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Moiré patterns formed by stacking atomically-
thin van der Waals crystals with a relative twist
angle can give rise to dramatic new physical prop-
erties [1, 2]. The study of moiré materials has so
far been limited to structures comprising no more
than a few vdW sheets, since a moiré pattern
localized to a single two-dimensional interface is
generally assumed to be incapable of apprecia-
bly modifying the properties of a bulk three-
dimensional crystal. Here, we perform transport
measurements of dual-gated devices constructed
by slightly rotating a monolayer graphene sheet
atop a thin bulk graphite crystal. We find
that the moiré potential transforms the electronic
properties of the entire bulk graphitic thin film.
At zero and small magnetic fields, transport is
mediated by a combination of gate-tunable moiré
and graphite surface states, as well as coexist-
ing semimetallic bulk states that do not respond
to gating. At high field, the moiré potential hy-
bridizes with the graphitic bulk states owing to
the unique properties of the two lowest Landau
bands of graphite. These Landau bands facilitate
the formation of a single quasi–two-dimensional
hybrid structure in which the moiré and bulk
graphite states are inextricably mixed. Our re-
sults establish twisted graphene-graphite as the
first in a new class of mixed-dimensional moiré
materials.

Twisting two sheets of monolayer graphene by a small
angle results in the formation of a long-wavelength
moiré potential that substantially alters the low-energy
bands [3, 4]. The moiré bands become extremely flat
and isolated near the “magic angle” of approximately
1.1◦, generating an array of strongly correlated states
including magnetism and superconductivity [1, 2, 5–8].
Moiré flat bands also form upon incorporating addi-
tional graphene sheets into the structure, recently ob-
served in the magic-angle trilayer/tetralayer/pentalayer
family [9–13] as well as in twisted monolayer-bilayer [14–

17] and bilayer-bilayer graphene [18–22]. So far, the
study of twisted graphene structures has mostly been
limited to those assembled from monolayer and bilayer
graphene building blocks, since thicker Bernal-stacked
constituents contribute additional bands at low energy.
Band structure modeling [23] and scanning tunneling mi-
croscopy studies of rotationally-faulted graphite [24] in-
dicate that moiré bands are likely to persist to arbitrar-
ily thick Bernal graphite structures, but remain localized
at the twisted interface and coexist with conventional
bulk graphite bands. However, it is currently not known
whether and how these moiré surface states impact the
electronic properties of the entire bulk graphitic thin film.

Here, we investigate the transport properties of
graphitic structures with a moiré interface created by a
single rotational fault within the crystal. We primar-
ily focus on the case where the moiré potential is local-
ized to one surface of the structure, achieved by rotat-
ing a flake of monolayer graphene by a small twist angle
atop a Bernal graphite thin film. We also compare to
the case where the moiré interface is buried at the cen-
ter of the graphitic structure. We show that a single
two-dimensional moiré interface can strongly modify the
properties of the entire graphitic thin film, owing to a
number of unique properties arising from its semimetal-
lic nature.

Transport in Bernal and moiré graphite

We focus our study primarily on twisted graphene-
graphite (i.e., t1+Z, where 1 indicates monolayer
graphene and Z corresponds to the number of graphene
sheets in the bulk thin film). We first compare the trans-
port properties of Bernal graphite with a representative
twisted graphene-graphite device. Figure 1 shows this
for the case of a 23-layer Bernal graphite device and a
t1+10 device with θ = 0.84◦. A schematic of the Bernal
graphite device is shown in Fig. 1a, with top and bottom
gate voltages denoted as Vt and Vb, respectively.

The color map in Fig. 1b shows the longitudinal re-
sistance, Rxx, of the device at zero magnetic field as a
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FIG. 1. Comparison of Bernal and moiré graphite at zero field. a, Cartoon schematic of a Bernal graphite thin film
device with top (Vt) and bottom (Vb) gates. b, Resistance of a 23-layer Bernal graphite thin film as a function of the top and
bottom gate voltages. The top (bottom) gate voltage is normalized by the top (bottom) BN thickness, dt (db). The panel
above (to the right) of the color map shows cuts of Rxx and Rxy as Vb (Vt) is swept with Vt = 0 (Vb = 0). Rxy is acquired with
B = 0.2 T. c, (Right) Cartoon schematic of a moiré graphite thin film device. The gate facing the moiré (Bernal graphite)
surface is denoted Vm (Vgr). (Left) Schematic illustration of the free charge distribution in a dual-gated graphitic thin film as
a function of the position along the c-axis of graphite (denoted as z). nm and ngr are the charge carrier densities on the moiré
and Bernal graphite surfaces, respectively. These can be modified by tuning Vm and Vgr, shown here with arbitrarily chosen
magnitudes and signs. ne and nh denote the density of electron and hole carriers in graphite, which are approximately equal
such that the total doping is zero in the bulk. The doping in the bulk does not depend on gating. d, Resistance of a t1+10
graphite sample with θ = 0.84◦ as a function of Vm and Vgr, normalized by the appropriate BN thicknesses. The panels above
and to the right of the color map show cuts of Rxx and Rxy, analogous to those in b. e, Calculation of the band structure
of a t1+10 graphite sample with θ = 0.84◦. The cut is taken along a contour within the moiré Brillouin zone. The color of
bands corresponds to their expectation value along the graphite c-axis, denoted as ⟨z⟩, where a value of 1 (-1) corresponds to
the moiré (Bernal graphite) surface as shown in c.

function of the voltage on both gates (each gate voltage
is normalized by the corresponding BN dielectric thick-
ness). The resistance changes by only a few ohms with
gating, consistent with the expectation that the gates
are only able to dope the outer few layers of the nearest
graphite surface due to screening in the bulk. Consequen-
tially, the primary resistance features we observe evolve
either vertically or horizontally in the map. This can also
be seen by comparing the black traces in the panels above
and to the right of the resistance map, which show Rxx

as each gate is swept with the other held at ground. We

further see corroborating behavior in the Hall resistance,
Rxy, measured in a small magnetic field of B = 0.2 T. In
particular, Rxy exhibits a sign change around zero bias in
each gate sweep, signifying a corresponding sign change
in the charge of the free carriers residing in the surface
accumulation layer.

In contrast to our observations in Bernal graphite,
transport in our t1+10 sample differs considerably de-
pending on which gate is swept, as the mirror symmetry
of the structure is broken by the rotated graphene sheet
at the surface. Here, we denote the voltage on the gate
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FIG. 2. Low-field magnetotransport and independent gating of surface-localized states. a, Longitudinal (top) and
Hall (bottom) resistance maps of the 23-layer Bernal graphite device acquired at B = 0.5 T. b, The same maps acquired in
the t1+10 moiré graphite device. The vertical axis on the right indicates the filling factor, ν, of the moiré surface bands. The
Hall resistance maps in a-b are antisymmetrized. Schematics of the Bernal graphite and t1+10 graphite are shown above each
of the corresponding Rxx maps. c, Constant-energy contours of the surface-localized moiré bands at the denoted energies,
calculated without any applied gate voltage (i.e., Um = Ugr = 0). Dashed (solid) lines denote contours from the moiré valence
(conduction) band. Energy labels for each panel have color-coded dots corresponding to the tick marks in d. Contours are
color-coded by the sign of the local moiré band curvature, with orange denoting a hole-like Fermi surface, purple denoting
an electron-like Fermi surface, and gray denoting a saddle point. The solid hexagon denotes the moiré Brillouin zone. d,
Calculation of the band structure of a t1+10 graphite sample with θ = 0.84◦ as the surface potential at the moiré interface is
changed from Um = −20 meV (left) to 0 (center) to +20 meV (right). The potential at the Bernal graphite surface is Ugr = 0.
The Fermi energy is held fixed at zero energy (black dashed line). The potential drop across graphite layers is modeled using a
Thomas-Fermi screening approximation (see Methods). e, The same calculation but with Um = 0 and a varying Ugr. In d-e,
the bands are color-coded according to the expectation value of their z coordinate along the c-axis of the graphitic structure.

facing the moiré (Bernal graphite) surface as Vm (Vgr)
(see Fig. 1c). We see a much larger change in the resis-
tance with gating in this device (Fig. 1d), with the high-
est resistance confined to a small region around Vgr ≈ 0.
Transport is reminiscent of Bernal graphite when sweep-
ing Vgr (see Rxx and Rxy traces in the top panel), but
exhibits fundamentally new behavior when sweeping Vm
(right panel). In particular, repeated Rxy sign changes
indicate multiple instances in which the free carriers on
the twisted surface switch between electron- and hole-
like. This behavior arises from the moiré reconstruction
of the graphite band structure, marking the formation
of a series of surface-localized moiré bands. These can
be seen in calculations of the band structure of this ma-
terial (Fig. 1e, see Methods for details). The bands are
color-coded based upon their expectation value along the
graphite c-axis, denoted as ⟨z⟩, where a value of 1 (-1)
corresponds to the moiré (Bernal graphite) surface. We
find moiré bands localized on the outer graphene layers
at the rotated interface (red colored bands), consistent
with previous calculations performed for infinitely thick

graphite slabs [23].
The contrast between Bernal and moiré graphite be-

comes more obvious upon applying a small magnetic field
oriented along the c-axis. Figure 2a shows a dual-gate re-
sistance map for the 23-layer Bernal graphite sample ac-
quired at a magnetic field of B = 0.5 T. The resistance is
largest when the voltage on both gates is approximately
zero, consistent with prior reports of a large magnetore-
sistance (MR) in bulk graphite crystals [25]. Upon gat-
ing, we additionally find a large MR everywhere along the
condition of overall charge neutrality, Vt/dt + Vb/db = 0,
as evidenced by the diagonal resistance stripe in Fig. 2a.
Measurements of the Hall resistance show a correspond-
ing sign change across the line of overall neutrality. Our
observations can be captured by a simple Drude trans-
port model (see Methods and Supplementary Informa-
tion Fig. S8), indicating that transport is primarily de-
termined by the total free charge density in the material,
even when the gate-induced charge is mostly localized at
the outer surfaces (see Fig. 1c).
Corresponding measurements of the moiré sample re-
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FIG. 3. Hybridization of moiré and bulk graphite states at high field. a, Landau fan diagrams from the t1+10 device
acquired by sweeping Vgr at the denoted values of Vm. The black dashed lines indicate selected QOs that project to Vgr ≈ 0
at B = 0, whereas the blue dashed lines denote QOs that project to a value of Vgr that changes with Vm. b, Landau fan
diagrams acquired by sweeping Vm at the denoted values of Vgr. The purple dashed lines indicate selected QOs that project
to ν = 0, whereas the pink dashed lines indicate QOs that project to ν = ±4. c, Longitudinal (left) and Hall (right) resistance
maps acquired at B = 0.5 T. Zero-field projections of the ν = 0 and ±4 states from the moiré gate Landau fans are overlaid
on the longitudinal resistance map. Zero-field projections of QOs from the graphite gate Landau fans are overlaid on the
Hall resistance map. Supplementary Videos 1-2 show the Landau fan diagrams used to extract all of the data points. d,
Conductance, Gxx, as a function of magnetic field. The blue (red) line is averaged over all values of Vgr (Vm) for the Landau
fan corresponding to the top panel in a (b), thereby eliminating contributions from individual QOs at a given field. Selected
rational values of the magnetic flux filling of the moiré unit cell, ϕ/ϕ0 are denoted by vertical gray lines. The top right inset
shows Gxx averaged over all values of Vgr for a t1+17 device with θ = 1.31◦ (see Extended Data Fig. 2 for the complete data
set from this device). The top left inset shows a cartoon schematic illustrating the formation of a standing wave in the lowest
Landau bands of graphite (formed by the stacked blue graphene sheets) at high field. The standing wave hybridizes the Bernal
graphite bulk states with the moiré surface states. The moiré interface is indicated by the rotated graphene sheet colored in
red.

veal a more complex dependence of transport on gating
(Fig. 2b and Extended Data Fig. 1). Rather than a single
resistance stripe, Rxx exhibits a maximum that evolves
with a peculiar zig-zag trajectory upon gating. The con-
tour of Rxy = 0 tracks closely with the Rxx maximum.
Notably, the periodic resets we observe upon biasing Vm
correspond closely with integer multiples of the gate volt-
age required to completely fill the four-fold degenerate
surface moiré minibands, denoted by the band filling fac-
tor, ν, on the right-hand axis (see Methods for definition
of ν).

To understand this behavior, we calculate the band
structure of twisted graphene-graphite with tunable gate-
induced surface potentials (see Methods for full details).

Figures 2c-d show the evolution of the band structure
for various values of the potential at the moiré surface,
Um. We find that gating primarily changes the energy
of the moiré-like surface states, whereas the graphite-like
states in the bulk remain at fixed energy. In contrast, the
energy of the moiré-like bands remains fixed upon chang-
ing the potential at the Bernal graphite surface, Ugr, as
shown in Fig. 2e. From this, we can generalize the trans-
port properties of Bernal graphite to the moiré sample.
The local behavior surrounding Vgr ≈ Vm ≈ 0 is similar
for the two structures. However, whereas both surfaces
of Bernal graphite can be doped with arbitrarily large
densities of either electrons or holes, the twisted surface
of the moiré sample hosts a series of narrow flat bands
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in which the free charge switches periodically between
electron- and hole-like (Fig. 2c). When Vm corresponds
to full filling of the moiré band (ν = ±4), the surface free
charge density returns to approximately zero, and the
transport once again mimics the case of undoped Bernal
graphite. In the Methods section, we provide additional
details of the formation of the zig-zag structure.

Hybridization of moiré and bulk states

So far, we have found that the charge accumulation
layers on the two surfaces do not directly hybridize
with each other, and are thus controlled independently
by the nearest gate. However, this behavior is known
to break down in Bernal graphite at higher magnetic
fields [26]. In the ultra-quantum limit, only the two low-
est (nearly-degenerate) Landau bands cross the Fermi en-
ergy, and the electron motion is primarily limited to the
c-axis [26, 27]. Electrons form a set of standing waves
that penetrate across the entire bulk owing to the quasi-
1D nature of these Landau bands. These states are thus
controlled equally by the top and bottom gates. All other
Landau bands are gapped within the bulk, and although
they can be populated at the surfaces by gating, they
form a screening layer and can only be controlled by the
nearest gate. As a consequence, we find that Landau
fans acquired by sweeping a single gate exhibit two dis-
tinct sets of quantum oscillations (QOs). One sequence
projects to approximately zero gate voltage at B = 0,
irrespective of the bias applied to the other gate. These
QOs correspond to surface-localized states. The second
sequence projects to a non-zero gate voltage determined
by the bias applied to the opposite gate, in particular
following a line of constant overall doping. These QOs
correspond to states that are extended across the entire
bulk (Extended Data Fig. 3).

The moiré surface states in t1+Z graphite form Hof-
stadter bands at high field [28], which must smoothly
evolve into the Bernal graphite Landau bands in the bulk.
Despite this additional complexity, our magnetotrans-
port measurements reveal that ungapped bulk states re-
main extended across the entire sample. These extended
states appear as diagonal features in dual-gate maps
taken at fixed magnetic field, confirming their depen-
dence on both gate voltages (Extended Data Fig. 4). We
further probe these extended states by acquiring Lan-
dau fan diagrams while sweeping Vgr at various fixed
values of Vm (Fig. 3a). Similar to our observations in
Bernal graphite, we see two distinct sequences of QOs
that project to different values of Vgr at B = 0. Se-
lected QOs from the sequence corresponding to states
localized at the Bernal graphite surface are denoted by
black dashed lines, and project to Vgr ≈ 0 irrespective
of Vm. In contrast, the QOs corresponding to the bulk
extended states (denoted by blue dashed lines) project
to different values of Vgr depending sensitively on Vm.

Figure 3c shows the color-coded projections from many

Landau fan diagrams overlaid atop the Rxy map acquired
at B = 0.5 T (see Methods and Extended Data Fig. 5 for
details of the fitting procedure used to extract the projec-
tion points). The projection point of the extended states
(blue dots) oscillates with Vm, tracking closely with the
Rxy = 0 contour measured at low field. This behavior is
enabled by the unique nature of the extended standing
wave states in Bernal graphite. As illustrated schemat-
ically in the top left inset of Fig. 3d, the standing wave
hybridizes the moiré surface states with the graphite bulk
states, inextricably mixing them together. The low- and
high-field zig-zag features we see in Fig. 3c arise from dis-
tinct physical mechanisms, yet exhibit remarkably con-
sistent behavior that is primarily determined by the total
gate-induced free charge in the sample.

Unlike in Bernal graphite, the Landau fan diagrams in
twisted grahene-graphite differ substantially depending
on which gate is swept. In particular, we see QOs cor-
responding to the moiré bands only upon sweeping Vm
(Fig. 3b). We denote selected QOs projecting to full-
filling of the moiré surface bands (ν = ±4) with pink
dashed lines, whereas QOs projecting to the charge neu-
trality point (ν = 0) are denoted in purple. Figure 3c
shows the B = 0 projection points of these states over-
laid atop the Rxx map acquired at B = 0.5 T. The low-
field transport around Vgr ≈ 0 exhibits diagonal resis-
tance features closely matching the evolution of the pro-
jection points of the high-field QOs at ν = 0 and ±4.
We also find that both the resistance and the QO pro-
jections depend only weakly on Vgr as the bias is raised
further. These observations suggest that the moiré bands
can be doped by changing Vgr when the bias is small, but
that surface states on the Bernal face screen the effect of
changing Vgr when the bias is large.

Despite the obvious differences in the Landau fan dia-
grams acquired by sweeping each gate, Brown-Zak (BZ)
oscillations [28–33] appear in both. The BZ oscilla-
tions correspond to conditions in which charge carriers
experience zero effective magnetic field, and thus ex-
hibit straight trajectories in real space [33]. These os-
cillations occur as maxima in the magnetoconductance,
Gxx = Rxx/(R

2
xx + R2

xy), and arise at rational values of
the magnetic flux filling of the moiré unit cell. BZ os-
cillations are anticipated when sweeping Vm (red curve
in Fig. 3d), since charge carriers are directly populating
the moiré bands. In contrast, the BZ oscillations seen
upon sweeping Vgr (blue line in Fig. 3d) are more sur-
prising, since this gate does not directly fill the moiré
bands. This effect is more clearly visible in a t1+17 de-
vice with θ = 1.31◦, which exhibits very sharp magneto-
conductance peaks averaged over Vgr (top right inset of
Fig. 3d).

Although it is possible for the moiré to propagate
through bulk graphite due to structural relaxations, this
effect has been found to arise only at ultra-small twist
angles [34], and is therefore unlikely to be relevant in
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FIG. 4. Moiré modification of graphitic films with varying thickness and twist angle. a-e, Maps of the longitudinal
(top row) and Hall (bottom row) resistance for different moiré graphite devices, acquired at B = 0.5 T. All Rxy maps are
antisymmetrized, except for that of the t1+40 device. The graphite thickness and twist angle is indicated above each plot.
Zero-field projections of QOs from the Landau fans acquired by sweeping Vgr are overlaid on the Hall resistance map in a and
c. The extrema of the color scales for each device vary due to the differing graphite thicknesses. The Rxx maps are plotted on
logarithmic color scales, with extrema of: (a) 50 Ω to 1 kΩ, (b) 5 Ω to 500 Ω (c) 10 Ω to 500 Ω, (d) 100 Ω to 175 Ω, (e) 50 Ω
to 150 Ω. The Rxy maps are plotted on linear color scales, with extrema of: (a) −0.5 kΩ to 0.5 kΩ, (b-c) −0.3 kΩ to 0.3 kΩ,
(d-e) −50 Ω to 50 Ω.

our samples. Instead, the observation of BZ oscillations
upon sweeping Vgr indicates that carriers doped into the
Bernal graphite surface obey transport properties dic-
tated in part by the moiré potential on the opposite sur-
face, providing further evidence of the hybridization of
moiré and bulk states at high field. We additionally find
that this effect persists in devices where the moiré inter-
face is buried at the center of the sample (Extended Data
Fig. 6). In this case, the moiré bands lie deep in the bulk
and can not be filled by either gate, but nevertheless gen-
erate strong BZ oscillations by hybridizing with the bulk
states of each rotated Bernal graphite constituent.

Discussion

Our observations appear to be generic for t1+Z
graphite, as we see qualitative similarities across differ-
ent graphite thicknesses and twist angles. Figure 4 shows
Rxx and Rxy maps acquired at B = 0.5 T for five samples
with Bernal graphite components ranging from Z = 6 to
40 layers. The zig-zag resistance feature becomes increas-
ingly obscured for thicker graphite, but we nevertheless
see oscillations in Rxy that appear to correspond closely
with four-fold multiples of ν. In the high-field regime, we
see a similar evolution of the Landau fan diagram projec-
tions for both the t1+6 and t1+17 samples. The projec-
tion points from the Landau fans acquired by sweeping
Vgr are plotted on the corresponding Rxy maps shown in
Fig. 4a and c, and exhibit a familiar zig-zag progression.
The full set of QO projections are shown in Extended
Data Figs. 2 and 7, as well as in Supplementary Videos
S3-S5.

Overall, our results establish a new class of ‘mixed-

dimensional moiré materials,’ in which a moiré potential
localized to a single 2D interface fundamentally trans-
forms the properties of an entire bulk crystal. This be-
havior may generalize to other layered semimetals with
low intrinsic bulk doping, such as WTe2 or ZrTe5. Our
work additionally motivates experiments with more com-
plex graphitic structures, in which bulk standing waves
couple moiré patterns at both the top and bottom sur-
faces or distributed throughout the bulk of the material.
The standing-wave coupling may also be exploited to en-
able other means of interfacial engineering; for instance,
by extending proximity-induced superconductivity, mag-
netism, or spin-orbit coupling into the graphite bulk. Fi-
nally, new complex moiré geometries in bulk graphitic
thin films may help to unravel the origin of the super-
conductivity found both in natural few-layer graphene
allotropes [35, 36] and in a growing family of magic-angle
twisted graphene structures.

METHODS

Device fabrication. Moiré devices were fabricated
using the “cut-and-stack” method [37, 38]. t1+Z struc-
tures are made by finding an exfoliated bulk graphite
thin film with a connected monolayer graphene region,
isolating the two using an atomic force microscope tip,
and then stacking one atop the other at the desired twist
angle. The sample with the buried moiré was made by
isolating two regions from a single 7-layer graphite sheet
and stacking them atop each other. The samples were
assembled using standard dry-transfer techniques with
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a polycarbonate (PC)/polydimethyl siloxane (PDMS)
stamp [39]. All devices are encapsulated in flakes of BN
and graphite, and then transferred onto a Si/SiO2 wafer.
The only exception is the t1+6 device, which has a metal
top gate instead of graphite. The temperature was kept
below 180◦C during device fabrication to preserve the in-
tended twist angle. The number of graphite layers in each
device, Z, was determined by atomic force microscopy
measurements after encapsulation. Standard electron
beam lithography, CHF3/O2 plasma etching, and metal
deposition techniques (Cr/Au) were used to define the
complete stack into a Hall bar geometry [39]. Optical
micrographs of all devices are shown in Supplementary
Information Fig. S1. We measure devices with graphite
thickness varying from Z = 6 to 40 layers, and with twist
angles between θ = 0.84◦ and 1.31◦.
Transport measurements. Transport measure-

ments were performed in a Cryomagnetics variable tem-
perature insert with a base temperature of 1.7 K, and
were conducted in a four-terminal geometry with a.c.
current excitation of 10-200 nA using standard lock-in
techniques at a frequency of 17.7 Hz. Some of the mea-
surements acquired for the Supplementary Videos S1-S2
for the t1+10 device were performed in a Bluefors di-
lution refrigerator at a nominal base temperature of 20
mK. Antisymmetrization of Rxy is performed following
Rxy = (Rxy[B]−Rxy[−B])/2).
Twist angle determination. The twist angle θ is

determined by fitting the sequence of QOs arising upon
sweeping Vm. The charge carrier density required to fill
the moiré superlattice is given by ns = 8θ2/

√
3a2, where

a = 0.246 nm. The value of ns is determined by tracing
the QOs corresponding to full filling of the moiré surface
bands to B = 0. The band filling factor, ν, is defined
such that ν = ±4 at doping ±ns, where the numerical
factor of 4 corresponds to the spin and valley degener-
acy of graphene. We note that the value of Vm required
to establish the complete zig-zag feature scales with the
twist angle (Fig. 4), since the bias needed to fully fill the
moiré surface band grows with increasing twist angle.

QOs projecting to full filling (ν = ±4) are evident
in all devices shown in Fig. 4 except for the t1+40 de-
vice. The twist angle for the t1+40 device was instead
estimated through piezoelectric force microscopy (PFM)
imaging of the moiré pattern (Supplementary Informa-
tion Fig. S2). PFM was performed on the transfer slide
during the sample fabrication directly after picking up
the 40-layer graphite and the monolayer graphene [40].
The twist angle is extracted by calculating the average
of the three moiré lattice points in the Fourier transform
of the PFM image. The twist angle in the t1+6 device
was also independently confirmed in this manner.

When observed, the BZ oscillation sequence provides
an independent measure of the twist angle. Magnetocon-
ductance peaks are expected to occur when the magnetic
flux ϕ = 4B/ns is equal to p/q times the flux quantum

ϕ0 = h/e, where h is Planck’s constant and p, q are in-
tegers. We extract ns by fitting the observed peaks to
a series of rational ϕ/ϕ0 = 1/2, 1/3, 1/4, etc. In all de-
vices, we find that this value agrees with that extracted
by tracking the QOs to within a few percent.
Low-field zig-zag behavior in the Hall resis-

tance. In the main text, we describe the origin of the
zig-zag behavior seen in the longitudinal resistance of the
moiré graphite samples at low field. Here, we further
describe the origin of a similar pattern in the Hall re-
sistance. As seen in Fig. 2b, for Vgr ≈ 0, the sign of
the Hall effect flips as Vm is tuned. This occurs as the
doping at the moiré surface switches between electron-
and hole-like, corresponding to instances in which Fermi
energy crosses a moiré band extrema or a Lifshitz tran-
sition. The origin of these sign changes can be under-
stood in more detail by examining calculations of the
constant-energy contours of the surface-localized moiré
bands (Fig. 2c). We color-code these contours accord-
ing to the sign of the local band curvature, and see a
repeated switching of the free carrier type between hole-
like, neutral, and electron-like as the energy of the bands
is varied.

For sufficiently large values of Vgr, the doping of the
Bernal graphite surface exceeds the maximum doping
possible in the narrow moiré bands, and the sign of the
Hall effect can no longer flip upon further biasing Vm. In
Supplementary Information Fig. S9, we show that we can
capture the salient features of this zig-zag effect following
very simple assumptions about the amount of doping in
each surface-localized band.
Temperature dependence measurements. We

track the evolution of the low-field magnetotransport in
the t1+17 device in Supplementary Information Fig. S3.
We see signatures of the zig-zag feature persisting up
to at least 50 K. As the temperature is raised further,
the structure in the Rxx map becomes washed out. Rxy

continues to exhibit a sign change, but along a straight
line with a slope that becomes more vertical in the map
with higher temperature. At room temperature, trans-
port is nearly unaffected by changing Vm, potentially due
to lower mobility on the moiré surface compared to the
Bernal graphite surface.
Fitting the quantum oscillation sequences. To

determine the zero-field projection points of the QOs, we
first take the second derivative of the Rxx signal numer-
ically. QOs manifest as resistance dips in the Rxx mea-
surements, and are therefore peaks in the second deriva-
tive. The raw data and second derivative for a repre-
sentative Landau fan from the t1+10 device is shown in
Extended Data Fig. 5a-b. For clarity, we saturate the
color scale to only show positive values of d2Rxx/dV

2.
We then identify QOs that persist over a magnetic field
range of at least a tesla by determining linear trajectories
in which d2Rxx/dV

2 is a local maximum. We addition-
ally cross check that the identified maxima in d2Rxx/dV

2
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correspond to obvious QO features in Rxx, since maxima
in the second derivative can occasionally have other ori-
gins, such as two intersecting QOs or a QO crossing a BZ
oscillation.

We then perform two different fitting procedures,
which we refer to as “unconstrained” and “constrained”
fits. For the unconstrained fit, we first perform a linear
regression for each QO to extract its projection point at
zero field, V u

i . We can then group the QOs based on
their projection points, forming groups that have pro-
jection points within a sufficiently small range of gate
voltage. Extended Data Figs. 5c and e show an exam-
ple of this analysis for the t1+10 device, in which Vgr
was swept while fixing Vm = 0. We find two distinct
sets of QOs, one that projects to approximately Vgr = 0
(associated with graphite surface states) and another to
Vgr ̸= 0 (associated with the extended bulk states). The
linear regression fit to each QO has an associated error on
its projection point, σi. These are shown as the colored
data points with error bars in Extended Data Figs. 5g-h
(collectively shown in the pink shaded region of the plot).
After forming two groups of QOs based on their distinct
projection points of Vgr ≈ 0 and Vgr ≈ 0.02 V/nm, we
take a weighted average of all the QO projection points
in each group in order to determine a single value for
the projection point along with an associated error. The
weights are wi = 1/σ2

i , such that the final projection
point determined by the unconstrained fit is

V u
0 =

∑
i wiV

u
i∑

i wi
.

We assign the error to the unconstrained fit result as a
weighted standard deviation:

σu =
1∑
i wi

√∑
i

w2
i

(
Vi − V u

0

)2
.

The extracted V u
0 are denoted as vertical lines in Fig. 5g-

h, with the surrounding shaded gray region indicating the
fitting error. The unconstrained fits reveal two distinct
sets of QOs with clearly distinguishable Vgr projection
points. We stress that this fitting procedure is completely
unbiased, as it simply picks out extended linear maxima
in d2Rxx/dV

2 and tracks their zero-field projection with-
out making any underlying physical assumptions regard-
ing the origin of those features.

We can strengthen this analysis by assuming that each
distinct set of QOs must have the same projection point,
as is conventional for quantum Hall states forming a Lan-
dau fan diagram. We thus proceed with a constrained fit,
in which we additionally enforce a single projection point
for each set of QOs, V c

0 . We further enforce that the QOs
are related to one another through a Diophantine equa-
tion,

B =
m

t
(V − V c

0 ) ,

where t is an integer (i.e. the Chern number) and
m = CΦ0/e, with C the capacitance per unit area of the
BN dielectric, e the charge of the electron, and Φ0 = h/e
the magnetic flux quantum. We use the results of the
unconstrained fit to inform our assignment of the value
of t for each fitted QO. We then perform a least squares
regression to determined V c

0 and find the associated er-
ror, σc. In the Landau fans acquired by sweeping Vm,
the difference between the fitted projection points as-
sociated with charge neutrality, V c

0,ν=0, and full-filling,
V c
0,ν=±4, can be related to the moiré superlattice density,
ns, following V

c
0,ν=±4 − V c

0,ν=0 = ± ens

Cm
. Representative

constrained fits are shown in Extended Data Figs. 5d and
f.

The results of the constrained fit, V c
0 , are plotted as

the black dots in Extended Data Figs. 5g-h (shown within
the blue shaded region of the plot). These black dots
and associated error correspond very closely to the black
lines and associated error from the unconstrained fits, in-
dicating that the two procedures yield highly consistent
results. Given the physically realistic assumptions in the
constrained fit, we adopt this procedure and further fit
the projection points of the QO sequences from the re-
mainder of the Landau fans acquired in this work. All
data points shown in Fig. 3 report fits of V c

0 along with
associated error bars, although the latter are typically
smaller than the size of the corresponding data point
marker. Extended Data Figs. 8, 9, and 10 further show
further results from the constrained fitting procedure for
representative Landau fans acquired in the t1+10, t1+17,
and t1+6 devices, respectively.

Finally, we note that in some cases we are able to iden-
tify additional sequences of QOs beyond those discussed
in the main text (detailed in Supplementary Information
Fig. S5). In particular, we find these in Landau fans ac-
quired by sweeping Vgr in the t1+10 and t1+17 devices.
We do not know the origin of these additional states, al-
though we find that they are extremely sparse compared
with those comprising the two primary sequences of QOs
that we fit. These additional QO sequences could be re-
lated to Hofstadter states that penetrate deep into the
bulk, or could arise from another unknown origin.

Transport model of Bernal graphite at low field.
We capture the low-field transport behavior of Bernal
graphite with a four-component Drude model. Magne-
totransport is characterized by the conductivity tensor
σ, with a corresponding current density j = σE under
an electric field E. Each of the four carrier species are
independent, and have a two-dimensional carrier density
denoted as ni, where i is t, b, e, or h. In order, these cor-
respond to the charges on the top and bottom graphite
surfaces, and the intrinsic electron and hole free carriers
in the graphite bulk. Each carrier species has an asso-
ciated mobility, µi. In the absence of a magnetic field,
the conductivity is a scalar and the contribution from the
i-th carrier is σi = eniµi. In the presence of a magnetic
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field, the conductivity tensor is σ =
∑

i σi where the
contribution from the i-th carrier is

σi =
σi

1 + (µiB)2

(
1 ηiµiB

−ηiµiB 1

)
,

with ηi = ∓1 for electrons and holes, respectively. The
resistivity tensor is ρ = σ−1, where the diagonal and off-
diagonal elements separately represent the longitudinal
(ρxx) and transverse (ρxy) resistivities.

Graphite is a nearly compensated semimetal, and for
simplicity we assume ne = nh. We take previously
measured parameters of bulk graphite [25, 41], in which
the three-dimensional bulk carrier density is n3D = 3 ×
1018 cm−3 and the mobility is µe = µh = 1×106 cm2/Vs.
We assume the same value for the surface mobilities,
µt and µb. The bulk electron and hole carrier densi-
ties correspond to a two-dimensional density of n2D =
2×1012 cm−2 per graphene sheet. To model our 23-layer
Bernal graphite sample, we assign 21 layers of n2D as the
fixed bulk density, ne = nh = 21×n2D = 4× 1013 cm−2.
We then vary the surface density of the two remaining
layers, corresponding to changing the top and bottom
gate voltages over typical experimentally accessible val-
ues.

Supplementary Information Fig. S8a shows the results
of the calculation, which qualitatively match the experi-
mental observations in Fig. 2a. In particular, we see the
largest resistivity along the line of overall charge neu-
trality, with a corresponding change in the sign of the
Hall effect. We also see that the resistivity is largest
when both of the surfaces are undoped, also consistent
with our experimental results. The qualitative agree-
ment between experiment and theory does not depend
strongly on the precise values of the graphite parame-
ters we assume. However, as an additional check, we
repeat the calculation with unrealistically large bulk den-
sity, ne = nh = 2×1015 cm−12 (Supplementary Informa-
tion Fig. S8b). In this case, we find that virtually no gate
dependence can be observed in the longitudinal resistiv-
ity, which changes by only tenths of an ohm, compared to
over a hundred ohms in the calculation performed with
realistic graphite parameters. These calculations there-
fore establish that the gate-tunable transport we observe
in graphite arises as a consequence of its modest intrinsic
bulk doping.

Band structure calculation. We first calcu-
late the Hamiltonian for Z-layer Bernal graphite.
We define |k, Al⟩ and |k, Bl⟩ as the Bloch states
at the K point of layer l. By arranging the ba-
sis as |k, A1⟩, |k, B1⟩; |k, A2⟩, |k, B2⟩; ...; |k, AZ⟩, |k, BZ⟩;,
the Hamiltonian around the K point is given by

HZG(k) =


HD(k)− U1 Γ(k) 0

Γ†(k) HD(k)− U2 Γ†(k)
0 Γ(k) HD(k)− U3

. . .

 ,

with

HD(k) =

(
0

√
3
2 γ0(kx − iky)√

3
2 γ0(kx + iky) 0

)
,

and

Γ(k) =

(
−

√
3
2 γ4(kx − iky) −

√
3
2 γ3(kx + iky)

γ1 −
√
3
2 γ4(kx − iky)

)
,

where Uj is the electronic potential at jth
layer. We set the parameters (γ0, γ1, γ3, γ4) =
(2.6, 0.36, 0.28, 0.14) eV [42].
To calculate the band structure of twisted graphene-

graphite, we further place a single graphene layer on the
Z-layer graphite and twist it by θ. The effective Hamil-
tonian can be written as

H =

(
HMG H†

int

Hint HZG

)
,

where HMG is the Hamiltonian for the twisted monolayer
graphene. Hint is the interlayer coupling term between
the monolayer and the topmost layer of the graphite.
We define |k′, A0⟩ and |k′, B0⟩ as the Bloch states of the
twisted graphene at R(θ)K, where R(θ) is the rotation
matrix in the xy-plane at an angle θ. By using this basis,
the Hamiltonian for the graphene can be represented as

HMG =

(
U0

√
3
2 γ0(k

′
x − ik′y)√

3
2 γ0(k

′
x + ik′y) U0

)
.

The Bloch wavevector of the twisted graphene and the
Z-layer graphite are coupled when k = k′ + qj (j =
0, 1, 2), where q0 = (0, 0), q1 = 1

LM
(− 2π√

3
,−2π) and q2 =

1
LM

( 2π√
3
,−2π), where LM is the moiré lattice constant.

Under these constraints, the interlayer coupling is given
by

Hint =
2∑

j=0

tint

(
α e−i 2πj

3

ei
2πj
3 α

)
,

and is otherwise zero. We take the parameters tint =
0.11 eV and α = 0.5 [43], the latter of which captures
the effects of lattice relaxations.
We additionally consider the effective model for Z-

layer graphite twisted atop Z-layer graphite, such that
the moiré interface is buried at the center of the material.
The Hamiltonian is constructed following same analysis
as above, but replacing HMG with HZG(k

′). The two ro-
tated graphite constituents are coupled by Hint at their
rotated interface.
We capture the effects of gating by adopting the

Thomas-Fermi approximation to account for the screen-
ing of external electric fields by the graphite bulk [44, 45].
For small gate voltages, the electric field is given by

Uj = Ume
−jd/λs + Ugre

−(Z−j)d/λs (j = 0, ..., Z)
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where λs ≈ 1.3d, and d is the interlayer distance. Um/gr

is the potential for the moiré/graphite surface.

Finally, we numerically calculate the eigenvalues and
eigenstates by truncating at a sufficiently large momen-
tum and diagonalizing the Hamiltonian. The electron
of the n-th eigenvalue is distributed along the graphite
c-axis as follows:

⟨znk⟩ =
∑
l

∑
σ=A,B

zl|ϕnk,σl
|2

where the eigenstate is written as |ψnk⟩ =∑
σ,l ϕnk,σl

|k, σl⟩ and zl = 2(z0 − ld)/Lz. Lz and
z0 denote the width and the center of the system, re-
spectively. Supplementary Information Figs. S6 and S7
provide a more detailed analysis of these band structure
calculations.

DATA AVAILABILITY

Source data are available for this paper. All other data
that support the findings of this study are available from
the corresponding author upon request.
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phonon interaction. Physical Review B 101, 195425
(2020).
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EXTENDED DATA

Extended Data Fig. 1. Low-field evolution of transport in the t1+10 device. Longitudinal (top) and Hall (bottom)
resistance measurements acquired in steps of B = 50 mT, as indicated in the top left of each column. The zig-zag transport
behavior first becomes evident at fields as low as 50 mT, and becomes more obvious as the field is raised.



13

Extended Data Fig. 2. High-field transport behavior in a t1+17 device with θ = 1.31◦. a, Landau fan diagram acquired
by sweeping Vm at Vgr = 0. The purple (pink) dashed lines denote selected QOs that project to ν = 0 (ν = ±4). b, Landau
fan diagrams acquired by sweeping Vgr at various fixed values of Vm. The black dashed lines denote selected QOs that project
to Vgr ≈ 0 at B = 0. The blue lines denote selected QOs that project to a Vgr ̸= 0 that depends on Vm. c, Longitudinal (left)
and Hall (right) resistance maps acquired at B = 0.5 T. Zero-field projections of the ν = 0 and ±4 states from the Vm Landau
fans are overlaid on the Rxx map. Zero-field projections of QOs from the Vgr Landau fans are overlaid on the Rxy map. d,
Conductance, Gxx, as a function of magnetic field. The blue curve is averaged over all values of Vgr for the Landau fan in
(a) acquired at Vm/dm = −0.11V/nm. The red curve is averaged over a range of Vm values corresponding to |ν| < 4 for the
Landau fan in (b) acquired at Vgr = 0. Brown-Zak oscillations case be seen upon sweeping either gate. (Inset) Longitudinal
resistance map acquired at B = 0 T.
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Extended Data Fig. 3. High-field transport in Bernal graphite. a, Landau fan diagrams from a 24-layer graphite device
(different from the one shown in the main text) acquired by sweeping the top gate voltage, Vt, at various fixed values of the
bottom gate voltage, Vb, as indicated in each panel. The black dashed lines denote selected QOs that project to Vt ≈ 0 at
B = 0, and the pink lines denote QOs that project to a Vt ̸= 0 that depends on the value of Vb. b, Similar Landau fans,
but with fixed Vt and sweeping Vb. The QOs projecting to Vb ̸= 0 are denoted in blue. c, Longitudinal (left) and Hall
(right) resistance maps acquired at B = 0.5 T. The QOs projecting to approximately zero gate voltage in each Landau fan,
corresponding to surface-localized states, are overlaid on the Rxx map and form a cross. The QOs projecting to non-zero gate
voltages, corresponding to extended bulk states, are overlaid on the Rxy map and closely track the condition of overall charge
neutrality. d, Rxx map acquired at B = 12 T. Dashed black lines denote selected QOs that depend only on a single gate, which
arise from localized states on either the top or bottom graphite surfaces. The blue/pink dashed lines denote QOs that depend
on both gates, which evolve parallel to the line of overall charge neutrality, arising from the extended bulk states.



15

Extended Data Fig. 4. High field dual-gate maps for the t1+10, t1+17, and t7+7 devices. a-c, Dual-gate Rxx maps
(top) and corresponding numerical second derivative (bottom) acquired for the (a) t1+10 device at B = 9 T, (b) t1+17 device
at B = 12 T, and (c) t7+7 device at B = 12 T. Solid black bars at the top of each map denote regions of gate voltage dominated
by vertical QOs, which correspond to surface-localized states. Other regions, though more complicated, contain diagonal QOs
which depend on the value of both gate voltages. These features correspond to extended bulk standing wave states. Data in
panel a was acquired in a dilution refrigerator with a nominal base temperature of T ≈ 20 mK, all other data was acquired at
1.7 K.
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Extended Data Fig. 5. Extracting the zero-field projection points of the QOs. a, Landau fan diagram of Rxx in the
t1+10 device, acquired by sweeping Vgr with Vm = 0. b, The numerical second derivative of the data in a. The color scale is
saturated to only show positive values of d2Rxx/dV

2, since peaks in d2Rxx/dV
2 correspond to minima in Rxx (i.e., QOs). c,

Fit results using the unconstrained fitting procedure for QOs that project to Vgr ≈ 0. The green circles are extracted peaks
in d2Rxx/dV

2 that were used for each fit, and the dashed lines show the result of the fit for each individual QO. d Analogous
results using the constrained fitting procedure for the QOs that project to Vgr ≈ 0. The green data points are the same as in c,
but now all the states are fit simultaneously and forced to share the same projection point at B = 0 with a defined relationship
between their slopes (see Methods for full description). e-f, Similar fitting using the unconstrained and constrained fitting
procedures, respectively, but for the sequence of QOs that project to Vgr ̸= 0. g, Projection points determined from the fits
shown in c and d. The shaded pink region contains data points and associated error bars from the unconstrained fit, V u

i ± σi,
corresponding to the dashed lines in c of the same color. The vertical black line and surrounding shaded grey bar denote the
weighted average and associated error of the unconstrained fit, V u

0 ± σu. The shaded blue region contains the result of the
constrained fit from d. The single black data point with error bars is the projection point determined by the constrained fit
V c
0 ± σc. Note that V u

0 ± σu and V c
0 ± σc are consistent with one another. h, Similar plot as g, but for the fits shown in e and

f. Note that the extracted QO projection points in g and h differ significantly from one another, allowing us to unambiguously
identify two distinct sets of QOs corresponding to the surface states and bulk states, respectively.
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Extended Data Fig. 6. High-field transport in a device with a buried moiré interface. a, Rxx (left) and Rxy (right)
Landau fans acquired as Vt is swept with Vb = 0 in a device consisting of 7 layers of Bernal graphite stacked and rotated atop
another 7 graphite layers with θ = 1.26◦. b, Same as (a), but sweeping Vb with Vt = 0. The fans acquired by sweeping each
gate are nearly identical to one another owing to the symmetry of the structure. Since the moiré is buried, we do not observe
signatures of moiré band filling in either Landau fan. However, both fans show clear horizontal features corresponding to
Brown-Zak oscillations arising from the buried moiré. c, Magnetoconductance averaged across all gate voltages for the top (red
curve) and bottom (blue curve) gates. These are nearly identical, and both display a clear sequence of Brown-Zak oscillations.
The inset shows a cartoon schematic in which separate standing waves couple the top and bottom bulk graphite states to the
buried moiré interface. The hybridization of the buried moiré with the bulk states is required to generate the BZ oscillations
seen in transport. d, (Left) Band structure calculation of this structure showing a moiré band localized at the center of the
twisted graphitic thin film. The color scale is defined as in Fig. 2d of the main text. In this case, the moiré bands are found
at ⟨z⟩ ≈ 0, since the moiré is located at the center of the structure. (Right) The density of states integrated over the moiré
Brillouin zone. The red filtered curve corresponds to the four central graphene sheets, whereas the black corresponds to the
total density of states.
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Extended Data Fig. 7. High-field transport in a t1+6 device with θ = 1.27◦. a, Landau fan diagrams acquired by
sweeping Vgr at various fixed values of Vm. The black dashed lines denote selected QOs that project to Vgr ≈ 0 at B = 0. The
blue lines denote selected QOs that project to a Vgr ̸= 0 that depends on Vm. b, Landau fan diagrams acquired by sweeping
Vm at fixed values of Vgr. The pink dashed lines denote selected QOs from each of the distinct sequences we observe. c,
Longitudinal (left) and Hall (right) resistance maps acquired at B = 0.5 T. Zero-field projections of all observed sequences
of QOs from the Vm Landau fans are overlaid on the Rxx map. Zero-field projections of QOs from the Vgr Landau fans are
overlaid on the Rxy map. We note that, in this device, the observed sequence of QOs in the Vm Landau fans is very complex,
and there is not always a clear delineation between QO sequences arising from neutrality (ν = 0) and full filling (ν = ±4)
of the moiré bands. This may be a consequence of the relatively thin nature of the sample, which exhibits features of both
atomically-thin graphene and bulk graphite. Supplementary Information Fig. S4 further shows the dimensional crossover from
2D-like to 3D-like behavior as the number of graphene layers in the sample is increased.

d, Conductance, Gxx, as a function of magnetic field. The blue curve is averaged over all values of Vgr for the Landau fan
acquired at Vm/dm = −0.05V/nm. The red curve is averaged over a range of Vm values corresponding to |ν| < 4 for the
Landau fan in b acquired at Vgr = 0. Brown-Zak oscillations case be seen upon sweeping either gate. (Inset) Longitudinal

resistance map acquired at B = 0 T.
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Extended Data Fig. 8. Representative constrained fit results for Landau fans acquired by sweeping Vm in the
t1+10 device. a, Landau fan diagram of Rxx in the t1+10 device, acquired by sweeping Vm with Vgr/dgr = 0.01 V/nm. b,
Numerical second derivative of the data in a. The color scale is saturated to only show positive values, as in Extended Data
Fig. 5. c, Results of the constrained fit overlaid on the second derivative data from b, with reduced opacity for clarity. Solid
segments denote the range of magnetic field over which the QOs were fit, and the dashed segments denote the projection over
the entire range of magnetic field.

Extended Data Fig. 9. Representative constrained fit results for the t1+17 device. Same plots as in Extended Data
Fig. 8, but for the t1+17 device. a-c, Landau fan acquired by sweeping Vgr with Vm/dm = 0.14 V/nm, and associated QO
fits. d-e, Landau fan acquired by sweeping Vm with Vgr/dgr = 0, and associated QO fits.
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Extended Data Fig. 10. Representative constrained fit results for t1+6 device. Same plots as in Extended Data Fig.
8, but for the t1+6 device. a-c, Landau fan acquired by sweeping Vgr with Vm/dm = 0.09 V/nm, and associated QO fits. d-e,
Landau fan acquired by sweeping Vm with Vgr/dgr = −0.02 V/nm, and associated QO fits.
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SUPPLEMENTARY VIDEOS

Supplementary Video 1. (left) Landau fan diagrams from the t1+10 device acquired by sweeping Vgr at the
indicated values of Vm. The black and blue dots correspond to the B = 0 projection points of the QO sequences,
as described in the main text. In general, the blue dots align with the value of Vgr corresponding to the highest
resistance over a wide range of B in the map. (right) Rxy map acquired at B = 0.5 T with the corresponding black
and blue dots overlaid.

Supplementary Video 2. (left) Landau fan diagrams from the t1+10 device acquired by sweeping Vm at the
indicated values of Vgr. The pink and purple dots correspond to the B = 0 projection points of the QO sequences, as
described in the main text. (right) Rxx map acquired at B = 0.5 T with the corresponding pink (ν = 0) and purple
(ν = ±4) dots overlaid.

Supplementary Video 3. Same as Supplementary Video 1, but for the t1+6 device.

Supplementary Video 4. Same as Supplementary Video 2, but for the t1+6 device.

Supplementary Video 5. Same as Supplementary Video 1, but for the t1+17 device. This video only includes
Landau fans with Vgr/dgr ≥ −0.18 V/nm. The fans acquired for Vgr/dgr < −0.18 V/nm were taken only up to
B = 5 T due to technical constraints in those particular measurements, and are not included in the video for the sake
of continuity. Nevertheless, these lower-field fans still enable unambiguous QO projections, as plotted on the Rxx

map.


