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Abstract. Camera re-localization or absolute pose regression is the cen-
terpiece in numerous computer vision tasks such as visual odometry,
structure from motion (SfM) and SLAM. In this paper we propose a
neural network approach with a graph Transformer backbone, namely
GTCaR (Graph Transformer for Camera Re-localization), to address
the multi-view camera re-localization problem. In contrast with prior work
where the pose regression is mainly guided by photometric consistency,
GTCaR effectively fuses the image features, camera pose information
and inter-frame relative camera motions into encoded graph attributes.
Moreover, GTCaR is trained towards the graph consistency and pose
accuracy combined instead, yielding significantly higher computational
efficiency. By leveraging graph Transformer layers with edge features
and enabling the adjacency tensor, GTCaR dynamically captures the
global attention and thus endows the pose graph with evolving struc-
tures to achieve improved robustness and accuracy. In addition, optional
temporal Transformer layers actively enhance the spatiotemporal inter-
frame relation for sequential inputs. Evaluation of the proposed network
on various public benchmarks demonstrates that GTCaR outperforms
state-of-the-art approaches.

1 Introduction

The past decade has witnessed surging research interest in developing camera pose
regression methods, benefiting various computer vision applications including
robot navigation, autonomous driving and AR/VR technologies. Camera re-
localization is an absolute pose regression (APR) process to localize query images
against a known 3D environment. Conventional approaches solving the camera
pose estimation problem involve extensive implementations of Perspective-n-Point
(PnP) [19] followed by optimization steps of bundle adjustment (BA) [37], which
is the iterative process of joint optimization of the 3D scene points and the 6-DoF
camera pose parameters, aided by numerical solvers. The formulation yields a
non-linear high-dimensional system and is thus computationally challenging to

solve [36,44].
With the prevalence of deep neural networks, many recent studies have steered
research attentions towards leveraging deep learning techniques to re-formulate
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the camera pose estimation problem as a pose regression network, i.e., the
network is trained with training images and the ground-truth camera poses
such that it can learn to regress the camera pose(s) given single or multiple
images. Among these studies, PoseNet [22] pioneers in incorporating neural
networks into camera pose regression frameworks, where the CNN-based network
is trained to directly estimate the camera pose from individual images without
explicit feature processing. As multi-view APR methods can preserve more
inter-frame information (e.g., temporal/global pose consistency) beyond those
achieved solely from single image retrieval, they yield higher accuracy and
robustness [26,28,29,31,48]. Later work adopts sophisticated networks to address
the task, e.g., in VidLoc [6] a CNN-RNN joint model is presented to leverage
the temporal consistency of the sequential images. Recently, GNNs have been

exploited in camera pose regression [48], where the message passing scheme
embraces the inter-frame dependency.
Lately, the development of Transformers [39] has empowered massively suc-

cessful applications in natural language processing (NLP), computer vision [3,12]
and many other fields. Specifically, the adoption of the self-attention mechanisms
enables Transformers to effectively capture the global spatiotemporal consistency
of sequential information. Additionally, while graph-based networks such as GNNs
have been widely proven to be efficient in modeling arbitrarily structured inputs,
it is generally computationally challenging to have the networks update the graph
structure dynamically [40,46,50,51], limiting its performance on downstream
tasks where high amounts of noise or missing information are present.

Inspired by the aforementioned observations, in this work we propose a neural
network fused with a graph Transformer backbone, namely GTCaR, to tackle
the camera re-localization problem. In GTCaR, the view graph is constructed by
a novel graph embedding mechanism, where the nodes are encoded with image
features and 6-DoF absolute camera pose of the image frame, while the edge
attributes consist of the relative inter-frame camera motions. Moreover, our pro-
posed network introduces an adjacency tensor that stores the correlation on both
the feature level and the frame level. In particular, the feature correspondences be-
tween the frames are encoded into the elements in the adjacency matrix, where the
element value is based on the normalized feature correspondence score and thus
falls into the range of [0, 1]. The adjacency matrix is updated through the graph
Transformer layers to reflect the evolving graph structure, e.g., redundant/noisy
edge pruning, newly-added edges according to high correlations between a new
image and some previous image, etc. GTCaR is trained end-to-end, guided by
the loss function that integrates the graph consistency [1] such that to localize
multiple query images simultaneously. Additionally, the temporal Transformer
layers are utilized to obtain the temporal graph attention for consecutive images.

The architecture overview of GTCaR is given in Fig. 1. The design of the
proposed network is favorable for camera re-localization tasks in three aspects.
First, it is efficient to exploit the intra- and inter-frame structure information and
correlation with the utilization of graphs; Second, the self-attention mechanism
can effectively capture the spatiotemporal consistency in arbitrarily long-term
periods, achieving high global pose accuracy; Third, with the adjacency ma-
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Fig. 1: Overview of the proposed GTCaR architecture for camera re-localization.
The network takes query images as input and then models the corresponding
camera poses, image features and the pair-wise relative camera motions into a
graph G(V, ). Then, the adjacency tensor A and nodes are fed into the message
passing layers, before passing through the graph Transformer encoder layers
(“I” indicates the I-th layer). For consecutive image sequences, the graph will
be passed through additional temporal Transformer encoder layers. The global
camera poses are embedded into the node information in the final output.

trix being dynamically updated, the network can quickly adjust according to
the changing graph structure, further reducing the negative effects caused by
erroneous feature matching.

To the best of our knowledge, our proposed network is the first to exploit graph
Transformer for camera re-localization. Our contributions can be summarized as:

— We propose a novel framework with the Transformer backbone for the multiple
camera re-localization task. By encoding the image features, intra- and inter-
frame relative camera poses into a graph, the proposed network is trained
efficiently towards both the pose accuracy and the graph consistency.

— We design an adjacency tensor to dynamically capture the global attention,
so as to endow the pose-graph with an evolving structure to achieve boosted
robustness and accuracy.

— We exploit optional temporal Transformer layers to obtain the temporal
graph attention for consecutive images, such that the proposed model can
work with both unordered and sequential data.

2 Related Work

Graph Transformers. By virtue of its powerful yet agile data representation,
GNNs [23,32,40] have achieved exceptional performances on numerous computer
vision tasks. In [10], Graph-BERT enables pre-training on the original graphs and
adopts a subgraph batching scheme for parallelized learning. However, Graph-
BERT assumes that the subgraphs are linkless, thus not suitable for tasks where
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global connectivity is important. Recently with the success of Transformers [39],
several studies [5,13,43,50] have attempted to develop graph Transformers which
can leverage the powerful message passing scheme on graphs while utilizing
the multi-head self attention mechanism in Transformers. Among which the
approach proposed in [43] is capable of transforming the heterogeneous graphs
into homogeneous graphs such that the Transformer can be exploited. GTNs
proposed in [50] also addresses the heterogeneous graphs, where the proposed
network is capable of generating new graph structures by defining meta-paths
with arbitrary edge types. In [13], a generalized graph form of Transformers is
proposed with the edge features addressed. Despite their successes, straightforward
adoptions of GNNs in modeling camera re-localization task is not applicable due
to GNN’s vulnerability against noisy graphs [15, 30, 38,16, 52].

Camera Pose Regression Networks. It was not until recently that research
interests began to focus on incorporating deep neural networks into SfM pipelines
and camera pose regression tasks [2, 11, 14,22 24, 36,41,47]. As one of the
earliest work adopting neural networks for camera pose regression, the deep
convolutional neural network pose regressor proposed in [22] is trained according
to a loss function embedding the absolute camera pose prediction error. While [22]
pioneers in fusing the power of neural networks into pose regression frameworks,
it does not take the intra-frame constraints or connectivity of the view-graph
into optimization and thus barely over-performs conventional counterparts on
accuracy, as improved later in [6,31,48]. Other work exploits the algebraic or
geometric relations among the given images and train the networks to predict to
locate the images [4,0,38,41], among which [0] leverages temporal consistency of
the sequential images by equipping bi-directional LSTMs [18] with a CNN-RNN
model such that temporal regularity can provide more pose information in the
regression. The approach in [1] trains DNNs model with the pair-wise geometric
constraints between frames, by leveraging additional sensor measurements.

Recent work [18] is the first study to leverage GNNs in a full absolute
camera pose regression framework, where the authors model the view-graph
with CNN-feature nodes. Later study [26] proposes a pose-graph optimization
framework with GNNs, guided by the multiple rotation averaging scheme. In [33],
a multi-scene absolute camera pose regression framework with Transformers
is proposed. While GNNs are capable of effectively capturing the topological
neighborhood information of each individual node (i.e., the featured frame in such
task), they are rather prone to noise; Moreover, co-visibility graphs in real-world
camera relocalization tasks are often quite dense, causing either noise removal or
‘edge-dropping’ further entangled [13,206,44,51]. Leveraging graph Transformers
in relocalization tasks facilitates the noise handling by virtue of the attention
mechanism in (original) Transformers. Our work differs from [33] on: 1) we model
the pose regression with a graph structure; 2) we train one end-to-end graph
Transformer network while in [33] two separate Transformers are adopted for
rotation and translation regression respectively; 3) we leverage rotation averaging
addressing both the graph consistency and pose accuracy to guide the training,
whereas only camera pose loss is exploited in the training of [33].



GTCaR: Graph Transformer for Cam Re-locz 5

3 Problem Formulation

Given a set of 2D image frames and a known 3D scene, camera re-localization
seeks a consistent set of optimized camera rigid motions, aiming to recover
the locations and orientations of the camera aligned with the scene coordinate.
Formally, let R; € SO(3) and t; € R? denote the camera orientation and the
camera translation for the i*" image frame respectively, the absolute camera
pose is denoted by 7; = [R;|t;]. Then the camera re-localization task can be
formulated into the following pose regression objective

argmmZp (T, T3)) (1)

where p(-) is a robust cost function, d(-,-) is a distance metric and 7; = [R;[t;]
denotes the groundtruth camera poses. Accordingly, let 7;; = [R;;|t;;] denote the
relative camera motion between the i** and ;' image frames. In our formulation,

we leverage multiple rotation averaging [25, 26, 29, 34, 49] and introduce the
graph-level consistency term into the objective, that is
arg mlnz d(R;;, R;R; ). (2)
RoBs (i)

In detail, given the camera relative orientations {R;;}, the optimization process
involves minimizing a cost function that penalizes the discrepancy between the
camera relative orientations achieved from image retrieval and those inferred
from the solved absolute camera poses. We argue that low costs in Eq. 2 indicate
high global consistency of the solution set, and thus fuse the cost into the loss
function as the global consistency loss. Therefore, given the ground truth camera
poses, the objective function is assembled as

arg min d (Rij,R;R;
Rg“R (LZJ) r (R ))

+ i ! d R’ME + tl7t 3
argRIimnzi:p( R ) argmmzp t)), (3)

where p’ and p” are robust cost functions, dg : SO(3) x SO(3) — R4 and
dy : R x R® — R, are the distance metrics for rotations and translations
respectively. Specifically, the first term measures the global consistency, i.e., it
should be zero if the relative transformations on the edges align perfectly with
the absolute transformations on the nodes for the whole graph. The other two
terms depict the rotation and translation prediction errors respectively, echoing
Eq. 1. Details on the loss function formulation are given in §4.4.

In the design of our proposed network, we model the multi-view camera
re-localization problem as graphs and embed the 2D image features and the
camera absolute pose 7; as the corresponding latent node information, whereas
the inter-frame camera relative motions 7;; are encoded as the edge attributes,
as introduced in §4.2.
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4 GTCaR Architecture

In this section we detail the network architecture of the proposed GTCaR. First
we provide the architecture overview in §4.1, followed by the elaboration of feature
embedding and graph embedding in §4.2. We then emphasize the structure of the
spatiotemporal graph Transformer layers in §4.3, followed by the graph update
and the proposed graph loss function illustrated in §4.4.

4.1 Architecture Overview

As shown in Fig. 1, the proposed network takes query RGB images as input.
The images are first fed into a pre-trained CNN-type [17] feature network, then
the output feature maps are embedded in an initial view-graph such that the
nodes encode the visual information of the images, and the edges encode inter-
frame correlations. Additionally, the local feature matching information and the
aggregated image matching score are combined and arranged into a tensorized
adjacency matrix, namely the adjacency tensor.

After assembling the images into a graph, the adjacency tensor and the
hidden node features are first passed into MPNN [16] layers such that, for each
node, the neighboring node features are aggregated efficiently with the implicit
attention information embedded in the adjacency tensor. Then the aggregated
node features are fed into graph Transformer encoder layers, where the self
attention mechanism are equipped with edge features such that the camera
relative transformations encoded on the edges can be exploited to generate the
attention weights. Additionally, the temporal Transformer encoder layers capture
the self-attention for the sequential input. The global camera poses, as node
attributes, are updated through the network and are embedded in the final output
as the localized camera poses.

4.2 Graph Embedding

We propose to model the input query images, the corresponding camera poses
and the pair-wise camera transformations into a graph based on the construction
of conventional pose graph, i.e., each node represents an image frame and the
edges connecting two nodes represent the inter-frame image relations. In detail,
consider a graph G = (V,€) where V = {v;} denotes the set of the images
and & = {(¢,j)|vi,v; € V} represents the pair-wise feature-base connectivity
between frames. Additionally, let Ag denote the adjacency matrix of G such that
Ag(i,7) =0 if (i,7) & € and vice versa. For simplicity of notation, we will use A
for Ag in the following discussion.

Node Attributes. Consider an image I;, let x; denote the feature vector as
the output of the CNN-type feature sub-network, and denote p; € R” as the
camera absolute pose vector, where p; consists of the 4-dimensional quaternion
w; representing the camera orientation and the 3-dimensional ¢; representing the
camera translation. That is, the vector embedding of each node v; contains the
information part which encodes the image latent feature and the learning part
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Fig.2: Each element a;; of the adjacency tensor A embeds the feature corre-
spondences and the normalized aggregated value. m;; = 0 if there exists none
co-visible feature between image i and image j. Note that A is symmetric.

which embeds the camera pose. It is noteworthy to mention that, in contrast
with NLP tasks where the word positions or text orders are crucial, the camera
absolute poses are invariant to node positions as we leverage the graph structure
to model the problem. We believe that topological position (vertex degree, local
neighborhood structure, global connectivity, etc.) plays a significant role in the
proposed graph-based framework, therefore we skip the positional encoding in
the original Transformer model [39] and embed the ‘relative position’ or ‘relative
distance’ as the image matching vector into the adjacency tensor instead.
Adjacency Tensor. Let a;; be the element at (7,7) of the adjacency matrix
with self-connections A, by convention a;; = 1 if there exists an edge connecting
v; and v; and a;; = 0 otherwise. To capture and maintain the pair-wise rela-
tion, we introduce the adjacency tensor where a;; represents the vector feature
correspondence index between the i*® and j*" image frames.

Specifically, consider a;; € A and let x; and x; be the corresponding feature

vectors, and assume that there exists some feature correspondences between image
1 and image j. Then a,fj, i.e., the k™ element of a;; portraying the Eth feature
correspondence, is a tuple with the feature index in x; and x; respectively. That is,
xi(afj(l)) ~ X (afj (2)). Additionally, each vector a;; is aggregated into an initial
meta-feature m;; as the normalized feature correspondence score with range [0, 1],
which measures the edge credibility evaluation and the image matching result
between the two connected nodes. The adjacency tensor encodes pixel-wise and
image-wise correspondence, depicting the edge weights and is updated through
the network while interacting spatiotemporally with the whole evolving graph.
Mlustration of the adjacency tensor is given in Fig. 2.
Edge Attributes. Similar with the 7-dimensional pose feature embedded on
the nodes, the camera relative transformation is encoded on the edge connecting
v; and vj as p;; = (wij,ti;). During the graph embedding, only nodes with
matched features are connected with edges with initialized edge feature (unit
quaternion translation and zero vector translation). In our modeling of the graph
we consider the edge features as node-symmetric according to the nature of pose
graph construction. As we aim to keep the graph lightweight, the edges do not
contain any low-level correspondence information between the connected nodes.
Instead, the inter-node dependency is implicitly arranged into the adjacency
tensor A.
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Fig. 3: The graph Transformer encoder layer structure. , K and V' are compliant
with the original Transformer, F represents the edge attention module.

4.3 Graph Transformer Layer

Now we have constructed the graph embedding the node and edge features as the
input into the graph Transformer layer. Our proposed network adopts the encoder
layer structure in the original Transformer [39] and transforms the initial source
graph to the target graph with evolved structural edge information and derived
pose values on the nodes. Specifically, the graph Transformer layer exploits the
multi-head attention mechanism to generate the sptiotemporal relation between
nodes, such that 1) the edges connecting two nodes where high amounts of common
features (pair-wise co-visible visual features) are equipped with high attention
weights and 2) the edges carrying abundant or noisy image matching yield low
attention weights or get removed from the graph. The emerging adjacency tensor
progressively interacts with the whole graph and propagates the update over the
nodes and the edges.

Message Passing. Before passing the graph into the graph Transformer encoder
layer, the neighboring node features are aggregated along with the adjacency
tensor for each node. Specifically, consider the graph at the I** layer and let Z
denote the hidden feature tensor of the nodes, let A’ denote the adjacency tensor.
Then after the message passing layers the node tensor is thus

7t =7 [p(AL ZY @ 21, (4)

where # denotes the concatenation operation, ¢(,) denotes the message ag-
gregation, ® denotes the tensor product. We adopt the mean function as the
aggregation operation in this work. Precisely, Z' embeds the node information
while the latter term embeds the edge information over the neighborhood. The
adjacency tensor is exploited here instead of the edges as A has collected the
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local attention information such that the message passing is more efficient.
Graph Transformer Encoder Layer. We leverage the multi-head self attention
mechanism in the graph Transformer encoder layer with edge features. Borrowing
notations from the original Transformer network, let wa K ,lc, Vkl € R4%xd where
k =1 to N is the number of the attention heads, dj denotes the query dimension.
Consider the attention weight for the k' head on the edge connecting the source
node ¢ and the target node j, that is

W5 = softmaxj(QéZAf O) KIZCZJ[), (5)

where ® denotes the Hadamard product. Following [13], we add the edge features
into generating the attention. Let E,lf be in the same dimension space with
,l,c, K ,lC, V,j and let g;; denote the hidden edge features, then the attention weight
with edge feature is thus
wg; = softmax;0(QL 2L, Ky 2!, ELq};), (6)
where © denotes the consecutive dot product operation. Then the update function
for nodes and edges are thus

ZH = o (Wi ViEZE) ® O, (7)
¢t =+ (wf) ® O, (8)

where O}, 0! € R4 d is the dimension of the hidden space of nodes and edges,
- denotes multihead (k heads) concatenation. Illustration is given in Fig. 3.
Temporal Transformer Encoder Layer. The temporal inter-frame relation
contains high amounts of useful information especially when the input is sequential
images or video clips. In the proposed network we address the temporal depen-
dencies for consecutive camera re-localization tasks by equipping the network
with an optional temporal Transformer encoder layer. The temporal Transformer
encoder layer exploits the standard Transformer network structure, takes the
graph embedding as input and generates intra-graph temporal dependencies
between nodes by constructing temporal attention.

4.4 Graph Loss and Update

GTCaR is trained end-to-end, guided by the joint loss function representing both
the graph consistency and the accuracy of the predicted camera poses. Recalling
the objective function Eq. 3, the loss function is thus assembled as follows

L=0a) pldr(wij,wjw; ) +a Y p(de(tij, de(tist;)))
o i

—&-ﬁZP(dR(mei)) +5/ZP/(dt(ti7t7‘))v (9)

where a, o/, 3, 3" € R are the loss parameters, w;, t; are the ground truth camera
orientations and translations. The graph loss function can be seen as a joint
optimization regarding both the graph consistency and the prediction accuracy.
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Specifically, during the training the nodes are updated according to a) edge
updates which reflect both relative transformation updates and graph connectivity
updates (first two terms in Eq. 9), and b) node updates according to the absolute
pose loss (last two terms in Eq. 9). Therefore the graph evolves in terms of 1)
message passing aggregates attention with the pose information embedded into
the nodes and the local connectivity embedded by the adjacency tensor, then 2)
attention mechanism assists to update attention weights on the edges, followed
by 3) node and edge features (absolute and relative poses) are updated according
to the attention, represented in Eq. 7 and Eq. 8. The graph is therefore evolving
with nodes, edges, and adjacency updated.

5 Experimental Results

The proposed network is evaluated on three public benchmarks: 7-Scenes [35],
the Cambridge dataset [22] and the Oxford Robotcar dataset [27]. We first
elaborate the datasets, metrics, baselines and implementation details we conduct
the experiments with (§5.1), followed by the evaluation results (§5.2), we then
conduct the ablation study on the spatiotemporal mechanism of the proposed
network (§5.3) and discuss the limitations (§5.4).

5.1 Experiment Setting

Implementation Details. The proposed network is implemented in PyTorch
on a machine with Intel(R) i7-7700 3.6GHz processors with 8 threads and 64GB
memory and a single Nvidia GeForce 3060Ti GPU with 8GB memory. For training
we adopt standard SGD optimizer with no dropout, the learning rate is annealed
geometrically starting at le-3 and decreases to le-5.

We adopt ResNet [17] pretrained on ImageNet [9] for the feature handling. The
input RGB images are scaled to 341x 256 pixels, normalized by the subtraction of
mean pixel values. The proposed network is pre-trained end-to-end on ScanNet [7],
an RGB-D video sequence dataset which contains 2.5million views in over 1500
indoor scans, we only use the RGB monocular images and the ground truth
camera pose values are given by [8]. The node poses (absolute pose) and edge
poses (relative pose) are initialized as unit orientations and zero translations. We
fix the input query size to be 32 though we have observed that the proposed
network is capable of taking large input size up to 128. In all the experiments,
the image frames are fed sequentially from the test set, analogous to existing
work [6,47,48] for a fair comparison.

Datasets and Metrics. We conduct extensive experiments on datasets with
different scales and report the median errors of camera orientation (°) and
translation (m). The 7-Scenes dataset [35] consists of RGB-D video sequences
covering seven small indoor scenes, captured by hand-held Kinect camera. In
some of the scenes, many texture-less surfaces and repetitive patterns are present,
thus making the dataset challenging in spite of its relatively small size containing
less than 10K images. The Cambridge dataset is a large-scale dataset containing
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Table 1: Experiment results on the 7—Scenes Dataset [35]. Results are cited
directly, the best results are highlighted.

Scene Chess Fire Heads Office Pumpkin Kitchen Stairs A
Scene scale 3 x 2m? 2.5 x 1m? 2 x 0.5m? 2.5 x 2m? 2.5 x 2m? 4 x 3m? 2.5 x 2m? Ve
RelocNet [2] 0.12m, 4.14° 0.26m, 10.4° 0.14m, 10.5° 0.18m, 5.32° 0.26m, 4.17° 0.23m, 5.08° 0.28m, 7.53° | 0.21m, 6.73°
LsG [17] 0.09m, 3.28° 0.26m, 10.92° 0.17m, 12.70° 0.18m, 5.45° 0.20m, 3.69° 0.23m, 4.92° 0.23m, 11.3° | 0.19m, 7.47°
MapNet [1] 0.08m, 3.25° 0.27m, 11.69° 0.18m, 13.25° 0.17m, 5.15° 0.22m, 4.02° 0.23m, 4.93° 0.30m, 12.08°| 0.21m, 7.77°
MapNet+ [1] 0.10m, 3.17° 0.20m, 9.04° 0.13m, 11.13° 0.18m, 5.38° 0.19m, 3.92° 0.20m, 5.01° 0.30m, 13.37°| 0.19m, 7.29°
MapNet(pgo) [1] 0.09m, 3.24° 0.20m, 9.29° 0.12m, 8.45° 0.19m, 5.42° 0.19m, 3.96° 0.20m, 4.94° 0.27m, 10.57° | 0.18m, 6.55°
PoseNet15 [22] 0.32m, 8.12° 0.47m, 14.4° 0.29m, 12.0° 0.48m, 7.68° 0.47m, 8.42° 0.59m, 8.64° 0.47m, 13.8° | 0.44m, 10.4°
PoseNet16 [20]  0.37m, 7.24° 0.43m, 13.7° 0.31m, 12.0° 0.48m, 8.04° 0.61m, 7.08° 0.58m, 7.54° 0.48m, 13.1° | 0.47m, 9.81°
PoseNet17 [21]  0.14m, 4.50° 0.27m, 11.80° 0.18m, 12.10° 0.20m, 5.77° 0.25m, 4.82° 0.24m, 5.52° 0.37m, 10.60° | 0.24m, 7.87°

PoseNet17+ [21] 0.13m, 4.48° 0.27m, 11.30° 0.17m, 13.00° 0.19m, 5.55° 0.26m, 4.75° 0.23m, 5.35° 0.35m, 12.40° | 0.23m, 8.12°
LSTM-+Pose [12] 0.24m, 5.77° 0.34m, 11.9° 0.21m, 13.7° 0.30m, 8.08° 0.33m, 7.00° 0.37m, 8.83° 0.40m, 13.7° | 0.31m, 9.85°

Hourglass [23] 0.15m, 6.17° 0.27m, 10.84° 0.19m, 11.63° 0.21m, 8.48° 0.25m, 7.01° 0.27m, 10.15° 0.29m, 12.46° | 0.23m, 9.53°
BranchNet [15]  0.18m, 5.17° 0.34m, 8.99° 0.20m, 14.15° 0.30m, 7.05° 0.27m, 5.10° 0.33m, 7.40° 0.38m, 10.26° | 0.29m, 8.30°
VidLoc [0] 0.18m, — 0.26m, — 0.14m, — 0.26m, — 0.36m, — 0.31m, — 0.26m, — 0.25m, —

CNN+GNN [18] 0.08m, 2.82° 0.26m, 8.94° 0.17m, 11.41° 0.18m, 5.08° 0.15m, 2.77° 0.25m, 4.48° 0.23m, 8.78°| 0.19m, 6.33°
MS-Trans. [33] 0.11m, 4.66° 0.24m, 9.6° 0.14m, 12.19° 0.17m, 5.66° 0.18m, 4.44° 0.17m, 5.94° 0.26m, 8.45° | 0.18m, 7.28°

GTCaR (ours) 0.09m, 1.94° 0.27m, 8.45° 0.12m, 9.34° 0.12m, 2.41° 0.15m, 2.13° 0.21m, 2.73° 0.26m, 8.92° |0.18m, 5.13°

six outdoor scene scans outside the Cambridge University, the dataset consists of
around 12K images and the corresponding camera pose ground truth.

The Ozford RobotCar dataset contains image sequences taken through driv-
ing in Oxford with different weathers, traffic conditions and lighting, the total
trajectory is over 10km and is very challenging for camera re-localization. Follow-
ing [4,47,48], we conduct experiments on the LOOP route (1120m) and FULL
route (9562m) to evaluate the performance of the proposed network on long
consecutive sequences. In all the experiments, we comply with the train/test split
provided in the original 7-Scenes and Cambridge benchmarks, and that given in
MapNet [1] for fair comparisons.

Baselines. The proposed network is evaluated against recent state-of-the-art
camera re-localization networks, including single image-based absolute cam-
era pose regression network PoseNet and its variants [20-22,42] among which,
LSTM+Pose [12] along with MapNet and its variants [1], LsG [17] and VidLoc [6]
have utilized temporal inter-frame relations in the network. CNN+GNN [18] mod-
els the multi-view camera pose regression with a graph and leverages GNNs on the
task. Other approaches include RelocNet [2], Hourglass [28] and BranchNet [415].

5.2 Performance Evaluation

7-Scenes. We first evaluate GTCaR on the 7-Scenes dataset against recent
state-of-the-art approaches, the experiment results are given in Table. 1. It can be
observed that our proposed network overperforms the other approaches on most
of the scenes. Among the approaches, LsG [47], MapNet [4] and VidLoc [6] rely
heavily on the temporal information of the input, i.e., the approaches can handle
consecutive sequences more efficiently but tend to lose the spatial inter-frame
correlation especially for large-scale datasets or over long camera trajectories.
Additionally, PoseNet [22] and its variants conduct absolute pose regression
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Table 2: Experiment results on the Cambridge Dataset [22]. Evaluation with
MapNet [4] is cited from [31], other results are cited directly. The average is
taken on the first four datasets. The best results are highlighted.

Scene College Shop Church Hospital Court Street As
Scene scale 5.6x10° m*  8.8x10° m*  4.8x10° m*  2.0x10° m*  8.0x10° m? 5.0x10% m? Ve
MapNet [4] 1.07m, 1.89° 1.49m, 4.22° 2.00m, 4.53° 1.94m, 3.91° 7.85m, 3.76° 22.23m, 27.55° | 1.63m, 3.64°
PoseNet15 [22] 1.66m, 4.86° 1.41m, 7.18° 2.45m, 7.96° 2.62m, 4.90° - - 2.04m, 6.23°
PoseNet16 [20] 1.74m, 4.06° 1.25m, 7.54° 2.11m, 8.38° 2.57m, 5.14° - - 1.92m, 6.28°
LSTM+Pose [12] 0.99m, 3.65° 1.18m, 7.44° 1.52m, 6.68° 1.51m, 4.29° - - 1.30m, 5.52°
PoseNet17 [21]  0.99m, 1.06° 1.05m, 3.97° 1.49m, 3.43° 2.17m, 2.94° 7.00m, 3.65° 20.70m, 25.70° | 1.43m, 2.85°
PoseNet17+ [21] 0.88m, 1.04° 0.88m, 3.78° 1.57m, 3.32° 3.20m, 3.29° 6.83m, 3.47° 20.30m, 25.50° | 1.63m, 2.86°
CNN+GNN [48]  0.59m 0.65° 0.50m, 2.87° 1.90m, 3.29° 1.88m, 2.78° 6.67m, 2.79° 14.72m, 22.44° | 1.12m, 2.40°
MS-Trans. [33] 0.83m 1.47° 0.86m, 3.07° 1.62, 3.99° 1.81m, 2.39° - - 1.28m, 2.73°
GTCaR (ours) 0.42m, 0.52° 0.64m, 1.56° 1.55m, 2.56° 1.32m, 1.97° 5.62m, 2.17° 10.27m, 19.88°(0.98m, 1.65°

from single images, such that the networks perform poorly on the scene where
repetitive patterns or texture-less surfaces are present.

Similar to our proposed network, CNN+GNN [18] leverages graphs to model
the multi-view camera re-localization with message passing among the image-
embedded nodes. However, the network does not exploit temporal information
in sequential images, and enforces a maximum value of neighbors of each node.
As a result, it tends to miss the temporal correlation for consecutive frames
or discard useful inter-frame spatial correlation. It is also noteworthy that the
proposed approach achieves real-time performance for all the experiments, as we
have observed the average runtime ranging from 12ms to 23ms per frame with
the batch size set to be 32, while [18] records 8-batch performance with unknown
runtime efficiency.

Cambridge. We demonstrate the capability to handle large-scale dataset of
GTCaR by evaluating the network on the Cambridge dataset, where the proposed
network outperforms the baselines on most of the scenes. Among the scenes,
‘Court’ and ‘Street’ are the largest datasets in size and cover long complex
trajectories and huge outdoor areas, as challenging to handle with single image-
based regression networks like PoseNet15, PoseNet16 and even LSTM+Pose
with additional LSTM units, the aforementioned networks have not reported
the results on these two datasets. It can be observed that GTCaR demonstrates
great improvements over approaches solely relying on temporal relation or spatial
relation on datasets with long camera trajectories.
RobotCar. The RobotCar dataset is especially challenging for the presence of
weather variations, dynamic objects/pedestrians, occlusions, etc. Following [4,
,A7,48], we conduct experiments on the two subsets from the dataset. The
LOOP route covers 1120m and the FULL route has a total length of 9562m.
As PoseNet [22] conducts camera pose regression with heavy reliance on the
visual information from singe images, large amounts of outliers are produced
with insufficient inter-frame correlations, thus yielding low accuracy. MapNet [4]
utilizes inputs from other sensors like GPS and IMU and fuses the measurements
to aid the camera re-localization. Specifically, MapNet(pgo) acquires the relative
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Table 3: Experiment results on the Oxford Robotcar Dataset [27]. Evaluation

with PoseNet [22] is cited from [4], other results are cited directly, the best
results are highlighted.
Scene LOOP FULL
Scene scale 1120m 9562m
MapNet |1] 9.84m, 3.96° 41.4m, 12.5°

MapNet+ [4] 8.17m, 2.62°  30.3m, 7.8°
MapNet(pgo) [1] 6.73m, 2.23°  29.5m, 7.8°

PoseNet [22]  25.29m, 17.45° 125.6m, 27.1°
LsG [47] 9.19m, 3.52°  31.65m, 4.51°
CNN+GNN [48] 8.15m, 2.57° 17.35m, 3.47°

GTCaR (ours) 5.46m, 1.98° 14.37m, 3.68°

camera pose from VO and acts in a sliding-window manner to predict the
absolute poses. Compared with GNN-based approach [18], the proposed network
shows major improvement as it efficiently models the spatiotemporal relation
for sequential images, whereas the former network mainly relies on the spatial
inter-frame dependencies.

Additionally, we report the cumulative distributions of the translation and rota-
tion prediction errors on the two datasets against prior work in the supplementary.
The baselines include PoseNet [22], MapNet [4], LsG [47] and CNN-+GNN [48].
It can be observed that the proposed network outperforms the baselines on all
the datasets.

5.3 Ablation Study

We conduct ablation study to investigate the significance of different modules of
the proposed network. We show the ablation results on ‘Pumpkin’ scene from
7-Scenes dataset, ‘Court’ from the Cambridge and LOOP from the RobotCar
dataset, to cover scenes of different scales and lengths. The results are given in
Table. 4. The comprehensive ablation experiments are given in the supplementary.

We first evaluate GTCaR without the MPNN layers, such that the graph
is directly fed into the graph Transformer layers without the node information
aggregation aided by the adjacency tensor. It can be observed that the perfor-
mance of the network is significantly worse on the ‘Court’ dataset. The reason
is that the simple linear projection of the node features cannot preserve much
information, compared with the message aggregated node features in the original
network, where the neighboring node information is efficiently preserved. For
the ‘Pumpkin’ scene, high amounts of repetitive patterns are present such that
the graph is densely connected; For the LOOP route, the images are highly
consecutive such that temporal Transformer can capture the neighboring node
information along the temporal dimension. We then study the effects of the indi-
vidual Transformer modules, i.e., the experiments are conducted with GTCaR
without graph Transformer layers (GTCaR|[temporal]) and without temporal
Transformer layers (GTCaR|graph]). It can be observed that the accuracy of
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Table 4: Ablations on Pumpkin, Court and LOOP.
Configuration Pumpkin Court LOOP
GTCaR 0.15m, 2.13° 5.62m, 2.17° 5.46m, 1.98°
GTCaR [temporal] 0.31m, 3.26° 6.95m, 2.95° 8.25m, 3.48°
GTCaR [graph] 0.17m, 2.28° 7.34m, 4.84° 9.03m, 3.55°
GTCaR [MPNN] 0.20m, 2.13° 5.98m, 2.38° 7.95m, 2.64°

GTCaR[temporal| decreses harshly on ‘Court’ and ‘Pumpkin’ without the spa-
tial correlation. Indeed, GTCaR can be seen as a GNN+RNN type of camera
re-localization network, which can only preserve inter-frame dependencies over
short period of time but tend to yield a overly sparse graph. On the other hand,
the performance of GTCaR|[graph] is slightly worse than the original network on
all the datasets without significant decreased accuracy.

5.4 Discussions and Limitations

Generalizability. By virtue of utilizing the underlying geometric constraints
implicitly, the proposed network can deliver higher accuracy and better robustness
compared to its single-view APR counterparts. Nonetheless we have observed
that the network generalizability to vastly different scenes is still limited, i.e., the
best performance is achieved by training the network on sets of similar scenes
regarding indoor/outdoor, scale and lighting, etc.

Computational Cost. From the experiments and the ablation study, we have
observed that the output graphs are mostly dense according to the spatiotemporal
dependencies. The high density brings in high amounts of unnecessary computa-
tions, especially in the case where the scene scale is small and the camera motion
is slow. Equipping more GNN layers after the Transformer layers can remove
the unnecessary edges but tends to introduce over-fitting and graph memory
overhead to the network.

6 Conclusion

In this paper we propose a neural network approach with a graph Transformer
backbone, namely GTCaR, to address the multi-view camera re-localization
problem. We model the multi-view camera pose regression problem with graph
embedding, where the image features, camera poses and pair-wise camera trans-
formations are fused into graph attributes. With the introduction of a novel
adjacency tensor, the proposed network can effectively capture the local node con-
nection information. By leveraging graph Transformer layers with edge features
and enabling temporal Transformer to generate the spatiotemporal dependencies
between the frames, GTCaR can actively gain the graph attention and achieves
state-of-the-art robustness, accuracy and efficiency.
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