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Agriculture is experiencing a technological inflection point inits history,
while also facing unprecedented challenges posed by human population

growth and global climate changes. Key advancements in precise

genome editing and new methods for rapid generation of bioengineered
crops promise to both revolutionize the speed and breadth of breeding
programmes and increase our ability to feed and sustain human

population growth. Although genome editing enables targeted and

specific modifications of DNA sequences, several existing barriers prevent
the widespread adoption of editing technologies for basic and applied
research in established and emerging crop species. Inefficient methods

for the transformation and regeneration of recalcitrant species and the
genotype dependency of the transformation process remain major hurdles.
These limitations are frequent in monocotyledonous crops, which alone
provide most of the calories consumed by human populations. Somatic
embryogenesis and de novo induction of meristems — pluripotent groups
of stem cells responsible for plant developmental plasticity — are essential
strategies to quickly generate transformed plants. Here we review recent
discoveries that are rapidly advancing nuclear transformation technologies
and promise to overcome the obstacles that have so farimpeded the
widespread adoption of genome editing in crop species.

The efficient production of transgenic plants relies on two key steps:
transformation (the transfer and expression of transgenes into host
cells) and regeneration (the ability to form a fertile plant froma trans-
formed cell). For many species, transformation and regeneration are
the bottlenecks to obtaining transgenic plants. Traditionally, callus
induction from tissue explants has been the main avenue to produce
transformed plants, either by providing undifferentiated cells for direct
transformation or as a way to regenerate full plants from a few trans-
formed cells (Fig.1). However, callus formationis alengthy procedure
knowntointroduce genomic and epigenomic changes, often with unin-
tended consequences'*. Recent progress in both transformation and
regeneration promises to quickly advance our ability to manipulate
crop genomes. Thisincludes the use of different morphogenic factors,

genes thatareinvolved in somatic embryogenesis or meristem devel-
opment, to trigger reprogramming and pluripotency of a subset of
somatic cells to eventually produce transformed plants’.

Methods for plant transformation

The efficient delivery of gene-modification components into plant
cells is a crucial first step of plant transformation and genome
editing. Two major gene-delivery methodologies have been estab-
lished in higher plants since the 1980s: direct gene transfer and
Agrobacterium-mediated transformation® (Fig. 1). Direct gene transfer
methods are good strategies to overcome possible competency barriers
to transformation, and traditionally, microprojectile bombardment
(also known as biolistics) has been used to facilitate the delivery of
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transgenes in many species. Plants obtained from particle bombard-
ments can contain multiple integration events and random rearrange-
ments of the integrated copies with unpredictable effects, complicating
the downstream analysis of the transgenic plants generated’. How-
ever, these phenomena are not unique to biolistic methods; they are
sometimes observed in Agrobacterium-mediated transformations as
well®'°, Recently, biolistic delivery has been used to directly provide
in vitro transcripts or ribonucleoprotein complexes of CRISPR-Cas9
toregenerable plant tissues of awider range of genotypes and species,
obviating genome integration effects" ™,

Agrobacterium-mediated transformation is a cost-effective, effi-
cient gene-delivery system, capable of transferring large DNA frag-
ments into plant chromosomes”, and remains the top choice for plant
transformation. However, only a small range of plant host genotypes
are competent for Agrobacteriuminfection, and in numerous monocot
crops, ineffective Agrobacteriuminfection hindersits widespread appli-
cation. Toimprove transformation efficiency, substantial efforts have
been madeto optimize virulence (vir) gene expression of Agrobacterium
strains. Progress in our understanding of the mechanisms used by

Agrobacterium to modulate plant host defence responses for effec-
tive infection and of the role of phytohormones in the early stages of
plant-Agrobacterium interaction is summarized in a recent review®.
The process of T-DNA transfer starts with a two-component system
containingthe hybrid histidine kinase VirA and the response regulator
VirG. The VirA protein is activated by phenolic compounds (such as
acetosyringone, acommon ingredient in transformation media) and
triggers the phosphorylation of VirG, which induces the expression
of other vir genes in the Tumor-inducing (Ti) plasmid'®". The vir gene
expression can be repressed by phytohormones from the host side
at the early stage of plant-Agrobacterium interaction. In particular,
salicylic acid (SA) prevents the induction of vir genes by attenuating
the kinase function of the VirA protein'®'®, Consequently, plants that
overproduce SA arerecalcitrantto Agrobacteriuminfections, whereas
those with defective SA biosynthesis are easier to transform'®". The
negative effect of SA on the VirA/G two-component regulatory sys-
tem can be alleviated by the addition of acetosyringone'. Different
Agrobacterium strains containing binary, super-binary and recently
emerged ternary vectors have been developed to fully exploit the
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power of the vir genes'®. Specifically, improved ternary vector systems
introduce a third helper plasmid containing extra vir genes and have
been shown to enhance transformation efficiency in recalcitrant maize
lines***, These strains, combined with a fast-transformation protocol,
increased transformation efficiency in the commonly used maize
inbred line B104 (ref. ). Recently, engineered Agrobacterium strains
expressingatypelllsecretionsystem to deliver Pseudomonas effectors
that repress host defence responsesresulted inincreased transforma-
tion efficiency in wheat, alfalfa and switchgrass®.

Nanoparticle’ and virus-based RNA delivery systems can bypass
tissue culture and are attracting increasing attention for efficient
genome editing. Several nanomaterials, such asssilica, metal, polymeric
and magnetic nanoparticles as well as carbon nanotubes, have been
investigated for their potential role in gene delivery for plant trans-
formation. Although recently questioned®, a novel transformation
methodology called pollen magnetofection was reported to allow
the stable integration of transgenes in the nuclear genome of several
dicot species®. In this technology, recombinant DNA is attached on
the positively charged surface of magnetic nanoparticles that can
penetrate pollen grains in a magnetic field; subsequent fertilizations
are conducted to complete the transformation process®*.

Virus-based RNA delivery systems have the additional advantage of
bypassing transgene integration, thereby avoiding possible disruptive
effects on gene function. RNA-virus-based vector systems have been
developed to express guide RNA arrays for multiplex genome editing
in several species. In tobacco, arhabdoviral system was developed to
deliver all CRISPR-Cas9 components during infections; however, a
lack of editingin the germline required a tissue-culture step to obtain
edited progenies®. Analternative approach was pursuedinboth wheat
and maize in which the viral system relied on infections of previously
obtained Cas9-positive plants, and these systems generated edited
plants with high efficiency in both species**. These virus-based sys-
tems are still limited by host range and physical constraints but are
nonetheless very promising approaches for genome editing of crop
species and for breeding purposes.

Molecular mechanisms of plant regeneration
Although the remarkable capacity to regenerate organs and entirely
newindividualsis considered asignature feature of plants*, many crop
species are incapable of naturally regenerating whole plantlets upon
lossorinjury of body parts®. Nevertheless, invitro cultivation of various
types of explants onenriched media supplemented with specific phy-
tohormones enables many plant species to regenerate plantlets (Fig. 1).
The regeneration process typically involves a callus-formation step
followed by organ differentiation, direct embryogenesis from somatic
tissues (also known as somatic embryogenesis) or de novo formation
of meristems. The capacity to regenerate meristems or whole plantlets
from non-zygotic cells is the fundamental basis for agricultural and
horticultural biotechnology, and it allows both clonal propagation and
the production of stable transgenic material for breeding. Regardless
ofthe substantial technological progress that has been made over the
past four decades, there are still many economically important crops
thatarerecalcitranttoinvitroregeneration fromsomatictissue. Under-
standing the molecular mechanisms governing plant regeneration is
therefore particularly critical for accelerating plant biotechnology.
Auxin and cytokinin are key hormones for shoot and root apical
meristem formation and de novo organogenesis®~****, The fate of
explantsunderinvitro cultivation follows the golden hormonal regen-
erationrule thathasbeensuccessfully applied toin vitro propagation
of many plant species: a high cytokinin-to-auxin ratio stimulates shoot
formation, while a reverse ratio promotes root formation. Auxin is
aversatile regulator and plays an essential role in embryogenesis by
establishing both the shoot apical and root apical meristems™. In par-
ticular, auxin biosynthetic genes, such as TRYPTOPHAN AMINOTRANS-
FERASE OF ARABIDOPSIS (TAAI), TAA-RELATED 1 and 2 (TARL2), and

several flavin monooxygenase-like YUCCA (YUC) genes, regulate early
embryogenesis®*”’. In practice, auxin (mostly the synthetic auxin-like
hormone 2,4-dichlorophenoxyacetic acid (2,4-D)) typically serves as
amajorinducer for somaticembryogenesis from explants of different
origin. During 2,4-D-induced somatic embryogenesis in Arabidopsis,
genome-wide changesin chromatinaccessibility, enhanced expression
of auxin pathway genes and changes in key developmental regula-
tors are observed in a hierarchical cascade upstream of early embry-
onic patterning genes®***° (Fig. 2). Increasing evidence points to the
importance of locally elevated endogenous auxin biosynthesis, mainly
indole-3-aceticacid, as key to somatic embryogenesis***. Although the
specific mechanism by which auxin biosynthesis promotes somatic
embryogenesis hasnotbeen fully resolved, auxin biosyntheticgenes are
directtargets of the B3 transcription factor LEAFY COTYLEDON 2 (LEC2),
whose inducible overexpression is sufficient to promote Arabidopsis
somatic embryogenesis independent of tissue competence, which
is normally restricted to immature zygotic embryos*®*. A similar
stimulating effect on somatic embryogenesis was originally reported
with the overexpression of LECI, another transcriptional regulator®.

Cytokinins are adenine-derived molecules that control meristem
size by directly regulating the expressionlevels of the homeobox tran-
scription factor WUSCHEL (WUS), which plays a central role in meris-
tem establishment and maintenance in most species. Extensive studies
in Arabidopsis have shown that cytokinin biosynthesis and signalling
provide positional cues for WUS patterning in meristems via both
positive and negative feedback loops™. Duringinvitro shoot regenera-
tion experiments in Arabidopsis, the treatment of explants with high
concentrations of cytokinin removed the repressive H3K27me3 histone
modification at the WUS locus and allowed transcriptional activators
of the cytokinin signal transduction pathway to promote WUS tran-
scription for de novo formation of shoot meristems*¢. ATAC-seq and
ChIP-seq profiling during callus induction and shoot regeneration in
Arabidopsis provide a molecular timeline where auxin and cytokinin
contribute to the dynamicregulation of chromatin state and the acces-
sibility of key transcription factors involved in both promoting pluri-
potency acquisition during callusinduction (ina high-auxin/cytokinin
environment) and shoot fate determination during regeneration (in
low-auxin/cytokinin conditions)*.

Wounding is a primary signal not only for naturally occurring
organ repair but also for plantlet regeneration. In vitro shoot regen-
eration experiments from root explants of Arabidopsis have shown
that this process typically involves transcriptional activation of mul-
tiple developmental regulators, including the AP2/ERF transcrip-
tion factors ENHANCER OF SHOOT REGENERATION 1 (ESR1) and
WOUND INDUCED DEDIFFERENTIATION 1to 4 (WIND1to 4). WIND1
was found to activate the expression of ESRI and promote shoot
regeneration*®*’, Another AP2/ERF transcription factor, ETHYLENE
RESPONSE FACTORI115 (ERF115), forms a heterodimeric complex with
PHYTOCHROME A SIGNAL TRANSDUCTIONI1 (PAT1) to re-establish
a stem cell niche upon root tip excision, and its high regenerative
potentialis correlated with the activation of WIND1, one of its putative
targets® . Moreover, transcriptomic analysis on Arabidopsis hypoco-
tyl excisions revealed that three additional AP2/ERF transcription
factors, PLETHORA 3 (PLT3), PLT5 and PLT7, are wound-induced and
promote callus formation®'. PLT genes lead to the induction of YUCI
and auxin-dependent activation of cell cycle regulators during callus
formation from Arabidopsis protoplasts, providing a mechanistic
model of pluripotency acquisition in differentiated cells*. These
three factors are key regulators of lateral root development, and the
transientinduction of PLT5 or PLT7 from various Arabidopsis explants
(or PLTS in snapdragon and tomato) is sufficient to trigger de novo
shoot formation in ahormone-independent manner®°,

Wounding is also an important signal for plant glutamate-
receptor-like proteins (GLRs), which have a well-documented role in
defence responses. The role of glutamate receptors in regeneration
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directly upstream of the above-mentioned transcription factor LEC2
andisinturnupregulated by LEC2inareinforcingloop during somatic
embryogenesis**“’. Inrice, the BBMI gene can promote parthenogen-
formation could be obtained by attenuating the SAresponse.Indeed, esis, the formation of embryos without fertilization, when ectopically
genetic and pharmacological inhibition of GLR activity increased the  expressed in unfertilized egg cells*®. Similarly, the recently isolated
regeneration efficiency of multiple organ repair systemsin Arabidopsis PARTHENOGENESIS (PAR) gene of apomictic dandelion, encoding
andthe callusinductionrate of therecalcitrant maizeinbred lineB73.  a K2-2 zinc finger and EAR-domain containing protein, can trigger
These results suggest that the regulation of the trade-off between embryogenesis in unfertilized egg cells, and its ectopic expressionin
defence and regeneration can be harnessed to improve regeneration  unfertilized egg cells of lettuceis sufficient to induce the formation of
for agricultural purposes® (Fig. 2). haploid embryos®2. While yet to be determined, it is possible that PAR
Somatic embryogenesis shares several developmental steps and other parthenogenic genes could be used to promote somatic
with zygotic embryogenesis, and key trigger genes of embryogenesis  embryogenesis for whole-plant regeneration in certain species.
initiation can be manipulated to induce somatic embryogenesis for The roles of other genes, such as FUSCA 3, LECI and 2, and
whole-plant regeneration. The AP2/ERF transcription factor BABY  AGAMOUS-LIKE 15 (AGL15), in promoting somatic embryogenesis have
BOOM (BBM, also known as PLT4 in Arabidopsis) promotes somatic  been well described in Arabidopsis and other species®®* (Table 1), and
embryogenesis” >’ and directly regulates several auxin biosynthesis  the expression of these morphogenic genesis believed to be regulated
genes, including YUC genes in both monocot and dicot species. Phar- by BBM®**, However, whether these genes can be applied to stimulate
macological and genetic inactivation of endogenous YUC activity = regenerationin abroad range of species has yet to be determined.
drastically reduced somaticembryogenesis viaBBMinductioninboth
rice and Arabidopsis, indicating that endogenousindole-3-aceticacid Morphogenic factors for crop transformation
levels cannot be substituted by the 2,4-D present in the medium*°.  Asignificant breakthroughtechnology in plant transformation, espe-
Arecent study suggests that this may be due to differential effects of  cially for monocot species and species recalcitrant to transformation,
exogenous and endogenous auxin on cell cycle progression®. During  has been the exploitation of specific morphogenic factors to repro-
somatic embryogenesis, YUC-dependent auxin biosynthesis does gram somatic cells into initiating embryogenesis. This has spurred a
not appear to be required for re-establishing pluripotent cells but  renewed interest in exploiting specific developmental regulators for
remains essential forembryoidentity and growth*. BBMalso functions  crop transformation®®*® (Table 1). These factors include BBM, WUS

is mediated by SA signalling, and mutants in the SA receptor NPR1
are hyper-regenerative and partially resistant to GLR perturbations,
suggesting that a higher efficiency of Agrobacterium-mediated trans-
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Table 1| Successful examples of utilization of morphogenic genes for transformation of crop species

Individual genes Gene hame Transformed and Relevant notes References
regenerated crop
AGL15 GmAGL15 Soybean Promotes somatic embryogenesis. 94
WUS/WOX TaWOX5 Wheat, maize, triticale, rice, With ternary vector system. e
barley
AtWUS Coffee Promotes somatic embryogenesis. 9
ZmWUS2 Sorghum, maize With ternary vector system. g2
BrrwUSa Turnip Callus step required. o
PLT AtPLTS Tomato, snapdragon Organogenesis at wound site. %
KN1/STM ZmKN1 Citrus Promotes organogenesis. %
BnSTM Rapeseed Promotes microspore-derived embryogenesis. 9
BoSTM
BrSTM
BBM BnBBM Sweet pepper Promotes somatic embryogenesis. 100
BcBBM Chinese white poplar Promotes somatic embryogenesis. o1
GRF AtGRF5, HaGRF5, GmGRF5, Sugar beet, soybean, maize Callus step required or promotes organogenesis 84

BnGRF5, BvGRF5,
ZmGRF5,
ZmGRF5-LIKET

from explants.

Gene combinations

WUS BBM

ZmWUS2 ZmBBM

Maize, sorghum, rice,
sugarcane, salvia, wheat

Promotes somatic embryogenesis. Use of
specific maize promoters or excision required
to avoid developmental defects. Uses ternary or
super-binary vector.

5967102

GRF-GIF TaGRF4-GIF1 Wheat, rice, triticale, Citrus, Callus step required. S
watermelon, hemp
GRF-GIF BBM TaGRF4-GIF1ZmBBM Maize Promotes somatic embryogenesis. 89
WUS IPT ZmWUS2 Tomato, potato, grape Promotes de novo meristem initiation at wound 66
WUS STM IPT sites. Many edited plants show developmental
AtSTM defects and are sterile.

At, Arabidopsis thaliana; Ta, Triticum aestivum (bread wheat); Zm, Zea mays (corn); Tc, Theobroma cacao (cacao); Bn, Brassica napus (rapeseed); Bo, Brassica oleracea (cabbage); Br,
Brassica rapa (mustard); Brr, Brassica rapa var. rapa (turnip); Bc, Brassica campestris (mustard); Gm, Glycine max (soybean); Gh, Gossypium hirsutum (cotton); Bv, Beta vulgaris (sugar beet);

Ha, Helianthus annus (sunflower).

and WUSCHEL-RELATED HOMEOBOX (WOX), which are key regula-
tors of embryogenesis initiation and meristematic stem cell fate, as
summarized in the previous section. Individual or combined expres-
sion of these regulators in somatic cells is often sufficient to trigger
whole-plant regeneration under in vitro cultivation or de novo shoot
formation on soil-grown plants®. While detailed reviews on the use
of morphogenic genes have been published****, here we focus on
the most recent advances using these strategies specifically for the
transformation of crop species.

Ectopic expression of the maize BBM and WUS2 genes (a
co-orthologue of Arabidopsis WUS) increased transformation efficiency
inseveral crops, including maize, sorghum, indicarice, sugarcane and
genotypesrecalcitrant to biolisticand Agrobacterium-mediated trans-
formation®’. Additionally, combinatorial expression of WUS2together
with different developmental regulators (including the cytokinin
biosynthesis /PT and the meristematic STM genes) at the wound sites
of soil-grown plants induced de novo meristem formation and ena-
bled gene editing, bypassing the tissue-culture step in tomato, potato
and grape®®.

However, constitutive expression of morphogenic genesis usu-
ally not well tolerated, often resulting in infertile plants or plants with
undesired pleiotropic phenotypes. While these undesired effects can
besegregated away for genome-editing approaches, alternative strat-
egiesto express these factors transiently (only during aspecific stage)
or to entirely remove them post-infection have been pursued***.In
arecent strategy to overcome this issue, the non-cell autonomous
function of ZmWUS2 was exploited to produce transformed plants

without the ZmWUS2 expression cassette, aphenomenon designated
asaltruistic transformation. In this system, two independent strains
of Agrobacterium, one containing the selectable marker and the other
the cassette expressing ZmWUS2, were successfully used in different
ratios for maize embryo infections®. Similarly, a recently developed
CRISPR-based approach to simultaneously induce the expression of
endogenous morphogenic genes and promote editing increased the
recovery of transformed and edited plants without developmental
defectsin poplarandrice, offeringanew tool for accelerating genome
engineering®.

Recent studies have shown that constitutive expression of
either WOXS5 or a GROWTH REGULATING FACTOR4 (GRF4) and
GRF-INTERACTING FACTORI1 (GIF1) chimaeric protein enhances
transformation efficiency in wheat as well as several other mono-
cot species’”". While both systems still require a callus-induction
stage, they were shown to expand the range of genotypes that can
be regenerated, amajor limitation to the widespread and fast adop-
tion of transformation technologies in crops. WOX5 belongs to the
same homeobox family of WUS and plays a key role in root stem cell
maintenance, and its overexpression induces shoot regeneration
in Arabidopsis calli, possibly by promoting TAAI auxin biosynthesis
and interfering with cytokinin signalling’*’¢. The overexpression
of a wheat WOX5 gene significantly enhanced the transformation
efficiency in recalcitrant genetic backgrounds in wheat, barley and
maize, seemingly without detrimental effects on overall develop-
ment, making it an attractive system for monocot transformation’.
However, in maize, WOXS5 was tested in combination with a ternary
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vector system; therefore, whether WOX5 itselfis responsible for the
reported efficiency has yet to be determined””.

GRFs are highly conserved, plant-specific transcription factors
that promote growth and boost organ size when overexpressed’® .
GRFs form protein complexes with GIF cofactors thatin turninteract
with SWI/SNF chromatin remodelling factors®-*. By forcing physi-
cal proximity of both proteins in the GRF-GIF chimaeric protein, the
system proved efficient for transformation by increasing regenera-
tion not only in durum and bread wheat but also in rice, triticale and
the dicot crops Citrus, watermelon and hemp”®, Furthermore, the
GRF-GIF chimaera allowed wheat shoot regeneration in media lack-
ing cytokinin, allowing marker-free selection of transgenic plants and
suggesting a potential role of the GRF-GIF complex in the regulation
of endogenous cytokinins”. The use of individual GRF factors has been
reported to improve transformation efficiency in sugar beet, canola,
sunflower and maize without affecting the development or fertility of
transgenic plants®*. While the molecular mechanisms of how GRF-GIF
complexes promote regeneration are currently not fully known, the
directdownstreamtargets of rice OsGRF6 included auxin biosynthesis
and signalling genes, suggesting that GRF-GIF complexes promote
regeneration by elevating auxin biosynthesis and auxin signalling in
transformed cells®. Inaddition, aregulatory loop between GRFand PLT
genes was reported to establish the boundary between the stem cell
niche and the transit-amplifying region in Arabidopsis root meristems,
suggesting that GRF-GIF complexes could influence PLT activity”’.

Concluding remarks and future perspectives
Despite the recent breakthroughs using morphogenic factors, chal-
lenges still remain in developing fast, efficient and reliable transfor-
mation systems that can be quickly adopted by the public sector,
particularly formonocotspecies. Giventhat some of these morphogenic
factors functioninhierarchical order during embryogenesis and mer-
istem formation*®*, their combination may promote somatic embry-
ogenesis in an additive manner (for example, BBM WUS2)>%676886-88
(Table 1), even when the molecular mechanisms driving these syner-
gistic interactions are not entirely known*”**“’, Indeed, preliminary
datasuggest that a higher efficiency of maize embryo transformation
isachievable using acombination of the wheat GRF-GIF chimaeraand
the maize BBM transcriptional regulator with standard Agrobacterium
binary vector systems® (Table 1). The identification of additional genes
involved in the regeneration process may foster additional combina-
tions that could prove optimal for the transformation of certain recalci-
trant crop species or genotypes. The selection of optimal combinations
would benefit fromadditional insights into the regeneration process,
which should be obtainable from single-cell chromatin accessibility
and expression data of specific species, genotypes and organs’. These
studies may also aid the identification of molecular signatures of pre-
cursor cells during somatic embryogenesis and provide new targets
for biotechnological approaches to transformation.

Despite recent progress, the tissue and genotype dependency of
the transformation process still represent major bottlenecks to the
widespread use of transgenic and genome-editing technologies in
many economically important crop species. Some of the technolo-
gies discussed here have been tested with successin different tissues,
including embryos excised from dry seeds and leaf segments from
seedlings®. An ideal system should use reliable and easily accessible
sources of tissue (for example, leaves, coleoptiles or root tips) or even
protoplasts® for transformations, and specific morphogenic triggers
toovercometheirintrinsiclack of competency for somaticembryogen-
esis and regeneration*’. In species such as maize and wheat, this would
facilitate the widespread adoption of transformation technologies in
academiclabs, whereasin species clonally propagated or with embryos
too smallto handle, it may represent the only viable strategy.

Toaccelerate crop transformation and breeding, itis alsoimpera-
tive to develop new DNA delivery methods with reduced genotype

dependency, which may involve the use of new bacterial strains with
high efficiency of infection” or the adoption of specific nanomaterials
fortransformation. Promising advances with ternary vector systems for
Agrobacterium-mediated transformation’>* may more broadly tackle
the transformation of recalcitrant backgrounds of different crops and
may be adaptable to different transformation systems. The identifica-
tion of new genes and pathways that confer genotype dependency of
transformation may also contribute to solving this issue, as shown in
maize, where knocking out SAURIS (an early auxin-responsive gene)
significantly increased regeneration efficiency®. Pursuing a variety
of these approaches will probably be key to increase the adoption of
transformation technologies in recalcitrant crops and genetic back-
grounds, including wild progenitors and diverse germplasms®*%,
for both basicand applied research.
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