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Spatiotemporal ecological chaos enables
gradual evolutionary diversification
without niches or tradeoffs
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'Department of Physics, Stanford University, Stanford, United States; Department of
Applied Physics, Stanford University, Stanford, United States

Abstract Ecological and evolutionary dynamics are intrinsically entwined. On short timescales,
ecological interactions determine the fate and impact of new mutants, while on longer timescales
evolution shapes the entire community. Here, we study the evolution of large numbers of closely
related strains with generalized Lotka Volterra interactions but no niche structure. Host-pathogen-
like interactions drive the community into a spatiotemporally chaotic state characterized by
continual, spatially-local, blooms and busts. Upon the slow serial introduction of new strains, the
community diversifies indefinitely, accommodating an arbitrarily large number of strains in spite of
the absence of stabilizing niche interactions. The diversifying phase persists — albeit with gradually
slowing diversification — in the presence of general, nonspecific, fitness differences between strains,
which break the assumption of tradeoffs inherent in much previous work. Building on a dynamical-
mean field-theory analysis of the ecological dynamics, an approximate effective model captures

the evolution of the diversity and distributions of key properties. This work establishes a potential
scenario for understanding how the interplay between evolution and ecology — in particular coevo-
lution of a bacterial and a generalist phage species — could give rise to the extensive fine-scale
diversity that is ubiquitous in the microbial world.

Editor's evaluation

This important study explores the question of “what gives rise to diversity in ecological settings?”.
By considering the interplay between ecology and evolution, this study proposes a scenario of
spatiotemporal chaos, in which interactions between strains drive large changes in the relative abun-
dances of strains. The presented theoretical approach is compelling and goes beyond the current
state of the art. This innovative theoretical work is of broad interest to the field of ecology and
evolution.

Introduction

A remarkable discovery of the DNA sequencing revolution is the vast diversity of microbes (Biller
et al., 2015; Acinas et al., 2004; Kashtan et al., 2017, Rosen et al., 2018). Increasingly it has become
clear that this diversity extends far below the level of conventionally defined species to finer and finer
genetic scales (Bonilla-Rosso et al., 2020; Kashtan et al., 2014; Rosen et al., 2015; Tikhonov et al.,
2015), and in some cases, a great multitude of strains coexist and compete in the same spatial loca-
tion. Why doesn’t “survival of the fittest” drive almost all strains extinct, at least locally? Traditional
explanations invoke the existence of a great many spatial or functional niches which limit competition
between strains, down to “micro-niches” involving finer differences. However, especially for bacteria
in relatively simple environments such as the marine cyanobacterium Prochlorococcus (Kashtan et al.,
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2014), does it make sense to postulate nano- or pico-niches, ad absurdum? Or is a statistical descrip-
tion of the small subtle differences more appropriate? Community ecology models with many similar
strains competing for a mixture of resources have been much studied, but in their simplest manifes-
tations the maximum number of coexisting strains is limited by the number of chemicals via which
they interact, which in effect create a series of niches, each of which can be occupied by at most one
strain (Chesson, 1990). Perfect “tradeoffs” are sometimes invoked to enable higher diversity (Posfai
et al.,, 2017; Beardmore et al., 2011, Erez et al., 2020) but even tiny differences will destroy this
coexistence (Caetano et al., 2021).

An alternative to the multi-niche scenario is the neutral theory of ecology which postulates that
species are similar enough that they are somehow ecologically equivalent, with their population
dynamics dominated by stochastic births, deaths, and migration. The predictions of this theory for
abundance and spatial distributions are intriguingly similar to some data (Volkov et al., 2003; Volkov
et al., 2007). However for microbes with short generation times and huge populations without tight
bottlenecks, the neutral scenario is not viable: Even if the differences between strains could be
neglected over the long times for which they have coexisted, the dynamics from stochastic fluctua-
tions are far too slow. Instead, rapid population dynamics with large changes of relative abundance
are often observed (Ignacio-Espinoza et al., 2020, Martin-Platero et al., 2018). "Selection”, in the
broad sense of differential population growth rates, is clearly involved. Thus if a highly diverse popula-
tion appears “neutral” in some respects (including close-to-perfect tradeoffs) this must emerge from
the complex ecological and evolutionary dynamics; it should not be assumed.

It is often said that pathogens promote diversity (Bever et al., 2015; Rodriguez-Valera et al.,
2009, Thingstad, 2000; Thingstad et al., 2014). However, there is thus far little understanding of
how or under what circumstances ongoing coevolution of hosts and pathogens could cause and
sustain extensive coexisting within-species diversity. Understanding this process theoretically is a
long-term goal, towards which the present work is a step. To make progress, we need to distill the
general phenomenon of fine-scale diversity to its most basic, and endeavor to develop potential
scenarios in which evolution, coupled with ecology, might play out. For closely related strains, there
is no compelling reason why interactions with siblings should be much stronger than those between
distant cousins. Thus, we ask: Without assuming niche-like interactions, perfect tradeoffs, or spatial
gradients, can a highly diverse collection of closely related strains stably and robustly coexist? If so,
can such a highly diverse “phase” evolve and continue to evolve and diversify? If the evolution is fast,
some amount of diversity will always exist (although the common ancestors of the population at any
time may be recent and few). Thus we consider the most difficult regime for diversity: when the evolu-
tionary dynamics are much slower than the ecological and spatial population dynamics.

In recent work (Pearce et al., 2020), referred to henceforth as PAF, we developed a new scenario
for the coexistence of multiple closely related strains that are assembled all together into a community,
leaving aside the question of their past or future evolution (or even how the community is assembled).
In this scenario, we explored a particular key feature of models of many similar strains: the nature of
interactions between pairs of strains. It is known that competition for resources in a well-mixed envi-
ronment leads to positive correlations: if more A individuals are worse for B, then more B are worse
for A. We consider the opposite case where the interactions are anticorrelated. This can arise if the
competition is one-on-one: if A beats B, then B loses to A. A compelling biological motivation for
anticorrelated interactions arises from a different scenario: a spectrum of generalist phage strains that
prey, with varying efficacies, on a spectrum of bacterial strains. If a particular phage strain, a, does
better than average against a particular bacterial strain, b, then more b individuals are better for a,
and more a are worse for b, leading to anticorrelated interactions. While we are particularly interested
in coevolving bacteria-phage diversity, to build up an understanding of the complex eco-evolutionary
dynamics, we focus in this paper on simpler models that — as we have shown in PAF — capture many
of the key features.

Host-pathogen, and other anticorrelated interactions, give rise to "“kill the winner” ecological
dynamics (Thingstad, 2000). If a strain rises to high abundance, other strains that do well against it
will bloom and drive down the abundance of the first, and the process repeats. With many strains that
do not have their own niches, this leads to wilder and wilder chaotic variations of abundances, soon
driving most types extinct. In PAF we showed that rudimentary spatial structure — a large set of 7
islands with a low migration rate between all pairs of islands — can maintain much diversity without
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a commonly-invoked mainland (MacArthur and Wilson, 1967). In this spatial model, many strains go
globally extinct, but a large fraction persists indefinitely in a spatiotemporally chaotic phase (hereafter
STC). Crucially, the chaotic dynamics desynchronize across the islands allowing strains that go extinct
locally to be repopulated from other islands. This mechanism is a manifestation of the “spatial storage
effect” (Chesson, 2000). On each island, each persistent strain occasionally blooms up to high abun-
dance and subsequently crashes (Figure 1). While it is at low abundance, dispersal from blooms on
other islands rescues the strain from local extinction until conditions are favorable and its population
blooms again, sends out migrants, and crashes. This STC is very robust: strains either go extinct
rapidly, or persist globally for times that are exponentially long in the number of islands.

Complementary work (Roy et al., 2020; Roy et al., 2019) suggests the generality of the STC
beyond anticorrelated pairwise interactions, although in the Lotka-Volterra models studied in these
works of Roy et al., the diversity is limited by the strength of self-interactions, which also limits the
diversity of stable communities. Indeed, much previous work has focused on ecological dynamics that
reach a stable state, where diversity is limited by strength of niche interactions compared to inter-
species interactions (Bunin, 2017). Here we approach evolutionary dynamics in similar generalized
Lotka-Volterra models, but from the opposite starting point: all interactions are of comparable magni-
tude which makes the effects of self-interactions negligible compared to the effects of the total inter-
actions from all other strains. Then there is no large stable community, and the diversity is maintained
by spatial structure and chaotic dynamics.

With anticorrelated interactions, arbitrarily large numbers of strains can coexist in the STC even
when spatial mixing — and hence competition — occur on timescales comparable to those of the
local ecological dynamics. However, if the strains differ somewhat in their overall growth rate, or other
ways that make some generally better, these advantages can limit the diversity of the community.
A natural assumption is that, having all survived on evolutionary timescales, the persistent strains
will be similar enough that such differences are very small. But this assumption — and even more so
assumptions of close-to-rigid tradeoffs, (Posfai et al., 2017, Amicone and Gordo, 2021; Farahpour
et al., 2018) — should surely be questioned. Such features must emerge from the evolution rather
than being assumed.

Many theoretical (and some experimental) analyses, have, like our prior work, focused on ecolog-
ical communities that are assembled without conditioning on their evolutionary histories: a number
of species (or strains) is brought together, and the resulting community consists of the species that
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Figure 1. Dynamics of strain abundances on a single island in the spatiotemporally chaotic state (STC). A subset of strains is plotted. Each persistent
strain occasionally blooms up to high abundance and between blooms its abundance is sustained above a migration floor (here = 1077) set by
migration from other islands, although a few marginal strains fluctuate below this threshold. (A) An example of the evolutionary process: at the
beginning of an epoch (vertical dashed line), a new (here unrelated) strain, (black), is introduced at intermediate abundance. This new strain establishes
and persists, causing two (red) strains, which persisted in the previous epoch, to go globally extinct by the end of this epoch. (B) Strains that would

go extinct on a single island, can persist, and invade from low abundance, due to migration. The purple strain successfully invades. But at the vertical
dashed line, migration is turned off for the purple strain only, and it proceeds to go extinct with average exponential decay rate given by its negative
bias, schematically indicated by the dashed black line (with an extended range of log-abundance shown).
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do not go extinct (Bunin, 2016; Bunin, 2017; Servan and Allesina, 2021; Friedman et al., 2017,
Goldford et al., 2018; Hu et al., 2021). Although this is an important starting point, it is essential
to incorporate evolution to understand how the processes of mutation, inheritance, selection, and
extinction could give rise to highly diverse communities.

Previous theoretical work has shown that diverse communities in certain consumer-resource models
are destabilized by evolution (Shoresh et al., 2008), at odds with the highly diverse continuously
evolving microbial populations in nature. Others have focused on eco-evolutionary dynamics when
the mutation rate is high enough to sustain diversity: in this case the common ancestor of coexisting
strains is recent and extensive diversity over a wide range of genetic divergence does not have time
to evolve (Xue and Goldenfeld, 2017). Yet others have shown that when niches in phenotype space
are assumed, boom-bust dynamics can result in the evolution of higher diversity than occurs in stable
equilibrium (Doebeli et al., 2021). But overall there is no clear consensus on whether evolution tends
to destabilize or to increase diversity in ecologically interacting communities — indeed the answer
to this question is likely context-dependent — though observations of the natural world suggest that
evolution often results in increased diversity. Here, we investigate evolution starting from a state with
spatiotemporally chaotic ecological dynamics as studied in PAF, where niches are absent and the
diversity — at least initially — is stabilized by the interplay between endogenous ecological dynamical
fluctuations and migration.

We are interested in understanding diversity that has existed for a very broad spectrum of evolu-
tionary timescales, far longer than ecological or spatial mixing timescales. We thus study the extreme
limit where the mutation rate is small enough that the ecological and migratory dynamics reach steady
state before the introduction of each new strain. This quasistatic limit of evolution is the “hardest”
for diversification. In addition, and in contrast to some previous work (Tikhonov and Monasson,
2018), we assume that global extinctions of a strain are permanent: an extinct organism cannot be
resurrected even if conditions later become favorable for it. Focusing on the STC phase, we endeavor
to answer: Can a highly diverse STC phase evolve? Under what conditions? Can this phase continue
to diversify? Is the diversity stable to general fitness mutations that are not artificially constrained by
assumptions of tradeoffs? How do statistical properties of the community change during evolution?

Summary of main results
We first summarize the main results of this work, which concern the behavior of the STC phase under
serial invasion of new strains. A parent strain in the community occasionally gives rise to a mutant
strain whose properties are correlated with those of its parent with correlations parametrized by
p € [0,1). Many of the behaviors are similar across this range, from independent invaders with p =0
to small-effect mutations with p close to 1. In all cases, extinctions are irreversible. Key properties of
interest are the number of extant strains in the ecosystem, L, the number of successful invasions Z,
and how these evolve with evolutionary time, parametrized by the number of attempted invasions, T.

We find that for a wide range of p (and expect for any p < 1) the STC can enter a steadily diver-
sifying state wherein the number of successful invasions, Z, and the number of coexisting strains, L,
both increase linearly with T on average, with only small fluctuations when L is large. Whether diver-
sification occurs, and the rate of the diversification if it does, depends on various parameters, but it is
robust over a range of the parameters. If initially the ecosystem has only a modest number of strains,
the evolutionary dynamics tend to cause the diversity to crash, after which is it extremely unlikely to
transition into the diversifying phase. However, if the initial ecosystem is sufficiently diverse, it is highly
likely to diversify further.

We then study the effects of general fitness differences that augment the average growth rate of
a strain by an intrinsic amount irrespective of its interactions with the other strains. Focusing on unre-
lated invaders, we show that a distribution of such general fitness differences (denoted by s; for strain
i) can either slow down, prevent, or reverse diversification. For distributions of the s; whose tails decay
faster than exponentially, the diversifying phase still exists, but with the diversification rate gradually
slowing down: L increases only as a power of log(7). If the distribution of the s; has a broader-than-
exponential tail, the diversity decreases and crashes.

The key property of a strain, in terms of which one can understand its behavior, is its bias: defined
as the rate at which its population would change when at low-abundance and without migration
(Figure 1B). The crucial effect of migration in the STC is to stabilize many strains with negative bias
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which would have gone extinct without migration. Only if its bias is strongly negative will a strain go
globally extinct. The bias of strain i, denoted by &;, has an intrinsic contribution from its general fitness
s;, and an extrinsic contribution from the interactions of strain i with all other strains, which includes
both an i-dependent part determined by the interactions with the other strains in the community, and
an i-independent part that keeps the total population constant. The extrinsic part of the bias of each
strain changes as the community evolves, but its intrinsic part says the same.

Building upon the theoretical understanding of the STC phase, developed in PAF, we first analyze
evolution in the simplest case of unrelated invaders (p = 0) with no general fitnesses (s; = 0). The bias
of each strain undergoes a random walk on evolutionary timescales, and we find that for large commu-
nities, the number of strains changes at a steady rate. For a range of parameters, this diversification
rate is positive, yielding a steadily diversifying phase with the distribution of biases scaling with 1/v/L,
as observed in numerics. We then extend our analysis of the changing bias distribution to include the
effects of general fitness differences. This yields predictions of how the rate of diversity increase (or
decrease) depends on the distribution of the s;, corroborating the behaviors found in simulations.

The distributions of biases and abundances in evolved communities differ subtly from those of
the initial communities that were assembled all-at-once from unrelated strains. At early stages of the
evolution, most of the close-to-marginal, low-abundance strains are pushed out by the perturbations
caused by the invading strains. This extinction process causes the shape of the abundance distribu-
tions of assembled and evolved communities to differ at low abundances. Later, in the steadily diversi-
fying state, the numbers of extinctions caused by each invader has a roughly exponential distribution,
which is consistent with our theoretical expectations. In contrast to the qualitative (albeit modest)
changes in abundance distributions, we find that evolution has only a small effect on the statistics of
the interactions between strains.

Outline

The structure of this paper is as follows: ‘Models’ introduces the main model and its relation to
previous work. ‘Results’ describes the phenomenology of an evolving community in the STC phase,
studying the effects of correlated mutants, interaction statistics, and general fitness differences on the
ecological diversification. Then ‘Analysis’ develops the theory and analysis that are needed to under-
stand these phenomena. Building upon the dynamical mean field theory developed in PAF, we present
an approximate framework, and more general scaling arguments, for understanding the evolutionary
dynamics, and compare the predictions with simulations. Finally ‘Discussion’ raises additional ques-
tions and discusses possible extensions. Many of the details and further analyses are relegated to
appendices.

Models

We here define the model, discussing the various roles played by local deterministic population
dynamics, demographic stochasticity, spatial migration and evolutionary dynamics. Our notation is
summarized in Table 1.

Ecological interactions
We first consider an assembled community of K unrelated strains, labelled by i =1,2,...,K, with all
possible pairwise interactions between them. A paradigmatic model for the ecological dynamics of
the strain populations {n;} is the generalized Lotka-Volterra model (Goel et al., 1971), with each strain
i having an intrinsic growth rate which is modulated by its interactions with all the other strains. These
interactions are conveniently represented in a matrix W where W;; describes the effect of strain j on
the growth rate of strain i. Since we are interested in closely related strains for which all interactions
are similar, the total population will be roughly fixed at some N by the balance between the effects of
positive intrinsic growth rate and negative competitive interactions. It is convenient to replace these
large terms by a Lagrange multiplier Y(#) that fixes the total population to >, n; = N, and work with
fractional abundances, v; = n;/N. This parameterization yields what are known as “replicator equa-
tions” (Chawanya and Tokita, 2002; Yoshino et al., 2008; Tokita, 2004).

Variations in intrinsic growth rates and net interactions on a strain can be combined to yield general
fitness differences, {s;}, between the strains. We parameterize the residual variations in interactions
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Table 1. Definitions of commonly used quantities.

Ecology

STC

Spatiotemporally chaotic state

K

Number of strains put into the initial assembled community

Vv

Matrix of pairwise strain interactions

Symmetry parameter of the interaction matrix; E[V;;V}i] = 6;; +

Number of islands

Population size on each island, fixed to be constant

Fractional abundance of straini on island «

Time (or space) average of straini abundance

Migration floor ~ m/LIM: ~ lower range of local abundances

Lagrange multiplier maintainingy ; vio = L, Ta = >; Vialsi + Ei Viivja)

Si

General fitness of straini

P(s)

Probability distribution of the s;

by

Characteristic scale of the s distribution

¥

Exponent characterizing tail of of P(s) ~ exp[—(s/E)w/w]

m

Migration rate between islands

M

Range of fluctuations inlog v; M = log(1/m)

Evolution

Correlation between parent’s and mutant’s interactions with other strains

Evolutionary time in epochs, equal to number of attempted invasions

Number of successful invasions

Number of extant strains at any point in the evolution

Number of strains surviving in initial assembled community

Average diversification rate; U = (dL/dT)

Mean general fitness of extant strains; § = Z,- v;S;

The scale of P(s) of extant strains; & = —[% log P(s)] 'ses

Analysis

&i

Bias of strain i, its growth rate at low abundance without migration; & = (; + 5; — Y, scales

as 1/v/L

N©

Mean abundance of a strain as a function of its bias

&e

Critical bias (negative in the STC) below which strains go extinct, scales asl/v/L

Gi

Mean drive on straini by other strains in its absence; (; = Zi Viiopi

Effective number of extant strains; £ = 1/ Zi l7j2; scales with L

Xi

. L. . du;
Static response of straini to perturbations; Xi = d%,

Total static response; X = >, X;

[1]

Fragility of the community to perturbations; = = Zj ij/(l — Zj ij)
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among the strains (after subtracting off T and s;) by Vj;. Since the V;; and s; are sums and differences of
similar magnitude terms, it is natural to approximate them as random variables with the hope that the
model will yield behaviors that are robust to specific choices of their statistics: testing this assumption
is one of the goals of this paper. For simplicity, we choose E[V;;] = 0, and E[Vizj] = 1fori#j— setting
the overall ecological timescales — and choose the covariances to be zero except for, importantly,
correlations between how i and j affect each other, defining E[V;V};] = ~y. For convenience, we choose
E[V2] = 1 + ~ but this choice has negligible effect in large communities.

The parameter < controls whether the interactions are mainly competitive (v > 0) or host-
pathogen-like (v < 0), the latter being the focus of this work. We have shown in PAF that random
interaction matrices with such anticorrelations behave very similarly to host-pathogen models with
the appropriate block sub-matrix structure, as discussed further in ‘Bacteria-phage interactions and
coevolution’.

Ecological dynamics

We study the simplest model with spatial structure: a large number, I, of identical islands (or demes)
with interactions only within each island and migration between all pairs of islands. With Greek indices
labeling islands, the dynamics of the abundances obey

K 1
dv;
a;a =Via | Si+ zl: Vijl’j,a - Ta(t) + Bz:l(maﬂyi,ﬁ - mﬁa’/i,a)- (1)
Jj= E

with m,, g the migration rate (per individual) from island 3 to island « and the local Lagrange multiplier,
Ta=>Vialsi+ ZJ- Vijivja): keeping the total population on each island fixed at N, (i.e. >, via =1
for each island). Here, we focus on the spatial mean field limit in which the migration rate is the same,
given by m/lI, between every pair of islands. The total migration of strain i into and out of island « is
then simply m(7; — v; o) with 7;(¢) the average of v;(¢) across islands. As the number of islands becomes
large, in steady state, each 7;(f) becomes constant in time — some being zero corresponding to global
extinction. In the STC, the dynamics are asynchronous across islands and ergodicity implies the spatial
average, ;, is equal to the time-averaged abundance of strain i on a single island; this is a crucial self-
consistency condition. The magnitude, m of the migration rate, is also of fundamental importance. If m
is too small the migration is too rare to repopulate islands after local extinctions. If m is too large and
the local dynamics is chaotic, the chaos will synchronize across the islands and the total population of
each strain will fluctuate wildly, rapidly driving most strains extinct. We will focus on the wide interme-
diate m regime, which spans several orders of magnitude when K is large [PAF].

With large populations on each island, demographic fluctuations have little effect on the dynamics.
Even when the local population of a strain is small, if it has positive growth rate, fluctuations will not
matter much, while if it has negative growth rate it will go deterministically extinct which occurs when
the fractional abundance drops below the extinction threshold of 1/N indicated in Figure 1A by the
horizontal purple line. The value of the extinction threshold does not much affect the behavior as
long as it is much below the lower limit of the abundance caused by migration — which we term the
migration floor: v, ~ mi. For strains near local extinction (when the fractional abundance is close
to 1/N) demographic fluctuations are potentially important. But with Nmu very large, local extinctions
for viable strains will be rare: thus we model the population dynamics as fully deterministic. If the
fractional abundance on an island drops below 1/N, it is set equal to zero. Global extinction occurs
when a strain’s bias becomes too negative, which results in it going below the extinction threshold
everywhere. The choice of N does not matter much as long as mN > 1, to which we restrict consider-
ation. Related details of numerical implementation are discussed in ‘Appendix 2. In ‘Spatial structure
and dynamics’, we comment on the effects of local extinctions in the context of real spatial dynamics.

The key properties of the STC phase [PAF] are chaotic coexistence of strains, desynchronized
across islands, with the local abundances fluctuating over a range in logv of M = log(1/m), which is
quite wide for the typical m = 1075 that we use in simulations. Some strains go globally extinct but
each persistent strain on each island occasionally has a bloom up to high abundance v ~ M/L. These
localized blooms are crucial for stabilizing a strain, as they dominate the migration to other islands
needed to recover from local extinctions or near-extinctions. On a single island, at any given moment,
O(LIM) strains are at high abundance. A snapshot of the abundances on a single island shows the

Mahadevan, Pearce et al. eLife 2023;12:e82734. DOI: https://doi.org/10.7554/eLife.82734 7 of 48


https://doi.org/10.7554/eLife.82734

eLife

Ecology | Evolutionary Biology

strains distributed roughly uniformly in log(v) down to the migration floor, only occasionally fluctuating
substantially lower (Figure 1).

Evolutionary dynamics

The evolutionary process we model is much slower than the ecological and migratory dynamics. Simu-
lations are divided into long epochs, with new strains added only at the end of an epoch. The epochs
are chosen long enough that the ecological and migratory dynamics have reached a steady state, with
some fraction of the strains having gone permanently extinct globally, leaving L persistent strains. A
single new strain is then introduced and the process repeated.

The new strain, generically labeled A, is parameterized by its interactions with all other strains in
the community, given by Vy4; and Vj4, and its general fitness, s4. In the simplest case, a new strain is
unrelated to extant (or extinct) strains. More generally, mutant strains, labelled M, are characterized
by their degree of correlation, p € [0, 1), with a parent strain P chosen from the existing community
with probability proportional to its mean abundance Up. These correlations are realized such that
Corr[Vjy, Vjp] = Corr[Viyj, Vpjl = p for j # M, P. The detailed choices for j = M, P are given in ‘Appendix
2'. The general fitness, sy, can also be correlated with sp. Unrelated invaders are equivalent to p =0
and hence have no parent.

The actual process of invasion from low abundance on one island is complicated, and often leads
to failure. To avoid a proliferation of such failed invasions, we instead assess whether the invader could
successfully invade and persist if it were lucky initially. To do this, we set the mutant’s abundance to 1/L
on all the islands at the same time (and proportionately decrease the abundances of the other strains
to maintain >, vj o = 1).

Timescales

There are multiple timescales involved in the dynamics: these are discussed more fully in ‘Appendix
1". The basic timescale for differential growth or decay of strains is set by the magnitude of the inter-
actions and the number, L, of extant strains. The extant strains have average abundances of order
1/L, so the average total interaction on a strain, i, is the sum of L random terms, each of order V/L for
typical interaction strength V. With the V having variance unity, the average net interactions of other
strains on strain i is roughly its mean drive, ¢;, which is of order 1/+/L, implying that the timescale for
systematic population growth or decay is of order v/L. The mean drive is defined more precisely in
Results. When there are general fitness differences, s;, these also contribute to variations in average
growth rates. The variations in the s; within the community have substantial effects over a time ~ 1/
with oy roughly the width of the s; distribution of the extant strains. Together, the mean drive and
general fitness of a strain determine its crucial property: the bias & = (; +s; — (Y), with angular
brackets denoting a time average. As introduced earlier, the bias of strain i is its average growth rate
at low abundance in the absence of migration (Figure 1B). As we shall see, the size of the community
is limited by the condition that the inter-strain variation in general fitness is no larger than variation in
average drive from interactions. This means that the biases are of order 1/v/L.

The local population of each strain undergoes wild fluctuations over a logarithmic range
M = log(1/m) which is quite large. During blooms, the instantaneous growth and decay rates of local
populations are substantially larger than the systematic biases ('Appendix 1°) and change rapidly from
growth to decay as seen in Figure 1. The time for abundances to fluctuate from large to small — the
duration of blooms — is of order M+/L with systematic and fluctuation contributions comparable.

An important timescale for studying slow evolution is the time to reach the STC steady state: the
ecological relaxation time. This is determined by the strains that are just barely going extinct and is
of order ML for an evolved community, as discussed in ‘Continual assembly and diversification’. We
have chosen the evolutionary timescale to be much longer than all the other important timescales.
Thus, each epoch between the addition of invaders is chosen to be several times the ecological relax-
ation time, typically 3ML, and we show in ‘Appendix 2’ that increasing this epoch length by a factor
of 10 makes little difference in the diversification dynamics.
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Figure 2. Evolution of number of strains without general fitness differences. (A) With v = —0.8, m = 1075, and initial number of strains K = 50,
under serial invasion of unrelated strains most initial communities (red) crash and fail to recover, while others (about 20%, blue) continually diversify.
Once the communities are large, around 80% of further invasions are successful and the mean number of extinctions per successful invasion is & 0.7
(Appendix 3—figure 1) so that on average the number of strains in the community grows linearly with rate U = (.25 per invasion attempt (dashed line).
(B) Whether diversification occurs, and its rate if it does, depends on the symmetry parameter, 7y, as seen here with K = 400 and p = 0. For 7y close
to —0.7, evolution reduces the diversity. For less negative 7y, the STC breaks down and the diversity crashes immediately. For more negative 7, steady
diversification occurs, fastest here with v &~ —0.8, though again slowing down as v — —1. (C) Evolving communities under successive introduction

of mutants, each with correlation p with its parent (7 = —0.8). The diversification rate varies nonmonotonically with p, with fastest diversification for

p =~ 0.8. There is a significant slowdown for p close to unity. Here K = 50 and trajectories are shown conditional on not crashing, except for p = 0.99,
which renders the evolving community very susceptible to crashing from K = 50. However the inset shows that even with p = 0.99, it is possible to
reach a diversifying regime starting from K = 100.

Results

The STC is robust, with strains persisting for times that are exponentially long in the number of islands.
However, evolutionary perturbations caused by an invading strain can drive strains deterministically
extinct. This process can be understood in terms of the biases of the strains.

The bias of a strain, is determined by the community in its absence. It can be written precisely
as & = s; + ¢ — (T\;) with the mean drive {; = V;;(vj;), where the notation (1;) and (Y\;) denote the
time-averaged abundance of strain j and average Lagrange multiplier in the absence of strain i. The
T is not much changed by the absence of the one strain, but the abundances of the other strains are
affected in small but collectively essential ways by whether or not strain i is present, as discussed in
‘Dynamical mean field theory’. This negative feedback — proportional to v — is what stabilizes strains
whose abundance would otherwise keep growing.

With many strains participating in the chaos on each island, and desynchronization across islands,
we expect the chaos to be ergodic, so that the i time averages and spatial averages (across islands)
of all quantities are equal in the STC steady state. Therefore we will use spatial average notation &
instead of time average notation (v), except when conceptually the latter is clearer. In practice, the
I =40 islands used in numerics are enough that the persistence times of almost all surviving strains
are very long and averages across islands of the more important quantities do not fluctuate much in
steady state.

A crucial feature of the STC phase is that strains with somewhat negative bias can persist due to
migration between desynchronized islands (Figure 1A). This stabilization is enabled by a nontrivial
feature of the STC phase: during a bloom, the systematic changes in logv; caused by the bias are
comparable to the cumulative stochastic growth and decay caused by the endogenous fluctuations
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— the zigs and zags in the dynamics of logv; (Figure 1). This is a manifestation of the system “self-
tuning” to a special self-consistently chaotic state [PAF].

Despite the possibility of rescue from extinction via rare blooms, there is a critical negative bias, &,
(sharp for large L and large I) below which strains no longer persist even as I — co. For strains with &
below & (which depends on the parameters and the number of strains), blooms up to high abundance
are not frequent enough to repopulate local extinctions and deterministic global extinction ensues.
For large I and large L, strains with £ < & go extinct, while strains with £ > & persist indefinitely. Finite
L and finite I effects, together with the finite time for each epoch, will round out the sharpness of the
borderline between persistent and extinct. However the marginal strains involved have little effect on
others and whether or not they persist does not much matter for the current epoch: we are interested
in deterministic extinction caused by the introduction of new strains. Therefore, we need to study how
the distribution of biases in the ecosystem evolves.

Continual assembly and diversification

The evolutionary process we study starts from an assembled collection of K unrelated strains. After
the ecological and migratory dynamics have reached steady state, some of the strains will persist: we
call the size of this initial persistent community Ly. The K — L strains that have gone globally extinct
are permanently removed.

When a new strain is introduced into the ecosystem, if it successfully invades it perturbs the biases
of the extant strains, and can trigger extinctions of some of them by shifting their bias below &
(Figure 1A) by an amount of order 1/L. We study the slowly evolving regime in which the ecosystem
dynamics reach steady state between each introduction of a new strain — this takes time of order
ML. The number of persistent strains and number of successful invasions as a function of the number
of attempted invasions, L(T) and Z(T) respectively, are of fundamental interest.

We first describe the evolutionary dynamics when the general fitness differences between the
strains can be neglected. For v = —0.8 and unrelated invaders (p = 0), multiple simulation runs starting
with different sets of K = 50 initial strains reveal that around one fifth of the replicates enter a steadily
diversifying regime in which L increases roughly linearly with the number of attempted invasions, at a
rate of around 0.25 per attempt. The remaining replicates crash down to only a few persistent strains.
Subsequent invasions can cause L(7) to increase somewhat, but it quickly crashes back down and the
community does not steadily diversify (Figure 2A). The low diversity regime that occurs after a crash
(or with a very small initial community) is discussed further in ‘Appendix 3'.

The observations in Figure 2 illustrate one of the crucial findings of this work: spatiotemporally
chaotic ecological dynamics can allow — but do not guarantee — gradual strain-level diversification
up to arbitrarily high number of strains. The behavior depends on the symmetry parameter +, which
must be substantially negative for the STC to exist. Figure 2B shows that the average rate of diversi-
fication, U = (dL/dT), is nonmonotonic in -, with slow diversification close to v = —1 (its lower limit).
As v becomes less negative the rate of diversification increases at first. However for v even less nega-
tive, the STC still supports chaotic coexistence of many strains (since Ly is still large), but the diversity
decreases under evolutionary dynamics. The community diversifies most rapidly for v ~ —0.8. As we
are interested in what can happen with various other additional features, we chose v = —0.8 and
m = 107 for all further simulations as shorter runs are needed near these values. We expect that the
qualitative conclusions will be similar for a range of v and m around these.

Evolution with correlated mutants

In addition to studying independent invasions, we study evolution via mutations of existing strains. At
the start of each epoch, a parent to mutate is chosen with probability proportional to its mean abun-
dance. The interactions of the mutant with other strains are drawn from the same marginal distribution
as the original interactions, but with correlation p with the interactions of the parent (Evolutionary
dynamics). The direct interactions between the parent and mutant have to be chosen separately
as specified in ‘Appendix 2’ but, as they only account for a small fraction of the total abundance in
diverse communities, the specific choice is not important. As a function of p (with v = —0.8), the rate
of diversification is nonmonotonic being fastest for p =~ 0.8, and only weakly varying for smaller p
(Figure 2C). As p nears 1, the mutant and parent are more similar, and it becomes harder for them to
coexist, since any difference between them is likely to result in a systematic change in their relative
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Figure 3. Effects of exponentially distributed general fitnesses, s;, on community evolution. Here K = 250 initial strains and P(s) ~ e~>, with various

3. (A) Community size, L, as a function of evolutionary time T' (the number of attempted invasions) approaching an evolutionary steady state with

L~ Y2 at long times. The dashed lines indicate 0.7 x X2, which captures the predicted scaling between the steady-state L and ¥. Data are
averaged over 50 runs, conditional on not crashing, with the shaded region showing the standard error. Only single runs are shown for ¥ = 0.1 and 0.02,
the former caused crashing and the latter saturation beyond the range of the simulations. For a narrow distribution of the general fitnesses (Ly < ¥,
L increases linearly before saturating. For larger ¥ with many initial strains, immediate extinctions drive L down to Ly ~ 1/5? (‘Appendix &'). (B) The
average fitness of the community, § = Y, 7;s;, grows linearly in the number of successful invasions, Z, with dS/dZ ~ 3. the dashed lines have slope
»2/6, indicating this expected scaling relationship. The inset shows the rate of successful invasions slowing down with attempted invasions, as it gets
harder to draw a general fitness that is sufficiently far into the tail of P(s).

abundance, eventually driving one of them to extinction (see ‘Appendix 9'). Since L can only increase
when both the mutant and parent coexist, increasing p slows the rate of diversification but L(T) still
increases linearly.

This observation implies that, for a large range of p, despite not enforcing any precise constraints
or perfect tradeoffs, strains that would outcompete all extant members of the community are too rare
to emerge and reduce diversity. Therefore, we conjecture that a continually diversifying phase exists
even for p arbitrarily close to 1.

Evolutionary dynamics with general fitness differences

So far we have observed that when mutants or invaders differ only by their interactions with each
other, there is robust and rapid diversification, provided that the initial diversity in the STC phase
is high enough. Now we include general fitness differences s; between strains and show how these
affect the evolutionary dynamics.

Exponential distribution of s;

We first analyze the simplest case: exponentially distributed selective differences with scale ¥ and
probability density P(s) = %e_x/z@(s) where O(s) is the Heaviside step function. We consider the
evolutionary dynamics in the case of unrelated invaders. As a community evolves, the distribution
of the s; of the community will change, and we are particularly interested in the dynamics of the
population-weighted mean § = =, Ujs;.

The width of the distribution of s;, here 3, plays a controlling role. If one strain has a substantially
higher growth rate than all other strains, it will outcompete them, driving many extinct. Thus a broad
distribution of s; is likely inconsistent with a diverse community. We therefore focus on narrow distribu-
tions: that is small 3. The typical magnitude of the drive of a strain is of order 1/v/L; therefore, when %
is much smaller than this, it will not matter much. On the other hand, if © were to be much larger than
1/V/L, the differences in the s; would dominate over the drives and only the strains with the highest
and quite similar s; would survive. Thus L > 1/%? seems inconsistent. Even for the initial community
with Ly strains, we expect that Ly cannot be larger than order 1752 (although it can be much smaller if
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K < 1/S?). Indeed, in ‘Appendix 6" we show that X sets the initial persistent community size, Lo, in a
particular limit of the model where v = —1.

A natural conjecture is that for small ¥ with an exponential distribution, steady diversification can
occur until the breadth of the s distribution becomes important — when L ~ 1/%? — and after that
L will saturate, as seen in Figure 3. Thereafter, § will grow and invasions of unrelated strains are less
and less likely to be successful — in ‘Diversification rate with a distribution of general fitnesses’ we
show that the number of successful invasions Z, increases as log(T). However, successful invasions will
on average drive exactly one other strain extinct. Figure 3 illustrates this behavior, including the large
initial drop from K to Ly when K > /22, the Y-dependence of the steady-state L, and the linear
increase of 5§ with number of successful invasions.

More general distributions of s;

Building on an understanding of the case of exponentially distributed s, we consider a more general
family of distributions, motivated by the expectation that the tail of the s distribution is particularly
important for evolution:

P(s) ~ exp [—i (%)w} ). 2
Anomalously small s strains are very unlikely to successfully invade, so the sharp cutoff at the lower
end does not matter. Although we consider only positive s;, all s; can be shifted by a constant without
affecting the dynamics because this constant gets absorbed into T(7).

As we will analyze in ‘Diversification rate with a distribution of general fitnesses’, the evolution
of diversity is seen to depend crucially on . If the tail of the s distribution falls off faster than a
simple exponential, ¢ > 1, the community continually diversifies, albeit more and more slowly with
L(T) increasing only as a power of log(T). Concomitantly, the mean s of the community, §, gradu-
ally increases. But if the s distribution decays slower than a simple exponential, ¥ < 1, the diversity
decreases (after an initial increase if 3 is sufficiently small) and eventually crashes. In the marginal
case of a simple exponential tail, ¢ = 1, as seen above, the diversity saturates and fluctuates around
a steady state value while the mean § increases linearly with the number of successful invasions.
Therefore we conclude that for the evolutionary process in our models to continually generate higher
diversity, the distribution of general fitnesses must decay sufficiently rapidly. Such rapid decrease
of the distribution of available beneficial mutants with ongoing evolution roughly corresponds to
“diminishing-returns epistasis”.

Mutants with correlated general fitnesses

What happens if — as one would expect — the invaders are mutants with general fitnesses correlated
with their parents? With such mutants, it is possible for the evolution to proceed with less slowing
down than for independent invaders. Indeed, with an exponential distribution of the s; (¢ = 1) anal-
ysis suggests that evolution proceeds at a constant rate, with both Z(T) and §(T) growing linearly as
in the absence of general fitness differences, but L still saturating. In ‘Appendix 7' simulation results
are shown for an exponential P(s) with correlations in both interactions and general fitnesses. The
saturating value of L is quite similar in both the correlated and uncorrelated cases. However, for
correlated mutants $(7) pushes rapidly into the exponential tail — and surely toward the breakdown
of the assumption of the existence of such large s mutations.

For P(s) that decays faster than exponentially, ¢ > 1, the behavior is more complicated. However,
as discussed in ‘Appendix 7', even with correlated mutants, evolution will eventually become very
slow, as for uncorrelated invaders. With mutants instead of unrelated invaders, this is a direct example
of the effects of diminishing-returns epistasis.

Analysis

In this section we develop an approximate analytical theory of the evolutionary dynamics and provide
heuristic understanding for most of the observed phenomena described above. The underlying basis
is the dynamical mean field theory (DMFT) of the STC phase developed in PAF. This takes advantage
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of the large number of strains and the large number of islands in order to simplify the descriptions and
analyses of the behaviors.

The natural quantities that characterize strains in the DMFT are their biases, {£;}, and how these
set their mean abundances, {7;}. For a large randomly assembled or evolved community the mean
abundances will be a function of the biases: ; & N(&;), with the function N depending on the param-
eters, evolutionary history, and feedback from other strains. As shown in PAF, N(€) is linear for large
argument and decays as £ becomes negative, vanishing at £ = & < 0.

The relation between 7;, & and the total average force on strain i — from both direct effects and
feedback — enables one to estimate the bias from the simulations ('Appendix 2'). Armed with the
DMFT description, we can understand how the biases of extant strains change over the course of
invasions. We do this in detail for the simplest case — invasions of unrelated strains without general
fitness differences — and show that the evolution causes L to change linearly with the number of
invasions — decreasing or increasing depending on the parameters. A simple approximation to the
evolution of the biases enables semi-quantitative results. Of particular importance is the result that in
evolving communities, the density of biases vanishes linearly as £ — &c. A corollary of this, as discussed
in ‘Distribution of biases and number of extinctions’, is that the number of extinctions per successful
invasion is roughly exponentially distributed. We then analyze the effects of general fitness differ-
ences, using our understanding of the exponential P(s) to generalize to other shapes of the tail of
P(s), parametrized by ¢ (Equation 2), and showing how the steepness of the tail affects the rate at
which L increases or decreases.

Dynamical mean field theory

The DMFT approximation, which is exact in the limit of a large number of strains with random inter-
actions between them, replaces the full statistical dynamics by the stochastic effects of the others on
one chosen strain, with the statistical properties then determined self-consistently from the properties
of the distributions over the strains. This approach was first used in the physics of disordered systems
such as spin glasses (Sompolinsky and Zippelius, 1982), but has been applied to ecological dynamics
in a number of subsequent works (Diederich and Opper, 1989, Opper and Diederich, 1992, Galla,
2006; Roy et al., 2019; Rieger, 1989, Yoshino et al., 2008).

When strain i has very low abundance, its effects on the others are very small and the forces of
the others on it, Ej Vijvj, are comprised of roughly independent random variables and thus act like
gaussian noise with correlations C(, ) = Z,’ Vj(t)l/j(t'). However, when it rises to substantial abundance,
it will weakly affect the other strains. Because of the correlation v between Vj; and Vj;, these feedback
terms add coherently, resulting in a contribution to growth rate of i of form ~ féR(t, Nwi(d)dd', with R
a response function determined by feedback from the total impact on the community of the strain’s
own past history (see ‘Appendix 5’). The DMFT allows one to recast the generalized Lotka Volterra
equations as an effective single-strain problem, with self consistency conditions on the bias correla-
tions and response function.

With the dynamical mean field understanding of an assembled STC phase in hand, we can proceed
to describe the evolutionary process in terms of the distributions of properties of the extant and newly
invading strains — in particular their biases and consequent mean abundances. The distribution of
biases is perturbed by the introduction of new strains and this can push some of the extant biases
below &, which itself depends on the bias distribution as modified by prior evolution, and on the
number of extant strains, L. It is convenient to define an effective community size £ = 1/3"; 7 which
controls the variances of the mean-drive part of the bias; £ scales with the actual L but discounts
strains that are close to extinction.

Evolution without general fitness differences
We first analyze invasion of unrelated strains without general fitness differences. The bias of an
attempted invader, labelled A, is given by &4 = ZJ- Vi — Y, in terms of its interactions, {V4j} with the
extant strains: for unrelated invaders, this is gaussian distributed with mean —Y and standard devia-
tion of 1/v/L independent of correlations among the extant strains, though correlations in the existing
community will affect the A (¢) and hence L.

Strain A can successfully invade the community and persist if £4 > &. The probability of successful
invasion is thus ®[(¢c + T)V/L], with ® the standard normal cumulative distribution function. In the
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Figure 4. Trajectories of biases of persistent strains (normalized by 1/+/£) under the influence of successive unrelated invaders with s; = 0. (A) Bias

trajectories of individual strains that invaded and persisted for a number of epochs. Extinctions (shown by a vertical line), occur when the bias goes
below the critical bias, seen here to be around —2.5/v/L. The horizontal dashed line shows —T+/L. (B) Bias trajectories for all strains binned into
groups by their starting value and averaged within bins for as long as the strains persist. Without conditioning on success, the biases of new invaders
have mean —Y and standard deviation 1/v/L. However, conditioned on survival, the biases converge to and fluctuate around a larger value. Data

in (A) are from a single simulation where the community diversifies from 50 to 500 strains, and in (B) data are pooled from 10 replicates of the same

process.

initial assembled community, &L and TV/L are independent of £. We make the Ansatz that after
a long period of evolution the distribution of extant biases, scaled by v/, reaches a steady state
— albeit a different state than the initial assembled community. Then the probability of successful
invasion will become independent of L for large L. If the mean number of extinctions per successful
invasion also reaches a steady state value which is less than unity, this explains the steady linear
growth of L(T) seen in Figure 2.

With the one-by-one introduction of new strains, the bias of each extant strain undergoes some
kind of random walk, and the strain goes extinct if its bias ventures below &. In Figure 4A, we show
the evolutionary trajectories of the biases of 5 individual strains that started from similar initial values
in a simulation where the community diversified from 50 to 500 strains. Extinctions are caused by ¢
being pushed below & by an invading strain. For finite L, the sharpness of & will be smeared by an
amount of order 1/L due to variability in the dynamic noise from strain to strain, which we have not
explored.

To numerically investigate any systematic components of the random walk of biases, we average
over a large number of strains, binning them according to their initial values normalized by 1/v/Z.
We observe a strong tendency of anomalously positive and negative biases to regress toward an
intermediate value. In this plot, as evolution proceeds, the asymptotic average bias conditioned
on survival is larger than —T+/L. (Figure 4B). This is likely due to conditioning on survival of the
strains: those that persist for many epochs tend to have larger-than-average (but still negative)
bias.

In ‘Appendix 8', we carry out an analysis of the bias dynamics by approximating these by a Markov
process in which the dynamics of the biases depend only on their current values. This analysis shows
that when there is a successful invasion, each strain’s drive undergoes both a systematic and random
change, consistent with our numerical results.

It is convenient to work with the mean drives, ; (when s; = 0, this is just & + T). Both the system-
atic and the random changes in the drive are proportional to the average abundance of the invading
strain, which is of order 1/L. The stochastic change is §¢; ~ £1/L, but the systematic change in the
drive is smaller and depends on its current value: E[6{ilI(] ~ (/L = O/L¥%). In the Markovian approx-
imation, there is a simple Langevin equation for the change of the drive of a strain due to invasions:
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Figure 5. Distributions of mean abundances and biases before and after evolution with p = 0, s; = 0. (A) Mean abundances: all these communities
have L = 500, but evolved communities have diversified from K = 50 initial strains so that they lose memory of their initial assembly conditions, while
assembled communities had K = 650 strains with Ly = 500 surviving after the initial epoch. Data are pooled across 10 simulation runs of each. Though
the distributions are mostly similar, there is a marked depletion in both rare and abundant strains in the evolved community. (B) The low end of the bias
distribution changes from a truncated gaussian for the initial unevolved community (blue), to a linearly vanishing function (orange) because of evolution-
driven extinctions of close-to-marginal strains. Bars show histograms from simulation, and solid lines show theory as detailed in "Appendix 8'. Inset
shows the normalized bias by rank order, illustrating the smoothing of the lower end of the distribution caused by the evolution.
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with 7;(T) approximately gaussian with mean zero and unit variance — an approximation that should
be good if one coarse-grains over a substantial range of T (but with range much smaller than L).
From our analysis in ‘Appendix 8’, we see that B and D are order-unity coefficients which respec-
tively characterize the average and mean-squared response of the bias to the invasion of a new
strain. Both are proportional to E[1/3] times the fragility, Z, of the extant community which is given by
E=3 sz/(l -2 X]Z) in terms of the individual susceptibilities of strains to changes in their biases,
Xi = dpi/dg;. This fragility characterizes the mean-square response of the system to a random pertur-
bation applied simultaneously on all the strains — precisely the effect of a successful invasion. The
Langevin equation for the drives must be supplemented by a boundary condition that if {=¢ - 7T
goes below &, the strain disappears.

Analysis of the Langevin equation, which can be converted into a Fokker Planck equation for the
distribution of the drives ("Appendix 8'), shows that there is an eigenvalue-like condition which deter-
mines whether the diversification rate of the community is negative or positive, and that the coeffi-
cients B and D play a role in determining whether the community diversifies or not. This is consistent
with our numerical results, which show that certain parameter regimes allow diversification and other
regimes do not — even in the absence of general fitness differerences.

Distribution of biases and number of extinctions
The approximate model of the evolution of the biases makes predictions about the shape of the
bias distribution as a function of attempted invasions. Before the onset of evolution, the distribution
of biases is a truncated gaussian, with a lower cutoff set by &. However as the distribution evolves
according to Equation A8.3 with the absorbing boundary condition at the critical bias, it smooths out
near this cutoff, going linearly to 0 as ¢ — & + T (or, equivalently, as & — &).

Simulations confirm the expectation that the typical bias scales as 1/v/L over one order of magni-
tude in L (Appendix 3—figure 4). As predicted, one observes a smoothing out of the bias distribution
toward & when comparing evolved and assembled communities of the same L (Figure 5B), and our
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analysis allows us to obtain the theory curve for the evolved ecosystem in Figure 5B as the solution
of the approximate boundary value problem. However, the critical bias is sufficiently negative that the
number of strains affected by the differences between the initial and evolved communities is small and
the distinctions hard to see numerically.

However, the density of biases near & determines the response of the community to evolutionary
perturbations, since these low-bias strains are the ones most susceptible to extinction. In particular,
the predicted linearly vanishing density of biases determines the distribution of the number, ¢, of
extinctions per successful invasion (Appendix 3—figure 1B). To estimate this distribution — partic-
ular the probability that ¢ is large — we use the fact that an invader will perturb the extant strains'
biases by a random amount of order 1/L and proportional to the mean abundance of the invader. The
positive tail of the invader’s mean abundance, 74, is gaussian, since for positive &y, Viny ~ &ny and the
invader’s bias &y is itself gaussian distributed. The number of strains whose biases are within 4 of &
is proportional to L273, because the distribution of strains' biases vanishes linearly at &. Thus for fixed
774, the number of strains that are driven extinct is Poisson distributed with mean proportional to L?73:
this is of order one for large L as expected. That the tail of the distribution of 74 is gaussian implies
73 is approximately exponentially distributed in its tail. Integrating the Poisson distribution over this
yields, for large ¢, P(€) ~ e B*/\/T (with B an order-unity coefficient) which is close to exponential as
observed in Appendix 3—figure 1B.

A similar analysis for the initial randomly-assembled community shows that for fixed 74, the mean
number of extinctions triggered by the first successful invasion is of order LY?74 ~ /Ig; much larger
than after evolution has proceeded for a while. As the Poisson with this mean has a narrow distribu-
tion, the probability of an anomalously large number of extinctions will be dominated by the gaussian
tail of the distribution of 74 and hence itself be roughly gaussian, though unless the initial L is huge,
the tail is unlikely to still be in the asymptotic regime. The transient caused by a set of early invasions
will likely cause a total of order Ly strains — with a relatively small coefficient — to go extinct before
L starts steadily increasing, and this will occur over of order L invasions. For v = —0.8 this effect
appears to be very small — the critical bias is quite negative — but for smaller or larger 7 the effects
are noticeable (Figure 2).

The distribution of mean abundances, ;, is related to that of the biases via the function N(£):
therefore, we expect this also to evolve as the community diversifies. In particular, there should be
a reduction in the number of strains at low mean abundance, since these correspond to those with
close-to-marginal bias. In Figure 5A, we see that the mean abundances in an evolved community
are more narrowly distributed than in an assembled community, with both fewer highly abundant
and fewer rare strains. This is consistent with our picture of the bias distribution being smoothed out
toward & due to invasion-triggered extinctions, resulting in the depletion of low-abundance strains.
The depletion of abundant strains is likely due to the kill-the-winner dynamics which rewards invading
strains that push the most abundant extant strains down.

Although the mean abundances are not broadly distributed on a log scale, the snapshot abun-
dance distributions are, as seen in Figure 1. Note that most widely-used measures of diversity are
not really informative for these kinds of logarithmically broad distributions. For example, the Shannon
entropy would weight mostly the highly abundant strains, while the “species richness” would be
highly sensitive to the lower cutoff in observable abundance.

Diversification rate with a distribution of general fitnesses

Armed with understanding of the scaling of the bias and mean drives with L, we can build upon the
analysis of the simple exponential distribution of general fitness ("Evolutionary dynamics with general
fitness differences’) to analyze the evolution when P(s) decays faster or slower than exponentially. A
heuristic understanding of how the dynamics of L depend on P(s) follows from the fact that without
general fitness differences, the biases are distributed with characteristic scale 1/v/L. As L increases,
the distribution of these biases gets narrower, and the system becomes progressively more “neutral"
with overall differences in strain biases becoming smaller. The contribution of the general fitnesses is
to add a random extra piece to each bias, broadening the distribution of extant ;. In the limit of many
invasions, the width of the drive distribution becomes comparable to the width of the distribution of
the extant s; and cannot decrease further. Thereafter, the shape of P(s) determines both the width of
the bias distribution, and the number of coexisting strains.
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Figure 6. Evolutionary dynamics for unrelated invaders (p = 0), with general fitnesses drawn from distributions parametrized by various values of 1):
faster-than-exponential decay for ¢ > 1 and slower-than-exponential for ¢ < 1. Data are shown averaged over 50 replicates, conditional on not crashing,
starting from K = 300 initial strains, with the shaded region showing the standard error. For ¢ = 0.8, which results in decreasing diversity and crashes,

a few individual trajectories are shown instead of an average. (A) Size of community as a function of the total number of strains introduced, T + K. For
very long evolutionary times, we expect L ~ [log(T + K)I>~2% but transients due to initial conditions are substantial. In order to push up into the tails
of the s distributions, the parameters of P(s) are chosen differently for each 1 for b = 0.8, 1, 2, 3 respectively. (B) Increase of the community-average

§ with T, shown pushing into the tail of P(s). For ¢ = 1 the dotted line shows the theory prediction §/3 = log[(T + K)%2], with deviations from this
expected to be an O(1) constant for large T'.

If L < 1/%2 initially, the s; play little role and the population-weighted mean fitness, 3, only increases
gradually. But once § is a few times ¥, the tail of P(s) will determine the rate of increase of §. Hence-
forth, § will grow steadily with subsequent successful invasions, since strains with s; < § are very
unlikely to persist, and strains with s; > § are unlikely to have yet occurred. Thus, the range of extant
si will become much narrower than 3. This implies that the distribution over the currently relevant

range can be approximated by an exponential distribution P(s) ~ =% with the effective width of the

extant s; distribution given by

1 P4

= dog Po)Vds| .~ 301" @

§=5§

where the second equality is for the specific models we study (Equation 2). Provided evolution has
proceeded long enough that no strains with s; smaller than the original scale ¥ survive, & will vary
slowly for a range of evolutionary time and this sets the scale for variations of s; of both extant strains
and of potentially-successful invaders. This suggests that understanding the general behavior at long
evolutionary times can be built on understanding the case of the simple exponential distribution
(yp = 1 for which 5 = ). The main difference is that now the community size will change as L ~ 1/22,
with S changing as § increases: this will govern how L changes as invasions are attempted and occa-
sionally occur.

In the slow evolution regime at long times, successful invaders must have s4 comparable to 5. A
simple argument gives an upper bound on how fast § can increase with T. In order to get a mean
of § in a community of L strains, at least L attempted invaders must have occurred with s4 > 5. This
requires a number of invasion attempts, T, such that ngm P(s)ds > L(T). But if § were substantially
smaller than this upper bound, many strains would have already occurred with s; — § > 3 and these
would persist for a long time, driving s up. We thus make the Ansatz, justified by the analysis and
simulation data of ‘Appendix 6" and Figure 6, that $(T) grows with log(7) at a rate asymptotically given
by this upper bound. For the distributions of interest we then have
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12 s A ) 2012—2/p
~ [¢ log(T/L)] and s=\3 = L~ X “[log(TX)] , (9

M| w

where the last implication is due to L ~ %72, These scalings become valid once the distribution of
the extant s; is pushed into the tail of P(s). To crudely take into account the effect of a large initial
number of strains when K > /52, log(T) can be replaced by log(K + T), as for the plots of L(T) and §(T)
in Figure 6. Figure 6B shows the theoretical prediction for 5(7) in the simplest case of ¢ = 1, and we
see that 5(T)/2 is reduced from the log[(T + K32 prediction by only an O(1) constant, as expected.

At long times, the probability of successful invasion decreases very rapidly with § and, as we show
in ‘Appendix 6, the cumulative number of successful invasions for ¢ > 1 grows very slowly, with
Z~ E_z(log T)3_2/¢. Nevertheless, for ¢ > 1, the number of strains grows without bound albeit as a
sub-linear power of the cumulative number of successful invasions. The average number of extinc-
tions per successful invasion gradually decreases towards one as P(s) in the pertinent range, s ~ 3,
becomes closer and closer to exponential.

For longer-than-exponential tails, ¢ < 1, the diversity will decrease (possibly after an initial increase
if K > 1/%?) and eventually — in practice rather soon — crash as seen in Figure 6A.

Discussion

In this paper, we have answered an important issue of principle: Without any assumption of niche-like
differences between strains, can diversity continually grow under slow evolution? We have found that
this can indeed occur if the community forms a spatiotemporally chaotic phase that we have studied
previously in PAF. As new strains are introduced — either separately evolved invaders or mutants of
extant strains — some successfully invade, potentially driving extinctions of strains in the community.
In a range of parameters, the size of the persistent community continually grows on average, while
for other parameters, the diversity decreases and eventually crashes. How fast the diversification
proceeds depends on the statistical properties of the strains. If each strain has a different general
fitness, s;, then as evolution proceeds the average s; of the population gradually increases and pushes
into the tail of the s; distribution. If this tail falls off faster than exponentially, the community continues
to diversify but more and more slowly, since fewer new strains will have sufficiently large s; to invade.
For broader-than-exponential distributions, the diversity eventually crashes as the general fitness
differences dominate over the effects of interactions with other strains.

Building on an analytic and scaling understanding of the STC phase for an assembled community,
we have developed a substantial understanding of the dynamics of the diversification or de-diversifi-
cation. However even for the simple models on which we have focused, there are aspects that we do
not understand.

Unresolved issues with the simple island models

Development of correlations

Even with invaders uncorrelated with the extant strains, subtle correlations build up in the interaction
matrix and — although they appear rather weak (‘Appendix 4') — the memory of earlier evolution
will affect the way strain abundances change under further evolution, potentially mandating a better
treatment of the evolution than the Markovian approximation we have used in ‘Evolution without
general fitness differences’. With several complicating features — mutants, correlated general fitness
differences, and substantial-sized initial communities — included, there are a number of crossovers
that we have not attempted to analyze (‘Appendix 7'). These, and which aspects promote, slow down,
or prevent, continual diversification, are likely to be quantitative and strongly model-dependent.

Nucleation of diversifying “phase’

An observation from the simulations (‘Continual assembly and diversification’) gives rise to a broader
question: Why is it so hard to nucleate the diversifying STC phase? And, concomitantly, why do initially
diverse communities so often crash unless the diversity is rather large? It is likely that the limited
number of strains that dominate on each island over any short time interval — of order L/M — plays
a role, but unclear how. Whether the difficulty of nucleating a diverse STC community is special to
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the structure of the models and spatial dynamics assumed, or is true more generally, certainly needs
further investigation.

Spectrum of mutants and coexistence of parents and mutants

When invaders are mutants of extant strains that differ from their parent only very slightly, (with
correlation coefficient p very close to unity), we have found that the parent and mutant coexist surpris-
ingly frequently. Understanding this, even for the first mutant, requires analyzing the dynamics of
strains with strongly correlated noise which we have not carried out, although we suspect that the very
large local abundance variations that occur with low-migration rate give rise to a small decorrelation
scale needed for coexistence. In each simulation, we have considered only mutants with a fixed level
of correlation with their parents, leaving a number of natural questions: What are the effects of a
distribution of magnitudes of mutational differences? How do these affect the invasion, coexistence,
and subsequent properties of the evolving communities?

Invasion dynamics

Because of the local chaos and low migration, the invasion of a potentially-successful new strain is
complex. To avoid this complication, we have introduced new strains at substantial abundance and
on all islands simultaneously. In actuality, most initial invasion attempts on an island will fail: only if the
strain arrives when the conditions are ripe for it to bloom, can it avoid quick extinction and send out
enough offspring to other islands, which — if also sufficiently good timing — allow it to spread. How
this process depends on the relatedness of mutant and parent complicates matters greatly because
of the boom-bust dynamics. Strains are most likely to beget mutant offspring when their abundances
are high, but at that stage of a bloom, a crash in the local population will soon follow. Therefore,
although many mutants may arise when a parent strain is doing well, the correlation between their
dynamics and those of their parent means that they are likely to quickly go extinct when their parent
crashes down from high abundance. In contrast, mutants that emerge right before a parent blooms
up to high abundance can ride the bloom and establish more readily, but would have to arise in a
small parental population. Understanding the balance between these effects and their consequence
for invasion probabilities is a challenge for future work — especially with real spatial structure and
dynamics, discussed below.

Spatial structure and dynamics
While for some microbial populations — for example common human gut commensals — a collection
of connected “islands” without much spatial structure may be a rough caricature, for most popula-
tions there is spatial structure that makes dispersal from one location to another dependent on the
distance in one, two or three dimensions. Thus, instead of having all pairs of islands connected by
migration, one could model a d-dimensional array of islands with nearest-neighbor migration; a spatial
continuum with diffusive dispersal; or a mixture of long and short distance dispersal events as driven
by wind, ocean currents, or hitchhiking on migrant animals (Hallatschek and Fisher, 2014). With real
spatial structure, local sub-populations are much more prone to extinction and cannot be as readily
rescued by migration from another location where the strain is blooming. Thus, in contrast to the
regime we have worked in for this paper, recovery from local extinctions must play a crucial role. The
dynamics of invasions, extinctions, and repopulation is very different than in the spatial mean field
model: if the underlying dynamics is diffusive, invasion and repopulation will occur by propagating
Fisher-Kolmogorov-Petrovsky-Piscunov (FKPP) fronts (Fisher, 1937). The properties of FKPP waves
are known to be highly sensitive to dynamics at the wavefront, and the effects of demographic fluc-
tuations have been investigated (Korolev et al., 2010). But the approximately multiplicative “noise”
from the ecological interactions will surely change this, and even for a single wave understanding the
impact of these larger fluctuations is still an open question (Rocco et al., 2002; Rocco et al., 2000).
With long-range dispersal over a multitude of length scales, the dynamics of invasion, extinction
and repopulation will be very different, as already occurs for a single successful invader without ecolog-
ical variations (Hallatschek and Fisher, 2014). Generally, understanding of the STC phase will have
to build on better understanding of repopulation dynamics in the presence of large ecological fluctu-
ations, and then understanding the evolution of communities on top of that. We leave investigations
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of this for future work. But we conjecture that a continually diversifying STC phase can still occur with
more realistic spatial dynamics.

Bacteria-phage interactions and coevolution
An obvious weakness of the Lotka-Volterra models studied here is that the strains do not carry their
own phenotypes, but are characterized by their interaction with all possible other strains. Furthermore,
the antisymmetric correlations in the interaction matrix (especially without substantial general fitness
differences) are rather unnatural for multiple strains of a single species. Thus, the most interesting
extension of this work is to much more natural models: multiple strains of a phage species that prey
on multiple strains of a bacterial species, with varying effectiveness that is a function of phenotypic
properties of the particular phage and bacterial strains. Of particular importance is the interaction
between a phage tail and bacterial receptor, as modelled in Weitz et al., 2005. We showed previously
[PAF] that the block-antisymmetrically-correlated structure of the interaction matrix with the bacteria
having no niche-structure (differing only in the way they interact with the phages) can give rise to an
STC phase that is very similar to that of the antisymmetrically correlated Lotka-Volterra model studied
here: a similar model was further explored in Martis, 2022. Such a bacteria-phage model can naturally
accommodate general fitness advantages through phenotypic changes, eliminating the need to intro-
duce them on separate footing. In ongoing work, we show that much of the basic phenomenology
we have found here also occurs in evolving bacteria-phage phenotype models — at this stage only
roughly and qualitatively.

For bacteria phage models, studying phylogenies and relatedness questions are natural. Whether
more specialist phages tend to evolve, making the interaction matrix sparser and perhaps more hier-
archical — and if so under what circumstances — is a particularly interesting question.

Concluding questions

We have studied evolution of communities of many closely related strains in the limit that the evolu-
tionary dynamics is slow compared to ecological and spatial dynamics. For a class of models, and in
a particular ecological “phase”, evolution drives continual diversification, provided there is sufficient
diversity initially. However mutations that change general fitness of strains tend to strongly slow down
or even reverse the diversification. Thus we ask: How ubiquitous is diversification in the absence of
any niche-like structure? Are there models in which a diversifying phase is easier to nucleate? Will
the diversification always tend to be limited or strongly-slowed by general-fitness mutational effects?
Or might "entropic” effects associated with difficulty of finding such general fitness mutations — for
example from discrete genomes rather than continuous phenotypic parameters, or from soft tradeoffs
— counter this slowdown, or perhaps produce evolutionary dynamics that lead to sparse interaction
matrices and broader distributions of biases? Conversely, if strains are initially separated in “niche
space” but then start to overlap and interact as the number of strains increases, how does the behavior
differ? Is continual diversification easier to nucleate? Are the statistical properties of the phylogenies
resulting from this evolutionary process — here driven entirely by “selection” in the broad sense, with
ecological interactions creating a balance between the many extant strains — similar to a known class
of coalescent trees?

What happens when, as in large microbial populations, evolutionary processes are not slow? Faster
evolution is likely to make diversification easier, but understanding this even in simple models will
require much better understanding of the invasion probabilities of mutants. Other than our scenario in
which spatiotemporal chaos is the key to stabilizing coexisting diversity, what other robust continually
diversifying scenarios are there? And of course, most crucially, what observable features of the strain,
sub-strain, and sub-sub-strain level diversity in a microbial population (or interacting populations)
could provide hints to the underlying causes of extensive diversity?
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Appendix 1

Spectrum of timescales

The primary timescale that governs the interplay of evolution and ecology is the ecological relaxation
time which is O(ML), with M = log(1/m), as discussed in ‘Timescales’. However the STC exhibits a
number of other timescales. Although it does not play a role in the current work, there is a short
timescale associated with the dynamic fluctuations: roughly the time that a strain spends near the
peak of a bloom, which is similar to the inverse of its instantaneous growth or decay rate. This is
dominated by the net effect of its interactions with the small subset of O(L/M) strains that happen to
be abundant at that time: the variance of this is Zj 1/]-2 ~ M/L, which makes the dynamic fluctuation
time ~ v LIM. Between this dynamic fluctuation timescale and the timescale for blooms, correlations
in the growth rates decay as a power of the time difference. During a bloom, each strain experiences
multiple reversals from growth to decay: this is a special property of the self-organized chaotic state.

The time to go extinct for a strain destined to do so depends logarithmically on the extinction
threshold 1/N, but as long as Nm is very large, whether extinctions occur is not strongly dependent
on N, as analyzed in PAF. In our simulations we choose for convenience Nm > 1 so that logN is a
few times M.

The timescale for migration to be effective would, if there were no differences between the
strains, be of order 1/m which is very long. However, the spatial dynamics are much faster than this
because of the exponential growth of local populations when they happen to be in a favorable
community. This makes the timescale for exponential spread across islands of a successful invader
be on the order of the bloom time on a single island, M+/L. This is analogous to the rapid spread of
a Fisher wave driven by selection, even when the spatial dynamics is diffusive Fisher, 1937; Korolev
et al., 2010.

The timescale of demographic fluctuations — even if some strains were phenotypically identical
— would be very slow ~ N7gen with 7gen < 1 (in our units) a generation time. In practice, these
fluctuations only matter when the populations happens to be very small and is being driven extinct on
the deterministic dynamic timescale ~ +/L/M. But as long as Nomtge, > 1, there are many migrants
arriving and the dynamics is essentially deterministic. If the island-average © drops enough then the
migrations become stochastic with time intervals between them of order 1/(Num). But when this
occurs for substantial time, the global population is likely to be on the way to extinction. We focus
on Nm > L for which the population dynamics of the persistent strains are not strongly influenced
by the stochastic or migratory demographic fluctuations.
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Appendix 2

Numerics

Parameters and integration

For all numerics, parameter values unless otherwise mentioned are I=40, m=107>, v = —0.8,
N = 10%, In order to integrate the dynamics, we use an adaptive forward Euler step, with the time
step chosen so that the maximum fractional change in the abundance of any strain is no greater
than 3/4. This means that the time step scales with the dynamic fluctuation time (‘Appendix 1')
which is O(v/L/M). Therefore, in a single time step an abundance can change to anywhere from
1/4 to 7/4 of its current value. Because of the wide range over which abundances vary, such large
changes do not cause numerical problems. Extinctions and invasions are treated deterministically,
with local extinctions occurring for strain i on island « if v;4 < 1/N. In this case v is set to 0. An
irreversible global extinction of strain i occurs if v;,, = 0 for all a simultaneously. Recolonization of
a locally extinct strain happens when Nmudt > 1, where dt is the time step of the integration. Since
this time step is chosen to reflect the basic timescale of the abundance dynamics, this choice of the
recolonization threshold is consistent.

At the start of a new epoch, one strain is introduced into the community: this is done
deterministically, with fractional abundance of the new strain set at 1/L on all islands and the other
strains” abundances adjusted proportionately to maintain the overall population constraint. To save
computational time, some incoming strains are rejected because they are very unlikely to successfully
invade. This can be estimated by calculating their biases from the properties of the community
before their introduction. By roughly estimating the critical bias from earlier successful invasions, we
can conservatively reject some incoming strains without having to run the dynamics. With general
fitness differences this can yield substantial speed-up by, for a community with population mean s,
rejecting strains with s — § sufficiently negative.

Since the epoch length is O(ML) (set by the ecological relaxation time) and the time step scales
as VLIM, with each timestep requiring O(L?) computations to compute the instantaneous growth
rates of the strains, the runtime of a single epoch scales as O(M?>*2L%?).

Correlations between mutant and parent interactions

Mutation of a parent strain to create an invader is comprised of two parts: changes in the parent’s
interactions with the other strains, and a change in the parent’s general fitness. To generate the
interaction part of a mutation, we append a new row and column to V which parameterizes the
interaction between the new strain M and the parent strain P, each with another strain, k, according
to E[VaVerl = E[VipViu]l = p for M, P # k. In order to preserve the correlation v between across-

diagonal entries of V, we take Vyy = pVpr + /1 — p2Z; and Vigg = pVip + /1 — p2(vZ1 + /1 — 72Zy)
where the Z; are i.i.d. standard normal random variables. This preserves the desired correlations,
with E[Van Vil = 7.

However, we have to treat the direct interactions between the parent and mutant, kK = M, P, more
carefully, since it is not always possible to preserve ~ while also having the desired correlations
between Vpp, Vpyr and Vyp. Defining D, H, J and K as

Vep  Vey D H
= , (A2.1)
Vup  Vum J K

the symmetry conditions we enforce are

E[D’] =E[K*]| = 1 +~, E[H’]=E[J*], E[DJ] =E[DH] =E[KJ] = E[KH] = p(1 +7). (A2.2)

In addition, we require that D=H=J=K in the limit p — 1, and E[HJ/]=+ as p — 0. The
parameterization that we choose which respects these conditions is

H=pD++/1— p?Z, (A2.3)

J=pD+ 1= p?(vZi + V1 = ¥2) (A2.4)
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K=—p"D+pH+ 1)+ 1 — p /1 +~Zs. (A2.5)

where the Z; are i.i.d. standard normal random variables. Now we have E[HJ] = p2+w(l —p2),
which does not precisely preserve the desired correlation E[HJ] = v, but it has the correct limit as
p — 0. Our parameterization gives E[DK] = p2(1 + ), but it is possible to choose an alternative
parameterization which has a different value of E[DK] but still respects the desired symmetries.

The dominant interaction between the parent and the mutant is mediated by the other strains
in the ecosystem, with the direct influence of the parent on the growth rate of the mutant and vice
versa smaller than the contributions mediated by all the other strains by a factor of v/L. Therefore
the choice of the direct parent-mutant interaction ought not to be of much importance — unless
sufficiently strong correlations develop under continuing evolution, for which we do not see evidence.

Epoch length in the diversifying phase

At the beginning of each simulation run, an ensemble of K randomly drawn strains is assembled and
run to reach a chaotic steady state under the dynamics of Equation 1 for time O(M+/K). Between
the introductions of new strains the ecological dynamics are run for epochs of length cpocn ML with
Cepoch = 3. In addition, for most simulations we intersperse regular-length epochs with longer epochs
to get rid of any marginal strains which may be barely surviving. These longer epochs (longer than
the others by a factor of ~ 3) occur every 100 epochs.

The duration of the initial epoch with an assembled community of K strains was usually chosen
to be shorter than later epochs. But for the evolutions this does not much matter as the distribution
of close-to-marginal strains is different than in later epochs and these are in any case quite likely to
go extinct in subsequent epochs. However, for the simulations for which we compared assembled
and evolved communities (e.g. Figure 5), the dynamics of the initial assembled communities were
run for a longer time 12ML.

In order to check that the evolutionary dynamics are in the quasistatic limit, where the strains
are introduced slowly enough that their introduction rate does not matter, we look at how the
diversification rate depends on the length of the epochs between strain introductions. In
Appendix 2—figure 1 we vary cepoch Over one order of magnitude and find similar evolutionary
dynamics for all epoch lengths. In the case of p = 0, there is a longer transient for the long epochs,
though once in the diversifying regime, L increases at a similar rate for all epoch lengths. Based on
this, all data presented in the paper were generated with cepoch = 3, which makes numerics faster,
and should not change qualitative conclusions about the slowly diversifying regime.

A) B)
450 A 4501
400 4 400 A
~ ~
350 1 3501
300 A 300
250 1 250 1
0 200 400 600 0 100 200 300 400
attempted invasions attempted invasions

Appendix 2—figure 1. K = 400. (A) p = 0. (B) p = 0.95. Rates of diversification (measured per attempted
invasion) are insensitive to a factor-of-10 change in the intervals between the introduction of the new types: the
epoch durations shown are cepoch ML with several values of cepoch- Although it can take more invasions to get into
the steadily diversifying regime for long epochs, the rates of diversity increase depend little on the epoch lengths.
Both dashed lines both have slope 0.2 (diversification rates happen to be similar for p = 0 and p = 0.95).

Estimation of drive and bias
The mean drive and bias are emergent quantities from the mean field analysis ('Appendix 5'), and are
therefore not manifest in our direct numerical integration of the dynamics: however we can extract
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them from numerics as detailed below. Here, we use the notation 7, for the average abundance of
strain i in the absence of strain j. The averaged growth rate of a strain, excluding migration, can be
measured directly. In the mean field approximation, this is decomposed as the sum of its bias and
feedback from it perturbing the other strains::

=sit ) Vi =T (A2.6)

j
=5i+G— YT +~Xy; (A2.7)
=& + Xy, (A2.8)

where the drive, (; = 3~ V;;7, can be written in terms of mean field quantities as (; = >_; V7 — 7Xv;.
The term vX7; captures the feedback of strain i back onto itself via the other strains. Therefore, if
we know the susceptibility, X, we can calculate the drive and bias of a strain: since 7; and 7; are
measurable in our simulation, we need only to subtract off the vX7; term from 7; to get &;. We can
find X using the self consistency condition that X = 3", Z—Z_’ =3 Z—Z_’.

First, we make a guess for the susceptibility X which allows a provisional calculation of the (;.
Then, using our numerical simulation data, we fit parameters a, b and ¢ to a functional form giving

the mean abundance in terms of the drive and s:
N(C) = blog {1 +exp <$)} . (A2.9)

The justification for this form is that it gives b; ~ (; +s; — ¢ for (; + s; — ¢ > 0. This is the expectation
that ©; becomes proportional to & for positive & — though here we include an offset via the
parameter ¢ which roughly represents the expected correction to the linear function N () at large
bias. The quantity ¢; +s; — ¢ is similar to & but not quite the same due to a systematic difference
between ¢ and Y. For large negative bias, the fitted form captures the roughly exponential decrease
of ¥ due to the rareness of blooms.

The data are fit by this functional form quite well (Appendix 2—figure 2). We observe that ¢
tends to be smaller than the measured T within a given epoch, which could be due to the effect of
migration which elevates 7; for strains with negative &;. The parameter combination b/a is roughly
equal to —1/7X, as expected from the mean field analysis. From the hypothesized form of N(() we
can recalculate the susceptibility via X = >~ ﬁz (where the derivative is calculated numerically). We
then update our value of X by averaging the old guess with the new estimate.

A) B)
0.015 1 0.0151
0.010 1
By
0.0051
0.000 +
—0.1 0.0 0.1 0.2 0.00 0.05 0.10 0.15 0.20 0.25
¢ (inferred) G (inferred)

Appendix 2—figure 2. Inference of the drives, (;, for (A) communities evolving with p = 0 and (B) communities
evolving with p = 0.95. In both cases, all s; = 0. The black lines shows the fit of the functional form for N'(¢) after
X has converged to a self-consistent value. Data are pooled (both for fitting and for plotting) over 5 consecutive
epochs, each with ~ 300 extant strains. For p = 0.95 it seems that correlations in the interactions that have
accumulated due to the relatedness are affecting the relationship between  and (. Certain strains are visible
outliers from the average dependence of 7 on (, and appear multiple times on plots since data are pooled across
5 epochs.
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By iterating over the susceptibility until it converges to a value where the assumed drives
G =2_; Vi — 7Xv; reproduce the susceptibility via the self-consistency condition, we can get an
estimate for the susceptibility and therefore the drive as well. Then the bias is & ~ ¢; + s; — T, where
we have subtracted the Lagrange multiplier (neglecting effects of order T — Y\; which are smaller
by of order 1/v/L) and added back in the general fitness. We can validate that our bias estimator is
reasonably accurate by comparing the inferred biases to the biases of strains in their first epoch of
invasion — the latter can be measured directly from simulations since they are simply the invasion
eigenvalues for incoming strains. As this works well, we use it to infer the biases for all the other
strains in the community. (Note that in contrast to the assembled communities studied in PAF, we
cannot use the condition that the drive averaged over all the initial K strains, is zero. PAF used this
— along with the expected truncated gaussian shape with variance >, 72 and lower limit & + T —
as a check in calculating the drives. This no longer works here because conditioning on evolution
means that the mean drive is no longer and the drive distribution is no longer a truncated gaussian.)

To increase the quantity of data on which to perform our fit for A(¢) in a given epoch, we pool
data from up to 20 epochs around the focal epoch, provided their L is within 5% of the L in the
focal epoch, with the hypothesis that these communities are statistically similar and therefore have
a similar N(¢).

The function N(&) for the evolved communities with p = 0 looks quite similar to the function for
assembled communities However for communities evolved with p =0.95, N (£) looks substantially
different. This indicates that the build-up of correlations in the community requires modifications of
the independence assumptions of the mean field theory.

After inferring the function N(C) and the drive for each strain, we can calculate the fragility,
defined as ==}, XJZ/(I > X,) The closer 3, X, is to 1, the more unstable the community is to
perturbations. Indeed we flnd that for S|mu|at|ons diversifying from 50 to 500 strains, ;X 2 ~0.6
for the evolved community of = 500 strains, while early in the simulations, when L < 100, we find
Z/ XJZ 2 0.75. When comparing Zj Xj for assembled and evolved communities, both of 500 strains,
there is not a clear difference. Note that the close-to-marginal strains, which are more abundant in
the assembled community, only contribute small amounts to =, so this is not surprising.
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Appendix 3

Dynamics of diversification
Extinctions, diversity crashes, and nucleation from low diversity

\ L
1 —— 10-40
1074 —— 4070
—— 70— 100
.j; " —e— 100 - 130
= 1077 130 — 160
Z 160 — 190
=2 190 — 220
2 10-3
2 i
£ 10
1074 4
0 10 20 30 40
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Appendix 3—figure 1. Crashes and distribution of number of extinctions per invasion. (A) The fate of an evolving
community depends on the number of initial strains K. The characteristic size below which crashes dominate is

= 50 for the parameters v = —0.8 and p = 0 as shown here. (B) The distribution of the number of extinctions per
successful invasion depends on the size of the community. Data are aggregated across a range of K, each run with
100 replicates. For small community size, L, invasions occur in which a substantial fraction of the strains go extinct.
But for large L, multiple extinction events are very rare and the distribution is close to geometric: the dotted
lineis P(0) = (1 — oz)o/ for the probability of £ extinctions, with o & 0.41, corresponding to an average of 0.7
extinctions per successful invasion as shown in Figure 2A.

A crucial question is whether it is possible to build up a highly diverse community from a small
initial number of strains and, if so, on what this depends. Starting simulations at values of K between
10 and 90, we observe a crossover size, K*, of the initial number of strains above which diversification
is robust, and below which the diversity typically crashes under the evolutionary dynamics and does
not again increase substantially for the duration of the simulations, (Appendix 3—figure 1A). The
presence of a crossover K* suggests that once the system is sufficiently diverse, it tends toward
further diversity. Thus the main obstacle to diversification in these models is going from a single
strain to & 50 strains. We define K* heuristically as the lowest K that diversifies with probability
more than 1/2 (see Appendix 3—figure 2). For each K, there is a corresponding Ly(K): the number
of strains that persists after the initial drop in diversity. This somewhat-variable Ly appears to be the
primary determinant of a community’s stability to evolutionary perturbations. However this stability
also depends on the community's history. For example, if the community has evolved gradually
from a smaller number of strains to some current size Lg, its response to continued evolution may
be different than if it has been assembled from an initial number K that dropped through its initial
evolution to an ecologically stable community of size Lg. This motivates definition of a crossover
size L*, different from Lo(K*), given by the minimum size of an evolved community for which the
probability of entering the diversifying phase is greater than 1/2. We discuss the differences between
assembled and gradually evolved communities further in ‘Appendix 4, but leave an analysis of how
these properties affect the nucleation probability for future work. The size L* is a natural quantity
to work with, as it is the relevant one when considering how a community might nucleate from a
small number of strains into a diversifying regime. As we discuss later, we expect L* < Ly(K™) since
just-assembled communities are more susceptible to perturbations than gradually assembled ones.
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Appendix 3—figure 2. The probability of establishing the steadily diversifying regime increases with the initial
number of strains and decreases with the migration rate. Although changing the migration rate from 10° to 107'°
changes the establishment probability significantly, further reducing m has little noticeable effect, indicating that
the dependence of establishment probability on m is rather weak over several orders of magnitude. Data are
averaged over 100 simulations for each set of parameter values. If m = 0, then migration cannot stabilize the
spatiotemporal chaos, and so the establishment probability should vanish — but this is a very singular limit.

We can quantify how likely the system is to diversify or crash by inspecting the number of
extinctions, £, that occur for each invader that successfully enters the ecosystem. The distribution of
¢ is dependent on L and shows that more diverse ecosystems suffer on average fewer extinctions
triggered by invasion of each new strain (Appendix 3—figure 1B). For small communities L of order
L* or less, extinctions of a substantial fraction of the strains occur, and cascades of extinctions in
response to successive invasions cause L to crash. The fragility of the communities with L = L* to
evolutionary perturbations and their strong tendency not to recover after a crash (Figure 2A), implies
that the process by which a low diversity community could diversify is very different than the steady
diversification of already large communities. The transition from the low diversity to the diversifying
regimes must be mediated by a very rare nucleation event in which L becomes roughly larger than
L*. We discuss the low diversity regime and speculate about such nucleations in ‘Appendix 3'.

In the steadily diversifying regime the distribution of extinctions per successful invasion is close to
exponential — a result that we derive in ‘Distribution of biases and number of extinctions'. For large
L, the chances that a substantial fraction of the strains go extinct is extremely small and decreases
exponentially as L increases further: thus for large L the continual diversification is essentially
deterministic.

Probability of diversification as a function of initial community size

The initial community size beyond which diversification becomes likely depends m, v and p, and is
defined as K*. For some range of y (Figure 2B), K* is infinite: the system always eventually crashes.
The role of m in determining K* can be partially understood from the mechanism of diversity crashes
due to synchronization of dynamics between islands. This occurs more frequently when m is larger,
but its dynamics are subtle because of local blooms up to high abundance which can can have
outsize effects. Though we have not studied the synchronization and diversity crash process here,
it suggests an interpretation of our simulation results (Appendix 3—figure 2) which show that
decreasing m lowers K*, presumably because it makes the STC more difficult to spatially synchronize
and hence less likely to crash.

Nucleation from low diversity

Here we further investigate the evolutionary dynamics when the diversity is low. We are particularly
interested in the nucleation process by which an ecosystem could transition from the L < L* regime
to the steadily diversifying regime, where L* is the crossover beyond which continual diversification
becomes likely. For the parameters we have investigated, this turns out to be extremely rare. Even
in runs of 10° attempted invasions starting from a single strain, the community always remains small.
We observe that the number of extinctions per successful invasion is broadly distributed (as when
starting with a larger community L ~ L* in Appendix 3—figure 1) and the evolutionary dynamics
of L typically proceeds by incremental increases punctuated by large decreases. In this regime, the
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steady state distribution of L is observed to be very close to Poisson (Appendix 3—figure 3) — a
result that we do not have a theory for. From this Poisson behavior, one can attempt to extrapolate
the probability of reaching L* and transitioning to steady diversification by a lucky fluctuation in L.
Taking L* =~ Ly(K* ~ 70) = 55 based on Figures Appendix 3—figure 2 and Appendix 3—figure
1, this estimate suggests ~ 10°° attempted invasions would be needed. However, the probability
distribution of L will surely deviate from Poisson long before L*, so our prediction for the chance of
nucleation is likely too small by many orders of magnitude, depending on the value of L for which
the probability distribution starts to be significantly higher than the Poisson extrapolation. At this
point we do not have even conjectures for the shape of this distribution, nor for how the value of
L* changes with ~, p or m. At the marginal point v = —1, we have the special antisymmetric model
('Appendix 6'), and diversification becomes impossible, so near there we expect that L*, along with
the fragility, diverges.

104
10—1 p
5 4
21072
S 7750 7800 785
21073 attempted invasions
3
101
107°

0 2 4 6 8 10 12

Appendix 3—figure 3. Distribution of community size L starting from a single strain, over 10° attempted invasions
with m = 107> and v = —0.8. The solid line shows a Poisson fit with mean 1.6, excluding L = 0. This fit is
remarkably good. The inset shows the trajectory of L as it reached its maximum value which occurred only once,
followed by a crash back down.

Results from ‘Appendix 3’ suggest that the nucleation process may be related to desynchronization
which is necessary to enter the steadily diversifying regime. In fact we observed that decreasing
the migration rate m increases the mean of the Poisson-like distribution of L in the low-diversity
regime, and also reduces L* (Appendix 3—figure 2), thereby perhaps substantially increasing the
probability of nucleation — although it is still too improbable to observe.

Scaling relationship between bias distribution and

400 7 ,,//
o~
300 A
200+ — L
— L
1001
0+ T
0 1000
04~ successful invasions
0 250 500 750 1000 1250

1/0?

Appendix 3—figure 4. Scaling relationship between the effective community size, £ = 1/4/3; 17i2, and the inverse
variance of the bias distribution, 1/0‘2, for unrelated invaders with s = 0. The dashed line has slope 0.47. Data are
pooled over 3 runs from L = 50 to 500 strains (inset) so that when L becomes large the initial conditions have been
forgotten. Inset shows that L and L are proportional as expected. (The bend in £ versus I/Ug toward the end of the
curve is likely due to stopping the simulation the first time L reaches 500, which truncates the curve asymmetrically.).
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The central scaling relationship from which our theoretical results follow is that the width of the
bias distribution scales as 1/v/L, which scales the same way as 1/v/£ = /3, 72. In Appendix 3—
figure 4, we confirm these relationships by calculating the standard deviation of the bias distribution
in a diversifying community where L ranges over one order of magnitude. We find the the relationship
holds for both L and £, which are proportional to each other with £ ~~ 0.74 x L.

Diversifying phase with p close to 1

One of the important results of this work is that there is a continually diversifying phase of eco-
evolutionary dynamics both for unrelated invaders and for small-effect mutations, across the whole
range of p € [0,1). In Appendix 3—figure 5, we illustrate the robustness of this phenomenon for
highly correlated parents and mutants with p = 0.97, running a large number of replicate simulations
and seeing that about 10% of these enter the diversifying phase, when K = 50. Although the
community is less likely to nucleate into the diversifying phase than when p =0, L still increases
linearly with attempted invasions once the community is nucleated.

p =097

300+

3 2001

100+

0 1000 2000 3000 4000
attempted invasions

Appendix 3—figure 5. The diversifying phase persists for p close to 1. Here we show 99 simulation replicates,
starting from K = 50. Out of these, 11 nucleated into the diversifying phase, albeit with diversity increasing at a
slower rate than with p smaller (Figure 2). Simulations which crashed are shown in red while those that entered the
diversifying phase are shown in blue.
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Appendix 4

Statistics of v conditioned on evolution

How do the statistics of the interaction matrix V;; change when conditioned on evolutionary history?
How does this compare to conditioning on non-extinction in an assembled community? We ran a set
of 10 replicates without general fitness differences over a period where the community grows from
50 initial strains to = 500 strains, for both p = 0 and p = 0.95. From these, we obtained ensembles of
interaction matrices conditioned on gradual evolution with p both 0 and close to 1.

We also examined the interaction matrices of communities that evolved with a steady state L, by
using an exponential distribution of s with ¥ = 0.07, starting from K = 50 and reaching steady state
with L = 150 while evolving over the course of = 4000 successful invasions. In this case one might
be more likely to see correlations building up, since new strains might not dilute the correlations
building up in V. For comparison, we studied assembled (but not evolved) communities starting with
sufficiently large K to have Ly similar to the evolved condition.

Appendix 4—table 1. Definition of some statistics of the interaction matrix of a community. The
standard deviation is calculated as Stdev;[{x;}] = \/% ZiL=1(x,~ — % ]-L=1 xj)? (the population standard
deviation) and Corr[X, Y] is the Pearson correlation coefficient calculated for a sample (the covariance
normalized by the product of standard deviations).

— ~

v ay iy A

Corrl[ Vi, Viil,i # j Stdevyi[ V] LYYy suev; [1 32, Vi

In Appendix 4—table 1, we list the summary statistics of the interaction matrices that we analyzed:
7 is the empirical cross-diagonal correlation in the V matrix of extant strains, oy is the empirical width
of the interaction strength distribution after evolution, fiy is the average of the interactions and A
is the standard deviation, over i, of % Zj Vij, which acts like an effective s, crudely approximating
the width of the bias distribution. Aside from 7, all the quantities are defined including the diagonal
termsin V.

Appendix 4—table 2. Means (up to corrections due to diagonal entries) and standard deviations of
the chosen statistics from 500 realizations of the matrix V from the original ensemble with v = —0.8,
and two values of L pertaining to the different evolutionary conditions. Here we do not condition on
either non-extinction or evolution.

-~ —~ ~ ~

i oy Ky A
mean (L = 500) -0.8 1 0 0.0446
standard deviation (L = 500) 0.001 0.002 0.001 0.0015
mean (L = 150) -0.8 1 0 0.0816
standard deviation (L = 150) 0.0036 0.006 0.0031 0.0046
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Appendix 4—table 3. Statistics of the interaction matrix for both evolved and assembled
communities. Evolved communities grew to = 500 strains from an initial K = 50 and assembled
communities had Ly = 500 after a single epoch of duration 12ML, both with s; = 0. The last row

is from a simulation with exponential P(s) and X = 0.07, which results in L & 150 at steady state.
The mean of each statistic is reported across 10 simulation replicates. In Appendix 4—table 4 we
show these statistics appropriately normalized with respect to the original V ensemble. Bold entries
correspond to those more than 3 standard deviations away from the original ensemble mean.

v oy v A
assembled (X = 0) -0.8014 1.0012 0.0026 0.0337
diversifying (X =0, p = 0) —-0.8015 1.0028 0.0061 0.0289
diversifying (X = 0, p = 0.95) -0.8082 1.0427 0.1422 0.0328
steady state (X = 0.07, p = 0) -0.8074 1.0205 0.0165 0.0977

To check for statistical significance, we normalize each statistic of the evolved interaction matrices by
the standard deviation of the estimator of the corresponding statistic from matrices drawn from the
original ensemble without any conditioning. This indicates how atypical the measured statistics are
for the matrices of size I x L. We thus define quantities ¥, 6y, fiy and A to be the empirical matrix
statistics measured in units of standard deviations away from their mean in the original V ensemble.

Appendix 4—table 4. Properties of the interaction matrix for evolved and assembled communities,
displayed in terms of number of standard deviations from the mean in the original V ensemble.
These are the same data as in Appendix 4—table 3, but normalized according to appropriate scale
of deviations calculated from original V ensemble. Numbers in boldface have magnitude greater
than 3, and are thus clearly statistically significant.

¥ oy iy A
assembled (X = 0) -1.4 0.6 2.6 -7.2
diversifying (5 =0, p = 0) -15 14 6.1 -10.4
diversifying (2 = 0, p = 0.95) -8.2 214 142.2 -7.9
steady state (X = 0.07, p = 0) =2.1 3.4 5.3 3.5

Although a considerable number of statistics are significantly different from their original ensemble
values, few incur substantial changes, with the largest change by far occurring in the py for the
simulations with p = 0.95; however even this is a relatively small effect.

Our results show that both evolution and assembly tend to make 7 slightly more negative than
the 7 of the original ensemble, and that these processes also favor — as might have been expected
— an increasing mean interaction strength, fiy. Of particular interest, given previous discussion, is
A, which is similar to the width of the bias distribution. For L 2 500, the statistics of the matrices
from the original ensemble have A 2 1/1/500 2 0.0447. However, once we condition on assembly
or evolution, the value of A can be expected to decrease, because we eliminate those strains with
negative bias, meaning that strains i with an anomalously small value of 3~ V;; will go extinct, making
the range of }°; Vj; narrower. This is indeed observed in Appendlx 4—table 3, atleast for simulations
without general fitness differences. Interestingly we see that A decreases with evolution more for
p = 0 than for p = 0.95, which could be because, in the latter case, the elements in a single row of V
are correlated with those of a high-abundance > parent, which could increase the width of the > V;;
distribution. Nonetheless, we still expect that A scales as 1/v/L for evolved communities.

For the evolution with L roughly constant from exponential P(s), we see that A after evolution
is actually larger than in an unconditioned matrix. However, here the bias has an extra contribution
from the general fitness, so A is no longer as good an estimate of the bias distribution width (though
it should still be similar).

We can compare these results to previous results of Bunin, 2016 in which he calculated the
statistics of the interaction matrix conditioned on assembly in the stable fixed-point phase where
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niche interactions — large negative diagonal terms in V — stabilize the diversity instead of spatial
structure. Bunin observed that, conditional on assembly, correlations between the effect of strains &
and [ both on strain i become negative, that is Corr[Vy, V;;] < 0 with small magnitude of order 1/K.
This is consistent with our observation that the distribution of the sum of these interactions for each
strain, Z,’ Vij, will have a smaller width than in the original ensemble. In addition, Bunin finds an
O(1/K) shift in the mean of the interaction matrix toward less competition, which is consistent with
fy > 0. We also see slight but systematic changes in 5 and @y, particularly in the case of evolution
of correlated mutants with p = 0.95.

Although many of the changes of the interaction statistics of assembled or evolved communities
are statistically significant, they are mostly very small, with the possible exception of iy for p = 0.95.
We conjecture that for p = 0 all the effects are small by some power of L. But for p near one, this is
less clear: whether for L large compared to some inverse power of 1 — p, the correlations induced
by evolution will still be small, or whether the correlations will persist for arbitrarily large L, we leave
as an open question.
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Appendix 5

Dynamical mean field theory

In this section we provide some more background on the dynamical mean field theory used as a
basis for the heuristics and scaling arguments throughout the paper. The main idea of dynamical
mean field theory is to reduce an interacting many-body problem into a single-body stochastic
problem, with the statistics of the stochasticity to be determined self consistently. As discussed in
PAF, a dynamical mean field theory analysis of Equation 1 results in autonomous stochastic integro-
differential equations for each strain independently. Since the strains are statistically equivalent on
each island, we drop the island subscript:

t

% =vi (si +GiO+y / R(t, {)yi(dydr — T(r)) + m(zi(t) — v;). (A5.1)
Here, the correlation function C(z, 1) of ¢;(?), the response function R(t,7'), and the island-averaged
abundance 7;, must be determined self-consistently. In order to use this description for the evolved
(in addition to assembled) communities we have assumed that the statistics of the V do not
change substantially in evolved communities: we show in ‘Appendix 4’ that our simulation results
are consistent with this Ansatz. Here, we have made the time-dependence in (;(r) explicit — but
elsewhere in the paper when we refer to the time-averaged or mean drive ¢;, we have dropped the
overbar for readability.

In ecological steady state, some of the strains will have gone extinct, and the correlations and
responses of the persistent strains will only depend on time differences ¢ — ¢/, and quantities will have
well-behaved time averages equal to island averages, denoted by overbars. The average growth
rate of strain i on a single island excluding migration is

R=sit Y Vi —T=si+ G+Xy =T =&+9Xy,
J drive and feedback (A5 2)

N——
force from all strains

where the static susceptibility, X, is the time-integrated total response function
X=["_ Rt =Y, x;. Here, we define the individual strain static susceptibility as x; = Z—Z’_’.
In steady state with migration, (%) = 0; therefore 7; < 0 must be exactly compensated by the
average effect of the migration term m((#;/v;) — 1), which is always positive (by the Cauchy-Schwarz
inequality) and can be much larger than m when v; is small.

The stochastic DMFT equations cannot be reduced to equations for the correlation and response
function and must be treated directly. Their self-consistent solutions in the STC phase were analyzed
in our previous work [PAF], by asymptotics in the large parameter M. This analysis yields super-
diffusive random walks of the log-abundances, persistence around the migration floor, and the
statistics of the occasional blooms that occur for all persistent strains with negative bias. These
aspects together determine how the mean abundance of a strain depends on its bias, via 7 ~ N(£)
with corrections smaller by factors of O(1/+/L).

When the bias of a strain is positive the average input from migration will be relatively small, and
hence 7; ~ 0 which implies that ; ~ &/(—~vX). For strains with negative bias, the migration is essential
and the statistics of the blooms, which are rarer the more negative the bias, make 7; exponentially small
in —&; [PAF]. For strains with more negative bias, & < & < 0, the migration cannot sustain their local
populations and they go globally extinct with their spatially averaged frequency decaying exponentially
in time.

The distribution of the biases of a community plays a crucial role in determining its response to
invasions. In arandomly assembled community of unrelated strains, the biases are essentially independent
up to corrections smaller by O(1/+/L), with the mean drives, ¢;, gaussian distributed with average zero
and standard deviation of order 1/v/L. More precisely, since ¢; is determined by the community in
the absence of i, the Vj; that determine it are independent of the abundances in the community. The
variance of (is 1/ =}, 171-2 (with only small corrections from the neglect of the strain itself): this simple
result is explicit in the self-consistency condition of the DMFT correlation function. We therefore use £
as a measure of the effective size of a community which weights the contributions of strains by their
mean abundances and, unlike L, is insensitive to whether the close to marginal strains have or have
not gone extinct. The distribution of the biases of the persistent strains in the randomly assembled
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community is a truncated gaussian with lower limit &, which is of order 1/v/£ — the magnitude of &
and £ must be determined self-consistently. Crucially, these will depend on the dynamics — especially
the blooms — not just the mean quantities.
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Appendix 6

Analysis of general fitnesses

Number of persistent strains with exponential P(s) in perfectly antisymmetric
model

The antisymmetric model with v = —1 and no migration (considering only a single island) provides a
situation in which we can calculate various quantities analytically and anchor the DMFT analysis. As
analyzed in PAF, there is a unique uninvadable fixed point characterized by abundances {v;} with
half the strains having gone extinct, and this fixed point is marginally stable. Indeed, there is a family
of chaotic steady states, parametrized a temperature-like quantity © which is roughly the range of
the fluctuations in log v;, with the average abundances ; = v}

Here we analyze the effect of introducing independent exponentially distributed s; for each
strain, and find the number of strains that persist at the fixed point. Since there is no migration, the
relationship between the biases and abundances is especially simple, as detailed below. The critical
bias is & = 0 and the mean s is simply 5 = Y. In the limit K>? >> 1, the distribution of the drives with
scale 1/v/K will be much narrower than that of the s;. Let us define x; = ¢; + s; for convenience. The
scale of p(x), the x; distribution, will be 3 and it will decay exponentially for large x. We can get the
distribution of x from the convolution of an exponential and gaussian distribution, with the drives
having variance 0’%2

2 2
UC/ZE
plx) ~ eTeﬂdE, forx > o (% + (9(1)). (A6.1)

With the Lagrange multiplier T, the average abundances #; at the mean field fixed point will be
7; = max(0, x"}T) = max(0, {;/X) with X the total static susceptibility given by >, x;. Let us define ¢ as
the fraction of strains that persists with positive bias. When T > o¢[o¢/% + O(1)], we can make the

approximation

o 252 /s
¢ = / p)dx ~ e”¢ e . (A6.2)
T

Self consistency requires that the average abundance over the initial K strains is

®© x—7 1 a2nstY _ye 1 by 1
== = < — N = = —0~ —.
A ( X ) p(xX)dx z e Xe % X¢ X (A6.3)

Now we combine this relation with the self consistency condition

dv; K
Xzzd%;?‘ﬁ — X= /Ko, (A6.4)

1

- Therefore, the number of persistent strains, when K22 > 1is ©72, with coefficient

to obtain ¢ ~
one.

To obtain the behavior for arbitrary K, one must solve the mean field self consistency equations,

with the exact distribution
1 ag —2x2 ® X3 — a%
px) = TP~y Tjg , (Ab.5)

where @ is the standard normal cumulative distribution function. There are three mean field equations
for the three unknowns T, o, and X.

1 © /x—T
L= /T ( - ) P, (A6.6)

o2 00 -7 2
% _ x y
K /f ( X >p(x) - (A6.7)
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K o0
X= X /T p(x)dx. (A6.8)

The number of persistent strains is Kf%op(x)dx, where T solves the above equations. Since for
perfectly antisymmetric interactions, § = T, the solution of these allows us to check that §/% increases
with 3, as seen in Figure 3. Though one could solve the mean field equations numerically, we can
obtain asymptotic results using the approximation in Equation A6.1.

For KX? > 1, we have T ~ (1 + log(K=2)), X ~ 1/% and o¢ = V23, which is consistent with the
asymptotic Ansatz for p(x) for the present strains: since T — O‘%/Z > o¢ all persistent strains have
large enough x for the approximation to be valid. Then the distribution of ¢ for the persistent strains
is

p(Clpersistent) ~ 2\/»%87((/227 1)2, (A6.9)

valid except for ¢ > T = X(1 + log(K=?)) which is a negligible fraction of the distribution. The width
of both the ¢ and the s distributions for the persistent strains is of order X. As expected more
generally, these are comparable once 5§ is in the tail of P(s). This calculation could be done for any
choice of P(s), and should give the behavior of T with K, which is the same as the behavior of § with
T in the evolving phase of the STC: namely § ~ S(log T)!/%.

Joint distribution of ¢ and s of successful invaders
Here, the statistical properties of uncorrelated invaders, needed to understand the evolution of the
STC state, are analyzed. Every successful invader A must have &4 > &. Since the invader’s bias is a
sum of s4, {4 and —7, we can calculate the distributions of s4 and {4 conditional on invasion.

We analyze the case with an exponential distribution of the s; with scale . Since the distribution
of the invader {4 and s4 are independent, we can write their joint distribution as

1 L L
P(Cass4) = EV 7 SXP {—SEA — 5{4 O(s4). (A6.10)

Conditioning on successful invasion multiplies by a factgr of (¢4 + 54 — & — 1), which enforces that
&x > &c. We are interested in the large time limit when T = § + O(X) > X. In this limit, the restriction
that s4 > 0 has negligible effect and the analysis is simple.

The invasion probability is

1 T+&
2520 %

Pinvade = /o / P(Ca,54)O(Ca + 54 — & — T)dCadsp =~ exp [ } , (A6.11)

which decays exponentially as ¢=*

invasion is

, as expected. The marginal distribution of s4 conditioned on

1

Pinvade

p(salinvasion) ~

e [VE — T - 6], (A6.12)

where @ is the standard normal cdf. Similarly, the distribution of {4 conditioned on invasion is

. . L CA L 2 fc + T}
(C4linvasion) ~ — ex {— — =i — , A6.13
p(Ca pae V 2r P |5 T 2% > ( )
and the bias distribution conditioned on invasion is
. . 1 —(&4 —
p(&4linvasion) /= Sk {@AT&)] O(&4 — &o). (A6.14)
Of particular interest is the mean sy:
. 1
E(s4li i ~7T Y—— =5 by
(s4linvasion) +&+ sz 8 + O3, (A6.15)
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since E({4linvasion) ~ 1/(X£) and E(£4linvasion) = & + 2.

Effects of shape of tail of general fitness distribution

Here, we analyze the evolutionary dynamics for the class of general-fitness distributions with high-s
tails parametrized by v, and show support from numerical simulations for the scaling Ansatz and
results given in the main text.

For attempted invasions by unrelated strains, as the evolution progresses, § increases past 3 and
pushes up into the tail of P(s). The rate of successful invasions then decreases rapidly since invaders
need general fitness (at least) comparable to § in order to invade: the probability of successful
invasion is of order piwade ~ SP(E) with the prefactor from the width of the distribution of s4 near
5. In this regime, the analysis of ‘Appendix 6’ can be carried over with ¥ replaced by $. The drive
on the invader from the extant community, ¢4 ~ 1/v/L, will be of order £, yielding the key scaling
prediction L ~ £~2 which is tested in Appendix 6—figure 1A.
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Appendix 6—figure 1. Consistency of predicted scaling Ansatz with simulations. (A) The combination LS%is
predicted to approach a constant independent of 1) for long evolutionary times. Solid lines indicate the mean
value and shaded regions indicate standard error over 50 replicates, conditional on the diversity not crashing.

The curves for 1) = 0.8 are shown individually as this value of 1) results in crashing and the fluctuations are large.
The dashed horizontal line is at 0.7, the value found for ¥ = 1 from the data of Figure 3A. Note that for ¢ = 3,
transients are still substantial. (B) Theory predicts that ds/dZ scales as /L. The dashed line has slope 1/9 with
evolutionary time increasing along the direction of the arrow. Data for ¥ = 0.8 are quite noisy and not shown. Here
the curves are smoothed by a moving average over 1000 successful invasions for both d§/dZ and ¥/L, and further
averaged over 50 replicates conditional on not crashing. Transients from the initial conditions are observable at the
upper right.

Successful invaders will have s4 =5+ (’)(f?), since 3 is the typical amount by which the invader’s
general fitness is likely to be larger (or smaller) than the § of the extant community. Therefore,
we expect that the change in the community-mean 3 per successful invasion will be ds/dZ ~ /L
(obtainable from ‘Appendix 6'): this scaling is tested in Appendix 6—figure 1B. Substituting for
L ~ $£72, we have ds/dZ ~ £3. Integrating this equation and using 3 = £¥/5¥~! one obtains scaling
laws quoted in the main text, valid for Z>> 1/%% and L ~ 753 with the latter exponent less than
one for the relevant range of .

For ¢ > 1, both L and § increase sub-linearly with Z, but dL/dZ decreases steadily with Z since
the evolution gets closer to an average of one extinction per successful invasion, which obtains
exactly in the steady state for the exponential distribution. By contrast, for ¢ < 1, L decreases with
Z and § increases super-linearly with Z, as the distribution does not decay fast enough to prevent
increasingly fit mutants from emerging and outcompeting more than one strain per successful
invasion.

The behaviors of the scaling combination L2 is shown versus Z in Appendix 6—figure 1A. this
combination is predicted to approach a ¢-independent constant for large Z. The value of this constant
is consistent with the 0.7 found for ¢ = 1 in Figure 3A. The other key scaling law, ds/dZ ~ SJL, is
tested in Appendix 6—figure 1B, with the predicted coefficient of = 1/9 from Figure 3. Although
these show convincing evidence for the predicted asymptotic scaling forms, much of the observed
evolution is not yet in the late-time asymptotic regime.
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To get the growth of § — and hence the other quantities — with the number of attempted
invasions, we write; d$/dT ~ pinvade /L and integrate this using the scaling relations to get

% ~ [1/; 10g(TE2) + (3 — 3¢) log log(T?) + 0(1)} " (A6.16)
with the unknown O(1) correction reflecting an additive uncertainty of order % in 5. Up to this
correction, the expression has an identical form to the upper limit from piyaaeT > L as explained
in the main text, and quoted there without the loglog correction (which vanishes for ¢ = 1). This
prediction, with T replaced by T+ K (without the loglog part or the O(1) correction), is plotted in
Figure 6B. Slow crossovers from the initial non-universal behavior towards the predicted behaviors
are observable with the asymptotic predictions thus not well-testable in the time-dependences.
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Appendix 7

Correlated general fitness mutations

We have shown that including general fitnesses with ¢ > 1 causes evolution with unrelated invaders
to slow down, with Z increasing only as power of log T. Here we analyze what happens if the general
fitnesses of mutants are correlated with those of their parent. In order to generate such mutant
general fitnesses that are still drawn from the overall P(s), we can take the mutant fitness to be
sampled from a Markov chain starting at the parent, with stationary measure given by P(s), and
a "time"” between samples that depends on the desired correlation between mutant and parent
fitnesses.

Exponential distribution of s

The case of exponential P(s) is simple: one can choose the mutant fitness to be gaussian distributed
with mean given by the parent’s general fitness minus a constant offset which can be tuned so that
the stationary distribution is exponential with the desired 3. The variance of the gaussian determines
the degree to which the parent and mutant are correlated, parametrized by ps, which need not
be the same p defined by the correlations between parent and mutant interactions. The crucial
difference from uncorrelated s is that the probability of s > § is now independent of § rather than
decreasing exponentially with $/3. This enables § and Z to increase linearly in T. However, L still
saturates to a value of order 1/%2, with a coefficient that depends on the correlations. Appendix 7—
figure 1 shows simulations that confirm these predictions.
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Appendix 7—figure 1. Simulation results for correlated mutants with an exponential P(s). The primary difference
from the independent-invaders case (Figure 3) is that the number of successful invasions is proportional to the
number of attempted invasions, since a mutant s is correlated with that of its parent, so invasions do not slow
down with increasing §. Here p = 0.8 for the interactions and for the general fitnesses the correlation is ps ~ 0.9.
Note that for the same X with unrelated invaders (p = 0 and ps = 0) the steady state values of L are quite similar
to those shown here.

Non-exponential s distributions with correlated mutants

Incorporating correlations in the general fitnesses of parent and mutant for other distributions of s
gives rise to other complications. In the 1 > 1 case of particular interest, as § grows the mean s — §
of mutants becomes more and more negative and overwhelms the random part of sy — sp. There
is a then a scale of s that diverges as ps — 1, such that for § above this scale, successful invasions
become very unlikely and the diversification slows down even with strongly correlated mutants. This
gives rise to complicated crossovers that we do not fully understand and are hard to disentangle in
the simulations.
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Appendix 8

Dynamics of drive distribution

Markov approximation

In ‘Evolution without general fitness differences’, we describe how the serial invasion of strains
causes the biases of extant strains to undergo a random walk with an absorbing boundary condition.
In general the statistics of this random walk are complicated and depend on the conditioning on
evolutionary history. In order to make analytical progress, we make a Markov approximation of the
effects of the evolutionary history and assume that the distribution of the biases at epoch T+ 1 only
depends on itself at epoch T. The average drive of probe strain 0 before the successful addition of
strain A is (o = >_; Vo;#;, while after the invasion it changes to

C(/) =(o+ 0 = Z VOj(Dj\A + 5l7j) + Voava, (A8.1)
J

where 74 is the mean abundance at which strain A establishes and 7y is the average abundance of
strain j before A invades. The sum on j does notinclude 0 or A and the §'s denote changes that result
from the invasion. Since 7y is of order 1/L, its direct effect on the drive is smaller than ¢y by a factor
of 1/7/L. However A will also change all of the other biases by similar-magnitude random amounts
with uncorrelated signs, causing 7; = x;0¢;. Thus E[6¢}] = 73 + > V%jxf(igjz with the expectation
over the interactions with the probe strain. Since the properties of the extant strains depend neither
on the Vy; nor the perturbations V|a Via, the averages over each of the squared factors can be
performed separately, leaving }°; X, times the average over j of 5(1 But now we can consider
each strain separately to be the probe strain so that the average over the extant strains must be the
same on both sides. This yields Emins[égg] =3/l — > X]?), The more directly measurable quantity
is the total squared abundance change of the extant strains caused by a random change in growth
rate of each. With the perturbation caused by the invader, we have Zj(&?j)z = Evj in terms of the
nonlinear response, which we call the fragility: ==}, szl(l -2 XJZ). This quantity is analogous to
the spin-glass susceptibility of random magnets Fisher and Huse, 1988. The fragility is of order unity
and the form of the denominator shows that it can diverge: such divergence indicates an instability
of the community and breakdown of the DMFT Ansatz. Note that the fragility is a general measure
of the sensitivity of a community to perturbations. In the stable niche-phase of the Lotka Volterra
model with large negative diagonal interactions of magnitude Q = — E[V;;], the fragility diverges
as K increases to the stability boundary at K. ~ 0?, indicating an instability in the mean field
solution Bunin, 2017. The fragility is infinite in the perfectly antisymmetric model (where Q0 =0),
corresponding to being exactly marginal and highly sensitive to added strains.

In addition to the random change of a ¢j induced by a successful invader, there is also a systematic
change, as seen in Figure 4. This is because d¢y and (y involve the same set of random Vy; and

are thus correlated. We can use the fact that E[XIY = y] = C\‘};ﬁf{,)}’)y for zero mean gaussian random

variables X and Y to see that the conditional expectation is E[6¢olCo] = Co >_; %07/ 3 ; Ejz. Since each

v and 07; are correlated as a consequence of (; and §¢; being correlated, we again have to self-
consistently determine this correlation. Unfortunately this is more complicated as the 67; also have a
contribution from small changes in the function AM(¢) caused by the invaded strain. However one can
understand the form of the conditional expectations by noting that after the new strain has invaded,

L+ =+ 6 +2Y ] 5. (A8.2)
. :

This implies that the last term must be negative if L and £ are increasing or staying constant.
Therefore the correlation between ¢; and §¢; caused by the invader strain is negative (this is true
also if only considering the direct effect of A on j). The additional effects on j from the changes in
other strains is enhanced by the fragility, E. If the fragility is high, one can show that 2}, 7;67; is
proportional to —EE[13], since the last two terms in Equation A8.2 should be of similar magnltude
to preserve L: in this limit, as argued below, the diversity will decrease.

The above Markovian analysis is an approximation because §¢; for each extant strain is correlated
with its whole past trajectory — as it involves many of the same V; — and its conditional expectation
will be a weighted sum over the full past ¢;(T'). Furthermore, it is possible that conditioning on all this
past could suppress E[(S(_sz] by a substantial factor (in the Markovian approximation the analogous

correction is smaller by a 1/L factor). However the basic structure of the stochastic changes is correctly
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captured by the Markovian approximation. This approximation is summarized in Equation 3, which
writes the change in bias after one invasion attempt as the sum of a systematic and stochastic part.
If neither extinctions nor invasions occurred, there would be a trivial steady state with a gaussian
distribution of the biases with width ~ 1/v/L as expected for an assembled community. With a source
of new strains, which come in with drives that are gaussian distributed with width 1/VL, the effective
community size is £ &~ CL with C < 1. We thence obtain a Fokker Planck equation for the number
density N of the drives:

drN(.T) = BO, [%N(c, T)] + %821\'(4, )+ 4/ % TCMROC e - T, (ABI)

where we impose the absorbing boundary condition at the critical bias corresponding to
N + T, T) = 0 with & and T both scaling as 1/v/L. The last term in Equation A8.3 is the truncated-
gaussian drive distribution of successfully invading strains with scale 1/+/£. The fraction of invasions
that are successful, dZ/dT, is just the integral of the truncated gaussian, 1 — B[VL(E: + T)]. The
number of strains, L(T), is changing and at this point unknown: it is determined self-consistently from
L(T) = [d(N(, D). It is straightforward to show, as we do in ‘Appendix 8', that this Fokker-Planck
equation admits a scaling solution with the Ansatz that all the quantities scale as 1/v/L. The rate of
diversification, U = dL/dT, is of order one and determined by an eigenvalue-like condition: it can
be either positive or negative depending on & + T and the coefficients, B, D, C. If the community
is very fragile (= large), then the B and D terms will dominate over the input and the loss of strains
per successful invasion will be large: in this regime the diversification rate is negative. On the other
hand if —(& + T)VL is large, few strains will go extinct and the community will diversify. Of course,
these quantities are determined self-consistently, depending on both the distribution of biases and
the function N (€), which itself will evolve, reaching a scaling form in the steadily diversifying state.

How good is the Markov approximation? The average change in the drive should really be a
weighted integral over the history of the drive, ¢(T'), over all T < T. If one makes the Ansatz of a
scaling solution with L steadily increasing, then for large T, L ~ T and in the variables scaled by T
the weighting function should be a function of of ¢ = log(7/T’), so that the integral over the history is
a convolution in g. In general, the steady state could, of course, not be found even if this weighting
function were known, and the integro-differential generalization of the Fokker-Planck equation
would have to be analyzed numerically. But with the widths of the distributions of the extant and
invader biases being similar, as observed, the details of the weighting function might not much affect
the bias distribution.

Fokker-Planck equation without general fitness differences

Without general fitness differences or correlations, the evolution of the average drive of a strain
in the Markovian approximation obeys a Langevin equation (Equation 3). With a source term
corresponding to incoming strains, this yields a Fokker Planck equation (Equation A8.3) for the
number density N((,T) whose integral at any time gives us the number of strains. The crucial
Ansatz is that all the quantities (¢, & and T) scale as 1/v/L, and we now take L to be a function
of T. Then we can hypothesize a scaling solution N(¢,T) ~ L32¢(¢\/L) for some function g so that
J N(¢, T)d¢ ~ L(T), as the integral over the distribution of drives gives us the total number of strains.
For ease of notation, we define the similarity variable u = ¢vL, and derivatives with respect to by
primes: then Equation A8.3 becomes

dL

3 | " C _cp /
T (Eg(u) + Eug (u)> =Dg () +4/ %e ¢ /29(14 — ug) + Bg(u) + Bug (u), (A8.4)

where we define uy = VL(& + T). We can make an Ansatz of the form
L(T) = UT + Ly, (A8.5)

where the coefficient U is the average rate of increase or decrease of the diversity per invasion
attempt.

The equation for g(u) then becomes

(B - 3£> g+ (B B g) ug' +Dg" + | e PO — up) =0,
2 2 2 (A8.6)
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We can solve this equation numerically with boundary conditions g(up) =0 and g(co) =0 (exact
solutions are available for certain values of B, D and U). The first of these boundary conditions comes
from the extinction criterion that enforces ¢; > & + T for every extant strain, and second comes
from the need to have L < co. The solution depends on the parameters u,, B, D and U. By enforcing
fuzo gw)du = 1, we can find the value of U in terms of uy, B and D. One can see, numerically, that for
B and D both large, the consistent value of U is negative, implying loss of diversity.

In Figure 5B, we use the measured values of U and C, and adjust the values of B and D to give a
normalized function g(u). The blue curve is a truncated unit-variance gaussian for the initial assembled
community, with mean and lower limit fit by hand, and the orange curve is a numerical solution to
Equation A8.6 with U = dL/dT = 0.24 and B = 2.11, D = 1.79 adjusted to enforce normalization. Note
that C = £/L = 0.74. The mode of the truncated gaussian is = Tv/L as expected from Figure 4. The
bias distributions for assembled and evolved communities are very similar except near &, which is
what one expects from the Markov approximation. For —(. = —&c — Y > 1/v/L, when the ratio of
extant to invading widths, vVDC/B = 0.79, is close to unity, the bulk of the drive distribution is close
to gaussian with mean zero, which is reflected in Figure 5B.

Fokker-Planck equation with independent general fitness differences
If incoming strains have independently drawn general fitnesses, s;, then we can write an evolution
equation for the joint distribution of the drives and the s;:

8N, 5,Z) = BO; (%N) + %62N+ Ps(s)/ %e—CZCL’ze(g +5—& -1, (A8.7)

where we abbreviate P(sls > & + T — ) by Ps(s). However, unlike the case with general fitness
differences, now T does not scale as 1/[ Indeed, the scaling of T with Z determines how L
depends on Z. If we specify the form of 4L %7+ then we can look for solutions which travel up in the s
direction at the same speed as Y.

We can define similarity variables u = ¢v/L and v = VL(s — T). Then we look for solutions of the
form N(C,s,Z) ~ L*g(u,v) so that the integral of N over ¢ and s is proportional to L. The boundary
condition is that g vanishes along the line u + v = u. Plugging this into our Fokker Planck equation,
and defining uqi = VL&, we obtain

dL

ar c o
(2g + 58+ ng) — S gy = Dguu + | 5= P>e” O + v — ugrie) + Bg + Bugu, (A8.8)
&z 284" 3 L

dz

where subscripts denote derivatives of g. We can see that the Ps(s) distribution generically breaks
the scaling — because it depends on s = v/+/L, not only on v. But we can look for solutions which
obey the scaling with 1/+/L. Take v/v/L as exponentially distributed with scale . Then in order

VL ~ 1/2 = L ~ %72 This requires dZ ~ Y3 in order to make the left hand 5|de of Equation A8.8
independent of L. Furthermore, we have dL/dZ — 0 since L ~ ¥~ 2 Therefore, we have

dL 8 +Dguu+ /5= CP.(ve” o 2O+ v — ueic) + Bg + Bugu

= (A8.9)
dz 2g + zgu zgv

Setting this to 0 would allow us to solve for g(u,v) and therefore find the scaling solution for the joint
distribution of mean drives and the s.
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Appendix 9

Coexistence of correlated strains

The simulations show that even strains which interact very similarly with the rest of the community
can coexist. Here, we present some of the numerical data and show how simple approximations fail
to explain this behavior.

Lotka-Volterra approximation ignoring migration

A natural way to understand very closely related strains (e.g. a mutant and parent) is via an effective
Lotka Volterra model for the dynamics of just these two strains in the presence of all the others. For a
correlation p between the parent and mutant interactions, one can obtain a pair of DMFT equations
describing the correlated dynamics of parent and mutant in the form of Equation A5.1. Here, we
consider the crude approximation of neglecting the effects of migration and averaging the dynamics
of log v to obtain equations for parent and mutant frequencies vp and vy:

vp  =vpllp — (—¥X)(vp + pry)] (A9.1)
vy = vmlém — (=¥X)(vy + pvp)l. (A9.2)

This analysis is appropriate only for strains with positive bias — and even then approximate - but
the following results provide a null model against which one can compare the dynamics of parent-
mutant replacement in the evolving STC.

In the absence of the mutant, 7p &~ &p/(—vX) (which is the correct behavior for large positive &p).
The condition for invasion of a mutant into an environment containing only the parent is that its
invasion eigenvalue, suppressed by the effects of the parent, is greater than the critical bias which
amounts to &y — p€p > & and the condition for invasion of the parent into the mutant is likewise
&p — p€y > . In terms of the drives, these conditions are ¢y — pp > (1 — p)Y + & for the mutant
to invade the parent, and the same condition with M and P flipped for the parent to invade the
mutant. With the mutant drive parameterized as (i = p(p + /1 — p2Z; with s; a gaussian random
variable with mean 0 and scale (p, the probabilities of coexistence between parent and mutant, and
of replacement of the parent, are

(1 =E&)lp—p+ T —1/p) YA -p+&
coexist = P -0 | — .
p t 12 :| T2 2 :| (A9.3)
Preplace = 1 — @ (1 =& —Ip ki f(l — 1/p)] (A9.4)
—pP

where @ is the standard normal cdf, and T and & are the Lagrange multiplier and critical bias,
both normalized by the scale of the ¢ distribution. Note that the expressions are only valid for

T<1-— 1302: otherwise, in this approximation, the coexistence probability vanishes and all invasions

are replacements. The probability of mutant invasion is pjade = 1 — ® {%}. Forl—p<x1

and & = 0, the invasion probability is pinyade = %(1 — Y1 = p)f) and the coexistence probability
predicted by this simple approximation is peoexisi = (1 — T)v/(1 — p)fwr. With p=0.99 and T =0 (in
the STC T should be nonnegative, and setting it to 0 maximizes the coexistence probability), this
predicts that the probability of coexistence conditional on the mutant invading is peoexist/Pinvade = 0.12
which is much smaller than the observed pcoexistinvade > 0.5 (Appendix 9—figure 1).
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Appendix 9—figure 1. The coexistence probability between parent and mutant conditioned on successful
invasion of the mutant (with s; = 0). The probability is averaged over 4 simulations of a diversifying community
for each value of p, with error bars showing the standard error. Here p is shown on a logit scale to emphasize the
difference between the points as p — 1. Even for p = 0.999, the coexistence probability is order 1/2 over he
epoch of duration 30ML, likely long enough to enable small differences between closely related strains to have
an effect.

The main problem with this approximation is that it needs to be used when the biases are close to
the critical & which is substantially negative, while the approximation of ignoring migration certainly
breaks down in this regime. Properly understanding the coexistence of replacement of related
mutant and parent requires a fuller understanding of their coupled dynamics, including migration.

Coexistence probability
Of particular interest is the probability with which mutant and parent coexist when they are correlated
by amount p. The effects of the persistent chaos on this coexistence probability are subtle, and here
we show that the simulation results cannot be captured by the null model of ‘Appendix 9’, which
neglects migration and blooms.

Comparing numerical results from simulation of the dynamics to those of ‘Appendix ', we find
that the probability of coexistence between parent and mutant, conditioned on mutant invasion,
is substantially larger than predicted by Equation A9.1 and Equation A9.2. This is likely due to
the fact that in the STC, a majority of persistent strains have negative bias and even for those with
positive bias, the effect of migration is not small. The boom-bust dynamics with migration makes
coexistence much easier, but understanding this even semi-quantitatively is challenging because of
the correlations in the dynamical drive which makes parental blooms suppress the mutants and vice
versa. Nevertheless, we expect that if p is extremely close to unity, the coexistence probability of
parent and mutant will go to zero as /1 — p, as in the simple approximation from ‘Appendix 9', but
with a small coefficient that might be of order some inverse power of M. In addition one should note
that the natural timescale over which differences between the parent and mutant will accumulate is
of order (1 — p?) "2 MV/L with the coefficient only = 20 for p = 0.999. Therefore even for p this close
to 1, the typical differences between parent and mutant will still be felt on timescales of order ML
over which the close-to-marginal strains rise or die out.

A dynamical analysis of a parent and mutant including migration becomes far more complicated
once the community has evolved long enough that a substantial fraction of the strains have turned
over (or coexist with relatives). The underlying simplification that makes DMFT valid for assembled
communities, the approximate independence of the biases, will break down because of correlations
among many of the strains due to their common ancestry. While some of the heuristic behavior of
such communities and how they evolve may not change much even for p quite close to 1, there will
certainly be quantitative changes.

The approximate Markovian analysis of the evolution of the bias distribution (‘Evolution without
general fitness differences’), can be modified to roughly account for correlations between mutants
and parents, p > 0. Such correlations will modify the effects of invading strains on the bias of the
extant strains. This is most readily understood in the limit that p is very close to unity. In this case,
one expects that the total abundance of the parent and mutant after the invasion will be similar to

Mahadevan, Pearce et al. eLife 2023;12:e82734. DOI: https://doi.org/10.7554/eLife.82734 47 of 48


https://doi.org/10.7554/eLife.82734

ELlfe Research article Ecology | Evolutionary Biology

that of the parent before the invasion and, because of the high correlations, their effects on the
other strains will be very similar. This suggests that both the stochastic and systematic changes of
the biases should be multiplied by a factor of order 1 — p? on the right hand side of Equation 3. For
the first few mutants, the analysis could be carried through similarly. However once the number of
successfully invaded mutants is comparable to the original L, the correlations between the biases
of the extant strains can not be ignored and the approximation of independent ¢; breaks down. We
leave analysis of this for future work.
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