

iQDeep” (0.826)

ProQ3D (0.808)
ProQ2 (0.801)
Kiharalab (0.798)
KUHHAN (0.794)
SASHAN (0.789)

0.2 A

0.0 Ornate (0.764)

BAKER-ROSETTASERVER (0.870) ——~-
BAKER-experimental (0.859)
RaptorX-QA (0.855)

- 3DCNN_prof (0.845) ===

Bhattacharya-QDeep (0.812)

Bhattacharya-QDeepU (0.774)

GraphQA (0.755)
graph-sh (0.754)
VoroCNN-GEMME (0.738)
ProQ4 (0.720)

MASS (0.716)
LamoureuxLab (0.713)
VoroCNN-GDT (0.712)
VoroMQA-dark (0.706)
VoroCNN (0.698)
ropius0 (0.676)

LAW (0.646)
VoroMQA-light (0.611)
Jones-UCL (0.491)

0.4

0.6 0.8

False Positive Rate

Figure 2. Distinguishability of acceptable vs. incorrect models for iQDeep and 25 groups participating in the
CASP14 accuracy estimation category using a receiver operating characteristic (ROC) curve. The numbers reported
are the Area under the ROC Curve (AUROC) values.* iQDeep is not a participating group in CASP14.
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Figure 3. The flowchart of iQDeep web server for protein scoring consisting of the front-end module for automated
job submission with input validation and interactive results analytics and the back-end module for processing and

managing jobs.

finer-grained error resolutions explicitly targeting
the GDT-HA metric (scoring resolution “high”).
The privacy parameter allows the users to
configure the privacy of their job. The input
validation ensures the correctness of all the inputs
to ensure seamless job execution. The front-end
module also offers a web-based analysis of the
scoring results through easily interpretable and
interactive web-based plots and three-dimensional

molecular visualizations. An optional emalil
address can also be provided for automated
status updates of the job via email.

Back-end module. The back-end module of
iQDeep performs job management using the
queuing layer, controls the database and web
storages, processes protein scoring jobs in our in-
house compute cluster, and maintains client—



M.H. Shuvo, M. Karim and D. Bhattacharya

Journal of Molecular Biology 435 (2023) 168057

server communication. The back-end module
actively communicates with the front-end module
to accept validated jobs and return the results
upon successful job completion. After a job is
successfully submitted, the queuing layer of the
back-end module starts preparing the job for
processing using a first-in-first-out (FIFO) job
scheduler. During the job processing, the queuing
layer first stores the job-related information and
parameters in the web storage and the
corresponding job metadata in the database. It
then sends the job to the computational node for
processing based on the selected job parameters,
while continuously monitoring the computational
resource availability in our in-house compute
cluster. The back-end module maintains the
client—server protocol by establishing a two-way
communication with the front-end module during
the entire job processing phase to periodically
send the job updates to the front-end. Upon
completion of the job, the back-end module sends
the results back to the front-end for interactive and
interpretable web-based visual and quantitative
analytics, with an optional email notification sent
to the user, if an email address is provided.

The architecture of multiscale deep learning
models for protein scoring

iQDeep employs multiscale deep residual neural
networks (ResNets) to perform multi-resolution
protein scoring. The standard scoring resolution
represents our original distance-based protein
scoring method QDeep.? It employs an ensemble
of four deep ResNets, each independently trained
to classify the residue level errors at four different
error thresholds of 1, 2, 4, and 8A to target the
GDT-TS'® metric. The method leverages several
distance-based alignment features, sequence pro-
file information, consistency between the predicted
and observed structural properties, and several bio-
physical energy terms, as described in Supple-
mentar¥ Text S1 and in the published article of
QDeep.© The residue-level ensemble error esti-
mates are then combined to estimate an accuracy
score of a protein model, thereby estimating a prob-
abilistic equivalent of the GDT-TS metric.

Building on our prior work, in iQDeep we train a
new set of ResNet classifiers having an identical
architecture, as described in Supplementary Text
S1, to perform residue-level ensemble error
classifications at finer-grained error resolutions of
0.5, 1, 2, and 4A to explicitly target the GDT-HA
metric. The predictions from the finer-grained error
classifiers can then be probabilistically combined
for high-resolution protein scoring, as follows,

NO.5+ N1+ N2 + N4
4
where NO.5, N1, N2, and N4 represent the fraction of

residues estimated to be within 0.5, 1, 2, and 4A from
the corresponding residues in the experimental

iQDeep score =

structure. The estimated score ranges between 0 and 1
with a higher score indicating better model accuracy.

Web server

Hardware and software. The iQDeep web
server runs on a Linux x86_64 cluster with
2.50GHz Intel Xeon Silver 32-core processors.
The underlying client—server architecture of
iQDeep is implemented using server-side PHP
and client-side JavaScript scripting languages
and deployed through an Apache web server
with Common Gateway Interface (CGl). iQDeep
uses MySQL relational database management
system (RDBMS) for storing, retrieving, and
updating job-related information. Additionally, it
uses the WebGL-based JavaScript library
3Dmol.js?’ for interactive 3D molecular visualiza-
tion. The iQDeep pipeline for protein scoring is
implemented using Python. The webserver is
compatible with most modern web browsers
including Google Chrome, Mozilla Firefox, Safari,
and Microsoft Edge.

Input and output. The iQDeep web server
allows users to submit a job using only two
required fields including a job name and a valid
protein structure for scoring. However, users
can customize several job parameters including
scoring mode, scoring resolutions, and job
privacy. An optional email address can also be
provided for automated status updates of the job
via email. The web server offers interactive
results update using easy-to-interpret
quantitative and visual analytics. In addition to
providing global estimated accuracy scores, the
web server provides the residue-level local
accuracy estimation to identify reliable and
unreliable regions of an input protein model
along with interactive residue-wise visualization
of estimated local accuracies. A 3D
representation of the protein structure with an
option to download the corresponding structure
file is also provided. Users can also analyze
several structural properties through easily
interpretable web-based graphical alignment
between the observed and predicted structural
properties including secondary structure, solvent
accessibility, and residue-residue contact maps
at various distance thresholds. The full set of
results, including the global and local accuracy
scores and text files containing the additional
analyses, can be downloaded as a compressed
zipped archive.
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