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A B S T R A C T

We present a finite element implementation procedure for a phase-field framework for fracture in elastomeric
materials based on the gradient-damage theory. Governing equations of macroscopic and microscopic force
balances, and constitutive theories for large elastic deformation and damage are summarized, and the
computational implementation is described in significant detail. To facilitate the computational implementation
of the gradient-damage theory for elastomeric materials in a widely available finite element program, the
source codes are provided as online Supplemental Materials to this paper. Furthermore, we provide a
comparative study of the gradient-damage models with two distinct driving forces for damage: (1) entropy-
driven and (2) internal energy-driven. We then show that the internal energy-driven damage model presents
more realistic descriptions of the failure that accompanies extreme stretching and scission in elastomeric
networks.

1. Introduction

Elastomeric materials are attractive for diverse engineering and
biological applications due to their outstanding, reversible extensibility.
Hence, there has been increasing demand for a better understanding
of deformation and failure events in elastomeric materials subjected to
extreme environments. However, predicting and modeling of extreme
deformation and failure events in elastomeric materials beyond their
reversible deformation limits are very challenging owing to the com-
plexity of the underlying physical mechanisms for irreversible damage
processes across multiple length scales.

Over the past two decades, the phase-field approach has gained
great attention for modeling damage and failure events in a broad
variety of synthetic and natural materials based on variational princi-
ples for fracture processes at a continuum level (Francfort and Marigo,
1998; Bourdin et al., 2000; Miehe et al., 2010a,b). By making use
of a scalar variable, the phase field, denoted as d (damage) and its
gradient, (d, the phase-field method has been found to regularize the
sharp crack topology by representing a diffusive damage zone within a
characteristic length scale (l), by which not only has it overcome nu-
merical difficulties involving sharp crack topologies and discontinuities
but has also enabled to simulate mesh-independent crack propagation
processes. In addition to the phase-field framework based upon the vari-
ational approach, the nonlocal, gradient-type, damage theories have
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been formulated to regularize the strain softening due to damage evo-
lution in brittle materials (Pijaudier-Cabot and Ba∫ant, 1987; Peerlings
et al., 1996, 1998; de Borst et al., 1999; de Borst, 2002). A variational
formulation was also developed in order to overcome the numerical
issues involving regularization techniques in the gradient-type, damage
theories (Lorentz and Andrieux, 1999; Lorentz and Godard, 2011).
More comprehensive reviews on the recent phase-field and nonlocal,
gradient theories of fracture in brittle materials can be found in de Borst
and Verhoosel (2016). In the meantime, based on these early studies,
Miehe and coworkers extended the phase-field approaches to model
brittle fracture in finitely stretchable hyperelastic materials (Miehe and
Schänzel, 2014; Raina and Miehe, 2016; Gültekin et al., 2016). The
seminal work by Miehe and Schänzel has become popular in modeling
large deformation and failure events in elastomeric materials over the
past several years (Wu et al., 2016; Kumar et al., 2018; Russ et al.,
2020).

More recently, more realistic physical pictures of failure in elas-
tomeric networks have been studied by Creton (2017), Long et al.
(2021), Chen et al. (2017), and Mao et al. (2017), motivated by the
classical work by Lake and Thomas (1967) that recognized that rupture
in an elastomeric network is an energetic process dominated by a
change in the internal energy due to stretching and scission in molec-
ular bonds. Mao et al. (2017) incorporated the microscopic molec-
ular picture of bond-stretching into the eight-chain network model
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of Arruda and Boyce (1993). Then, these authors proposed a new
gradient-damage theory with entropic- and energetic thermodynamic
considerations (Talamini et al., 2018; Mao and Anand, 2018a,b) which
were not pursued in the variational principle-based phase-field fracture
theory in the work of Miehe and coworkers. In their work, the eight-
chain network model was modified to account for bond-stretching.
Furthermore, the macroscopic and microscopic force balances were de-
rived within the virtual-power methods of Frémond and Nedjar (1996)
and Gurtin (1996), and new constitutive equations for the gradient-
damage framework were introduced. The major point of departure of
the framework by Anand and coworkers is that while the previous
phase-field fracture theories have been formulated via the variational
approach, their gradient-damage theory has been formulated using the
principle of virtual power and rigorous thermodynamic considerations.
It should also be noted that while the driving force for damage is ‘‘en-
tropic’’ in the earlier hyperelasticity-based failure models by Miehe and
coworkers, it is solely ‘‘energetic’’ in the new damage model by Anand
and coworkers. Furthermore, in the work of Miehe and coworkers, the
gradient-damage term is implied to be dissipative but, in the theory of
Anand and coworkers, the origin of the gradient-damage term is clearly
energetic in nature.

The phase-field framework combined with the entropy- or internal
energy-driven damage models has now found broad success in simulat-
ing progressive damage and failure in a variety of elastomeric networks.
However, detailed numerical procedures and associated codes for the
gradient-damage theory for elastomeric materials are seldom published
in the literature. In Molnár and Gravouil (2017) and Kristensen and
Martínez-Pañeda (2020), finite element implementation procedures for
linear elasticity-based phase field framework have been presented,
where they provided user-element (UEL) subroutines in a commercially
available program, Abaqus/Standard for handling the damage degree
of freedom. In Russ et al. (2020) and Mandal et al. (2020), finite
element procedures for the hyperelasticity-based phase field frame-
work have been presented, where these authors did not provide any
source codes. More recently, an open-source program, FEniCS (Al-
næs et al., 2015) has been amenable for the implementation of the
hyperelasticity-based phase field framework in the recent papers by Ku-
mar et al. (2020) and Li and Bouklas (2020), where the Unified Form
Language (UFL) (Alnæs et al., 2014) was utilized to compute the
complicated tangent moduli for the constitutive models and, accord-
ingly, the computational implementation details were not provided.
The main purpose of this paper is therefore to discuss the numerical
details of the finite element implementation of the gradient-damage
theory for failure in elastomeric materials, following recent studies
of the numerical implementations of coupled, multi-physics problems
in soft materials (Chester et al., 2015; Henann et al., 2013; Henann
and Kamrin, 2016). We have implemented the finite element proce-
dures for the gradient-damage theory by writing user-defined element
(UEL) subroutines in Abaqus/Standard, which has been most widely
employed for multi-physics problems coupled with nonlinear elasticity.
The Abaqus UEL subroutines and associated input files for all numerical
examples presented throughout this paper are also available as online
Supplemental Materials to this paper. Accordingly, this work also aims
to enable research communities working on extreme mechanical be-
haviors in elastomeric materials to utilize the new gradient-damage
framework and associated computational procedures. Furthermore, this
work provides a comparative study of gradient-damage theories that
employ (1) entropy-driven or (2) internal energy-driven damage mod-
els. To this end, we present simulation results of extreme deformation
and failure events in synthetic and natural rubbery materials, for which
we make use of our numerical implementations for both entropy-driven
and internal energy-driven damage models and compare them against
experimental data.

The paper is organized as follows. In Section 2, we summarize
the gradient-damage theory in which large elastic deformation is cou-
pled with the evolution of a phase-field damage variable. We then

present the finite element implementation of the gradient-damage the-
ory with two distinct driving forces for damage (entropy- and internal
energy-driven) in significant detail in Section 3. In Section 4, we
show simulation results from examples of various single- and double-
notch elastomeric specimens in order to verify our finite element
implementations for both damage models. Finally, we apply the nu-
merical capabilities with entropy-driven and internal energy-driven
damage models to failure in synthetic and natural rubbery specimens
in Section 5. More details of numerical implementation procedures are
provided in Appendices A–F.

2. Modeling framework for the gradient-damage theory

In this section, we summarize the gradient-damage theory, in which
large elastic deformation is coupled with the evolution of a phase-field
damage variable, following Miehe and Schänzel (2014) and Talamini
et al. (2018). This theoretical framework of large mechanical deforma-
tion coupled with other scalar fields has been extensively employed in
many multi-physics problems (Chester and Anand, 2010; Henann et al.,
2013; Di Leo et al., 2014; Henann and Kamrin, 2016; Konica and Sain,
2021).

2.1. Summary of the nonlocal continuum model

Kinematics and constitutive equations
A motion ' is defined as a one-to-one mapping x = '(X, t) with a

material point X in a fixed undeformed reference and x in a deformed
spatial configuration with deformation gradient F def= )'

)X . Then, we
define the following:

right Cauchy–Green tensor C = FÒF
left Cauchy–Green tensor B = FFÒ

isochoric part of F ÑF = J
*1_3F, J

def= det F
isochoric part of C ÑC = ÑFÒ ÑF = J

*2_3C
isochoric part of B ÑB = ÑF ÑFÒ = J

*2_3B.

(1)

A scalar damage field d À [0, 1] is introduced. This phase-field
variable characterizes an intact state by d = 0 and a fully damaged
state by d = 1. Then, the free energy  R in an undeformed reference
degraded due to damage evolution has the form of

 R = Ç R(F, d,(d)
= Ç 

<
R(F, d) + Ç R,nonlocal((d),

(2)

where (d = )d

)X and Ç 
<
R is the free energy function that will be detailed

in Section 2.2. Also, the nonlocal contribution of the free energy is
defined by

Ç R,nonlocal((d) =
1
2 "

f

Rl
2
(d2 (3)

with the chain scission energy per unit reference volume "fR and the
characteristic length scale l that characterizes an intrinsic length scale
for the damage process. We then define the first Piola stress TR,

TR = 2F
) Ç R
)C (4)

Furthermore, the microscopic stresses, !R and ⇠R, conjugates to d
and (d (Gurtin, 1996; Talamini et al., 2018) are

!R =
) Ç 

<
R

)d
+ !R,diss

⇠R =
) Ç R,nonlocal

)(d = "
f

Rl
2(d

(5)

where the dissipative part of !R can be divided into a rate independent
part and a rate dependent part as follows: !R,diss = ↵ + ⇣R Üd . The rate-
independent part ↵ represents the dissipated chain scission energy per
unit volume during damage evolution, i.e., ↵ = "

f

R.
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Governing equations and boundary conditions
The governing partial differential equations in the undeformed ref-

erence consist of the following:

1. Macroforce balance

DivTR + bR = 0 (6)

with the body force bR in the reference. Here, inertial effects are
neglected.

2. Microforce balance

Div⇠R * !R = 0. (7)

Substituting the constitutive equations in Eq. (5) for the micro-
force balance in Eq. (7), we obtain

⇣R Üd = *
) Ç 

<
R

)d
+ "fRl

2
�d * "fR (8)

where � denotes the referential Laplacian; i.e., �d = Div ((d).

Then, let S' and StR be complementary subsurfaces of the boundary )B
of the body B, i.e., )B = S' ‰StR and S' „StR = …. For a time interval
t À [0, T ], we consider a set of boundary conditions given by
T

' = ä' on S',

TRnR = ätR on StR .
(9)

We also introduce a set of complementary subsurfaces S
d
and S⇠R ,

i.e., )B = S
d
‰ S⇠R and S

d
„ S⇠R = …. We assume that the gradient

of damage is perpendicular to the boundary surface, which implies no
damage flux on the surface (Mao and Anand, 2018b; Russ et al., 2020).
Thus,
T

d = 0 on S
d
,

(d � nR = 0 on S⇠R .
(10)

The initial condition is given as d(X, 0) = 0 in B.

2.2. Entropy- vs. internal energy-driven damage models

In this section, we outline two different damage models which have
been widely accepted for modeling the progressive damage and fracture
in elastomeric materials over the past decade. Specifically, in the two
approaches, a damage process is assumed to be (1) entropy-driven
or (2) internal energy-driven. Entropy-driven damage was initially
proposed for modeling large deformation brittle fracture in elastomers
in Miehe and Schänzel (2014). The degraded free energy function due
to damage has the form of

Ç 
<
R(F, d) = g(d) Ç 0

R(F) (11)

where Ç 0
R is the free energy of the undamaged body. The monotonically

decreasing degradation function g(d) has the following properties:

g
®(d) f 0 with g(0) = 1, g(1) = 0, and g

®(1) = 0. (12)

We employ a simple function g(d) = (1 * d)2 that satisfies the above
properties. Hence, the microforce balance in Eq. (8) can be rewritten
as

⇣R Üd = 2(1 * d) Ç 0
R + "fRl

2
�d * "fR. (13)

To enforce the constraint d À [0, 1] and irreversibility in dam-
age growth ( Üd > 0), a monotonically increasing history function is
introduced (Miehe et al., 2010a; Talamini et al., 2018),1

HR(t) = max
sÀ[0,t]

Í Ç 
0
R(F(s)) * "

f

R_2Î, (14)

1 We have used a history function defined in Miehe et al. (2010a), Miehe
and Schänzel (2014) as,

HR(t) = max
sÀ[0,t]

Ç 
0
R(F(s)),

for the examples with the Gaussian entropy-driven model in Fig. 1, 2 and 5.

where Í�Î are Macaulay brackets, i.e., ÍxÎ =
T

0, x < 0,
x, x g 0.

Then, the

microforce balance in Eq. (13) becomes

⇣R Üd = 2(1 * d)HR * "fR(d * l2�d). (15)

From the classical rubber elasticity with the Gaussian statistics of a
chain network, the undamaged free energy function takes the form of

Ç 
0
R = 3

2 � (
Ñ�
2 * 1) + K

2 (J * 1)2 where Ñ� =
u

1
3 tr

ÑC, (16)

also known as the nearly incompressible neo-Hookean representation.
Here, � is the initial shear modulus (rubbery modulus) and K is the
bulk modulus. The degraded Piola stress due to damage growth is then
given by

TR = (1 * d)2
⌅

�
�

J
*2_3F * Ñ�

2F*Ò� +K(J * 1)JF*Ò⇧
. (17)

Furthermore, with the non-Gaussian statistics of a chain network,
we may employ the nearly incompressible Arruda-Boyce representation
by taking the undamaged free energy function of

Ç 
0
R = Nnk

b
#

LH

Ñ�
˘

n

I

� + ln
0

�

sinh �

1

M

+ K

2 (J * 1)2 with

� = L
*1

H

Ñ�
˘

n

I

(18)

where N is the number of chains per unit volume, n is the number of
Kuhn segments in a chain, k

b
is Boltzmann’s constant, and L

*1 denotes
the inverse of the Langevin function L(x) = coth x * x

*1. The degraded
Piola stress is then given by

TR = (1 * d)2
⌅

Ñ�
�

J
*2_3F * Ñ�

2F*Ò� +K(J * 1)JF*Ò⇧ where

Ñ� = �

3

˘

n

Ñ�
L
*1

H

Ñ�
˘

n

I

. (19)

It should be noted that in these models in which the driving force
for damage is either the Gaussian or non-Gaussian entropic change,
as the damage variable, d, grows, both the deviatoric and volumetric
parts of the Piola stress degrade. The Gaussian entropic elasticity-based
damage model in Eqs. (16) and (17) has been extensively employed for
modeling of failure in synthetic elastomers and biological tissues (Raina
and Miehe, 2016; Kumar et al., 2018; Russ et al., 2020) over the last
decade given that it is relatively straightforward to implement and
computationally efficient for use in finite element solvers. However,
the Gaussian or non-Gaussian entropy-driven damage is not physically
consistent with the argument by Lake and Thomas (1967). According
to their work, rupture is an energetic process resulting from bond-
stretching and scission in a polymer network upon deformation; this
has been well recognized and accepted in the polymer physics and
mechanics communities over the past five decades.

Recently, the argument by Lake and Thomas (1967) has been ex-
tended to describe the energetic process during rupture in an elas-
tomeric network (Mao et al., 2017; Talamini et al., 2018; Mao and
Anand, 2018b,a). In their papers, the model significantly departs from
Miehe and Schänzel’s work, especially with regard to the driving force
for damage. They argued that the evolution of a damage field should
be driven by the internal energy change due to bond-stretching and
scission, reflecting the original idea by Lake and Thomas (1967). Hence,
they introduced the effective bond stretch �

b
= L

t
_L0, where L0 is the

initial Kuhn segment length and L
t
is the current Kuhn segment length,

which is central to their new model. Upon a bond stretch, the degraded
free energy function has the form of

Ç 
<
R(F, �b, d) = g(d) Ç"0R(F, �b) * # Ç⌘R(F, �b) (20)

where Ç"
0
R is the internal energy of the undamaged body and Ç⌘R is

the configurational entropy of the chain network. Employing the same
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degradation function g(d) = (1 * d)2, the microforce balance in Eq. (8)
is rewritten as

⇣R Üd = 2(1 * d)HR * "fR(d * l2�d) (21)

where the history function is defined by

HR(t) = max
sÀ[0,t]

Í Ç"
0
R(F(s), �b(s)) * "

f

R_2Î. (22)

Furthermore, the undamaged internal energy is defined by

Ç"
0
R = 1

2NnEb
�

�
b
* 1

�2 + K

2 (J * 1)2 (23)

where E
b
is the bond-stiffness related to the stretching of Kuhn seg-

ments. Furthermore, as in the Arruda-Boyce model, the configurational
entropy of the chain network is expressed as

Ç⌘R = *Nnk
b

LH

Ñ��
*1
b

˘

n

I

� + ln
0

�

sinh �

1

M

with � = L
*1

H

Ñ��
*1
b

˘

n

I

.

(24)

The degraded free energy function is hence expressed as

Ç 
<
R = (1 * d)2 Ç"0R * # Ç⌘R

= (1 * d)2
⌧1
2NnEb

�

�
b
* 1

�2 + K

2 (J * 1)2
�

+Nnk
b
#

LH

Ñ��
*1
b

˘

n

I

� + ln
0

�

sinh �

1

M

.

(25)

Here, it should be noted that, as the damage grows, only the internal
energy degrades. Moreover, as is well discussed in Mao et al. (2017),
Ñ��

*1
b
can be interpreted as the effective chain stretch due to Kuhn seg-

ment rearrangement that goes toward the intrinsic chain extensibility,
�
L
=
˘

n. Then, the degraded Piola stress in the modified Arruda-Boyce
representation with bond-stretching can be expressed by

TR = Ñ�
�

J
*2_3F * Ñ�

2F*Ò� + (1 * d)2 K(J * 1)JF*Ò where

Ñ� = �

3

˘

n

Ñ��
b

L
*1

H

Ñ��
*1
b

˘

n

I

. (26)

Furthermore, from the thermodynamic argument posited in Talamini
et al. (2018), the bond stretch, �

b
, is determined by solving the follow-

ing implicit equation,

(1 * d)2 E
b
(�
b
* 1) * k

b
#

H

Ñ�
˘

n�
2
b

I

L
*1

H

Ñ��
*1
b

˘

n

I

= 0. (27)

This implicit equation is derived from another microscopic force bal-
ance in which the bond stretch indeed minimizes the free energy,
i.e., ) Ç R

)�b

= 0.
These constitutive models in Eqs. (11)–(27) complete the formula-

tion of boundary value problems on displacement and damage fields
together with the governing partial differential equations in Eqs. (6)–
(10).

3. Finite element implementation

In this section, we present detailed numerical procedures for the
gradient-damage theory described in Section 2. We have implemented
the coupled gradient-damage theory by writing user-defined element
(UEL) subroutines in Abaqus/Standard. The source codes for the UEL
subroutines are provided together with input files as an online supple-
ment to this paper.

3.1. Discretization of weak forms

Neglecting body forces, the strong form for the boundary value
problem of coupled momentum and damage fields consists of the

following:

Balance of momentum
h

n

l

n

j

DivTR = 0 in BR,

' = ä' on S',

TRnR = ätR on StR ,

Balance of microforce for damage

h

n

n

l

n

n

j

⇣R Üd = 2(1 * d)HR

* "fR(d * l2�d) in BR,

d = 0 on S
d
,

(d � nR = 0 on S⇠R .

(28)

The boundary value problem is then rewritten in the following weak
form with two weighting fields w1 and w2 which vanish on S

u
and S

d
,

respectively.

h

n

n

l

n

n

j

 
BR

0

TR :
)w1
)X

1

dvR =
 
StR

�

w1 � ätR
�

daR,

 
BR

4

w2

⇠

⇣R Üd * 2(1 * d)HR + "fRd
⇡

+ "fR l
2
0

)w2
)X � )d

)X

15

dvR = 0.

(29)

The body is approximated by finite elements. The trial solutions for
the displacement and damage fields are interpolated by the nodal
displacements uA and the nodal damage dA via the shape functions NA

with the index A = 1, 2,… denoting the nodes of the element,

u =
…

uANA and d =
…

d
A
N
A
. (30)

In addition, following a standard Galerkin procedure, the weighting (or
test) fields are interpolated by the same shape functions,

w1 =
…

wA1N
A and w2 =

…

wA2N
A
. (31)

Plugging Eqs. (30) and (31) into (29), we obtain the following element-
level equations for each of the finite elements BeR,

h

n

n

n

l

n

n

n

j

 
B
e

R

0

TR
)N

A

)X

1

dvR =
 
S
e

tR

�

N
AätR

�

daR,

 
B
e

R

4

N
A

⇠

⇣R Üd * 2(1 * d)HR + "fRd
⇡

+ "fR l
2
0

)N
A

)X � )d
)X

15

dvR = 0.

(32)

The discretized, element-level equations are solved by a Newton-type
iteration procedure, which requires residuals and tangents. First, we
define the following element-level residuals for the displacement and
damage fields. Using index notation, the residuals are expressed as

h

n

n

l

n

n

j

�

R
u
i

�A = *
 
B
e

R

�

TR
�

ij

)N
A

)X
j

dvR +
 
S
e

tR

�

N
AätR,i

�

daR,

�

R
d

�A = *
 
B
e

R

4

N
A

⇠

⇣R Üd * 2(1 * d)HR + "fRd
⇡

+ "fR l
2
0

)N
A

)X
j

)d

)X
j

15

dvR.

(33)

Furthermore, tangents for the iterative Newton solution procedure are
obtained as

KAB

uu = *
)RAu
)uB

, KAB

ud = *
)RAu
)dB

,

KAB

du = *
)R

A

d

)uB
, K

AB

dd
= *

)R
A

d

)dB
.

(34)

Using index notation, we have the following tangents KAB

uu and KAB

dd
,

h

n

n

l

n

n

j

K
AB

uiuk
=
 
B
e

R

)N
A

)X
j

0

)T
R,ij

)F
kl

1

)N
B

)X
l

dvR *
 
S
e

tR

N
A
N

B
)ätR,i

)u
k

daR,

K
AB

dd
=
 
B
e

R

4

N
A

0

⇣R
) Üd

)d
+ 2HR + "fR

1

N
B + )N

A

)X
j

⇠

"
f

Rl
2
⇡

)N
B

)X
j

5

dvR

(35)

where ) Üd

)d
= 1

�t
with a time step of �t. The tangent modulus )TR,ij

)Fkl

central
to the linearization process in the nonlinear finite element procedures
for both damaged or undamaged hyperelastic materials is detailed in
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Section 3.3. Specifically, the tangent moduli for damaged neo-Hookean
as well as damaged Arruda-Boyce representations with bond-stretching
are discussed in significant detail.

Furthermore, we provide the corresponding finite-element proce-
dures for the gradient-damage theory in the spatial configuration for
completeness. From the principles of virtual power, the governing
partial differential equations in the deformed spatial configuration are
given as shown below.

1. Macroforce balance

divT + b = 0 (36)

with the Cauchy stress T = J
*1TRFÒ and body force b in the

deformed configuration.
2. Microforce balance

div⇠ * ! = 0 (37)

where the microscopic stresses, ! and ⇠, conjugates to d and
grad d, are defined by

! = J
*1 ) Ç R

)d
+ "f + ⇣ Üd,

⇠ = J
*1 ) Ç R
) grad d ,

(38)

i.e., ! = J
*1
!R and ⇠ = J

*1F⇠R with the chain scission energy
per unit volume "f = J

*1
"
f

R and the kinetic modulus ⇣ = J
*1
⇣R,

where J = detF is the volume change. Then, the microforce
balance in Eq. (37) can be rewritten as

⇣ Üd * 2(1 * d)H + "f d * div⇠ = 0. (39)

where the spatial history function H = J
*1
HR according to the

definition in Eq. (14).

The strong form expressed in the deformed body B is then given by,

Balance of momentum
h

n

l

n

j

divT = 0 in B,

u = äu on Su,

Tn = ät on St ,

Balance of microforce for damage

h

n

n

l

n

n

j

⇣ Üd * 2(1 * d)H
+"f d * div⇠ = 0 in B,

d = 0 on S
d
,

grad d � n = 0 on S⇠ .

(40)

The boundary value problem is then rewritten in the following weak
form with two weighting fields w1 and w2 which vanish on S

u
and S

d
,

respectively:

h

n

n

l

n

n

j

 
B

0

T :
)w1
)x

1

dv =
 
St

�

w1 � ät
�

da,

 
B

4

w2
�

⇣ Üd * 2(1 * d)H + "f d
�

+
)w2
)x � ⇠

5

dv = 0.

(41)

Then, the spatial forms of the residuals are expressed as

h

n

n

l

n

n

j

⇠

R
ui

⇡A

= *
 
Be

T
ij

)N
A

)x
j

dv +
 
S
e

t

�

N
Aät
i

�

da,

�

R
d

�A = *
 
Be

4

N
A
�

⇣ Üd * 2(1 * d)H + "f d
�

+ "f l2F
mj
F
nj

0

)N
A

)x
m

)d

)x
n

15

dv,

(42)

where ⇠
m

= J
*1 ) Ç R

)(grad d)m
= "

f
l
2
F
mj
F
nj

)d

)xn

was used. Finally, the
corresponding tangents in the spatial configuration are given by
h

n

n

l

n

n

j

K
AB

uiuk
=
 
Be

)N
A

)x
j

�

A
ijkl

� )N
B

)x
l

dv *
 
S
e

t

N
A
N
B
)ät
i

)u
k

da,

K
AB

dd
=
 
Be

4

N
A

0

⇣
) Üd

)d
+ 2H + "f

1

N
B + )N

A

)x
m

�

"
f
l
2
F
mj
F
nj

� )N
B

)x
n

5

dv,

(43)

where the spatial tangent modulus, A
ijkl

= F
ln

)Tij

)Fkn

= J
*1
F
jm
F
ln

)TR,im
)Fkn

.
The referential and spatial tangent moduli are further discussed in
Section 3.3.

We have implemented both of the referential and spatial finite
element formulations and confirmed that these two formulations gave
exactly the same residuals and tangents. For brevity, we will focus on
numerical procedures in the referential formulation for the rest of this
paper. Moreover, we have developed four-noded isoparametric quadri-
lateral plane-strain and plane-stress elements as well as an eight-noded
three-dimensional element. Especially for the plane-strain and the 3D
elements, we have utilized the F-bar method (de Souza Neto et al.,
1996) in order to avoid locking-related issues. Details of the procedure
for implementing the F-bar method are provided in Appendix B. Fur-
thermore, a detailed solution procedure for the plane-stress condition
(imposing zero-stress conditions at the element level) is discussed in
Section 3.4.

3.2. Numerical solution procedure

In this section, we outline numerical solution procedures of the
coupled deformation-phase-field equations. The overall framework for
the solution procedure is also summarized in Box 1.

Firstly, we summarize state variables in the numerical solution
procedure, i.e.,

• Given as initial guesses: {u
n+1, dn+1} at time tn+1

• Known: {F
n
, d
n
,HR,n} at time tn

• Calculate: {TR,n+1,HR,n+1,Ru,Rd ,Kuu,Kdd} at time tn+1

To decouple the deformation-phase-field equations in our solution pro-
cedure, first we determine the current history function HR,n+1 using the
previous deformation gradient F

n
at time t

n
(Miehe et al., 2010a), i.e.,

HR,n+1(Fn) =
T

Í Ç 
0
R(Fn) * "

f

R_2Î for Í Ç 
0
R(Fn) * "

f

R_2Î > HR,n
HR,n otherwise

(44)

for the entropy-driven damage model, and

HR,n+1(Fn) =
T

Í Ç"
0
R(F(s), �b(s)) * "

f

R_2Î for Í Ç"
0
R(Fn, �b,n) * "

f

R_2Î > HR,n

HR,n otherwise

(45)

for the internal energy-driven damage model. In contrast, for fully
coupled, monolithic solution procedures, this is computed using the
current deformation gradient F

n+1 in the governing equation for the
damage field (Miehe et al., 2010b; Reinoso et al., 2017). Then, the
residuals are computed by
⇠

R
ui

⇡A

= *
 
B
e

R

�

TR(Fn+1, dn+1)
�

ij

)N
A

)X
j

dvR +
 
S
e

tR

�

N
AätR,i

�

daR,

�

R
d

�A = *
 
B
e

R

⌧

N
A

⇠

⇣R Üd * 2(1 * d
n+1)HR,n+1(Fn) + "

f

Rdn+1

⇡

+"fR l
2
0

)N
A

)X
j

)d

)X
j

15

dvR.

(46)

It should be noted that the displacement and damage fields are cal-
culated simultaneously at each time increment in Abaqus/Standard.
However, the equation systems are weakly decoupled by the current
history function computed via F

n
. In our solution procedure, we made

use of an analysis step *COUPLED TEMPERATURE-DISPLACEMENT
provided in Abaqus/Standard by which the damage field is treated as
the scalar temperature field. We then solved (1) the momentum equa-
tion and (2) the damage equation separately using an iterative Newton
method by declaring *SOLUTION TECHNIQUE, TYPE=SEPARATED
in the Abaqus input files. This solution procedure we have employed
slightly underestimates the rate of the damage evolution compared to
fully coupled solution procedures. However, we have confirmed that
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the simulation results using our solution procedure are nearly identical
to those with the fully coupled procedure when the time increment is
sufficiently small.

Remark. Our solution procedure implemented in Abaqus/Standard is
slightly different from the original ‘‘staggered’’ scheme for this cou-
pled deformation-phase-field theory presented by Miehe and cowork-
ers (Miehe et al., 2010a; Hofacker and Miehe, 2012; Miehe and
Schänzel, 2014; Miehe et al., 2015). In their papers, the phase-field d

n+1
is calculated by solving the minimization problem of the crack topology
using the previous displacement field u

n
, i.e.,

d
n+1 = arg inf

d

<

 
BR

⌅

⇣ (d
n+1 * dn)2 * (1 * d

n+1)2 H(u
n
)

+"fR

0

1
2d

2
n+1 +

l
2

2 (d2
15

dv

=

.

The displacement field un+1 is then calculated using the current dn+1
obtained from the previous linear problem,

u
n+1 = arg inf

u

<

 
BR

⌅

 R(Fn+1, dn+1) * b � u
n+1

⇧

dv

=

.

Box 1. Numerical solution procedure

1. Initialize the displacement u(0)
n+1 and damage field d

(0)
n+1

at time t
n+1 obtained from extrapolation. The variables

{F
n
, d
n
,HR,n} at time tn are also given

2. Compute the history function H
(i)
R,n+1

3. Calculate the first Piola stress T(i)
R,n+1, tangent

modulus
�

)TR_)F
�(i)
n+1, and internal variables

4. Calculate the residuals Ru,Rd and tangents Kuu,Kdd
5. Check the residuals Ru, Rd  < tolerance ô Go to 8
6. Update u(i+1)

n+1 = u(i)
n+1 + �u and d

(i+1)
n+1 = d

(i)
n+1 + �d

7. i = i + 1 ô Go to 2
8. Update the displacement u

n+1 and damage field dn+1 at
time t

n+1

3.3. Updating stress, tangent and internal variables

Here, we include the details of computing stresses, tangent moduli
and internal variables for both entropy- and internal energy-driven
damage models.

3.3.1. Entropy-driven damage model: Gaussian and non-gaussian entropic
elasticity

The first Piola stress for the nearly incompressible neo-Hookean
representation at time t

n+1 is

TR,n+1 =
⌅

(1 * d
n+1)2 + k

⇧

⌧

�

⇠

J
*2_3
n+1 F

n+1 * Ñ�
2
n+1F

*Ò
n+1

⇡

+K(J
n+1 * 1)J

n+1F*Ò
n+1

�

.

(47)

It should be noted that the degradation function is modified as g(d) =
(1*d)2+k with k ˘ 10*4 in order to avoid computational difficulty when
the damage field d approaches 1. Moreover, the referential tangent
modulus )TR

)F is expressed as

)
�

TR
�

ij

)F
kl

=
⌅

(1 * d)2 + k
⇧

4

�

<

J
*2_3

�
ik
�
jl

* 2
3J

*2_3
F

*Ò
kl
F
ij

* 2 Ñ� ) Ñ�

)F
kl

F
*Ò
ij

+ Ñ�
2
F

*1
li
F

*1
jk

=

+K
$

(2J * 1)JF*Ò
kl
F

*Ò
ij

* (J * 1)JF*1
li
F

*1
jk

%

5

(48)

using the identities

⇠

)F
)F

⇡

ijkl

= �
ik
�
jl
,

0

)F*Ò

)F

1

ijkl

= *F*1
li
F

*1
jk

, and
⇠

)J

)F
⇡

kl

= JF
*Ò
kl

,

(49)

and
0

) Ñ�

)F

1

kl

= 1
3 Ñ�

�

J
*2_3

F
kl
* Ñ�

2
F

*Ò
kl

�

. (50)

Furthermore, the first Piola stress for the nearly incompressible
Arruda-Boyce representation at time t

n+1 is

TR,n+1 =
⌅

(1 * d
n+1)2 + k

⇧

⌧

Ñ�

⇠

J
*2_3
n+1 F

n+1 * Ñ�
2
n+1F

*Ò
n+1

⇡

+K(J
n+1 * 1)J

n+1F*Ò
n+1

�

(51)

where Ñ� = �

3

˘

n

Ñ�n+1
L
*1

0

Ñ�n+1
˘

n

1

. Moreover, the referential tangent modu-

lus )TR
)F is expressed as

)
�

TR
�

ij

)F
kl

=
⌅

(1 * d)2 + k
⇧

ù
L

Ñ�

0

J
*2_3

�
ik
�
jl
* 2

3J
*2_3

F
*Ò
kl
F
ij
* 2 Ñ� ) Ñ�

)F
kl

F
*Ò
ij

+ Ñ�
2
F

*1
li
F

*1
jk

1

+ ) Ñ�

)F
kl

⇠

J
*2_3

F
ij
* Ñ�

2
F

*Ò
ij

⇡

+ K

$

(2J * 1)JF *Ò
kl
F

*Ò
ij

* (J * 1)JF *1
li
F

*1
jk

%

M

(52)

where
) Ñ�

)F
kl

= * Ñ� Ñ�*1
0

1 * r

�

)�

)r

1

with r =
Ñ�

˘

n

and � = L
*1(r). (53)

3.3.2. Internal energy-driven damage model
The bond stretch �

b
is computed by solving the following implicit

equation at each integration point,
⌅

(1 * d
n+1)2 + k

⇧

E
b
(�
b,n+1 * 1)

* k
b
#

H

Ñ�
n+1

˘

n
�

�
b,n+1

�2

I

L
*1

H

Ñ�
n+1

�

�
b,n+1

�*1

˘

n

I

= 0. (54)

As the damage variable d approaches 1, finding the bond stretch is
very difficult since it grows extremely rapidly together with the damage
variable; the implicit equation becomes extremely stiff near d ô 1.
In order to resolve this numerical issue, we have employed the rtsafe
algorithm, for which a Newton iteration is combined with a bisection
method, as detailed in Press et al. (2007).

Remark. An approximate solution for the bond stretch �
b
was pro-

vided in Li and Bouklas (2020) by approximating the inverse Langevin
function as L

*1 ˘ 1
sign(x)*x if 0.84136 f x < 1 to avoid the iterative

procedure at the Gauss point level.

The first Piola stress for the nearly incompressible modified Arruda-
Boyce model with bond-stretching is

TR,n+1 = Ñ�

⇠

J
*2_3
n+1 F

n+1 * Ñ�
2
n+1F

*Ò
n+1

⇡

+
⌅

(1 * d
n+1)2 + k

⇧

K(J
n+1 * 1)J

n+1F*Ò
n+1

(55)

where Ñ� = �

3

˘

n

Ñ�n+1�b,n+1
L
*1

0

Ñ�n+1
�b,n+1

˘

n

1

. Then, the referential tangent

modulus, )TR
)F is

)
�

TR
�

ij

)F
kl

Û

Û

Û

Ûd

=
)
�

TR
�

ij

)F
kl

Û

Û

Û

Û�b ,d

+
)
�

TR
�

ij

)�
b

Û

Û

Û

ÛF,d

)�
b

)F
kl

Û

Û

Û

Ûd

. (56)
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The first term
)(TR)ij
)Fkl

is identical to Eq. (52) by replacing r =
Ñ��

*1
b

˘

n
. Then,

the second term is expressed as

)
�

TR
�

ij

)�
b

Û

Û

Û

ÛF,d
= ) Ñ�

)�
b

⇠

J
*2_3

F
ij
* Ñ�

2
F

*Ò
ij

⇡

where ) Ñ�

)�
b

= * Ñ� Ñ�*1
b

0

1 + r

�

)�

)r

1

(57)

and
)�

b

)F
kl

Û

Û

Û

Ûd

= *B*1
A
kl
. (58)

Finally, we obtain A
kl
dF

kl
+ Bd�

b
+ Cdd = 0 by taking derivatives on

the implicit equation for the bond stretch �
b
from Eq. (54). Then,

A
kl

= *
0

� + r )�
)r

1

)r

) Ñ�

) Ñ�

)F
kl

,

B =
⌅

(1 * d)2 + k
⇧ E

b

k
b
#
(2�

b
* 1) *

0

� + r )�
)r

1

)r

)�
b

,

C = *2(1 * d)
E
b

k
b
#
(�
b
* 1)�

b
.

(59)

For verification of the analytical tangent modulus, we compared sim-
ulation results of some deformation experiments against those with a
numerical tangent modulus in Appendix C.

3.4. Imposing a plane-stress condition

Here, we outline a simple procedure for imposing a plane-stress
condition, i.e., TR,n+1(3, 3) = 0. In the two-dimensional analysis in-
volving both plane-strain and plane-stress situations, the components
of a stress tensor and a deformation gradient should be reduced to
in-plane components, i.e., T<

R = (TR,11, TR,21, TR,12, TR,22)Ò and F< =
(F11, F21, F12, F22)Ò, respectively. Specifically, the algorithms described
in Klinkel and Govindjee (2002) are employed to enforce the plane-
stress condition, TR,n+1(3, 3) = 0, by which the unknown out-of-plane
component F

n+1(3, 3) is determined. The algorithm for determining the
unknown F

n+1(3, 3) is summarized in Algorithm 1.

Algorithm 1 Plane-stress algorithm

1: Initialize F 0
n+1(3, 3) = F

n
(3, 3)

2: Calculate stress TiR,n+1
⇠

Fi
n+1

⇡

and tangent )TiR,n+1_)F
i

n+1
3: Check stress T iR,n+1(3, 3) < tolerance ô Go to 6
4: Update F

i+1
n+1(3, 3) = F

i

n+1(3, 3) + �F
i

n+1 where �F
i

n+1 =

*
T
i

R,n+1(3, 3)

)T
i

R,n+1_)F
i

n+1(3, 3, 3, 3)
5: i = i + 1 ô Go to 2

6: Update the deformation gradient F
n+1(3, 3) = F

i

n+1(3, 3)

After the solution procedure for the unknown F
n+1(3, 3), the referen-

tial tangent modulus required in the global Newton iteration procedure
is replaced for the plane-stress situation via the static condensation, as
shown below.
b

f

f

f

f

f

d

dTR,11
dTR,21
dTR,12
dTR,22
dTR,33

c

g

g

g

g

g

e

=

b

f

f

f

f

d

A11 A12

A21 A22

c

g

g

g

g

e

b

f

f

f

f

f

d

dF11
dF21
dF12
dF22
dF33

c

g

g

g

g

g

e

. (60)

Let dT<
R = (dTR,11, dTR,21, dTR,12, dTR,22)Ò and dF< = (dF11, dF21,

dF12, dF22)Ò. Since dTR,33 = 0, we have

dF33 = *A*1
22A21dF<

. (61)

The plane-stress tangent modulus is then obtained by

dT<
R = ApsdF< where Aps = A11 * A12A*1

22A21. (62)

The plane-stress algorithm for the internal energy-driven (Arruda-
Boyce with no bond-stretching) model is verified through the
deformation-only problems in Appendix D, in which we compare results
of inhomogeneous deformation fields in notched specimens under
Mode-I tension from our UEL implementation against corresponding
results obtained from the built-in material models and the plane-stress
elements provided in Abaqus/Standard.

4. Verification of implementation

In this section, we verify our numerical implementation of the
gradient-damage theory with two driving forces for damage by simu-
lating several important benchmark problems in various settings given
in Miehe and Schänzel (2014) and Talamini et al. (2018). Specifically,
we consider the following examples:

• Penny-shaped specimen in a plane strain condition
• Single-edge-notched specimen in a plane stress condition
• Double-edge-notched specimen in both plane strain and plane
stress conditions

4.1. Penny-shaped specimen in tension

First, we have simulated the fracture response of a penny-shaped
specimen precracked in its center under plane-strain tension, as illus-
trated in Miehe and Schänzel (2014). Here, the Gaussian entropy-driven
damage model with a compressible neo-Hookean representation was
employed.2 Fig. 1 displays the simulation results with three different
mesh densities with h = 0.5 ù 10*3, 1 ù 10*3, and 2 ù 10*3 mm near
the crack propagation zone. The material parameters used in this set of
simulations are given in Table 1.

As shown in Fig. 1(a) and (b), the overall responses in the force–
displacement curves in our numerical simulations match those in Miehe
and Schänzel (2014) well. Furthermore, the simulation results con-
verged with the finest mesh density. However, crack propagation in
our simulations was found to be slightly faster than that in Miehe
and Schänzel (2014). This discrepancy presumably stems from the
difference in the solution procedures used in our work and in Miehe
and Schänzel (2014). As described in Section 3.2, we updated the
displacement u

n+1 and the damage dn+1 simultaneously for each time
increment while the history function H

n+1 was computed with the
previous displacement u

n
. However, in their original staggered scheme,

the damage d
n+1 was initially determined from the microforce balance

using the previous displacement u
n
. The displacement field u

n+1 was
then updated in Miehe and Schänzel (2014). Further, Fig. 2 shows
the sequential, deformed configurations of the penny-shaped specimen
displayed together with the damage contour. Elements with an average
value of d > 0.95 are removed in the plots. The damage field began to
develop near the initial crack. Then, as nicely depicted in our numerical
simulations, the crack propagated throughout the specimen until the
specimen finally separated into two parts.
Table 1
Material parameters used in penny-shaped specimens in plane-stress tension.

� [MPa] ⌫ "
f

R [MPa] l [mm] ⇣ [MPa s]

5 0.45 240 0.01 0.001

4.2. Flaw-sensitivity in single-edge-notched specimen

Next, we present our simulation results for single-edge-notched
specimens in plane-stress Mode-I loading illustrated in Talamini et al.

2 The free energy function is expressed as Ç 0(F) = �

2 [tr(FF
Ò) * 3] +

�

�
[(detF)*� * 1], where � = 2⌫_1 * 2⌫ with the Poisson’s ratio ⌫ = 0.45.



International Journal of Solids and Structures 279 (2023) 112309

8

J. Lee et al.

Fig. 1. Force vs. displacement curves in a penny-shaped specimen in plane-strain tension with different mesh sizes of h = 0.5 ù 10*3 , 1 ù 10*3 , and 2 ù 10*3 mm (a) in Miehe and
Schänzel (2014) and (b) in this work.

Fig. 2. Deformed configurations of the penny-shaped specimen plotted together with contours of the damage field. Elements are removed from the plots when the damage d > 0.95.
(See Video S1 in the Supplemental Material).

(2018), where they considered a series of single-edge-notched speci-
mens with geometrical similarities for the notch lengths
a = {0.5, 1, 5, 10} �m, the specimen width was W = 10a and the
specimen height was H = 40a. Moreover, a fixed notch-root radius
R = 1�m was given for all cases. The material parameters used in
our simulations are given in Table 2. In Fig. 3, the normal stress–
stretch curves with different notch lengths of a_l = {0.5, 1, 5, 10}
are given (the characteristic length l = 1 �m is fixed). Here, the
internal energy-driven damage evolution model was employed to-
gether with a modified Arruda-Boyce representation with the bond
stretch described in Section 2.2.3 Our simulation results nicely matched
those presented in Talamini et al. (2018). Furthermore, interestingly,
as the notch length (or the specimen size) decreased, the rupture
stretch significantly increased due to the nonlocal characteristic in the
gradient-damage theory; i.e., the size-dependent fracture behavior in
this highly stretchable elastomeric materials (strained up to Ì 300%)
is reasonably described in the gradient-damage theory.

Fig. 4 shows the deformed specimen together with the damage vari-
able, d, from our simulation. Our simulation reproduced very well the
detailed fracture process from the blunted notch (ii), damage initiation
(iii), and progressive rupturing (iv, v) to the final failed configuration.
More interestingly, with the internal energy-driven damage model
(modified Arruda-Boyce with bond-stretching), the simulation results
clearly show substantially stiffened behavior just before fracture (or the
sudden drop in the stress–stretch curves), as evidenced in all specimen
sizes displayed in Fig. 3.

3 We used the *Stabilize option in Abaqus to stabilize the solution
procedure when the damage was fully developed. See the input files for detail.

Table 2
Material parameters used in the single-edge-notched specimens.

� [MPa] K [MPa] N ÑE
b
= NnE

b
[MPa] "

f

R [MPa] l [�m] ⇣ [MPa s]

0.25 625 4 500 50 1 50

Fig. 3. Nominal stress vs. stretch curves of single-edge-notched specimens in plane-
stress tension with a_l = {0.5, 1, 5, 10} in Talamini et al. (2018) (black solid lines) and
this work (blue dashed lines); Gray lines: local response in a homogeneous deformation
state without notch.
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Fig. 4. Progressive damage in deformed configurations of a single-edge-notched
specimen for the case of a_l = 1. Elements with d > 0.95 are removed from the plots.
(See Video S2 in the Supplemental Material).

4.3. Double-edge-notched specimen in tension

As a last benchmark problem, we consider double-edge-notched
specimens under Model-I tensile loading as illustrated both in Miehe
and Schänzel (2014) and Talamini et al. (2018). In their papers,
the fracture in a styrene butadiene elastomer (Hocine et al., 2002)
was reproduced in numerical simulations under a plane strain con-
dition (Miehe and Schänzel, 2014) and under a plane stress condi-
tion (Talamini et al., 2018). Here, we numerically simulate fracture
in double-edge-notched specimens with a wide range of notch lengths.

Figs. 5 and 6 show our numerical simulation results of a series
of double-edge-notched specimens with various notch lengths of a =
{12, 16, 20, 24, 28} mm under plane-strain tension and plane-stress ten-
sion, respectively. The specimen size was fixed at 80 mm (width) ù
200 mm (height) with a specimen depth of 3 mm and a notch-root
radius of 0.5 mm. While the Gaussian entropy-driven damage model
was used in the plane-strain cases (Fig. 5), the internal energy-driven
damage model was used in the plane-stress cases (Fig. 6). Moreover,
the material parameters used in these simulations are given in Tables 3
and 4.

As shown in the force displacement curves, our numerical simu-
lations matched very nicely those presented in Miehe and Schänzel
(2014) and in Talamini et al. (2018). Furthermore, with both of the
entropy- and internal energy-driven mechanisms, it was clearly ob-
served that the initial stiffness as well as the final rupture stretch
decreased as the notch length increased. It should also be noted that
the overall features during fracture predicted by the Gaussian entropy-
driven mechanism were found to be very similar to those with the
internal energy-driven mechanism. In the internal energy-driven model,
the limiting chain extensibility �

L
was taken to be �

L
=

˘

1000.
The large value of the number of effective chain segments, n, in the
Arruda-Boyce model approached the neo-Hookean response with no
locking behavior, i.e., in all cases presented in Figs. 5 and 6, just
before fracture, no marked stiffening behavior was observed. Finally,
Fig. 7 shows sequential images of the stretched specimen with the
notch length of a = 12 mm under plane-stress tension (Fig. 6). The
numerical simulation clearly displays the entire fracture process from
crack opening, progressive rupturing to the final failure.

Fig. 5. Force vs. displacement curves of double-edge-notched specimens with increased
notch lengths of a = {12, 16, 20, 24, 28} mm with the entropy-driven damage model.

Table 3
Material parameters used in the double-edge-notched specimens in Fig. 5.

� [MPa] ⌫ "
f

R [MPa] l [mm] ⇣ [MPa s]

0.203 0.45 2.67 1 0.001

Fig. 6. Force vs. displacement curves of double-edge-notched specimens with increased
notch lengths of a = {12, 16, 20, 24, 28} mm with the internal energy-driven damage
model.

Table 4
Material parameters used in the double-edge-notched specimens in Fig. 6.

� [MPa] K [MPa] N ÑE
b
[MPa] "

f

R [MPa] l [mm] ⇣ [MPa s]

0.268 2.68 1000 15 0.47 1 0.01

5. Entropy- and internal energy-driven damage models: A compar-
ative study

This section provides a comparative study of the entropy- and inter-
nal energy-driven damage models described in Sections 2 and 3.4 First,

4 We have used a history function defined in Eq. (14) throughout all exam-
ples for (both Gaussian and non-Gaussian) entropy- or internal energy-driven
damage models presented in Section 5.
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Fig. 7. Progressive damage in deformed configurations of a double-edge-notched specimen for the case of a = 12 mm under plane-stress tension. Elements with d > 0.95 are
removed from the plots. (See Video S3 in the Supplemental Material).

Fig. 8(a) shows the stress–strain curves of local responses of a hyper-
elastic specimen simulated with (1) Gaussian entropy-driven damage
model (neo-Hookean), (2) non-Gaussian entropy-driven damage model
(Arruda-Boyce) and (3) internal energy-driven damage model (mod-
ified Arruda-Boyce with bond-stretching). All of these local damage
responses (dashed lines) are compared against their corresponding
deformation-only cases (solid lines) without any damage. The material
parameters used in the simulations are listed in Table 5. Furthermore,
no initial notch was introduced in the specimen in order to exclude the
nonlocal, size-effect. The initial elastic responses are almost identical
in all stress–stretch curves from the models with or without dam-
age. As the deformation approaches the limiting chain extensibility
(
˘

N =
˘

4), both of the non-Gaussian entropy-driven damage model
(Arruda-Boyce) and internal energy-driven damage model (modified
Arruda-Boyce with bond-stretching) exhibit the significant hardening
behavior due to the locking of chain networks. However, in the internal
energy-driven damage model, the hardening behavior is observed at
a larger stretch since the effective ‘‘entropic’’ stretch, Ñ��

*1
b
, grows

slower towards the limiting chain extensibility as the ‘‘energetic’’ bond
stretch increases before failure. Accordingly, stress degradation due to
damage growth is delayed with the same chain scission energy, "fR.
Furthermore, as expected, the Gaussian entropy-driven damage model
never exhibits any hardening behavior, as shown in Fig. 8(b).

Table 5
Material parameters used in simulations of homogeneous deformation with or without
damage.

� [MPa] K [MPa] N ÑE
b
[MPa] "

f

R [MPa]

Deformation-only (Non-Gaussian) 0.25 625 4 N/A N/A
Non-Gaussian entropy-driven 0.25 625 4 N/A 6
Internal energy-driven 0.25 625 4 500 6
Deformation-only (Gaussian) 0.25 625 N/A N/A N/A
Gaussian entropy-driven 0.25 625 N/A N/A 6

N/A: Not applicable.

Next, in Fig. 9, we compare the numerically simulated stress–
stretch-failure curves with the three different hyperelasticity-based
damage theories against experimental data in a synthetic elastomeric
material, poly(methyl-acrylate) (PMA) reported in Slootman et al.
(2022). In their experiment, it should be noted that final fracture
in the PMA elastomer occurs without any dramatic hardening be-
havior. With the material parameters listed in Table 6, all of the
three numerical simulations with (1) Gaussian entropy-driven damage
model (neo-Hookean), (2) non-Gaussian entropy-driven damage model
(Arruda-Boyce) and (3) internal energy-driven damage model (mod-
ified Arruda-Boyce with bond-stretching) nicely capture the overall
stress–stretch-failure behavior experimentally observed. First, it is not

Fig. 8. Comparison of nominal stress–stretch curves in homogeneous local responses with or without damage. Here, the solid lines represent responses without any damage
(deformation only) and the dashed lines represent responses with damage evolution.
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Table 6
Material parameters used in simulations of a PMA specimen in tension.

� [MPa] K [MPa] N ÑE
b
[MPa] "

f

R [MPa] l [mm] ⇣ [MPa s]

Non-Gaussian entropy-driven 0.32 300 50 N/A 3.2 0.5 0.01
Internal energy-driven 0.4 300 50 15 0.54 0.5 0.01
Gaussian entropy-driven 0.32 300 N/A N/A 2.3 0.5 0.01

N/A: Not applicable.

Fig. 9. Nominal stress vs. stretch curves of a PMA specimen in tension. Here, the solid
line represents experimental data and the dashed lines represent simulation results with
the Gaussian entropy-driven damage model (gray dashed line), non-Gaussian entropy-
driven damage model (red dashed line) and internal energy-driven damage model (blue
dashed line).

very surprising that there is no significant difference between the
responses with the two Gaussian (black dashed line) and non-Gaussian
(red dashed line) entropy-driven damage models since the limiting
chain extensibility in the Arruda-Boyce representation was taken to
be very large. Furthermore, the numerically simulated stress–stretch-
failure behavior with the non-Gaussian entropy-driven damage model
(red dashed line) is very similar to that with the internal energy-driven
damage model (blue dashed line). This supports that, just before the
final fracture, the bond-stretch in the modified Arruda-Boyce represen-
tation does not evolve significantly. This is quite reasonable since the
final fracture in this material occurs at a moderate stretch much smaller
than the locking stretch. However, "fR in the internal energy-driven
damage model had to be much smaller than that in the non-Gaussian
entropy-driven damage model in order to fit the experimental data.5
This clearly supports that only the internal energy part out of the total
free energy contributes ‘‘effectively’’ to failure in the elastomer network
in the internal energy-driven damage model with the modified Arruda-
Boyce representation with bond-stretching. This example clearly shows
that, even when final failure occurs at a moderate stretch much smaller
than the locking stretch, the internal energy-driven damage model with
the key idea by Lake and Thomas still can provide a more realistic
‘‘physical’’ picture for failure in an elastomer network.

We then examine the simulation capabilities of the hyperelasticity-
based damage theories for extreme stretch and failure in a natural
rubbery material recently reported in Yu et al. (2020). They performed
experiments on rubbery single-edge-notched specimens under mode-I
tensile loading. The specimen width was 5 mm with a precrack length

5 It should be noted that, in the microforce balance presented in Sections 2
and 3, the damage variable evolves when the entropic free energy is greater
than "fR in the entropy-driven damage model while it evolves when the internal
energy due to bond-stretching is greater than "fR in the internal energy-driven
damage model.

of 1 mm. Moreover, the specimen height was 25 mm and the notch-root
radius was 0.01 mm. The material parameters used in the numerical
simulations with the three distinct driving forces for damage are listed
in Table 7.

Fig. 10 shows the nominal stress-nominal strain curves of the nat-
ural rubbery specimen under large stretching in the experiments and
numerical simulations. As shown in the experimental data (black solid
line), final fracture occurs at a very large strain of Ì 7.3 (Ì 730%
stretched). In the initial stage of tensile loading (up to a nominal strain
of 2.0; Ì 200% stretched), the three simulation results with Gaus-
sian entropy-driven, non-Gaussian entropy-driven and internal energy-
driven damage models are all in good agreement with the experimental
stress–strain curve. Beyond an imposed tensile strain of 2.0, the dra-
matic hardening behavior observed in the experiment is captured by
both of the non-Gaussian entropy-driven damage model (Arruda-Boyce)
and internal energy-driven damage model (modified Arruda-Boyce with
bond-stretching). The Gaussian entropy-driven damage model cannot
describe the significant stress-upturn just before the specimen loses its
load-bearing capacity. Additionally, the non-Gaussian entropy-driven
damage model was unable to converge near total failure of the re-
maining ligament (see the red dashed stress–strain curve in Fig. 10).
This may be attributed to all the free energy stored in the undamaged
regions being released with no remaining contribution to constitutive
behavior to receive. Furthermore, the extremely stiff, singular behav-
ior near the limiting chain extensibility may lead to the additional
convergence issue in the Arruda-Boyce model with no bond-stretching.

Notably, as demonstrated through the numerical simulations in the
benchmark examples of the penny-shaped specimen and the double-
edge-notched specimen in Section 4, as well as in the new example of
the PMA elastomer in Fig. 9, both of the Gaussian entropy-driven and
the non-Gaussian entropy-driven damage model with the very large
locking stretch demonstrate an ability not only to capture the initial
elastic response but also to predict the final fracture in elastomeric

Fig. 10. Nominal stress vs. strain curves of a natural rubbery specimen in tension. Here,
the solid line represents experimental data and the dashed lines represent simulation
results with the Gaussian entropy-driven damage model (gray dashed line), non-
Gaussian entropy-driven damage model (red dashed line) and internal energy-driven
damage model (blue dashed line). (See Video S4 in the Supplemental Material).
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Table 7
Material parameters used in simulations of a natural rubbery specimen in tension.

� [MPa] K [MPa] N ÑE
b
[MPa] "

f

R [MPa] l [mm] ⇣ [MPa s]

Non-Gaussian entropy-driven 0.38 350 22 N/A 70 0.5 50
Internal energy-driven 0.29 350 15 750 220 0.5 50
Gaussian entropy-driven 0.35 350 N/A N/A 220 0.5 50

N/A: Not applicable.

Fig. 11. Contours of the ratio of internal energy to the Helmholtz free energy in a natural rubbery specimen simulated with the internal energy-driven damage model. Contours
are plotted on the reference configuration.

materials that fail at moderate stretch (e.g., Ì 130% in the double-edge-
notched specimen example; Ì 200% in the PMA elastomer example).
However, when the final rupture occurs at extreme stretch in the
vicinity of the limiting chain extensibility in the materials (e.g., Ì
510% and Ì 730% in the single-notch specimen examples in Fig. 4 and
Fig. 10, respectively), either internal energy-driven or non-Gaussian
entropy-driven damage models should be employed to describe the
remarkable hardening behavior due to the locking of chain networks.
Further, note that the Gaussian or non-Gaussian entropy-driven damage
models demonstrate the capabilities to model failure in elastomeric ma-
terials at moderate to large stretches with less computational efforts but
neither of these models provide a physical picture during fracture pro-
cesses. Rather, the internal energy-driven damage model presents more
realistic descriptions of the failure that accompanies stretching and
scission of molecular bonds throughout the chain networks at moderate
(e.g., Fig. 9 on the PMA elastomer) to large stretches (e.g., Fig. 10 on
the natural rubber), which is further illustrated in Fig. 11. It shows the
contour plot of the ratio of the internal energy to the total Helmholtz
free energy throughout the stretched natural rubbery specimen in
the numerical simulation with the modified Arruda-Boyce with bond-
stretching examined in Fig. 10. Here, we plotted the contour with
respect to the undeformed reference configuration in order to aid
visualization. The internal energy-dominated region is limited in the
vicinity of the notch tip at the early stage of tensile loading (ii); the
majority of the specimen shows negligible internal energy. Then, as
shown in stage (iii) in the contour plot, the majority of the specimen
exhibits internal energy dominance (> 50% in the ratio) just before the
crack propagates. The internal energy-dominated region increases as
the crack propagates halfway through the specimen, as clearly shown
in stages (iv) and (v). Finally, as the material loses its load-bearing
capacity (vi), the ratio of the internal energy to the free energy recovers
very rapidly throughout the entire specimen.

These two examples of synthetic and natural elastomers clearly
demonstrated that the internal energy-driven model provides a more
physical picture for failure in elastomers while both entropy- and

internal energy-driven damage models show excellent performance
in predicting the failure at moderate to large stretches. Moreover,
the entropy-driven damage models were found to be computationally
more tractable when the failure occurs at a moderate stretch prior to
locking. However, it should be noted that there are multiple layers of
constitutive assumptions in these continuum damage models. Specif-
ically, the elastomeric network was assumed to be ideal, by which
the structural heterogeneity of non-uniform chain lengths and other
topological features in realistic networks are not taken into account.
Additionally, both entropy- and internal energy-driven damage models
do not account for the statistical nature of damage criteria throughout
the network. While these models demonstrated computational fidelity
in predicting the failure in elastomers, there is much to further ex-
plore. More specifically, the statistical nature of damage throughout
the realistic network topology should be incorporated for high-fidelity
continuum-level constitutive models for damage and fracture.

6. Conclusion

In this work, we have presented a phase-field modeling framework
based on the gradient-damage theory and associated computational
procedures for extreme deformation events in elastomeric materials.
The gradient-damage theories have been numerically implemented in a
user-defined element (UEL) subroutine in Abaqus/Standard, for which
we have discussed numerical solution procedures in significant detail.
Furthermore, as found the online Supplemental materials of this pa-
per, we have provided the source code and input files for all of the
benchmark problems discussed in the paper. The details of numerical
implementation and associated source codes will be useful in mod-
eling of other diffusion-deformation types of multi-physics problems
that accompany the extreme deformation and failure events in soft
materials.

In addition to the computational details, we have discussed the
gradient-damage theory with two distinct driving forces for damage:
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(1) entropy-driven (the Gaussian entropy-based neo-Hookean and non-
Gaussian entropy-based Arruda-Boyce) and (2) internal energy-driven
(the modified Arruda-Boyce with bond-stretching) damage models.
Notably, the purely Gaussian or non-Gaussian entropy-driven damage
models demonstrated capabilities for fracture in elastomers at mod-
erate to extreme stretch levels with much less computational efforts.
However, the failure of elastomeric materials near the vicinity of
the limiting chain extensibility was found to be better captured by
the internal energy-driven damage model, which accounts for a more
realistic physical picture of the stretching and scission of molecular
bonds throughout the elastomeric network posited in the classical work
by Lake and Thomas (1967).

As discussed in Section 5, we have employed the gradient-damage
theories for idealized elastomeric networks in which all polymer chains
are assumed to have the same length and deform homogeneously.
However, the elastomer networks possess more complex topological
features including poly-dispersion in the distribution of chain lengths
and various molecular defects (Li and Bouklas, 2020; Vernerey, 2018;
Vernerey et al., 2018; Zhong et al., 2016; Lin et al., 2019; Arora
et al., 2020). Furthermore, the internal energy criterion is often insuffi-
cient, attributed to the probabilistic features of rupturing events in the
elastomer networks. More recently, statistical mechanics frameworks
have been employed to bring more realistic microscopic pictures in
elastomer networks to the continuum-level constitutive model develop-
ment (Buche and Silberstein, 2020, 2021; Buche et al., 2022; Mulderrig
et al., 2023). In the future, the gradient-damage theory and its com-
putational implementation can be further developed to better account
for fracture processes in elastomeric materials with rigorous statistical
mechanics considerations for more realistic elastomer networks with
various topological features and molecular details. Furthermore, the
nonlocal nature of fracture in elastomeric materials should be explored
to extend the gradient-damage theory and its computational imple-
mentation to model elastomeric materials that exhibit size-dependent
failure features across a wide range of length-scales. Inertial effects and
dissipation mechanisms involving viscoelasticity and Mullins’ effect in
these materials can also be the focus of the next steps.
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Appendix A. Residuals and tangents in matrix form

We have developed four-noded isoparametric quadrilateral plane-
strain and plane-stress elements, and an eight-noded three-dimensional
element. For each element type, we used specific matrix forms of the

Piola stress, tangent modulus, and the gradient of the shape function.
The displacement residuals and tangents are defined as shown below.

h
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e
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GÒARG dvR

(A.1)

with the matrix forms of the Piola stress SR, tangent modulus AR, and
the standard gradient matrix of the shape function G.

A.1. Two-dimensional elements

For the plane-strain and plane-stress elements in two-dimensional
analysis,

• The Piola stress vector SR = [TR,11 TR,21 TR,12 TR,22]Ò

• The tangent modulus (AR)mn =
⇠

)TR
)F

⇡

ijkl

using the following
transformation table

m (i, j) n (k, l)
1 (1, 1) 1 (1, 1)
2 (2, 1) 2 (2, 1)
3 (1, 2) 3 (1, 2)
4 (2, 2) 4 (2, 2)

For the plane-stress element, the tangent modulus is statically con-
densed

A
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Element-level residuals and tangents in matrix forms, denoted as
RHS and AMATRX, in Abaqus/ Standard for each iteration are defined
as follows:

• Residuals (dimension of 1 ù 3M)

RHS =
⌧
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• Tangents (dimension of 3M ù 3M)
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A.2. Three-dimensional elements

For the eight-noded three-dimensional element,

• The Piola stress vector SR = [TR,11 TR,21 TR,31 TR,12 TR,22 TR,32 TR,13
TR,23 TR,33]Ò

• The tangent modulus (AR)mn =
⇠

)TR
)F

⇡

ijkl

using the following
transformation table

m (i, j) n (k, l)
1 (1, 1) 1 (1, 1)
2 (2, 1) 2 (2, 1)
3 (3, 1) 3 (3, 1)
4 (1, 2) 4 (1, 2)
5 (2, 2) 5 (2, 2)
6 (3, 2) 6 (3, 2)
7 (1, 3) 7 (1, 3)
8 (2, 3) 8 (2, 3)
9 (3, 3) 9 (3, 3)
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Then, the element-level residuals and tangents in matrix forms, RHS
and AMATRX are given,

• Residuals (dimension of 1 ù 4M)
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• Tangents (dimension of 4M ù 4M)
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(A.8)

A.3. Verification of 2D and 3D elements

For verification of the two- and three-dimensional elements, we
compare the numerical simulation results of single-edge-notched speci-
mens using the plane-strain and the plane-stress elements against those
with the three-dimensional elements. As shown in Fig. A.1, the nom-
inal stress–stretch curves using the three-dimensional elements nicely
matched those with (a) the plane-strain elements and (b) the plane-
stress elements. For the plane-strain case with the three-dimensional
elements, the dimension in thickness direction has been constrained
to be constant. Furthermore, for the plane-stress case with the three-
dimensional elements, the thickness has been taken to be much smaller
than in-plane dimensions with only a few elements.

Appendix B. F-bar method

Here, we provide details of the residuals and tangents for F-bar
elements in the reference formulation in de Souza Neto et al. (1996).6

We define the F-bar deformation gradient as

ÑF =
0detF0

detF

11_3
F (B.1)

6 In their paper, a general procedure for the formulation of F-bar elements
in a spatial configuration is provided.

Fig. A.1. Nominal stress vs. stretch curves for (a) double-edge-notched specimen: 3D vs. plane-strain elements (see Fig. 5) and (b) single-edge-notched specimen: 3D vs. plane-strain
elements (see Fig. 3).
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where F0 is the deformation gradient at the centroid of the element.
Then, the first Piola stress is

TR = JTF*Ò = J ÇT( ÑF)F*Ò

=
0detF0

detF

1*2_3
ÇTR( ÑF).

(B.2)

Then, we obtain the residual in terms of ÑF,

Ru = *
 
B
e

R

0detF0
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)N
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)X dvR. (B.3)

The tangent in terms of ÑF is given by
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It can be expressed in a matrix form as

Kuu =
 
B
e

R

L

0 detF0
detF

1*1_3
GÒARG +

0 detF0
detF

1*2_3
GÒ(QR0G0 * QRG)

M

dvR

(B.5)

where AR, QR and QR0 are the matrix forms of the fourth-order tensors
AR = ) ÇTR( ÑF)

) ÑF ,

QR = 1
3AR : ( ÑF‰ F*Ò) * 2

3TR( ÑF)‰ F*Ò and

QR0 =
1
3AR : ( ÑF‰ F*Ò

0 ) * 2
3TR( ÑF)‰ F*Ò

0 . (B.6)

Similarly, we define the F-bar deformation gradient in a 2D plane-
strain situation as

ÑF =
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Hence, the residual is expressed as

Ru = *
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e

R
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Then, the tangent is given by
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The matrix form for the tangent is given by

Kuu =
 
B
e

R

L

GÒARG +
0detF0

detF
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GÒ(QR0G0 * QRG)

M

dvR (B.10)

where

QR = 1
2AR : ( ÑF‰ F*Ò) * 1

2TR( ÑF)‰ F*Ò and

QR0 =
1
2AR : ( ÑF‰ F*Ò

0 ) * 1
2TR( ÑF)‰ F*Ò

0 . (B.11)

The spatial F-bar formulation in detail can also be found in Chester
et al. (2015).

Appendix C. Analytical vs. numerical tangent

Here, we verify the analytical tangent modulus presented in Sec-
tion 3.3 by comparing the simulation results against those with the

Fig. C.1. Comparisons of simulation results on one element in tension using analytical and perturbed tangent moduli: (a) damage variable, (b) nominal stress, (c) history function,
and (d) (2,2,2,2) component of the tangent moduli.
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Fig. D.1. Nominal stress vs. stretch curves in double-edge-notched specimens in
tension using the Abaqus built-in element (CPE4) and UEL (UPE4) using the nearly
incompressible neo-Hookean model.

numerical tangent modulus obtained by perturbing the deformation
gradient. A perturbed deformation gradient is given by

Fper,kl
n+1 = F

n+1 + �Fkl (C.1)

where the perturbation is defined as

�Fkl = �✏ e
k
‰ e

l
(C.2)

with the Cartesian basis, e
i=1,2,3. Then, the numerical tangent modulus

is calculated by
0

)TR
)F

1

ijkl

=
TR,ij (F

per,kl
n+1 ) * TR,ij (Fkln+1)

�✏
. (C.3)

In Fig. C.1, one-element simulation results with the analytical tangent
modulus (solid lines) are compared against those with the numeri-
cal tangent modulus (dashed lines). We showed that (a) the damage
variable, (b) the nominal stress, (c) the history function, and (d) the
(2, 2, 2, 2) component of the tangent modulus nicely matched those in
numerical simulations with a perturbed, numerical tangent modulus.

Appendix D. Verification of plane-strain and plane-stress elements:
Deformation-only problems

We briefly compare the simulation results of the ‘‘deformation only’’
problems using UEL subroutines against those simulated with the built-
in elements in Abaqus/Standard. First, we consider a two-dimensional
plane-strain element, referred to as UPE4, in our UEL implementation
and an Abaqus/Standard plane-strain element, referred to as CPE4.
In Fig. D.1, the nominal stress–stretch curves of double-edge-notched
specimens using UPE4 and CPE4 are shown; furthermore, the contours
of axial strain and stress fields are displayed in Fig. D.2. Here, we
used the nearly incompressible neo-Hookean model. As shown, the
simulation results with UPE4 elements match nicely those with the
CPE4 elements.

We then verify the two-dimensional plane-stress element in our
UEL subroutines (UPS4) by comparing the simulation results of single-
edge-notched specimens with UPS4 elements against those with an
Abaqus/Standard plane-strain element, CPS4. Here, we used the nearly
incompressible Arruda-Boyce model with no bond-stretching for
brevity. In Fig. D.3, the nominal stress–stretch curves of single-edge-
notched specimens using UPS4 and CPS4 are shown; furthermore, the
contours of axial strain and stress fields are displayed in Fig. D.4. As
shown, the simulation results with UPS4 elements match nicely those
with the CPS4 elements.

Appendix E. Updating stress and tangent in compressible hypere-
lastic materials

In this section, we provide the stresses and tangents for the com-
pressible versions of a neo-Hookean model with no bond-stretching and
a modified Arruda-Boyce model with bond-stretching for completeness.

1. Compressible neo-Hookean: Purely (Gaussian) entropy-driven
damage model

The first Piola stress is

TR =
⌅

(1 * d)2 + k
⇧ ⌅

�
�

F * F*Ò� +K(J * 1)JF*Ò⇧
. (E.1)

The referential tangent modulus, )TR
)F is then given by,
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2. Compressible, modified Arruda-Boyce: Internal
energy-driven damage model

The first Piola stress is

TR = Ñ�
�

F * F*Ò� +
⌅

(1 * d)2 + k
⇧

K(J * 1)JF*Ò (E.3)

Fig. D.2. Contours of (a) axial strain and (b) axial stress using CPE4 and UPE4 elements. Contours are plotted on deformed configurations at a stretch of 1.4.
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Fig. D.3. Nominal stress vs. stretch curves in single-edge-notched specimens in tension
using the Abaqus built-in element (CPS4) and UEL subroutine (UPS4) using the nearly
incompressible Arruda-Boyce model with no bond-stretching.
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Then, we have
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where the three terms ) Ñ�

)Fkl

, ) Ñ�

)�b

, )�b

)Fkl

Û

Û

Ûd

are given in Section 3.3.

Appendix F. An example of a mesh in deformed configuration

Here, we provide sequential images of the damaged elements in the
double-edge notched specimen in deformed configuration presented in
Section 4.3 (see Fig. F.1). It should be noted that the gradient-damage
model nicely captures the crack initiation, propagation, and full rupture
processes throughout the specimen without any mesh refinement.

Appendix G. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijsolstr.2023.112309.
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Fig. F.1. Contour plot on a damage field in severely damaged elements in the deformed mesh of the double-edge notched specimen presented in Section 4.3.
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