
Understanding and Supporting Debugging Workflows in
Multiverse Analysis

Ken Gu Eunice Jun Tim Althof
kenqgu@cs.washington.edu emjun@cs.washington.edu althof@cs.washington.edu
University of Washington University of Washington University of Washington
Seattle, Washington, USA Seattle, Washington, USA Seattle, Washington, USA

10

Multiverse Analysis

Analysis 1

10

frequentist

Analysis 3

10

bayesian

lognormal

Analysis 2

10

bayesian

binomial

Analysis 1

10

bayesian

binomial

Analysis 4

200

frequentist

Analysis 6

200

bayesian

lognormal

Analysis 5

200

bayesian

binomial

Cutoff

Modeling

Bayesian Model

Family Function

Reported

Analysis

Traditional Analysis

rootroot

10 200

frequentist bayesianbayesianbayesian

binomial lognormal

frequentist bayesian

binomialbinomial lognormal

Figure 1: Overview of Multiverse Analysis. In traditional analyses, an analyst may consider multiple decisions in their analysis—
data flter cutof, statistical modeling approach (e.g., frequentist, Bayesian), and Bayesian family function (e.g., binomial,
lognormal). Traditionally, analysts may conduct multiple analyses with diferent decision choices but ultimately report only
one combination of decisions (a “universe”). In contrast, in multiverse analyses, analysts consider, conduct, and report all
reasonable combinations of decisions.

ABSTRACT

Multiverse analysisÐa paradigm for statistical analysis that con-
siders all combinations of reasonable analysis choices in paral-
lelÐpromises to improve transparency and reproducibility. Although
recent tools help analysts specify multiverse analyses, they remain
difcult to use in practice. In this work, we identify debugging as a
key barrier due to the latency from running analyses to detecting
bugs and the scale of metadata processing needed to diagnose a
bug. To address these challenges, we prototype a command-line

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3581099

interface tool, Multiverse Debugger, which helps diagnose bugs
in the multiverse and propagate fxes. In a qualitative lab study
(n=13), we use Multiverse Debugger as a probe to develop a
model of debugging workfows and identify specifc challenges,
including difculty in understanding the multiverse’s composition.
We conclude with design implications for future multiverse analysis
authoring systems.

CCS CONCEPTS

• Human-centered computing → User studies; Interactive sys-
tems and tools; • Software and its engineering → Development
frameworks and environments.

KEYWORDS

Multiverse analysis, statistical analysis, debugging, workfows, anal-
ysis authoring

CHI ’23, April 23–28, 2023, Hamburg, Germany Ken Gu, Eunice Jun, and Tim Althof

ACM Reference Format:
Ken Gu, Eunice Jun, and Tim Althof. 2023. Understanding and Supporting
Debugging Workfows in Multiverse Analysis. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems (CHI ’23), April
23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 19 pages. https:
//doi.org/10.1145/3544548.3581099

1 INTRODUCTION

Even when trained analysts are given the same analysis task and
dataset, they make diferent, sometimes conficting, conclusions
[17, 44, 50, 51]. While it is not expected that diferent analysts when
given only a dataset and a broadly defned task are to arrive at
the exact same results, the level of variability is surprising. These
divergences may even contribute to reproducibility crises across
scientifc disciplines [9, 42]. How could this be? Researchers be-
lieve that the fexibility in analytical choices (e.g., data fltering,
statistical modeling approach, model parameters) is a key contrib-
utor. For example, analysts leverage their unique belief systems,
domain knowledge, expertise, understanding of the problem, and
exploratory results to justify their analytical decisions [29, 37]. Ad-
ditionally, analysts only report the result of one set of analysis
decisions despite exploring multiple combinations.

As a response to these problems, prior work has proposed multi-
verse analysis [52, 55] as a promising solution. Multiverse analysis,
in contrast to traditional analysis, is a statistical analysis paradigm
that involves considering, specifying, and reporting results from all
combinations of key decision options (Figure 1 right). Multiverse
analysis reveals how sometimes arbitrary decisions may afect an
analysis conclusion. Moreover, by documenting and accounting
for all reasonable decision options, multiverse analysis, and related
approaches such as sensitivity analysis, improve transparency and
robustness of statistical analyses and could prevent future repro-
ducibility crises.

Despite the many benefts of multiverse analysis, authoring a
multiverse analysis remains challenging. Authoring multiverses
is difcult because analysts must explicitly enumerate decisions
and the options for those decisions, write programs that generate
additional programs or scripts for each individual combination of
options, compare and jointly interpret statistical results across all
combinations of decision choices, and iteratively debug and refne
all the above. Recent work in the HCI community and beyond pro-
vide tools to ease some of the challenges in the authoring process:
Boba [38], multiverse [48], rdfanalysis [24]. However, multiverse
analysis remains difcult to adopt for many analysts. What are
authoring challenges that, if addressed, could lower the barriers
to authoring multiverse analyses? Prior work [48] and our own
correspondences with multiverse tool developers and multiverse
practitioners have identifed debugging as a central challenge.

In this work, we target multiverse debugging as a key chal-
lenge. Based on prior work [48], our experiences, and with cor-
respondences with multiverse practitioners and tool developers,
we develop an initial model of debugging workfows in multiverse
analysis (Figure 3). We fnd that analysts tend to focus on debugging
a single analysis at a time (a “universež). Even debugging a single
universe script is time-consuming due to the need to triage and fx
code. The scale of multiverse analyses, which can be on the order
of tens of thousands of universes [37], exacerbates this problem

and introduces additional cognitive burdens, such as keeping track
of how many unique errors there are, which set of universes these
correspond to, and what portion of analyses are buggy. Based on
our initial workfow model, we identify three unique challenges of
debugging in the multiverse paradigm:

Challenge 1 Ð Detecting bugs takes a long time during the
slow execution of a multiverse (Figure 3D1).

Challenge 2 Ð Diagnosing the source of a bug to a specifc
decision choice or set of choices (i.e., singular universe) is
hard amongst thousands of universes (Figure 3D2).

Challenge 3 Ð After fxing a bug in a single universe (Fig-
ure 3D3), the analyst needs to remember changes and under-
stand how to propagate them to the rest of the multiverse
(Figure 3D4), which increases cognitive load and creates
opportunities for error.

Although existing debugging tools and workfows help analysts fx
a bug in a specifc universe, determining what universe to focus
on and subsequently propagating one universe’s changes to other
universes that share the same error, remain under-supported.

To address these initial challenges, we prototype a debugging
tool, Multiverse Debugger (Section 3). Multiverse Debugger
is a command-line interface (CLI) tool that extends Boba [38], an
an existing open-source tool that has already been employed in a
large real-world study [49]. Multiverse Debugger has three key
features, each of which addresses a challenge: (i) execution of a a
signifcantly smaller set of decision choice combinations to facilitate
fast iteration (Challenge 1) (ii) aggregation of error messages across
a multiverse analysis (Challenge 2), and (iii) propagation of edits
made to the rest of the multiverse (Challenge 3).

Using this tool as a probe, we conduct a qualitative lab study
with 13 analysts to explore multiverse debugging in greater depth
(Section 4). This lab study confrms Challenge 1 and Challenge 2
and we fnd Multiverse Debugger’s features beneft analysts in
diagnosing multiverse error messages and quickly detecting bugs.
We observe that Challenge 3 is not a central concern to analysts
as, prior to propagating bug fxes, analysts already struggle with
understanding the composition of the multiverse (i.e., the multi-
verse analysis tree in Figure 1), which is critical in their eforts
to diagnose multiverse error messages. We also observe analysts,
inspired by Multiverse Debugger, favor selective execution of a
subset of universes in the debugging process, which current tools
do not yet support.

Based on these fndings (Section 5), we update and extend our
model of the multiverse debugging workfow and associated chal-
lenges (Figure 6). In addition, we discuss (Section 6) a set of design
implications that include helping analysts better understand the
composition of the multiverse and supporting analysts in navigat-
ing their multiverse analysis.

This paper contributes the following:

(1) Findings from a qualitative lab study that reveal open chal-
lenges in multiverse debugging,

(2) A publicly available open-source prototype of Multiverse
Debugger that addresses some of these challenges and lab

Understanding and Supporting Debugging Workflows in Multiverse Analysis CHI ’23, April 23–28, 2023, Hamburg, Germany

study results that evaluate to what degree our prototype’s
features can alleviate them 1 ,

(3) A model of the key operational steps in multiverse debugging
workfows and associated challenges, and

(4) A set of design implications for how to better support de-
bugging for multiverse analysis authoring.

2 BACKGROUND AND RELATED WORK

2.1 Debugging in Software Engineering

Debugging is challenging and time-consuming. In prior works
aimed to understand debugging in software engineering, devel-
opers reported spending 20% to 60% of their time debugging [10].
This has been later confrmed in a study analyzing real-world de-
veloper debugging sessions [8].

A central challenge in debugging is the "large temporal or spatial
chasms between the root cause and the symptom" [34]. Based on a
prior lab study, researchers detailed the mechanisms of debugging
as involving the processes of searching, relating, and collecting
information of perceived relevance, in which the development envi-
ronment plays a central role in infuencing developers’ perceptions
[35]. In other studies on general software development, it was
discovered that a signifcant amount of mental efort is spent in un-
derstanding how a program works via searching relevant software
artifacts, and inspecting source code/documentation [40, 57].

With this understanding, multiverse debugging is likely to exac-
erbate the problems of traditional debugging workfows. There are
more analyses to work with, more meta-data per analysis in the
form of associated decision options which can afect the presence
of bugs, and shared relationships between the collection of scripts
that need to be considered. All this information, if not presented
well, can make the process of collecting and relating relevant in-
formation signifcantly harder. We contribute the frst user study
to explore and model debugging behavior and challenges in the
context of a multiverse analysis workfow.

2.2 Multiverse Analysis

Multiverse analysis [52, 55] aims to have the analyst consider all
reasonable decisions and combinations of decision options a-priori
while then conducting and reporting all considered analyses. "Rea-
sonable" here means actions with frm theoretical and statistical
support [53]. Moreover, a decision in the multiverse paradigm is
any decision an analyst may consider in an analysis. These deci-
sions (e.g., Cutof, Modelling, and Bayesian Model Family Function
in Figure 1) are wide-ranging and can cover data collection and
wrangling, statistical modeling, inference, and evaluation. For each
decision, there are decisions options, defned as the alternatives
that the specifc decision could take.

Because multiverse analysis considers all reasonable combina-
tions of decision options, there is a combinatorial explosion in the
number of universes as more decisions are involved. For example,
a multiverse of 5 decisions each with 4 options would result in
4
5
= 1024 universes. Prior work has estimated that multiverses in

practice contain between hundreds and hundreds of thousands of
individual analyses [37].

1The code for our prototype is publicly available at https://github.com/behavioral-
data/multiverse-tooling.

As multiverse analysis has gained recognition and adoption
[16, 18, 19, 30, 45, 46], associated workfows, tools, and visualiza-
tion techniques have been developed [20, 24, 25, 38, 48]. Recent
work on multiverse authoring has identifed debugging as an im-
portant, unaddressed challenge [48]. The present work extends this
prior work by contributing the frst user study and frst prototype
specifcally focused on the unique debugging challenges that the
multiverse paradigm presents.

2.3 Tools for Multiverse Analysis

Traditionally, analysts must consider hundreds if not thousands
of universes if they were to perform a multiverse analysis. This
can result in a large set of mostly similar universe scripts which,
with so many variations, is difcult to maintain [32]. On the other
hand, an analyst can write a complex series of control fow logic
in one large script [56] but this makes it hard to selectively run an
individual universe. Multiverse authoring tools make it easier to
specify a multiverse analysis and execute it. These tools simplify
specifying decisions by introducing special syntax to specify deci-
sions, decision options, and constraints between decision options in
one central fle. In these general multiverse authoring tools, namely,
Boba [38] and multiverse [48], a common authoring workfow
is observed (Figure 2). Analysts specify their multiverse in a cen-
tral multiverse specifcation containing diferent code snippets for
diferent decision options (Figure 2A). Afterwards, the multiverse
specifcation is compiled into universes (Figure 2B). A universe
contains an instantiation of decisions’ options and compilation also
produces a specifcation summary enumerating each universe’s de-
cision options (Figure 2C). After the compilation step, the universes
are executed which each produces an error message (Figure 2D)
and other outputs (Figure 2E).

While largely following the authoring workfow in Figure 2,
multiverse aims to support the iterative workfow of a computa-
tion notebook. It is a R package that works in RMarkdown note-
books. To specify decisions, execute the universes, and gather re-
sults, analysts call multiverse methods. The notebook acts as the
multiverse specifcation. The compilation is implicitly performed
under the hood when universes are executed.

Meanwhile, in Boba, the multiverse specifcation is one central
template fle. Boba places specifc domain-specifc language (DSL)
directives that indicate how diferent chunks of code ft together.
This has the beneft of being programming language agnostic, treat-
ing non-multiverse code as raw strings. Nevertheless, because of
these directives, the template fle is not executable and cannot
leverage any of the advanced debugging features in modern inter-
active development environments (IDEs). Boba provides additional
command-line commands to compile and run the multiverse. Ana-
lysts run boba compile to compile their multiverse specifcation.
To execute the multiverse after compilation, Boba provides the com-
mand boba run to execute a range of or all the universes. When
executed with Boba, each universe’s standard output messages and
standard error messages are saved to a corresponding output fle
and can be gathered in a CSV fle.

However, other than collecting error messages as entries in a ta-
ble, both tools do not provide any additional support for multiverse
debugging workfows. Our work extends the authoring framework

CHI ’23, April 23–28, 2023, Hamburg, Germany Ken Gu, Eunice Jun, and Tim Althof

--- (A)

df = read_csv("data.csv") %>%

 filter(speed >)

model = lm(log_y ~ x, data = df)

model = brm(y ~ x, data = df, family =

 ())

{{cutoff=10, 200}}

--- (Model) frequentist

--- (Model) bayesian

{{brm_family="binomial", "lognormal"}}

Universe 6

Multiverse Specification

df = read_csv("data.csv") %>%

 filter(speed >)

model = lm(log_y ~ x, data = df)

10

Universe 1

bayesianSpecification summary

...compile execute

Error message 6

Error message 1

Other Outputs

...

Universe cutoff brm_family Model

1.R 10 frequentist

2.R 200 frequentist

3.R 10 binomial bayesian

4.R 10 lognormal bayesian

5.R 200 binomial bayesian

6.R 200 lognormal bayesian

...

A

C

D

E

B

Figure 2: Multiverse Authoring Process An analyst starts out by writing a multiverse specifcation (A). Afterwards, the analyst
compiles the multiverse specifcation into individual universes (B), which are enumerated in a specifcation summary (C).
The specifcation summary indicates what the decisions are for a given universe. Next, when the universes are executed, each
universe generates an error message (D) and other outputs (E) such as a model ft summary, model predictions etc. While this
example shows Boba’s domain specifc language, other tools follow a similar process.

of existing tools to study and alleviate the challenges encountered
during multiverse debugging. In this paper, we focus on studying
debugging workfows with Boba, as it is widely researched in the
research community [13, 23, 41, 50, 54]. One advantage of Boba
is that it is programming language agnostic, allowing multiverse
analysis to reach a greater audience.

2.4 Debugging is a Challenge in Multiverse
Authoring

Based on prior work [20, 37, 38, 48], our experiences, and initial
correspondences with multiverse practitioners and multiverse tool
developers (see Appendix A), we hypothesize an initial debugging
workfow (Figure 3). The workfow model is a frst attempt to un-
derstand debugging in multiverse analysis and contrasts with the
multiverse authoring workfow that is currently supported through
existing tools (Figure 3A). After specifying and compiling a multi-
verse specifcation, the analyst executes the universes which pro-
duce error messages (Figure 3D1). Next, the analyst tries to diagnose
the cause of the bug, which leads them to a single buggy universe
to target (Figure 3D2). This step often involves examining multiple
universes that share an error message. Once the analyst is working
with an individual universe, they address the bug and make edits
along the way, the same as they would when debugging a single
script (Figure 3D3). After, they abstract and propagate the specifc
changes in the universe back to the higher-level multiverse specif-
cation (Figure 3D4). Finally, after the edits are propagated to form
a new multiverse specifcation, it is compiled (Figure 3D5). This
iterative debugging cycle typically repeats multiple times until all
bugs are addressed.

This workfow model suggests the following three challenges to
debugging a multiverse analysis.

Challenge 1 - Detecting bugs is slow. During the execution of
the multiverse (Figure 3D1), the order of execution of the universes
is arbitrary. Therefore, to discover a bug that occurs in a select
few universes, hundreds or thousands of universes may need to
be executed before the buggy universe is encountered. Even with
running universes in parallel, this process can be time-consuming
and drastically slows down the debugging cycle.

Challenge 2 - Sifting through error messages and multiverse
artifacts to diagnose a bug is difcult at scale. In the process of
diagnosing an error from running the multiverse (Figure 3D2), an
analyst potentially needs to navigate through many error messages,
many universes, and the specifcation summary and relate these
sources to understand the shared decision options of an error. It is
infeasible for an analyst to inspect hundreds of fles (or a single fle
that combines these) and looking at a signifcantly smaller subset
may not fully isolate the shared decision options of an error and
divert focus from the true source of a bug. We note that a multiverse
that does not lead to any error messages is not necessarily bug-
free. For example, a poorly specifed model formula may not be
statistically sound but may not raise any error messages. However,
many bugs exhibit themselves as error messages and that is the
primary way analysts debug in our experience.

Challenge 3 - Abstracting and propagating universe edits to
the multiverse increases cognitive load. In the procedure to
abstract and propagate universe edits to the multiverse specifca-
tion (Figure 3D4), the analyst needs to remember all their edits
and locate where to place them in the multiverse specifcation.

Understanding and Supporting Debugging Workflows in Multiverse Analysis CHI ’23, April 23–28, 2023, Hamburg, Germany

...

compile

compile execute

execute

diagnose

multiverse

diagnose and fix

propagate

edits

Authoring Workflow Debugging Workflow

compile

Universe n

Universe 2

Universe 1

Buggy

Universe

Edited

Universe

Multiverse

Spec
M

...

Error msg n

Error msg 2

Error msg 1
D1

D3

D4

D5

D2

Un

...

U2
U1

En

...

E2
E1

M’

A

Figure 3: Authoring vs Debugging Workfow. Existing tools focus on the authoring process in a multiverse workfow (A)
comprising of a multiverse specifcation, compiling the specifcation to universes, and executing the universes. However, there
is an entire debugging workfow pertinent to the multiverse paradigm that is not well understood, presents challenges, and lack
support from existing tools. We hypothesize the following debugging workfow. First, an analyst executes universes which can
generate error messages (D1). Here, detecting errors quickly is challenging because executing all universes is time consuming
and a universe containing error prone code may not be executed until hundreds or thousands of others have been executed
already. Next, the analyst diagnoses what decision or set of decisions caused the errors (D2) which guides them to focus on one
buggy universe. This step is challenging because an analyst needs to synthesize information from a myriad of sources (i.e., the
multiverse specifcation, universes, error messages, and the specifcation summary) which only gets worse as the multiverse
scales. Now, debugging at the universe level, the analyst diagnoses and fxes their bug in the typical single script debugging
paradigm and is free to use debugging tools they are most comfortable with (D3). Once the fxes are made at the universe level,
the analyst then propagates the edits made to the universe back to the multiverse specifcation (D4). This step contains the
challenge of remembering changes in the universe and where those changes propagate to in the overall multiverse specifcation.
Finally, the analyst compiles the new specifcation (D5) and the cycle repeats. The gray area highlights shared workfow steps.

In complex multiverse specifcations and universe edits that in-
volve many changes, propagating universe edits induces additional
cognitive demands, especially when the analyst must keep track
of the associated decision options underlying the code they are
propagating.

3 PROTOTYPE: MULTIVERSE DEBUGGER

To better understand multiverse debugging workfows and how to
support them, we set out to build a prototype tool, Multiverse De-
bugger, to use as a probe in our subsequent lab study. We identify
three design goals to support analysts in the multiverse debugging
workfow (Figure 3). The goals correspond to addressing the three
challenges identifed in Section 2.4.

(1) DG 1 - Reduce the time between executing universes and en-
countering error messages. After compiling a multiverse spec-
ifcation, a tool should enable analysts to quickly observe
error messages before committing to running the full multi-
verse. This is in the spirit of unit testing in which diferent
components of the multiverse are rapidly tested before run-
ning the entire system. Quickly identifying error messages
before executing an entire multiverse may reduce time spent
authoring (buggy) multiverse analyses.

(2) DG 2 - Give an overview of error messages and how they relate
to specifc decision options. Running thousands of universes

can lead to thousands of individual error messages. In ad-
dition, error messages may arise due to a combination of
decision options, which the analyst did not test when writ-
ing the multiverse specifcation. Therefore, diagnosing the
severity and frequency of an error message helps to identify
which parts of the code may need to be updated (including
adding or removing dependencies between decision options
in the multiverse specifcation). To identify common bugs
and distinguish among diferent kinds of bugs, summariz-
ing the frequency of error messages and connecting them
to specifc decisions and decision options are likely to help
analysts.

(3) DG 3 - Support the abstraction and propagation of single uni-
verse bug fxes to a multiverse specifcation. The context of
a multiverse analysis adds new complexity to fxing bugs.
An analyst may elect to debug error messages in a specifc
universe as opposed to the higher-level multiverse specifca-
tion. This enables the analyst to take advantage of already
familiar and idiosyncratic ways of debugging specifc uni-
verse error messages. In the analyst’s process of debugging
a single universe, they can leverage an entire ecosystem of
single script debugging tools that they may already be fa-
miliar with. Therefore, making the process of propagating

CHI ’23, April 23–28, 2023, Hamburg, Germany Ken Gu, Eunice Jun, and Tim Althof

changes to individual universes to the higher-level multi-
verse specifcation easier, empowers the preferred single
universe debugging workfow.

Based on these three design goals, we implement Multiverse De-
bugger with three core features: decision cover, error message
aggregation, and universe-to-multiverse diff. The features of
Multiverse Debugger are designed to be used after compiling a
written multiverse specifcation. This prototype extends the Boba
multiverse library [38] and each feature is exposed through the
Boba command line interface.

While we implemented Multiverse Debugger on top of Boba,
the challenges and design goals would largely exist for other multi-
verse authoring tools as well. Boba makes the decision to represent
universes and error messages as individual fles. While other tools
may make diferent design decisions such as consolidating all these
into a single fle or object, this would still result in similar challenges
of slow detection of bugs (Challenge 1) and difculty of diagnos-
ing error messages from a large number of universes (Challenge
2). These challenges are ubiquitous because of the combinatorial
explosion of universes which is inherent in multiverse analysis’
defnition to run individual analyses corresponding to all combi-
nations of decisions. Therefore, these challenges which motivate
DG 1 and DG 2 persist no matter the choice to represent universes
as individual fles or some other format. Challenge 3 and DG 3,
meanwhile, are more specifc to a universe level workfow which
is enabled by tools like Boba in which the universe is represented
as a single fle. However, the choice of whether a tool enables a
universe level workfow or multiverse level workfow (in which
individual universes are not easily editable) comes with its own
trade-ofs which we further describe in Section 6.3.

Both the error message aggregation and the universe-to-
multiverse diff interfaces are implemented as web applications
in Python. The frontend uses HTML, CSS and Bootstrap [43], and
the backend uses Flask [47]. The universe-to-multiverse diff
interface also uses the Monaco Editor library [39].

3.1 Accelerating Bug Discovery Through
Minimum Cover Approximation

A key problem in executing universes with existing tools is the
latency between executing universes and encountering error mes-
sages. Analysts may not encounter a universe that contains a spe-
cifc decision option until hundreds or thousands of universes have
already been run. decision cover can reduce the latency in detect-
ing a bug (DG 1) by helping the analyst quickly identify all error
messages corresponding to code in a specifc decision option while
running a much smaller subset of universes. In seven multiverses
we tested, decision cover reduced the number of universes to run
by over 98%. After the analyst runs decision cover (boba run
—-cover), decision cover calculates the reduced set of universes,
executes them, and surfaces the error message aggregation in-
terface (Section 3.2) to summarize the error messages encountered
in the executed universes. The analyst can interact with this inter-
face to promptly see the set of error messages caused by a bug in
any decision option.

decision cover calculates an approximation to the minimal set
of universes to run such that all decision options in the multiverse

are "covered". The problem of fnding the minimal set of universes
reduces to the classic set cover problem [31] which is known to be
NP-hard [1]. To encourage trying diferent universes during each
decision cover run, we employ a heuristic approximation based
on random sampling that is highly efective in practice. We describe
the decision cover algorithm in detail in Appendix B.

Making sure each decision option is encountered corresponds to
ensuring “condition coveragež in traditional software testing [12].
However, decision cover does not ensure “multiple-condition
coveragež [12] which would require running all combinations of
decision options (essentially the entire multiverse) and leads to
the combinatorial explosion of execution time. Nevertheless, error
messages raised by "multiple-condition coverage" but not "condi-
tion coverage" are rare and become more obvious after the errors
decision cover raises are addressed.

3.2 Diagnosing Bugs via Error Message
Aggregation

A core challenge in diagnosing a bug from error messages is that it is
difcult to sift through the myriad of information sources (i.e., error
messages, universe fles, and the specifcation summary) to diagnose
a bug to a set of decision options. Therefore, we design error
message aggregation to aggregate this information automatically
and give analysts an overview of error messages and how they relate
to specifc decision options (DG 2). error message aggregation
supports two interactions: identifying groups of error messages
and the scale of an error, and understanding the decisions that may
cause an error.

When an analyst runs the error message aggregation com-
mand (boba —-error), the program ingests error messages from
executed universes and categorizes errors based on string similarity
(to handle slight line number or other changes in the error trace-
back). String similarity is calculated using the string grouper
Python library [11] and is based on the cosine similarity of vectors
of TF-IDF values in which the terms are N-Grams. Afterwards, the
information is presented in an interactive interface that includes
the aforementioned interactions (Figure 4).

3.2.1 Identifying error groups and the scale of errors. The analyst
can quickly identify the number of universes afected by each error
in a summary panel on the left-hand side (see Figure 4A1-3). Each
error group has a preview of the error text (Figure 4A2) and a badge
indicating the number of universes afected (Figure 4A3). The panel
also displays a progress bar indicating the progress of universes run
so far and updates when the user refreshes the page (Figure 4A1).
The summary panel gives the user a sense of how many errors
occur relative to what universes have already been executed. In
addition, the summary view of error groups helps the analyst assess
a bug’s frequency across the multiverse and subsequently prioritize
errors.

3.2.2 Understanding the decisions that may cause an error. Once
an analyst has selected an error to investigate from the summary
panel, they can focus on the shared decision options that potentially
isolate an error group via the center panel (Figure 4B1-3).

The center panel shows a traceback of the error message as well
as the shared decisions options of all the universes that caused that

Understanding and Supporting Debugging Workflows in Multiverse Analysis CHI ’23, April 23–28, 2023, Hamburg, Germany

A1 B1

B2

B3

A2

A3

B2

Figure 4: Error Message Aggregation Interface. The left side panel (A) contains a progress bar (A1) and unique groups of error
messages in the universes ran so far. Each group contains a preview of the error message (A2), and the number of universes
afected in each error aggregation (A3). The left side panel selects the error message to look into in the main panel (B). The main
panel comprises of the full error message (B1), the decision options that are shared in the error aggregation (B2), and sample
universes that contain the error message (B3). Without such a tool, analysts would have to manually inspect error messages
(potentially hundreds or thousands of error messages) while cross-referencing universe entries in the specifcation summary.
Not only is this action tedious but it is prone to missteps leading to poorly understood bugs. error message aggregation
seeks to address this challenge by automatically surfacing the information of all unique error messages and shared decisions
in a grouped error.

error (Figure 4B2). Each decision that may cause the error is shown
as a button to the analyst in which they can then click to see the
shared decision options of universes that have this error message.
Decisions that are most likely irrelevant to the error are removed
to shift focus to the potential buggy decisions.

To determine whether a decision is irrelevant the following
heuristic is used. If the error involves all options of a decision,
then it is unlikely that anything in that decision is causing the error.
If the error involves not all options in a decision, then there is a
possibility that something specifc to that option could afect the
error. It must be noted, however, that the existing heuristic may
not work if each option has an error that is identical. However, this
scenario may be unlikely and it was never encountered throughout
our entire study.

With a better understanding of the severity and decision options
associated, the analyst can focus on a specifc universe that has
the selected error message to fx the specifc bug. With an under-
standing of shared decision options in an error, the analyst may
be able to better isolate where the error occurs and start with a
more focused understanding of how the error may have occurred.
Moreover, having a grasp on the isolated decision option that may
cause an error provides a more semantically meaningful error mes-
sage than a single script bug. With the additional information of

an error message, the analyst can look for common universes that
share the error at the bottom of the main panel (Figure 4B3) and
begin focusing on one universe. Overall, the emphasis on outlining
shared decisions across an error message can potentially help the
analyst focus on a specifc universe and the code most likely to
cause the error.

3.3 Propagating Universe Edits with
Universe-to-Multiverse-Specifcation Difs

After making changes to a universe during debugging, the analyst
may experience difculty remembering all their universe edits and
locating where to place edits in the multiverse specifcation. We
design universe-to-multiverse diff to support abstracting and
propagating edits in the universe to the multiverse specifcation
(DG 3).

universe-to-multiverse diff propagates these edits automati-
cally and presents the changes to the multiverse specifcation as
suggestions. After an analyst fnishes making edits to a universe,
they can run boba diff to load an interface that communicates
the suggested changes (Figure 5). The analyst can then refne these
changes further if necessary.

CHI ’23, April 23–28, 2023, Hamburg, Germany Ken Gu, Eunice Jun, and Tim Althof

C

Analyst’s Universe Edits

Suggested Multiverse Specification Edits

D3

B2

D1

D2

D4

B1

A1

A2

Figure 5: universe-to-multiverse diff Interface. An analyst makes changes to their universe to use the statsmodels formula
API and runs boba diff to abstract and propagate their fxes back to the multiverse specifcation. This loads the various visual
components in this fgure. The analyst can view their edit changes via marked up code panels that show the code diferences
between the old unedited universe (A1) and the new edited universe (A2). Red highlighted code indicates delete edits while green
highlighted code indicates insert edits. Yellow highlights show update edits and pink highlights show move edits. The analyst
can then navigate via the navigation buttons (C) to view the suggested edits to the new multiverse specifcation (B2), the contents
of which is generated from their universe edits. The interface shows these suggestions by highlighting the edits between the
unedited multiverse specifcation (B1) and the new suggested multiverse specifcation (B2). Highlights in the old universe
matches with those in the old multiverse specifcation (e.g., D1 and D3). Likewise, highlights in the new edited universe matches
with those in the suggested multiverse specifcation (e.g., D2 and D4). Analysts can make any additional edits to the suggestions
in another editor (not shown) before saving the new multiverse specifcation to disk. Without universe-to-multiverse diff,
analysts would need to remember all their edits in a universe and how those edits propagate to the multiverse specifcation.
universe-to-multiverse diff makes this process easier by automatically suggesting the necessary propagation of edits.

universe-to-multiverse diff’s interface has three modes. There
is a universe mode for viewing changes in the universe and a tem-

plate mode for viewing suggested changes in the multiverse speci-
fcation. The changes are shown as two-panel difs. Additionally,
there is an edit mode to make fnal edits (if necessary) to the sug-
gested changes. The analyst navigates between modes with buttons
in the top right (Figure 5C). The analyst may view the universe
mode to best understand the universe-level changes they made,
then proceed to the template mode to see how these changes are
propagated to the multiverse specifcation, before fnally entering
the edit mode to fnalize suggestions.

In the universe mode, the analyst starts with a better grasp of
all the edits they made in the universe through viewing a code
dif of their universe. The analyst can compare a panel containing
highlighted code of the unedited universe (Figure 5A1) with a panel
containing highlighted code of the edited universe (Figure 5A2).

Highlights to the code show where insertion (green), deletion (red),
move (pink), and update (yellow) edits are made (e.g., Figure 5D1-2).

In the template mode, the analyst can view how their changes
in the universe are suggested in the multiverse specifcation. The
analyst can compare a panel containing highlighted code of the
old multiverse specifcation (Figure 5B1) with a panel containing
highlighted code of the suggested new multiverse specifcation
(Figure 5B2). The highlights for the old multiverse specifcation
are propagated from the unedited universe (e.g., Figure 5D1 to D3).
Analogously, the code and highlights for the new multiverse speci-
fcation are propagated from the edited universe (e.g., Figure 5D2
to D4).

Finally, in the edit mode, the analyst can interact with a writable
editor that contains the contents of the suggested multiverse speci-
fcation. We implement a separate mode for editing to encourage
a workfow in which the analyst is aware of their changes to the

Understanding and Supporting Debugging Workflows in Multiverse Analysis CHI ’23, April 23–28, 2023, Hamburg, Germany

universe and how those changes afect the multiverse specifcation.
To support this further, we include a button for saving the new
multiverse specifcation to disk (based on contents in the editor
panel) and a button for saving and compiling only in the edit mode.

Beyond navigating these modes, the analyst can navigate be-
tween panels via the highlighted code edits. Highlighted code edits
that correspond to the same code between panels are linked. For
example, move edits in the old and new universe specifcations are
linked. When a highlighted edit is double-clicked, the linked edit
in another panel will appear at the center of editor.

To implement Multiverse Debugger, because we need to prop-
agate changes in the universe to specifc decision options in the
multiverse specifcation, we must identify decision options in the
edited universe. To achieve this, Multiverse Debugger compares
abstract syntax trees (ASTs) and lines of code of the edited and
buggy universe. To compare ASTs, we adapt the gumtree algorithm,
a popular source code diferencing algorithm based on matching
ASTs [21]2. To compare lines, we use Python’s difib [2] library’s
mdif function. Details of the universe-to-multiverse diff algo-
rithm are in Appendix C.

4 LAB STUDY: RESEARCH QUESTIONS AND
METHODS

Using
to more specifcally understand multiverse debugging workfows.
Our primary goal was not to evaluate Multiverse Debugger but
rather to create a potential improvement to debugging multiverse
analysis in a tangible tool such that analysts could more concretely
raise issues, benefts, and design guidelines that are tractable for
future tool builders. Additionally, we wanted to allow analysts to
explore alternative workfows and elicit responses regarding how
features in Multiverse Debugger could enable or afect such a
workfow.

Three research questions guide our study design and analysis.

• RQ1 - Challenges: What challenges do analysts need to
overcome when debugging multiverse analyses? Specifcally,
do analysts really face the challenges we hypothesized based
on prior work, our experiences, and initial correspondences
with mutliverse practitioners and tool developers? What
additional challenges do they face?
• RQ2 - Workfows: What workfows do analysts gravitate
towards?
• RQ3 - Tool: To what extent do features like those in Multi-

verse Debugger address debugging challenges? How does
Multiverse Debugger afect analysts’ workfows?

The frst two research questions are more open-ended and ex-
ploratory whereas the last research question assesses the benefts
of Multiverse Debugger’s design interventions and opportunities
for further improvement.

Participants. Given that the population of multiverse analysis
authors is relatively small, we focused on recruiting analysts who

our prototypeMultiverse Debugger, we conduct a lab study

2We release a Python re-implementation of the gumtree algorithm with adaptations
for universe-to-multiverse diff available at https://github.com/behavioral-data/
multiverse-tooling/tree/main/src/gumtree

were interested in learning about multiverse analysis and repre-
sented potential adopters of multiverse analysis. We contacted data
analysts through analysis-related mailing lists at our institution. In
the initial interest form, we asked analysts to self-rate their statis-
tical background on a 5-point scale (higher being more familiar).
In this scale 4 described analysts who have taken graduate-level
courses related to statistical analysis, and 5 described analysts hav-
ing multiple years of experience with real-word projects involving
statistical and data analysis. We also asked analysts to rate their
familiarity with R or Python on a 5-point scale with 1 “being equiv-
alent to have taken an introductory coursež and 5 being having “5+
years of industry experiencež. From the interest forms, we further
selected participants with strong backgrounds in statistical anal-
ysis (self-rated 4s and 5s) and comfort with Python or R. A total
of 13 analysts participated and their background is summarized in
Table 1.

Procedure. The study was conducted in a lab using a designated
MacBook Pro computer on a 27-inch monitor. We allowed partici-
pants to use the programming language (i.e., R or Python) of their
choice and installed what they needed. Analysts primarily used
R Studio or Visual Studio Code for their integrated development
environment. Before inviting analysts into the lab, we ensured they
were familiar with our setup. We wanted to create a debugging
environment that was as close to their own experiences.

For materials, we gathered two real-world multiverses from real-
world analyses [28, 36] and we created buggy R and Python versions.
To introduce realistic bugs, we searched Stack Overfow [6] with
relevant keywords and online statistics blogs with consolidated
lists of errors [14, 15] to fnd common bugs encountered during
typical statistical analyses. We make the buggy multiverses publicly
available and explain the multiverse preparation process in more
detail in Appendix D.

The study was structured into an initial tutorial phase, followed
by two separate debugging task phases that difer in whether the
analyst was introduced to Multiverse Debugger and was able to
use it. We followed this protocol to observe analyst workfows both
prior to introducing Multiverse Debugger and afterwards.

At the beginning of the study (tutorial phase), we guided an-
alysts through a tutorial that introduced the multiverse analysis
paradigm and how to use Boba. The tutorial explained how to spec-
ify decisions and decision options using Boba syntax. To ensure
analysts understood the concepts behind multiverse analysis and
felt comfortable using Boba, we asked analysts to update a Boba
multiverse specifcation to add another decision option. We also
walked analysts through Boba’s compile and execute commands.

Next, we asked analysts to debug a realistic multiverse analysis
with bugs (Phase 1). In this frst part of the study, analysts had 25 to
35 minutes to address as many bugs as they could with the existing
Boba tools. Analysts debugged the frst multiverse on their own
and then completed a survey about their experience.

Afterwards, in Phase 2, the frst author gave an overview of
Multiverse Debugger and how to invoke each command and use
the interfaces. Analysts were explicitly told they were free to debug
however they wanted. Subsequently, depending on their progress
in the frst portion (i.e., whether they solved the bugs in the frst
multiverse), analysts were asked to either continue debugging the

CHI ’23, April 23–28, 2023, Hamburg, Germany Ken Gu, Eunice Jun, and Tim Althof

Table 1: Participant information. Profciency was self-rated on a 5-point scale with 5 being the highest.

ID Gender Occupation/Background Programming Lang. Lang. Profciency Statistics Profciency

A01 Female Researcher in Data Science Python 4 4
A02 Male Masters Student in Data Science Python 5 5
A03 Female Masters Student in Industrial Engineering Python 4 4
A04 Female PhD Student in Information Science Python 5 5
A05 Male PhD Student in Public Policy R 3 5
A06 Female PhD Student in Quantitative Ecology R 3 4
A07 Female PhD Student in Psychology R 5 5
A08 Female Data Analyst in Medicine R 5 5
A09 Female Data Scientist R 3 4
A10 Female PhD Student in Applied Mathematics Python 4 4
A11 Male Data Scientist R 5 5
A12 Male PhD Student in Biostatistics Python 4 5
A13 Male Professor in Biostatistics R 5 5

frst multiverse or debug a second multiverse. More time was spent
in the frst portion such that analysts can become familiar with
Boba and the multiverse paradigm. This also ensured analysts had
time to experience challenges specifc to multiverse debugging.
Finally, analysts completed a survey about their experience using
Multiverse Debugger.

We encouraged analysts to talk about their process when they
could. If not, they were regularly prompted to speak about their pro-
cess and describe their thinking. After each debugging session, we
also asked open-ended questions with the objective to understand
the processes and challenges of multiverse debugging. We gave
analysts minimal help beyond pointing out the tools and resources
they have available (i.e., the IDE debugging tools, the Internet, and
Boba documentation). If analysts were stuck diagnosing and fxing
the bug at the single script level (Figure 3D3) for longer than 15
minutes, we guided analysts by pointing out what the bug is to
allow insights along all parts of the workfow.

The study lasted approximately 2 hours. Analysts received a $50
Amazon gift card as compensation for their time. This study was
determined exempt through the IRB at our institution. We include
all lab study materials in our supplemental material.
Qualitative Coding Process. With the exception of one partici-
pant (A10) who did not consent to be recorded, we recorded partic-
ipants’ audio and screens. In addition to writing notes of analysts’
behaviors while conducting the study, the frst author viewed the
recordings and transcribed all episodes of interest to the debugging
process. To understand common themes that emerged, we used it-
erative open coding. The themes we observed highlighted analysts’
challenges in debugging multiverse analysis, workfows that ana-
lysts gravitated towards, and fnally how Multiverse Debugger
addressed these challenges.

5 LAB STUDY: RESULTS

Our lab study identifes four challenges to debugging multiverse
analyses and two approaches analysts take to debug. We also ob-
serve how Multiverse Debugger afects analysts’ workfows and
enables them to overcome the debugging challenges. These fndings
inform our updated model of the multiverse debugging workfow,

as summarized in Figure 6. The key diferences between the up-
dated model and the initial hypothesized model (Figure 3) are the
expanded steps in diagnosing a multiverse (Figure 6D2-4) (Sec-
tion 5.2.1), the additional path to editing a multiverse specifcation
directly (Figure 6D7-8) (Section 5.2.2), and the additional choice of
selectively executing a semantically meaningful subset of universes
(Figure 6D1) (Section 5.3.1).

5.1 What challenges do analysts need to
overcome when debugging multiverse
analyses?

We found that analysts experienced difculty with two of the three
hypothesized challenges: detecting bugs quickly (Challenge 1 in
Section 2.4) and fnding the root causes of bugs (Challenge 2 in
Section 2.4). In order to fnd the cause of bugs, we found that ana-
lysts needed to group unique errors and identify shared decisions
of an error. Maintaining a mental model of the multiverse was also
challenging for analysts.

5.1.1 Minimize latency between executing a multiverse and detecting
errors. Running the entire multiverse took a non-trivial duration
of time, making it difcult for analysts to receive quick feedback
on what errors existed. To minimize this latency, some analysts
picked an arbitrary number of universes to run [A04, A07, A12]. For
instance, prior to using Multiverse Debugger, A04 was reluctant
to rerun the multiverse after fxing a bug. Instead, A04 spot-checked
three universes. Similarly, A01 reduced the size of the multiverse
by commenting out decision options that were irrelevant to the bug
she was addressing.

5.1.2 Group unique errors and find the number of universes afected.
In the existing workfow without Multiverse Debugger, analysts
have no grasp on what the unique errors are and the number of
universes that are afected. Thus, analysts do not know what a
bug fx would even solve and can be left feeling overwhelmed.
A05 captures this perfectly: “Seeing that there are 1500 errors but
not having any idea how many were unique makes the process feel
overwhelming.ž

Multiple analysts while debugging without Multiverse Debug-
ger, and prior to learning about the tool’s existence, asked if there

Understanding and Supporting Debugging Workflows in Multiverse Analysis CHI ’23, April 23–28, 2023, Hamburg, Germany

compile

diagnose

and fix

execute selectively

OR

execute all

group similar
errors

focus on universe
workflow

find shared
decisions
in errors

propagate

edits

focus on
single error
and universe

locate error in
specification

Updated Debugging Workflow

buggy

universe

edited

universe

M
error

snippet

Un

...

U2
U1

make edits

En

...

E2
E1

spec summary

...

...

group m

group 2

group 1

M

M’

Un

...

U2

U1

shared decisionsgroup m

affected universes

shared decisions

affected universes

shared decisionsgroup 2

affected universes

shared decisions

affected universes

shared decisionsgroup 1

affected universes

shared decisions

affected universes

D9

D1

D2

D3

D4

D5

D6

D7 D8

compileD10

Figure 6: Updated Model of Debugging Workfow. The updated workfow model shows a revised and extended version of the
multiverse debugging workfow, enabled through our lab study and Multiverse Debugger. Compared to the hypothesized
workfow model (Figure 3), the model derived from the lab study has multiple refnements . First, beyond executing all universes
(D1 in Figure 3), the execution step (D1) now captures analysts’ propensity to run a select few universes via decision cover
and interest in running their own subset based on specifc decision options. Next, our initial understanding of diagnosing the
multiverse (D2 in Figure 3) is expanded to include steps of grouping similar errors (D2), using this grouping along with the
specifcation summary and associated universe information to fnd shared decisions in error groups (D3), before prioritizing
an error and focusing on a single universe (D4). These steps also surfaced an additional challenge of analysts’ trouble in
understanding the composition of the multiverse. Lastly, to capture analysts’ tendency to make fxes directly in the multiverse
specifcation, there is now an additional path in which after observing error messages, an analyst locates the error in the
multiverse specifcation (D7) and then makes the bug patches there directly (D8). Analysts can also go back to the universe
workfow (D9) to leverage their comfort with single universe debugging tools.

was a way to see the errors grouped together or mentioned lack of
grouping as a challenge [A02, A03, A05, A08, A11, A12].

5.1.3 Identify shared decisions of an error. Once analysts found an
error common across multiple universes, they tried to isolate the
decision choices responsible for producing the error (Figure 6D3).
To do so without Multiverse Debugger, analysts cross-referenced
the error messages with the specifcation summary [A02, A05, A06,
A11, A12, A13]. Most participants gave up because the specifcation
summary was “hard to readž, especially when it contained hundreds
of entries with no semantically meaningful structure.

5.1.4 Understand the composition of the multiverse. Understanding
the composition of the multiverse means to "understand the compo-
nents and processes that defne and make up this multiverse" [25].
For analysts, the composition was not obvious from the information
available. To aid in debugging, analysts referenced the multiverse
specifcation fle, the specifcation summary, and the universes to
build up a mental map of the multiverse. For A01, this mental map
was essential in her debugging process: “Many of these diferent
paths have co-dependencies so I’m not quite sure yet which one of
these is truly the issue"ž. To understand common errors in universes,
analysts consulted error messages and the specifcation summary

CHI ’23, April 23–28, 2023, Hamburg, Germany Ken Gu, Eunice Jun, and Tim Althof

to fnd a common error among several universes. To locate the
potential source that caused the error and understand how a spe-
cifc universe was generated, analysts looked at the universes, the
multiverse specifcation, and the specifcation summary. Because
the information conveying the composition of the multiverse was
scattered, many analysts mentioned processing and navigating the
disjointed information as a challenge [A01, A02, A05, A06, A08,
A09, A11, A13]. From just these sources alone, analysts struggled
to construct a mental model of how decision options were related
and contributed to errors common across multiple universes [A01,
A02, A05]. A05 stated how it was “not naturally obvious that there
are duplicates stemming from the exact same piece of codež.

As a result, analysts mentioned desiring features that can be
broadly categorized into two groups: features that connect infor-
mation sources and features that can help visualize the multiverse.

For connecting information, analysts desired a feature that en-
abled them to locate the code in the multiverse specifcation which
ultimately resulted in an error [A03, A07, A08]. Similarly, others
wanted an explicit mapping between code in the universe fle and
code in the multiverse specifcation [A02, A03]. For desired vi-
sualization features, A11, for example, mentioned wanting a tree
structure (like in Figure 1) that summarizes the multiverse and
associated artifacts: “What if I had a tree diagram that I could select
which universes does this error happen in that lights up the tree, and
show me that they all have this condition.ž

5.2 What workfows do analysts gravitate
towards?

5.2.1 Analysts address bugs in order of error messages but seek new
ways to prioritize bugs. Without Multiverse Debugger, analysts
often inspected the frst error message and set out to fx it [A01,
A02, A03, A04, A05, A06, A08, A09, A10, A11, A12, A13]. A01 found
this approach comfortable and reasonable, saying “I want to kind of
fully tackle that one and then resolve it and then go on to the next one
as opposed to having a higher-level plan.ž However, others wanted
a more strategic way to prioritize bugs, which required a more
holistic picture of bugs across multiple universes [A03, A09, A12,
A11, A13]. A11 explained his debugging priority was to solve the
error afecting many universes:

“I am more interested in spending my time addressing
the bugs that occur in several universes versus the bugs
in the frst universe but I did not have a good sense for
how to determine that, so I just went to the frst errorž

To prioritize, analysts expressed interest in grouping errors to-
gether to see unique errors [A02, A03, A05, A08, A11, A12] (Fig-
ure 6D2). Once they have a sense of the unique errors, analysts
wanted to see what was similar and diferent among universes that
encountered the same error in order to isolate the shared buggy
code [A02, A05, A06, A11, A12, A13] (Figure 6D3). Some analysts
[A02, A10, A11] did so by comparing entries in the specifcation
summary that corresponded to universes that had a common error.
A02 went so far as to write a script that parsed the specifcation
summary with error “linesž (i.e., error messages):

“What I was trying to do was to read which (error) lines
contain the options and just parse those lines. I was
going to write a small script to just parse the lines.ž

This idea matches our error message aggregation feature that
they had not yet learned about.

5.2.2 Analysts adopt diferent strategies based on perceived bug
severity. When analysts perceived an error to have an easy fx, they
directly updated the multiverse specifcation fle without consulting
a specifc universe script at all [A02, A03, A04, A07, A10, A13]
(Figure 6D7-8). Analysts stayed in the multiverse specifcation fle
because they knew they had to update it eventually anyway. For
example, A03 wanted to reduce efort: “because the template is the
place where we generate the whole universe so I think as long as
the bug is fxed in the template, the universe will be free of bugsž.
Meanwhile, A07 expressed she preferred staying in the multiverse
specifcation because she observed a lot of shared code occurred
early in the multiverse specifcation.

“I could see that the branching points weren’t actually
that many if you scroll down through the template fle.
I saw that there were only really the model points that
were breaking routes. If I can get everything before those
points to be okay, and then everything subsequently can
be re-edited to the template.ž

When fnding errors, analysts also simplifed their diagnosing pro-
cess to just locating the line referenced in the traceback in the mul-
tiverse specifcation (Figure 6D7). However, because the multiverse
specifcation is not executable, not every bug could be understood
and solved there.

For more involved errors requiring analysts to run large code
snippets or inspect intermediate variable values, analysts defaulted
to fnding and debugging a specifc universe. Of the 13 analysts, 12
(everyone except A07) attempted to fx a bug in a specifc universe
before making similar fxes to the multiverse specifcation fle. Fo-
cusing on one universe at a time was more familiar to analysts who
could rely on their idiosyncratic debugging approaches, such as
using print statements [A02, A03, A04, A12], the interactive debug-
ger [A02, A10], or the interactive console (i.e., the R console and
the Python console) [A03, A05, A06, A08, A09, A11, A13]. Analysts
stayed in the same universe until they fxed a specifc bug [A01,
A02, A03, A06, A10, A11, A12, A13] or ensured the universe was
completely bug-free [A04, A05, A08, A09]. Once analysts were sat-
isfed with their changes, they updated the multiverse specifcation
fle, re-compiled and re-started the debugging loop.

In some situations, analysts misjudged the complexity of the
error and started with the multiverse specifcation but then went
to a universe workfow (Figure 6D9) after realizing it would have
been more efective [A01, A02, A05, A09, A11, A13]. In these cases,
analysts wanted to fully leverage their single universe debugging
workfows.

5.3 To what extent do features like those in
Multiverse Debugger address debugging
challenges? How does Multiverse
Debugger afect analysts’ workfows?

Analysts’ debugging patterns, which were present without Multi-

verse Debugger but further supported by Multiverse Debugger,
are described in our updated model of the debugging workfow
(Figure 6). Analysts leveraged error message aggregation to

Understanding and Supporting Debugging Workflows in Multiverse Analysis CHI ’23, April 23–28, 2023, Hamburg, Germany

group similar errors (Figure 6D2), fnd shared decisions in an error
(Figure 6D3), before then prioritizing an error and focusing on one
universe (Figure 6D4). Moreover, analysts used decision cover
to detect errors faster (Figure 6D1) which inspired them to desire
even greater control on what subsets of universes to run. However,
analysts seldom used universe-to-multiverse diff and elected
to propagate universe edits manually (Figure 6D6).

5.3.1 decision cover reduces latency in detecting bugs and speeds
up the development and debugging loop. Nearly all analysts found
decision cover feature helpful in expediting the incremental de-
velopment and debugging loop [A01, A02, A03, A04, A06, A07,
A08, A09, A10, A11, A12, A13]. Analysts found the decision cover
useful for fnding the most common errors quickly and expressed
interest in using it as the frst step in debugging multiverse anal-
yses in the future. For example, A07 expressed, “I really like the
ability use boba —-cover which helped pinpoint the most common
errors.ž Furthermore, for A04, the decision cover enabled her to
work directly in the multiverse specifcation: “These tools drasti-
cally reduced the amount of feedback loop time. Instead of editing the
individual universe fles, I mainly worked from the template fle.ž

Analysts expressed wanting greater control in specifying which
subset of universes to execute [A01, A04, A07]. Furthermore, other
analysts wished they could version their error messages to maintain
the results and errors from a long multiverse run [A01, A12].

5.3.2 error message aggregation helps analysts see unique errors
and isolate potential causes to specific decision options. Analysts
used error message aggregation to identify (i) what the unique
errors were and (ii) how many universes each error message af-
fected. Knowing the unique errors helped analysts identify familiar
error messages they could quickly address [A13] or prioritize error
messages that afected the greatest number of universes [A01, A05,
A07, A11]. For instance, A01’s strategy was the former: “After seeing
the breakdown of the diferent errors, I would prioritize them and in
my head, get a sense of if I fx this fundamental error, would it fx
other errors.ž

We designed error message aggregation anticipating the chal-
lenge of grouping similar errors and fnding shared decisions in a
common error. All 13 analysts liked error message aggregation
and said they would want to use it in their workfow. A05, who was
frustrated by his initial lack of awareness of which bugs overlapped
with each other, especially liked the error message aggregation:
“The error aggregate is defnitely the most useful because it allows
for seeing not only the groups of errors but how many universes are
afected.ž

A particularly illustrative example was A02. Prior to using Mul-

tiverse Debugger, A02 wrote a custom script to parse the error
messages and the specifcation summary for 15 minutes before run-
ning out of time. When he started to use Multiverse Debugger,
A02 found error message aggregation especially useful: “I really
like that you could get a high-level overview of all the choices that
are getting afected.ž Although analysts found error message ag-
gregation benefcial, they also recommended using visualizations
or changing the button layout to make the interface more intuitive
[A01, A03, A06, A12, A13].

5.3.3 universe-to-multiverse diff is not as necessary to abstract
and propagate patches. Analysts found universe-to-multiverse
diff the least useful. One analyst [A02] used the tool to mainly
test the feature. As expected, when analysts stayed in the multi-
verse specifcation, universe-to-multiverse diff was unneces-
sary. When analysts dove into specifc universes, analysts had mixed
feelings about universe-to-multiverse diff. On one hand, A07,
who in her own workfow uses git difs only in the CLI, thought
universe-to-multiverse diff would help people who more “vi-
sual.ž On the other hand, A12 thought universe-to-multiverse
diff could be helpful if he spent more time in a universe and needed
to remember more changes: “Most of the cases right now you give
me are simple but once the debug time is too long then you’ll easily
forget how you did the changes. That would be the most useful case.ž

6 DISCUSSION

In this work, we built a prototype tool and conducted a subsequent
lab study to understand and address multiverse debugging chal-
lenges. From our lab study, which leveraged our tool as a design
probe, we developed an updated model of multiverse debugging
workfows (Figure 6). In this section, we synthesize the results from
our lab study and share implications for improving multiverse anal-
ysis tools. We highlight four key design implications that would
better support multiverse debugging, review the limitations of our
work, and discuss future work.

6.1 Design Implications

6.1.1 Tools should reduce the latency in encountering multiverse
errors. The long time to detect an error message (step D1 in Figure 6)
was a challenge we hypothesized (Section 2.4) and later confrmed
in our lab study (Section 5.1.1). In the lab study, we even found
analysts trying their own ways to increase the speed of detecting
error messages (i.e., commenting out code). We also found the
decision cover feature to be especially useful because it enabled
this faster detection (Section 5.3.1). Future tools should consider
features that reduce the latency to detect erroneous multiverse code
whether that is through something like decision cover or letting
analysts run subsets of universes (something we discuss as another
design implication in Section 6.1.4)

6.1.2 Tools should summarize unique errors and highlight shared de-
cision options. The challenge of understanding what unique errors
exist (step D2 in Figure 6) and what are common decision options
(step D3 in Figure 6) was pervasive in the lab study (Section 5.1.2).
As a result, Multiverse Debugger ’s error message aggrega-
tion feature which directly addresses this was appreciated by all
analysts (Section 5.3.2). Multiverse debugging tools will beneft
from some form of error message aggregation.

6.1.3 Tools should help analysts understand the composition of the
multiverse. A key challenge that surfaced among analysts in the lab
study was understanding the composition of the multiverse; that
is, how the specifcation of decisions and options led to the genera-
tion of universes (Section 5.1.4). While we hypothesized the need
to understand the multiverse would contribute to the cognitive
load in propagating edits (Section 2.4), our lab study revealed this

CHI ’23, April 23–28, 2023, Hamburg, Germany Ken Gu, Eunice Jun, and Tim Althof

understanding is critical much earlier in the debugging cycle (Fig-
ure 6D2-4) and less important when propagating edits (Figure 6D6)
(Section 5.3.3). Specifcally, in diagnosing an error message, analysts
needed this comprehension to begin understanding what decision
options may have caused an error or how code may be shared
across certain universes as a result of the multiverse specifcation.
Moreover, multiple analysts expressed connecting the multiverse
structure (i.e., showing the structure relating universes, decisions,
and decision options) to the multiverse specifcation code as some-
thing that would aid in their debugging process (Section 5.1.4).

Informed by our lab study, future tools that aid in understanding
the composition of the multiverse should connect the multiverse
structure with the multiverse specifcation. One opportunity to
support understanding is through interactive visualizations that
connect a visualization of the multiverse structure with a visual
representation of the multiverse specifcation code. Such a visu-
alization would also support analysts’ iterative authoring process
[32, 33], enabling analysts to understand how the composition of
the multiverse changes over time as a result of code changes. Prior
work has also highlighted the need for real-time and interactive
visualization of the multiverse structure [48].

While researchers have started to develop multiverse-specifc
visualizations [25, 38], none have focused on interactions showing
the multiverse structure and the specifc code implementing them
in the multiverse specifcation. Future work should explore how to
best communicate the specifed multiverse structure in relation to
the specifcation code.

6.1.4 Support Analysts in Finding Relevant Universes and Decision
Options in the Multiverse. Another common theme observed in the
lab study was analysts’ need to have control in fnding subsets of
universes or subsets of decision options. For example, to better
isolate a potential cause for an error message, analysts expressed
wanting to know what subset of universes to run that correspond
to specifc combinations of analysis decisions (Section 5.3.1). This
is difcult because to fnd that subset, analysts currently need to
either consult the specifcation summary and navigate through
hundreds of entries or write custom functions to parse this informa-
tion. On the other hand, Multiverse Debugger ’s error message
aggregation feature, which analysts ubiquitously found helpful
(Section 5.3.2), is a realization of fnding a subset of meaningful
decision options from a subset of universes.

Therefore, core activities involved in multiverse debugging re-
quire fnding a subset of universes based on specifed decision
options or fnding a subset of decision options based on specifying
a subset of universes. Tools that enable this process would improve
analysts’ capability to and speed in diagnosing error messages. As
such, future tools should incorporate efective multiverse selection
based on universe or decision option constraints.

6.2 Limitations

Multiverse Debugger focuses on extending Boba to understand
multiverse debugging workfows. Therefore, its features are all
command-line based. For analysts who are less comfortable with
programming and more comfortable with workfows that involve
graphical user interfaces (e.g., Stata [7], SPSS [5]), Multiverse
Debugger may be difcult to use.

We note several limitations of our user study. First, the study
had a small sample size and consisted of people new to multiverse
analysis. As the number of people who perform multiverse analysis
is small, we determined an in-person lab study was the best way
to gather people, provide a tutorial on multiverse analysis and get
them up to speed with existing tools. Results, therefore, might be
diferent for multiverse experts. However, as multiverse analysis is a
relatively new analysis paradigm, there are very few experts to date
and an important focus lies on empowering a broad set of analysts
to employ multiverse analyses. Multiverse analysis is targeted to
those familiar with statistical practices who may want to adopt
this paradigm (which is our lab study population) and it is through
making the associated challenges easier (specifcation, analyzing
results, and debugging) that this paradigm will receive greater
adoption. Prior tools [24, 38, 48] improved workfows surrounding
specifcation and analyzing results but that adoption is still limited
in part due to debugging challenges that are not yet supported [48].
Understanding the debugging challenges of a potential adopter is
one step toward this larger goal.

Additionally, in order to facilitate a lab study of reasonable dura-
tion, we chose to conduct a same-day in-person study of 2 hours and
give analysts a largely pre-written multiverse. Future work should
explore debugging processes based on a multiverse the participant
is developing themselves as well as more complex multiverses. Fi-
nally, while the bugs introduced into the pre-written multiverses
refected common analysis errors, they may not be representative
of those encountered in more complex or domain-specifc analyses.
We hypothesize that the overall workfow will likely be similar but
analysts may want to focus even more on debugging individual
universes. In addition, universe-to-multiverse diff may be more
useful in these larger multiverses with more complex bug fxes.

6.3 Future Work

Towards enabling debugging for larger classes of bugs. Mul-

tiverse Debugger helps analysts author a multiverse that is free
from execution errors. However, there could be bugs that do not
lead to execution errors, including bugs around statistical analysis
misspecifcation (e.g., a poorly specifed model and model formula).
These bugs may not raise error messages but threaten the statistical
validity of the analysis. This type of bugs is not specifc to multi-
verse analysis but relevant to all analysis paradigms. Recent tools
have been developed to improve statistical validity in traditional
analysis [26, 27] but more work is needed to help analysts detect
such bugs. Another class of bugs is related to errors in multiverse
specifcation. For example, an analyst may have intended to per-
form data fltering only for a subset of models but did not specify
that constraint in the multiverse specifcation. While there would
not be any execution errors, the universes afected may not refect
the intended analysis. Future work could explore how to detect and
communicate these bugs to the analyst.

Exploring the trade-ofs between universe level and multi-

verse level workfows. While most analysts favored debugging
with a single universe, we discovered in our lab study some an-
alysts tended to debug with the multiverse specifcation directly
(Section 5.2.2). Analysts’ tendency to focus on one level could also

Understanding and Supporting Debugging Workflows in Multiverse Analysis CHI ’23, April 23–28, 2023, Hamburg, Germany

be infuenced by the tool they are working with. Boba [38] natu-
rally encourages a universe level workfow as the universes are
separated from the multiverse specifcation and are no diferent
than traditional analysis scripts. This lets analysts use their fa-
vorite tools and familiar workfows. However, the separation has
the drawback that the multiverse specifcation cannot be directly
executed. multiverse [48], in contrast, encourages a multiverse
level workfow and lets analysts run universes via library functions
in the same fle in which the multiverse is specifed. However, plac-
ing everything in one fle puts multiverse specifcation logic and
analysis code all in a single fle, which may even more difcult to
debug. Future work should explore these trade-ofs between exe-
cutable higher-level multiverse specifcations and the complexity
of navigation and debugging.

7 CONCLUSION

This paper focuses on debugging as a key, under-scrutinized barrier
to broader multiverse analysis adoption. To understand analysts’
challenges and debugging workfows, we build a prototype de-
bugging tool, Multiverse Debugger, and conduct a qualitative
lab study using Multiverse Debugger as a probe. This work con-
tributes the frst user study to better understand, model, and support
the unique challenges that multiverse analysis poses for debugging.
In addition, we provide an open-source tool, Multiverse Debug-
ger, that alleviates some of the observed challenges. We synthesize
fndings to develop a model of multiverse debugging workfows and
associated challenges (Figure 6) and highlight design implications
for future tools to support multiverse analysis debugging.

ACKNOWLEDGMENTS

We are grateful to our anonymous reviewers for their thoughtful
comments. We would also like to thank the members of the UW
Behavioral Data Science group and the UW PLSE group for their
feedback on this work. This research was supported in part by
NSF IIS-1901386, NSF CAREER IIS-2142794, NSF CNS-2025022, NIH
R01MH125179, Bill & Melinda Gates Foundation (INV-004841), the
Ofce of Naval Research (#N00014-21-1-2154), a Microsoft AI for
Accessibility grant and a Garvey Institute Innovation grant.

REFERENCES
[1] 2006. Approximation Algorithms. In Combinatorial Optimization: Theory and

Algorithms. Springer, Berlin, Heidelberg, 377ś413. https://doi.org/10.1007/3-540-
29297-7_16

[2] 2022. difib Ð Helpers for computing deltas Ð Python 3.10.7 documentation.
https://docs.python.org/3/library/difib.html

[3] 2022. Introduction Ð statsmodels. https://www.statsmodels.org/
[4] 2022. pandas - Python Data Analysis Library. https://pandas.pydata.org/
[5] 2022. SPSS Software. https://www.ibm.com/analytics/spss-statistics-software
[6] 2022. Stack Overfow - Where Developers Learn, Share, and Build Careers.

https://stackoverfow.com/
[7] 2022. Statistical software for data science | Stata. https://www.stata.com/
[8] Abdulaziz Alaboudi and Thomas D. LaToza. 2021. An Exploratory Study of

Debugging Episodes. http://arxiv.org/abs/2105.02162 arXiv:2105.02162 [cs].
[9] Monya Baker. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533, 7604

(May 2016), 452ś454. https://doi.org/10.1038/533452a Number: 7604 Publisher:
Nature Publishing Group.

[10] Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. 2018. On the
dichotomy of debugging behavior among programmers. In Proceedings of the
40th International Conference on Software Engineering. ACM, Gothenburg Sweden,
572ś583. https://doi.org/10.1145/3180155.3180175

[11] Chris van den Berg. 2020. String Grouper. https://github.com/Bergvca/string_
grouper

[12] Robert V. Binder. 1999. Testing Object-Oriented Systems: Models, Patterns, and
Tools. Addison-Wesley Longman Publishing Co., Inc., USA.

[13] Paul Alexander Bloom. 2022. Into the Multiverse: Methods for Studying
Developmental Neuroscience. Ph.D. Columbia University, United States
ś New York. https://www.proquest.com/docview/2656195811/abstract/
673E811D3C8B4B71PQ/1 ISBN: 9798426817869.

[14] Zack Bobbitt. 2022. Python Guides. https://www.statology.org/python-guides/
[15] Zack Bobbitt. 2022. R Guides. https://www.statology.org/r-guides/
[16] Richard Border, Emma C. Johnson, Luke M. Evans, Andrew Smolen, Noah Berley,

Patrick F. Sullivan, and Matthew C. Keller. 2019. No Support for Historical Can-
didate Gene or Candidate Gene-by-Interaction Hypotheses for Major Depression
Across Multiple Large Samples. American Journal of Psychiatry 176, 5 (May 2019),
376ś387. https://doi.org/10.1176/appi.ajp.2018.18070881

[17] Nate Breznau, Eike Mark Rinke, Alexander Wuttke, Hung H. V. Nguyen, Muna
Adem, Jule Adriaans, Amalia Alvarez-Benjumea, Henrik K. Andersen, Daniel
Auer, Flavio Azevedo, Oke Bahnsen, Dave Balzer, Gerrit Bauer, Paul C. Bauer,
Markus Baumann, Sharon Baute, Verena Benoit, Julian Bernauer, Carl Bern-
ing, Anna Berthold, Felix S. Bethke, Thomas Biegert, Katharina Blinzler, Jo-
hannes N. Blumenberg, Licia Bobzien, Andrea Bohman, Thijs Bol, Amie Bostic,
Zuzanna Brzozowska, Katharina Burgdorf, Kaspar Burger, Kathrin B. Busch,
Juan Carlos-Castillo, Nathan Chan, Pablo Christmann, Roxanne Connelly, Chris-
tian S. Czymara, Elena Damian, Alejandro Ecker, Achim Edelmann, Maureen A.
Eger, Simon Ellerbrock, Anna Forke, Andrea Forster, Chris Gaasendam, Kon-
stantin Gavras, Vernon Gayle, Theresa Gessler, Timo Gnambs, Amélie Gode-
froidt, Max Grömping, Martin Groß, Stefan Gruber, Tobias Gummer, Andreas
Hadjar, Jan Paul Heisig, Sebastian Hellmeier, Stefanie Heyne, Magdalena Hirsch,
Mikael Hjerm, Oshrat Hochman, Andreas Hövermann, Sophia Hunger, Christian
Hunkler, Nora Huth, Zsófa S. Ignácz, Laura Jacobs, Jannes Jacobsen, Bastian
Jaeger, Sebastian Jungkunz, Nils Jungmann, Mathias Kauf, Manuel Kleinert, Ju-
lia Klinger, Jan-Philipp Kolb, Marta Kołczyńska, John Kuk, Katharina Kunißen,
Dafna Kurti Sinatra, Alexander Langenkamp, Philipp M. Lersch, Lea-Maria Lö-
bel, Philipp Lutscher, Matthias Mader, Joan E. Madia, Natalia Malancu, Luis
Maldonado, Helge Marahrens, Nicole Martin, Paul Martinez, Jochen Mayerl,
Oscar J. Mayorga, Patricia McManus, Kyle McWagner, Cecil Meeusen, Daniel
Meierrieks, Jonathan Mellon, Friedolin Merhout, Samuel Merk, Daniel Meyer,
Leticia Micheli, Jonathan Mijs, Cristóbal Moya, Marcel Neunhoefer, Daniel Nüst,
Olav Nygård, Fabian Ochsenfeld, Gunnar Otte, Anna O. Pechenkina, Christo-
pher Prosser, Louis Raes, Kevin Ralston, Miguel R. Ramos, Arne Roets, Jonathan
Rogers, Guido Ropers, Robin Samuel, Gregor Sand, Ariela Schachter, Merlin Scha-
efer, David Schieferdecker, Elmar Schlueter, Regine Schmidt, Katja M. Schmidt,
Alexander Schmidt-Catran, Claudia Schmiedeberg, Jürgen Schneider, Martijn
Schoonvelde, Julia Schulte-Cloos, Sandy Schumann, Reinhard Schunck, Jürgen
Schupp, Julian Seuring, Henning Silber, Willem Sleegers, Nico Sonntag, Alexan-
der Staudt, Nadia Steiber, Nils Steiner, Sebastian Sternberg, Dieter Stiers, Dra-
gana Stojmenovska, Nora Storz, Erich Striessnig, Anne-Kathrin Stroppe, Janna
Teltemann, Andrey Tibajev, Brian Tung, Giacomo Vagni, Jasper Van Assche,
Meta van der Linden, Jolanda van der Noll, Arno Van Hootegem, Stefan Vogten-
huber, Bogdan Voicu, Fieke Wagemans, Nadja Wehl, Hannah Werner, Bren-
ton M. Wiernik, Fabian Winter, Christof Wolf, Yuki Yamada, Nan Zhang, Conrad
Ziller, Stefan Zins, and Tomasz Żółtak. 2022. Observing many researchers using
the same data and hypothesis reveals a hidden universe of uncertainty. Pro-
ceedings of the National Academy of Sciences 119, 44 (Nov. 2022), e2203150119.
https://doi.org/10.1073/pnas.2203150119 Publisher: Proceedings of the National
Academy of Sciences.

[18] Joseph Cesario, David J. Johnson, and William Terrill. 2019. Is There Evidence
of Racial Disparity in Police Use of Deadly Force? Analyses of Ofcer-Involved
Fatal Shootings in 2015ś2016. Social Psychological and Personality Science 10, 5
(July 2019), 586ś595. https://doi.org/10.1177/1948550618775108 Publisher: SAGE
Publications Inc.

[19] Egon Dejonckheere, Merijn Mestdagh, Marlies Houben, Yasemin Erbas, Madeline
Pe, Peter Koval, Annette Brose, Brock Bastian, and Peter Kuppens. 2018. The
bipolarity of afect and depressive symptoms. Journal of Personality and Social
Psychology 114, 2 (Feb. 2018), 323ś341. https://doi.org/10.1037/pspp0000186

[20] Pierre Dragicevic, Yvonne Jansen, Abhraneel Sarma, Matthew Kay, and Fanny
Chevalier. 2019. Increasing the Transparency of Research Papers with Explorable
Multiverse Analyses. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. ACM, Glasgow Scotland Uk, 1ś15. https://doi.org/10.
1145/3290605.3300295

[21] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and Accurate Source Code Diferencing. In
Proceedings of the International Conference on Automated Software Engineering.
Västeras, Sweden, 313ś324. https://doi.org/10.1145/2642937.2642982

[22] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and Accurate Source Code Diferencing. In
Proceedings of the International Conference on Automated Software Engineering.
Västeras, Sweden, 313ś324. https://doi.org/10.1145/2642937.2642982

CHI ’23, April 23–28, 2023, Hamburg, Germany Ken Gu, Eunice Jun, and Tim Althof

[23] Kiran Gadhave, Jochen Görtler, Zach Tyler Cutler, Carolina Nobre, Oliver Rieger. 2022. Open and reproducible neuroimaging: from study inception to
Deussen, Miriah Meyer, Jef Phillips, and Alexander Lex. 2020. Predicting Intent publication. https://doi.org/10.31219/osf.io/pu5vb
Behind Selections in Scatterplot Visualizations. https://doi.org/10.31219/osf.io/ [42] OPEN SCIENCE COLLABORATION. 2015. Estimating the reproducibility of
mq2rk psychological science. Science 349, 6251 (Aug. 2015), aac4716. https://doi.org/10.

[24] Joachim Gassen. 2022. Researcher Degrees of Freedom Analysis. https://joachim- 1126/science.aac4716 Publisher: American Association for the Advancement of
gassen.github.io/rdfanalysis/index.html Science.

[25] Brian D. Hall, Yang Liu, Yvonne Jansen, Pierre Dragicevic, Fanny Chevalier, and [43] Mark Otto and Jacob Thornton. 2022. Bootstrap. https://getbootstrap.com/
Matthew Kay. 2022. A Survey of Tasks and Visualizations in Multiverse Analysis [44] Chirag J. Patel, Belinda Burford, and John P. A. Ioannidis. 2015. Assessment of
Reports. Computer Graphics Forum 41, 1 (2022), 402ś426. https://doi.org/10.1111/ vibration of efects due to model specifcation can demonstrate the instability of
cgf.14443 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14443. observational associations. Journal of Clinical Epidemiology 68, 9 (Sept. 2015),

[26] Eunice Jun, Maureen Daum, Jared Roesch, Sarah E. Chasins, Emery D. Berger, 1046ś1058. https://doi.org/10.1016/j.jclinepi.2015.05.029
Rene Just, and Katharina Reinecke. 2019. Tea: A High-level Language and Runtime [45] Gregory J Poarch, Jan Vanhove, and Raphael Berthele. 2019. The efect of bidialec-
System for Automating Statistical Analysis. Proceedings of the 32nd Annual talism on executive function. International Journal of Bilingualism 23, 2 (April
ACM Symposium on User Interface Software and Technology (Oct. 2019), 591ś603. 2019), 612ś628. https://doi.org/10.1177/1367006918763132 Publisher: SAGE
https://doi.org/10.1145/3332165.3347940 arXiv: 1904.05387. Publications Ltd.

[27] Eunice Jun, Audrey Seo, Jefrey Heer, and René Just. 2022. Tisane: Authoring [46] James R. Rae, Selin Gülgöz, Lily Durwood, Madeleine DeMeules, Riley Lowe,
Statistical Models via Formal Reasoning from Conceptual and Data Relationships. Gabrielle Lindquist, and Kristina R. Olson. 2019. Predicting Early-Childhood
arXiv:2201.02705 [cs, stat] (Jan. 2022). https://doi.org/10.1145/3491102.3501888 Gender Transitions. Psychological Science 30, 5 (May 2019), 669ś681. https:
arXiv: 2201.02705. //doi.org/10.1177/0956797619830649 Publisher: SAGE Publications Inc.

[28] Kiju Jung, Sharon Shavitt, Madhu Viswanathan, and Joseph M. Hilbe. 2014. Fe- [47] Armin Ronacher. 2022. Welcome to Flask Ð Flask Documentation (2.2.x). https:
male hurricanes are deadlier than male hurricanes. Proceedings of the National //fask.palletsprojects.com/en/2.2.x/
Academy of Sciences 111, 24 (June 2014), 8782ś8787. https://doi.org/10.1073/pnas. [48] Abhraneel Sarma, Alexander Kale, Michael Jongho Moon, Nathan Taback, Fanny
1402786111 Chevalier, Jessica Hullman, and Matthew Kay. 2021. multiverse: Multiplexing

[29] Alex Kale, Matthew Kay, and Jessica Hullman. 2019. Decision-Making Under Alternative Data Analyses in R Notebooks. Technical Report. OSF Preprints.
Uncertainty in Research Synthesis: Designing for the Garden of Forking Paths. In https://doi.org/10.31219/osf.io/yfbwm type: article.
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems [49] Tal Schuster, Ashwin Kalyan, Alex Polozov, and Adam Kalai. 2021. Programming
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1ś14. Puzzles. Proceedings of the Neural Information Processing Systems Track on Datasets
https://doi.org/10.1145/3290605.3300432 and Benchmarks 1 (Dec. 2021). https://datasets-benchmarks-proceedings.neurips.

[30] Elise K. Kalokerinos, Yasemin Erbas, Eva Ceulemans, and Peter Kuppens. 2019. cc/paper/2021/hash/3988c7f88ebcb58c6ce932b957b6f332-Abstract-round1.html
Diferentiate to Regulate: Low Negative Emotion Diferentiation Is Associ- [50] Martin Schweinsberg, Michael Feldman, Nicola Staub, Olmo R. van den Akker,
ated With Inefective Use but Not Selection of Emotion-Regulation Strate- Robbie C.M. van Aert, Marcel A.L.M. van Assen, Yang Liu, Tim Althof, Jefrey
gies. Psychological Science 30, 6 (June 2019), 863ś879. https://doi.org/10.1177/ Heer, Alex Kale, Zainab Mohamed, Hashem Amireh, Vaishali Venkatesh Prasad,
0956797619838763 Publisher: SAGE Publications Inc. Abraham Bernstein, Emily Robinson, Kaisa Snellman, S. Amy Sommer, Sarah M.G.

[31] Richard M. Karp. 1972. Reducibility among Combinatorial Problems. In Com- Otner, David Robinson, Nikhil Madan, Raphael Silberzahn, Pavel Goldstein, War-
plexity of Computer Computations: Proceedings of a symposium on the Com- ren Tierney, Toshio Murase, Benjamin Mandl, Domenico Viganola, Carolin Strobl,
plexity of Computer Computations, held March 20–22, 1972, at the IBM Thomas Catherine B.C. Schaumans, Stijn Kelchtermans, Chan Naseeb, S. Mason Garri-
J. Watson Research Center, Yorktown Heights, New York, and sponsored by the son, Tal Yarkoni, C.S. Richard Chan, Prestone Adie, Paulius Alaburda, Casper
Ofce of Naval Research, Mathematics Program, IBM World Trade Corporation, Albers, Sara Alspaugh, Jef Alstott, Andrew A. Nelson, Eduardo Ariño de la
and the IBM Research Mathematical Sciences Department, Raymond E. Miller, Rubia, Adbi Arzi, Štěpán Bahník, Jason Baik, Laura Winther Balling, Sachin
James W. Thatcher, and Jean D. Bohlinger (Eds.). Springer US, Boston, MA, 85ś Banker, David AA Baranger, Dale J. Barr, Brenda Barros-Rivera, Matt Bauer, Enuh
103. https://doi.org/10.1007/978-1-4684-2001-2_9 Blaise, Lisa Boelen, Katerina Bohle Carbonell, Robert A. Briers, Oliver Burkhard,

[32] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting Miguel-Angel Canela, Laura Castrillo, Timothy Catlett, Olivia Chen, Michael
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI Clark, Brent Cohn, Alex Coppock, Natàlia Cugueró-Escofet, Paul G. Curran,
Conference on Human Factors in Computing Systems. ACM, Denver Colorado USA, Wilson Cyrus-Lai, David Dai, Giulio Valentino Dalla Riva, Henrik Danielsson,
1265ś1276. https://doi.org/10.1145/3025453.3025626 Rosaria de F.S.M. Russo, Niko de Silva, Curdin Derungs, Frank Dondelinger,

[33] Mary Beth Kery and Brad A. Myers. 2018. Interactions for Untangling Messy Carolina Duarte de Souza, B. Tyson Dube, Marina Dubova, Ben Mark Dunn,
History in a Computational Notebook. In 2018 IEEE Symposium on Visual Lan- Peter Adriaan Edelsbrunner, Sara Finley, Nick Fox, Timo Gnambs, Yuanyuan
guages and Human-Centric Computing (VL/HCC). 147ś155. https://doi.org/10. Gong, Erin Grand, Brandon Greenawalt, Dan Han, Paul H.P. Hanel, Antony B.
1109/VLHCC.2018.8506576 ISSN: 1943-6106. Hong, David Hood, Justin Hsueh, Lilian Huang, Kent N. Hui, Keith A. Hult-

[34] Ruben Kleiman, Mike Brayshaw, Marc Eisenstadt, and Marc Eisenstadt. 1993. man, Azka Javaid, Lily Ji Jiang, Jonathan Jong, Jash Kamdar, David Kane, Gregor
Tales of Debugging from The Front Lines. Kappler, Erikson Kaszubowski, Christopher M. Kavanagh, Madian Khabsa, Ben-

[35] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An nett Kleinberg, Jens Kouros, Heather Krause, Angelos-Miltiadis Krypotos, Dejan
Exploratory Study of How Developers Seek, Relate, and Collect Relevant In- Lavbič, Rui Ling Lee, Timothy Lefel, Wei Yang Lim, Silvia Liverani, Bianca
formation during Software Maintenance Tasks. IEEE Transactions on Software Loh, Dorte Lønsmann, Jia Wei Low, Alton Lu, Kyle MacDonald, Christopher R.
Engineering 32, 12 (Dec. 2006), 971ś987. https://doi.org/10.1109/TSE.2006.116 Madan, Lasse Hjorth Madsen, Christina Maimone, Alexandra Mangold, Adri-

[36] Qisheng Li, Meredith Ringel Morris, Adam Fourney, Kevin Larson, and Katharina enne Marshall, Helena Ester Matskewich, Kimia Mavon, Katherine L. McLain,
Reinecke. 2019. The Impact of Web Browser Reader Views on Reading Speed and Amelia A. McNamara, Mhairi McNeill, Ulf Mertens, David Miller, Ben Moore, An-
User Experience. In Proceedings of the 2019 CHI Conference on Human Factors in drew Moore, Eric Nantz, Ziauddin Nasrullah, Valentina Nejkovic, Colleen S Nell,
Computing Systems. ACM, Glasgow Scotland Uk, 1ś12. https://doi.org/10.1145/ Andrew Arthur Nelson, Gustav Nilsonne, Rory Nolan, Christopher E. O’Brien,
3290605.3300754 Patrick O’Neill, Kieran O’Shea, Toto Olita, Jahna Otterbacher, Diana Palsetia,

[37] Yang Liu, Tim Althof, and Jefrey Heer. 2020. Paths Explored, Paths Omitted, Bianca Pereira, Ivan Pozdniakov, John Protzko, Jean-Nicolas Reyt, Travis Riddle,
Paths Obscured: Decision Points & Selective Reporting in End-to-End Data Amal (Akmal) Ridhwan Omar Ali, Ivan Ropovik, Joshua M. Rosenberg, Stephane
Analysis. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Rothen, Michael Schulte-Mecklenbeck, Nirek Sharma, Gordon Shotwell, Martin
Systems. ACM, Honolulu HI USA, 1ś14. https://doi.org/10.1145/3313831.3376533 Skarzynski, William Stedden, Victoria Stodden, Martin A. Stofel, Scott Stoltzman,

[38] Yang Liu, Alex Kale, Tim Althof, and Jefrey Heer. 2021. Boba: Authoring Subashini Subbaiah, Rachael Tatman, Paul H. Thibodeau, Sabina Tomkins, Ana
and Visualizing Multiverse Analyses. IEEE Transactions on Visualization and Valdivia, Gerrieke B. Druijf-van de Woestijne, Laura Viana, Florence Villesèche,
Computer Graphics 27, 2 (Feb. 2021), 1753ś1763. https://doi.org/10.1109/TVCG. W. Duncan Wadsworth, Florian Wanders, Krista Watts, Jason D Wells, Christo-
2020.3028985 arXiv: 2007.05551. pher E. Whelpley, Andy Won, Lawrence Wu, Arthur Yip, Casey Youngfesh,

[39] Microsoft. 2022. Monaco Editor. https://microsoft.github.io/monaco-editor/ Ju-Chi Yu, Arash Zandian, Leilei Zhang, Chava Zibman, and Eric Luis Uhlmann.
[40] Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I Know What You 2021. Same data, diferent conclusions: Radical dispersion in empirical results

Did Last Summer - An Investigation of How Developers Spend Their Time. when independent analysts operationalize and test the same hypothesis. Or-
In 2015 IEEE 23rd International Conference on Program Comprehension. 25ś35. ganizational Behavior and Human Decision Processes 165 (July 2021), 228ś249.
https://doi.org/10.1109/ICPC.2015.12 ISSN: 1092-8138. https://doi.org/10.1016/j.obhdp.2021.02.003

[41] Guiomar Niso, Rotem Botvinik-Nezer, Stefan Appelhof, Alejandro De La Vega, [51] R. Silberzahn, E. L. Uhlmann, D. P. Martin, P. Anselmi, F. Aust, E. Awtrey, Š.
Oscar Esteban, Joset A. Etzel, Karolina Finc, Melanie Ganz, Remi Gau, Yaroslav O. Bahník, F. Bai, C. Bannard, E. Bonnier, R. Carlsson, F. Cheung, G. Christensen,
Halchenko, Peer Herholz, Agah Karakuzu, David Keator, Camille Maumet, R. Clay, M. A. Craig, A. Dalla Rosa, L. Dam, M. H. Evans, I. Flores Cervantes, N.
Christopher J. Markiewicz, Dr Cyril Pernet, Franco Pestilli, Nazek Queder, Tina Fong, M. Gamez-Djokic, A. Glenz, S. Gordon-McKeon, T. J. Heaton, K. Hederos,
Schmitt, Weronika Sójka, Adina Svenja Wagner, Kirstie Whitaker, and Jochem

Understanding and Supporting Debugging Workflows in Multiverse Analysis CHI ’23, April 23–28, 2023, Hamburg, Germany

M. Heene, A. J. Hofelich Mohr, F. Högden, K. Hui, M. Johannesson, J. Kalodimos,
E. Kaszubowski, D. M. Kennedy, R. Lei, T. A. Lindsay, S. Liverani, C. R. Madan,
D. Molden, E. Molleman, R. D. Morey, L. B. Mulder, B. R. Nijstad, N. G. Pope, B.
Pope, J. M. Prenoveau, F. Rink, E. Robusto, H. Roderique, A. Sandberg, E. Schlüter,
F. D. Schönbrodt, M. F. Sherman, S. A. Sommer, K. Sotak, S. Spain, C. Spörlein, T.
Staford, L. Stefanutti, S. Tauber, J. Ullrich, M. Vianello, E.-J. Wagenmakers, M.
Witkowiak, S. Yoon, and B. A. Nosek. 2018. Many Analysts, One Data Set: Making
Transparent How Variations in Analytic Choices Afect Results. Advances in
Methods and Practices in Psychological Science 1, 3 (Sept. 2018), 337ś356. https:
//doi.org/10.1177/2515245917747646 Publisher: SAGE Publications Inc.

[52] Uri Simonsohn, Joseph P. Simmons, and Leif D. Nelson. 2019. Specifcation
Curve: Descriptive and Inferential Statistics on All Reasonable Specifcations.
https://doi.org/10.2139/ssrn.2694998

[53] Uri Simonsohn, Joseph P. Simmons, and Leif D. Nelson. 2020. Specifcation
curve analysis. Nature Human Behaviour 4, 11 (Nov. 2020), 1208ś1214. https:
//doi.org/10.1038/s41562-020-0912-z

[54] Gary Smith. 2022. Full moons and forking paths. Signifcance
19, 4 (2022), 32ś35. https://doi.org/10.1111/1740-9713.01672 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1740-9713.01672.

[55] Sara Steegen, Francis Tuerlinckx, Andrew Gelman, and Wolf Vanpaemel. 2016. In-
creasing Transparency Through a Multiverse Analysis. Perspectives on Psycholog-
ical Science 11, 5 (Sept. 2016), 702ś712. https://doi.org/10.1177/1745691616658637
Publisher: SAGE Publications Inc.

[56] Wolf Vanpaemel, Sara Steegen, Francis Tuerlinckx, and Andrew Gelman. 2016.
multiverse analysis. (May 2016). https://osf.io/zj68b/ Publisher: OSF.

[57] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shan-
ping Li. 2018. Measuring Program Comprehension: A Large-Scale Field Study
with Professionals. IEEE Transactions on Software Engineering 44, 10 (Oct. 2018),
951ś976. https://doi.org/10.1109/TSE.2017.2734091 Conference Name: IEEE
Transactions on Software Engineering.

CHI ’23, April 23–28, 2023, Hamburg, Germany Ken Gu, Eunice Jun, and Tim Althof

A INITIAL CORRESPONDENCES WITH
MULTIVERSE EXPERTS

A.1 Interviews with Two Multiverse
Practitioners

To identify specifc challenges in authoring and conducting multi-
verse analyses, we frst conduct in-depth interview studies with two
researchers who have recently authored multiverse analyses. We
found these researchers through our collaboration networks. Nei-
ther relied on existing multiverse tools. Instead, they wrote custom
scripts that generated each universe script. During the interviews,
which lasted for approximately two hours each, the researchers
walked us through their analyses, including their scripts, fndings,
and any historical artifacts from their git repository histories. With-
out being prompted, both brought up how challenging fnding and
propagating bug fxes is for them.

We learned that the researchers approach authoring multiverse
analyses in a bottom-up, iterative fashion. They focus on a few key
decisions and options, consult their peers and supervisors, and then
add additional decisions and options based on their team’s input.
This iterative nature requires keeping track of which combinations
of decision options were previously considered and how, if at all, the
results have altered since changing or adding decisions and decision
options. The same process applies when the researchers encounter
and fx bugs. They must identify bugs, fx decision options that
introduce the bugs, and then re-run their multiverse analyses to
see how the bugs impact their results.

This led to an understanding that multiverse debugging is a key
challenge and that resolving difculties surrounding this process
could make it easier to author multiverse analyses more generally.

A.2 Additional Correspondences with
Experienced Multiverse Tool Developers

We cross-examined our observed challenges and insights in de-
bugging with two independent, experienced researchers who have
authored multiverse analyses and developed multiverse analysis
tools. We corresponded with these researchers via email.

Both researchers corroborated the importance of starting with
a single universe and then propagating changes to the rest of the
universes: “I may look at a single universe. Then I apply the solution
to all afected paths. Currently, this can only be achieved by modify-

ing the multiverse specifcation.ž The other researcher had a similar
debugging process: “I always debug by looking at individual universe
scripts that instantiate a particular set of decisions that I think might
be involved in the errorž. They also mentioned how debugging mul-
tiverse analyses is like debugging a single universe but with “the
added difculty of fguring out why the bugs come up in a particular
analysisž. Finally, one tool developer also highlighted the additional
steps needed to pinpoint an error: “I often read the error messages
and pick a specifc error to focus on. Then I examine all paths that
lead to a specifc error to distill commonality.ž

B DECISION COVER ALGORITHM

The decision cover algorithm is an iterative loop of sampling
a universe from the multiverse and reducing the multiverse by
removing all universes that contain decision options of universes

Algorithm 1: Decision Cover

Input: � = {�� | � = 1 . . . �} (set of universes in the entire
multiverse), � = {� � | � = 1 . . . �} (set of decision

options in the multiverse) ; // Each universe ��
is represented by a unique set of decision
options ��� ⊂ �

Initialize � ← ∅
while � ≠ ∅ do

� ∼ � �� � ���(�) � ← � ∪ {�} � ← {�} for � ∈ � do
if �� ∩ �� ≠ ∅ then

� ← � ∪ {� }
end

end
� ← � \ �

end
return �

sampled so far. Algorithm algorithm 1 summarizes the decision
cover algorithm. We start with the set of all universes. Until this
set is empty, a universe is randomly sampled and all universes that
share any decision option will be removed from this set. We take
the set of sampled universes as the reduced set of universes to run.

C ALGORITHM FOR UNIVERSE-TO-
MULTIVERSE-SPECIFICATION
DIFFS

C.1 Boba Background

There are two main ways to specify decisions in the template fle:
placeholder variables for decision options that can be placed in-line
and code blocks for decision options that involve multiple lines of
code. Placeholder variables can be placed anywhere in the template
fle. Users specify the placeholder decision name and its alternative
options. During compilation, Boba removes the placeholder identi-
fer and replaces it with one of its alternative values. In Figure 2A,
the cutoff and brm_family decisions are defned with placeholder
variables. Meanwhile, a decision block is used to specify multiple
versions of a code block that act as alternative decision options
for one analytical decision. For example, in Figure 2A, the Model
decision block consists of two alternative code blocks, representing
an option for a frequentist model and an option for a bayesian model.
When compiling the template fle, Boba will instantiate only one
code block corresponding to a decision in a universe.

C.2 Algorithm

Multiverse Debugger compares abstract syntax trees (ASTs) and
lines of code of the edited and unedited universe. ASTs provide
the granularity needed to identify decision options and potential
changes to these options that are specifed in-line (Boba placeholder
variables) in the new universe. Meanwhile, comparing code at the
line granularity helps locate decision options specifed by multiple
lines of code (Boba code blocks). Furthermore, comparing lines
also helps map universe code blocks to the multiverse specifcation
blocks.

Understanding and Supporting Debugging Workflows in Multiverse Analysis

We use information from the compilation process to know where
in the unedited old universe the Boba variables are located and the
split points between Boba code blocks. In short, we have a mapping
between the unedited universe and the multiverse specifcation.
We then fnd where in the new edited universe the locations of
Boba variables are via AST matching and locations of Boba code
blocks via line matching. Through the mapping between old and
new universe, we can then map changes in the new universe all
the way back to the multiverse specifcation.

To pinpoint code changes in the universe that correspond to
decision options specifed inline in the multiverse specifcation, we
match the ASTs of the unedited and edited universes. Matching
ASTs provides additional granularity than line diference algorithms
and enables direct mappings between code that corresponds to
matched subtrees in the AST. We use gumtree [22]to fnd code in
the new universe that corresponds to Boba variables. If changes
exist, these are mapped to the multiverse specifcation.

We use the Python difib [2] library’s mdif function to match
the start of code blocks between the old and new universe fles. For
each line in the old universe if it is matched with the new universe
and it is the start of the block boundary, we add the new universe
line as the start of the corresponding Boba block. If the line is
deleted and it is at the boundary of the Boba block, we add the next
line in the new universe. Finally, if a new line is inserted and it is
at the start of a new block, we always default to including it at the
start of a new block. With our initial multiverse specifcation and
unedited universe mapping, we can propagate edits in the universe
back to the multiverse specifcation.

The universe-to-multiverse diff algorithm based on gumtree’s
AST matching algorithm is best suited for small to medium edit
changes. As these edits are common in most of bug fxes, gumtree
is an adequate choice.

D PROCESS FOR FINDING BUGS FOR THE
LAB STUDY

We gathered two multiverses from which we created buggy R and
Python versions. The frst multiverse, Hurricane, is authored by
Simonsohn et al. [53] and challenges the reported analysis in a previ-
ous study [28]. The study explored whether hurricanes with female
names resulted in more deaths. The second multiverse, Reading, is
an example from Boba [38]. Reading is based on how researchers
of a published paper [36], on whether diferent web layouts result
in faster reading speeds, might construct a multiverse from their
analysis.

To introduce realistic bugs, we frst identifed common bugs
encountered during typical statistical analyses. We searched Stack
Overfow [6] to fnd errors. For R, we searched Stack Overfow with
tags R and keyword error to fnd relevant posts. Similarly, for Python,
we searched with tags Python, pandas[4], and statsmodels[3]
and the keyword error to fnd relevant posts. In addition to Stack
Overfow, we consulted an online statistics blog with consolidated
lists of Python [14] and R errors [15].

This resulted in errors that encompass data parsing, data splitting,
and model specifcation. The R version of Hurricane included 5
errors. One was a syntax error, one was a logical one-of error, two
more errors were errors that resulted from poor data processing,

CHI ’23, April 23–28, 2023, Hamburg, Germany

and the last error was a model ft error due to a poorly specifed
model formula. The Python version contained 3 errors: the same
one-of error, a data processing error, and the same model ft error.

For the Reading multiverse, the R version involved 3 errors: two
errors related to poor data/model specifcation, and a third error
with misspecifed data transformation. The Python version had 3
errors as well: an error as a result of using the wrong model, an
error with the wrong syntax for data fltering, and a third error
from parsing the data improperly. We include all lab study materials
in our supplemental material.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Debugging in Software Engineering
	2.2 Multiverse Analysis
	2.3 Tools for Multiverse Analysis
	2.4 Debugging is a Challenge in Multiverse Authoring

	3 Prototype: Multiverse Debugger
	3.1 Accelerating Bug Discovery Through Minimum Cover Approximation
	3.2 Diagnosing Bugs via Error Message Aggregation
	3.3 Propagating Universe Edits with Universe-to-Multiverse-Specification Diffs

	4 Lab Study: Research Questions and Methods
	5 Lab Study: Results
	5.1 What challenges do analysts need to overcome when debugging multiverse analyses?
	5.2 What workflows do analysts gravitate towards?
	5.3 To what extent blackdo features like those inblack Multiverse Debugger address debugging challenges? How does Multiverse Debugger affect analysts' workflows?

	6 Discussion
	6.1 Design Implications
	6.2 Limitations
	6.3 Future Work

	7 Conclusion
	Acknowledgments
	References
	A Initial Correspondences with Multiverse Experts
	A.1 Interviews with Two Multiverse Practitioners
	A.2 Additional Correspondences with Experienced Multiverse Tool Developers

	B decision cover Algorithm
	C Algorithm for Universe-to-Multiverse-Specification Diffs
	C.1 Boba Background
	C.2 Algorithm

	D Process for Finding Bugs for the Lab Study

