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The structural arrangement of collagen fibers in the plane of the dermis layer plays a critical role in accurately 
predicting the mechanical behavior of skin tissues. This paper combines a histological analysis with statistical 
modeling to characterize and model the in-plane collagen fiber distribution in the porcine dermis. The histology 
data reveals that the fiber distribution in the plane of the porcine dermis is non-symmetric. The histology 
data forms the basis of our model, which employs a combination of two !-periodic von-Mises distribution 
density functions to create a non-symmetric distribution. We demonstrate that a non-symmetric in-plane fiber 
distribution is a significant improvement over a symmetric distribution

1. Introduction

Skin tissues have been widely used in various fields and have found 
great success in many biomechanical products [1] and medical appli-
cations, such as meshes for hernia repair [2] and breast reconstruction 
[3]. To improve the quality of such products, it is essential to have bet-
ter insight into the factors affecting the mechanical behavior of skin 
tissues.

Collagen fibers are one of the most important physical components 
affecting the mechanical behavior of many soft biological tissues. In par-
ticular, the structural arrangement of the collagen fibers significantly 
impact the mechanical behavior of soft biological tissues. Accordingly, 
the distribution of the collagen plays a critical role in continuum-level 
constitutive models for these materials [4–10]. Consequently, to better 
inform continuum-level constitutive models, an accurate characteriza-
tion of the structural arrangement of the collagen fibers, which includes 
both orientation and dispersion, is a significant contribution to consti-
tutive model accuracy.

In this work, we use porcine skin as representative of other soft 
biological tissues because the fat-free dry weight of skin is composed of 
77% of collagen [11], and the methodology developed for skin tissue 
can be useful and applied to other tissues where collagen fibers are the 
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main mechanical contributor. Further, porcine has similar mechanical 
characteristics as the human dermis [12] and is found in larger sizes, 
consequently preferred for various biomedical applications [13].

Typical skin tissues are composed of three major layers: i) the epi-
dermis, the outermost layer; ii) the dermis, the middle layer; and iii) 
the hypodermis, the innermost layer. We specifically focus on the der-
mis layer to study the mechanics of skin tissues because the dermis is 
the main mechanical component of the skin and is broadly composed 
of a ground substance embedded with collagen fibers [14].

As mentioned previously and reported in the literature, the em-
bedded fibers are the predominant mechanical contributors to the soft 
biological tissue [15–18]. Lanir [19,20] made seminal contributions in 
the literature related to characterizing the structural arrangement of the 
collagen fibers in biological tissues and established that the structural 
arrangement of the embedded fibers is a key factor in determining the 
accurate mechanical behavior of soft tissues. According to Lanir’s work, 
the tissue structure is defined in terms of fiber orientation only. How-
ever, more recent literature indicates that the fibers are also dispersedly 
oriented [21,22]. Accordingly, many experiments have been conducted 
to study the collagen fiber distribution in soft biological tissues [cf. e.g., 
23–31]. A major broad outcome of all that work indicates that the col-
lagen fibers and their structural arrangement are the vital factors for 
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Fig. 1. Schematic of a distribution for two collagen fiber families illustrating a 
symmetric and a non-symmetric distribution.

characterizing the mechanical behavior and informing continuum-level 
constitutive models.

Nearly all of the prior literature uses histological analysis, a 
microscopy-based method used to determine the orientation, distribu-
tion, and other details of the collagen fibers. The relevant significant 
findings from the prior literature may be summarized with just a few 
main points. i) there are typically two fiber families in the dermis 
[18,26], ii) the spatial collagen fiber distribution differs between in-
plane and out of plane [26,29,9], and iii) the collagen fiber distribution 
in the plane of the dermis has a more significant effect on the mechani-
cal behavior than the out-of-plane distribution [26].

In the modeling literature related to the structural arrangement of 
collagen fibers, two common approaches have been established to de-
scribe the spatial distribution of collagen fibers within the tissue: i) 
the angular integration approach [24,32,33]; and ii) the generalized 
structural tensor approach [4,29]. The angular integration approach 
considers individual fiber contributions in its material description. Con-
sequently, the angular integration approach gives accurate results, but 
it is not a viable option for efficient numerical implementation since it 
requires a large number of calculations [5]. In contrast, the generalized 
structural tensor approach considers the average of all the fibers in its 
calculations and therefore is a viable option for numerical implementa-
tion since it requires fewer calculations and is amenable for implemen-
tation in a finite element environment [27]. For more details about the 
difference between the angular integration and the generalized struc-
tural tensor approach, readers are referred to Holzapfel et al. [30]. 
Irrespective of the approach employed, the components characterizing 
the structural arrangement, specifically the mean orientations and mea-
sure of fiber dispersion of the embedded fibers, are paramount to the 
continuum level constitutive model.

It is well known that the true collagen fiber distribution is three-
dimensional. However, as reported in the literature, the fiber distribu-
tion in the plane of the dermis is more significant than the out-of-plane 
distribution [26]. Accordingly, this work focuses on characterizing and 
modeling the collagen fiber distribution in the plane of the porcine der-
mis, which we experimentally observed to be non-symmetric. Fig. 1
shows a schematic that clarifies the difference between a symmetric 
fiber distribution and a non-symmetric planar fiber distribution employ-
ing the !-periodic von-Mises distribution for two fiber families. As the 
name suggests, the fibers are symmetrically distributed for a symmetric 
fiber distribution with two distinct fiber families. In Fig. 1 this is indi-
cated by the equal orientations and identical peak heights and widths. 
In contrast, the non-symmetric distribution with two fiber families still 
has two peaks with different heights, widths, and mean orientations.

Focusing on the generalized structure tensor approach to describe 
the fiber distribution, the main physical quantities are: i) the mean fiber 
orientation; and ii) the measure of the dispersion from the mean orien-
tation. Within the context of the generalized structural tensor approach, 
these are termed structural parameters, and significant prior literature 
exists. The most notable work is Gasser et al. [4], where the foundation 
of this approach originated and was focused on modeling artery walls. 
Gasser et al. [4] proposed a statistical-based model to characterize the 
collagen fiber spatial distribution considering the mean orientation and 

dispersion, assuming transverse isotropy for an arterial wall. A few more 
seminal contributions are Jor et al. [26], Annaidh et al. [27], Holzapfel 
et al. [29], Holzapfel et al. [30], Ueda et al. [34] and Witte et al. [7]. Jor 
et al. [26] focused on characterizing collagen fiber distribution through 
the thickness of the porcine dermis. Annaidh et al. [27] applied the 
method of Gasser et al. [4] to skin tissues but mostly kept the underly-
ing model unchanged. More recently, Holzapfel and co-workers [29,30]
have enhanced their seminal contribution from Gasser et al. [4], but the 
in-plane fiber distribution is still assumed to be symmetric. The work of 
Ueda et al. [34] and Witte et al. [7] have experimentally shown that 
the human dermis has non-symmetric fiber distribution, but it was not 
explicitly modeled.

Although a lot has gone into characterizing the structural arrange-
ment of collagen fibers, the existing literature has not yet made use of a 
non-symmetric planar fiber distribution to characterize and model the 
fiber distribution in the plane of dermis. Many state-of-the-art constitu-
tive models require the details of the structural arrangement of fibers 
as input. Accordingly, there is a clear gap in properly informing con-
tinuum level constitutive models, which may be improved by using a 
more physically relevant fiber distribution, i.e., considering the non-
symmetry of planar fiber distribution.

Our experimental investigation demonstrates that the fiber distri-
bution in the plane of the dermis is non-symmetric, and accordingly 
we hypothesize that the in-plane collagen fiber distribution is more 
accurately described by a non-symmetric model than a symmetric dis-
tribution. Accordingly, the objective of this paper is to experimentally 
characterize and model the collagen fiber distribution in the plane of 
the dermis. This is accomplished by measuring the collagen fiber distri-
bution in the plane of the porcine dermis through the use of histology 
analysis and employing a ubiquitously used !-periodic von-Mises dis-
tribution model ([4,26,35,29,36]), which is enhanced to capture the 
non-symmetric planar fiber distribution with two fiber families. The 
enhanced model is general and should be applicable to any soft biolog-
ical tissue composed of collagen fibers. Here we use porcine dermis as 
a representative material.

The remainder of this paper is organized as follows. Section 2
overviews the procedure of sample preparation for histology analysis, 
including staining and image acquisition, and also describes the details 
of the modeling approach. Section 3 summarizes the results obtained. 
4 discusses the observations of results and the final Section 5 summa-
rizes what is learned from this research and provides some concluding 
remarks.

2. Materials and methods

The porcine skin tissue used in this work was produced by Midwest 
Research Swine (Glencoe, MN). Midwest Research Swine has an estab-
lished quality-controlled process to provide high-quality porcine tissue 
and live research swine typically used for biomedical applications. The 
porcine skin was obtained from a six-month male 241 pound American 
Yorkshire-Landrace-Duroc, the skin was debristled, and the hypodermis 
was removed per MRS established process [37].

2.1. Sample preparation

We received the skin tissue in the form of rectangular sheets. Fig. 2
shows a schematic of two adjacent tissue sections taken from the left 
and right of the spine, nearest to the tail, along with our coordinate sys-
tem. The tissue sheets have notches indicating the head and spine sides 
to ensure a consistent reference system. Following the approach of [37]
after receiving the tissue, the sheets were stored in a freezer at −80 ◦C 
to prevent any degradation. Before use, the tissue sheets were defrosted 
for 24 hours in a 4 ◦C refrigerator before preparing the histology sam-
ples using a custom steel rule die. A custom die allows us to produce 
histology samples keeping the orientation known with respect to the 
head and spine. This will ensure that the orientation of the identified 
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Fig. 2. Schematic of two sections of porcine dermis showing the various locations from where the fifteen histology samples were taken. The approximate size of 
each section is 300 mm × 450 mm. The image is not drawn to scale.

collagen fibers can then be measured relative to the head and spine as 
references.

The schematic in Fig. 2 also shows various locations labeled as rows 
and columns, which we use to indicate where the samples for histol-
ogy analysis have been extracted from the sheet. In our convention, 
columns closer to the spine are labeled C1, and the columns further 
from the spine are labeled C2. And rows nearest to the tail are labeled 
as R1 and continue to increase, moving upward towards the head. The 
coordinates of the locations marked as rows and columns have been de-
termined to have a physical sense of length scale. We have used ImageJ 
software [38] to obtain the coordinates of the locations labeled using 
our row-column convention. The coordinates represent the center posi-
tion of each location, taking the end of the spine towards the tail as the 
reference.

The die-cut tissue samples were then placed in individual histol-
ogy cassettes to keep proper track of the locations. We followed the 
established procedure for the histology analysis used at the New Jer-
sey Medical School, an institution affiliated with and neighboring NJIT. 
Cassettes containing samples were fixed in 10% neutral buffered Forma-
lin [39,40] for 24 hours followed by storage in 70% Ethanol [41] and 
sent for histology analysis.

2.2. Histology imaging

Histology samples were processed at the New Jersey Medical School. 
The hypodermis side of the tissue sample was faced, and imaging was 
done at 300 microns deep from the hypodermis side to ensure that the 
histology samples were taken from the dermis layer. We have used a 
well-established method to identify the collagen bundles in the dermis 
by employing the picrosirius red stain [42,43,40]. A Nikon Eclipse mi-
croscope was employed under polarized light using a Nikon Plan Apo 
4× objective with numerical aperture of 0.2, and the 4× images were 
stitched together to view the full tissue histology sample of 9.5 mm ×
9.5 mm. Representative images of samples from both the left and the 
right of the spine are shown in Fig. 3.

A limitation of our work, is that the imaging for the collagen fiber 
distributions was performed post mortem. And this may affect the 
macroscopic dimensions of the tissue as well as the microscopic colla-
gen fiber distribution due to loss of residual stress or pre-tension among 
other factors [44]. We believe that more accurate fiber distributions 

may be measured if the data were obtained in vivo, however that is out-
side the scope of our work in this contribution.

2.3. Obtaining individual fiber orientations

To obtain the planar fiber orientations, we employ OrientationJ vec-
tor field, a plugin of ImageJ [38]. The software uses an image-based 
region of interest to obtain the fiber orientations utilizing the coordi-
nate system shown in Fig. 2.

The collagen fibers in the dermis are predominantly oriented along 
cleavage lines, also known as Langer lines [cf. e.g., 45–47,6, and ref-
erences therein]. In the porcine dermis, the cleavage lines can be seen 
as running in a direction transverse to the spine [48,49]. Accordingly, 
we have taken the transverse to the spine direction as our reference for 
fiber orientation measurement as shown in Fig. 3b.

Our testing indicates that the results are affected primarily by the 
size of the region of interest, the so-called " parameter in OrientationJ 
vector field. Accordingly, in order to determine an appropriate value for 
", a convergence study was conducted on the fiber orientations. Based 
on the mean orientation results shown in Fig. 4, it can be observed 
that the mean orientations for both the first fiber family and the second 
fiber family are converging around " = 4, therefore for good measure, 
all analyses reported here use " = 6.

2.4. Models for the fiber distribution

The existing literature almost ubiquitously uses the very common !-
periodic von-Mises distribution probability density function. This den-
sity function is for the directional statistics for unimodal circular data 
[4,26,35,29,36]. As it serves as the foundational building block for 
much of the description of collagen fibers, for clarity it is briefly sum-
marized here. For an angle #, it’s given by

$(#) =
{

exp [% cos 2(#− &)]
2!'0(%)

}
,

−!∕2 ≤ # ≤ !∕2
(2.1)

where & is the mean orientation, % is a measure of the fiber concentra-
tion, and '0(%) is the modified Bessel function of the first kind of order 
zero and defined as
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Fig. 3. a) Representative images (each is approximately 9.5 mm × 9.5 mm) of the stained histology samples from the left and right sides of the spine under polarized 
light, b) Schematic of reference chosen for measurement of fiber orientation.

Fig. 4. Results of our convergence study for the parameter " for the mean orientation of a) the first fiber family, and b) the second fiber family, using a handful of 
samples from the left tail region.

'0(%) =
1
!

!

∫
0

exp (% cos#)(# . (2.2)

Further, the density distribution function (2.1) must satisfy the follow-
ing normalization condition
!∕2

∫
−!∕2

$(#)(# = 1 . (2.3)

To account for two distinct fiber families, as will be shown in 
what follows, we employ a combination of two !-periodic von-Mises 
distribution probability density functions for modeling the fiber distri-
bution in the plane of the porcine dermis. As mentioned in Section 1, 
the existing literature for modeling the fiber distribution considers a 
symmetric distribution [27,29]. However, our experimental results (see 
Fig. 5) and others in the literature [34,7] show that the fiber distribu-
tion in the plane of the porcine dermis is non-symmetric. Accordingly, 
we hypothesized that a non-symmetric distribution could more accu-
rately characterize the fiber distribution in the plane of the dermis. 
Therefore, in this work, building upon the prior modeling literature 
[4,29], we have enhanced the existing !-periodic von-Mises distribu-
tion probability density functions to capture the non-symmetric planar 
fiber distribution, and it was compared with a well-established symmet-
ric distribution model to test our hypothesis.

2.4.1. Symmetric planar fiber distribution
To give context, we find it useful to first describe the standard sym-

metric planar fiber distribution. For a symmetric planar distribution of 
collagen fibers, as shown in Fig. 1, the mean orientations are equal and 

opposite, and the fiber dispersion for both the fiber families is identi-
cal. Consequently, the total probability density function for the in-plane 
symmetric fiber distribution is given by

$sym(#) =
{

exp[% cos2(#+ &)]
2!'0(%)

+ exp[% cos 2(#− &)]
2!'0(%)

}
. (2.4)

The fiber dispersion for the symmetric distribution is then obtained 
through

)sym =
!∕2

∫
−!∕2

{
exp(% cos 2#)

!'0(%)

}
sin2(#)(# , 0 ≤ )sym ≤ 1∕2 , (2.5)

and the normalization condition for symmetric fiber distribution is 
given by

!∕2

∫
−!∕2

$sym(#)(# =
!∕2

∫
−!∕2

{
exp[% cos2(#+ &)]

2!'0(%)
+ exp[% cos 2(#− &)]

2!'0(%)

}
(# = 1 .

(2.6)

2.4.2. Non-symmetric planar fiber distribution
For a non-symmetric planar fiber distribution, as shown in Fig. 1 and 

the foundation of our hypothesis, both fiber families have distinct mean 
orientations and dispersions, with the total probability density function 
given by

$non-sym(#) =
{ exp[%1 cos2(#− &1)]

2!'0(%1)
+

exp[%2 cos 2(#− &2)]
2!'0(%2)

}
, (2.7)
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Fig. 5. Histogram of measured fiber counts from histological analysis for all locations. Superimposed are the measured fiber density, as well as the calibrated 
non-symmetric and symmetric models.

where &1 and %1 are the mean orientation and concentration, respec-
tively for the first fiber family, and &2 and %2 are the same for the second 
fiber family. Further, the fiber dispersion for each fiber family can be 
obtained from

)1 =
!∕2

∫
−!∕2

{ exp(%1 cos 2#)
!'0(%1)

}
sin2(#)(# , and

)2 =
!∕2

∫
−!∕2

{ exp(%2 cos 2#)
!'0(%2)

}
sin2(#)(# , (2.8)

where 0 ≤ )1 ≤ 1∕2, and 0 ≤ )2 ≤ 1∕2. And the normalization condition 
for non-symmetric distribution is given by

!∕2

∫
−!∕2

{ exp[%1 cos 2(#− &1)]
2!'0(%1)

+
exp[%2 cos2(#− &2)]

2!'0(%2)

}
(# = 1 . (2.9)

Employing the normalization condition given by equation (2.9) is 
equivalent to using different weights to two sets of fiber families.

3. Results

As mentioned in Section 2.1, we have fifteen histology samples from 
the various locations of the porcine dermis in the vicinity of the tail, 
as indicated in Fig. 2. Using the methods described in Sections 2.2 and 
2.3, the planar fiber orientations were obtained and analyzed. The pla-
nar fiber orientations obtained from each histology sample are plotted 
as histograms with 5◦ bin intervals as shown in Fig. 5. These histograms 



Medical Engineering and Physics 115 (2023) 103973

6

S. Jaiswal, R. Hannineh, S. Nadimpalli et al.

Table 1
List of structural parameters obtained by calibration of a model consisting of a combination of two von-Mises distributions 
with the planar fiber orientations considering various locations with respect to the spine employing both the symmetric 
distribution and non-symmetric distribution approach.
Location Coordinates (mm) Symmetric Non-symmetric

& )sym &1 &2 )1 )2

LT R4C1 X: -35.509 29.85◦ 0.165 −35.8◦ 23.89◦ 0.147 0.159
Y: 400.152

LT R4C2 X: -149.377 26.67◦ 0.206 −25.63◦ 27.75◦ 0.203 0.208
Y: 399.009

LT R3C1 X: -31.877 37.21◦ 0.181 −24.29◦ 43.11◦ 0.264 0.102
Y: 289.001

LT R3C2 X: -143.967 29.19◦ 0.260 −32.85◦ 21.0◦ 0.217 0.317
Y: 292.532

LT R2C1 X: -34.849 38.80◦ 0.139 −33.89◦ 41.67◦ 0.207 0.0923
Y: 192.583

LT R2C2 X: -144.501 39.42◦ 0.186 −25.55◦ 47.43◦ 0.235 0.102
Y: 196.901

LT R1C1 X: -39.700 34.71◦ 0.123 −30.47◦ 36.77◦ 0.199 0.078
Y:101.549

LT R1C2 X: -145.313 22.96◦ 0.254 −17.75◦ 27.03◦ 0.271 0.232
Y: 104.521

RT R4C1 X: 60.503 37.12◦ 0.133 −40.50◦ 34.60◦ 0.181 0.091
Y: 372.364

RT R4C2 X: 179.172 30.70◦ 0.160 −26.53◦ 37.41◦ 0.095 0.210
Y: 369.748

RT R3C1 X: 62.001 43.38◦ 0.099 −46.82◦ 37.94◦ 0.058 0.157
Y: 265.963

RT R3C2 X: 179.553 36.13◦ 0.181 −38.99◦ 33.88◦ 0.278 0.116
Y: 269.697

RT R2C1 X: 62.357 46.50◦ 0.104 −44.25◦ 48.80◦ 0.102 0.100
Y: 164.414

RT R2C2 X: 178.791 46.21◦ 0.123 −53.48◦ 38.80◦ 0.085 0.110
Y: 168.148

RT R1C2 X: 178.054 44.93◦ 0.149 −55.11◦ 34.68◦ 0.0848 0.119
Y: 72.542

LT: Left Tail; RT: Right Tail.

represent the number of fibers oriented along different directions. The 
fiber counts were also converted into experimentally measured fiber 
density, ensuring that the normalization condition given by (2.9) is sat-
isfied for each sample. The experimentally measured fiber density is 
superimposed on the histograms in Fig. 5. From the experimental mea-
surements shown in Fig. 5 one may clearly observe that, in general, the 
actual fiber distribution is non-symmetric, and thus a model considering 
the non-symmetric fiber distribution will better capture the actual fiber 
distribution as compared to a model that considers only symmetric dis-
tribution ubiquitously found in the literature. The prior literature based 
on the symmetric fiber distribution (2.4), and the enhanced model con-
sidering the non-symmetric fiber distribution (2.7), are calibrated using 
the least-squares method to the measured distribution and are superim-
posed on the histograms in Fig. 5 as lines.

4. Discussion

In Fig. 5 the solid lines represent the non-symmetric distribution, 
and the dash-dot lines indicate the symmetric planar fiber distribu-
tion. As expected, it is clear from the Fig. 5 that the non-symmetric 
fiber distribution modeled through (2.7) more accurately characterizes 
the structural arrangement of the collagen fibers than the symmetric 
distribution model. Table 1 provides the specific parameter values for 

the mean orientations and dispersion of the fiber distributions obtained 
from calibration for both the models.

Further, to evaluate the predictive quality of both models, we have 
calculated the Root Mean Square Error (RMSE) and the *2 (also known 
as “goodness of fit”) for both the symmetric and non-symmetric models. 
Fig. 6 is a box-plot that shows that the non-symmetric model is supe-
rior to the symmetric model for this data set. For completeness, Table 2
summarizes the values of RMSE for both the models. It can be noticed 
that the error caused by employing symmetric distribution is more than 
the non-symmetric distribution in all cases, with improvements as large 
as 200% achieved through the use of the new non-symmetric distribu-
tion. Additionally, Table 3 provides the tabulated comparison between 
the symmetric and non-symmetric distributions by using *2. Again, it 
is clear that the non-symmetric distribution shows a considerable im-
provement over the symmetric distribution in all cases. In three cases, 
RT R1C2, LT R2C2, and LT R3C1, the improvement in terms of *2 val-
ues demonstrated by the non-symmetric distribution approach is more 
than 70%, a remarkably significant improvement.

5. Conclusion

We have experimentally demonstrated that the fiber distribution in 
the plane of the porcine dermis is generally non-symmetric with two 
sets of fiber families. This was accomplished by experimentally measur-
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Fig. 6. Box-plots showing the comparison of symmetric and non-symmetric distribution in terms of a) Root Mean Square Error (RMSE), and b) *2 .

Table 2
Summary of RMSE values for symmetric and non-symmetric approach demon-
strating a significant reduction in root mean square error by non-symmetric 
method over symmetric method while capturing the real fiber orientation.
Location Coordinates 

(mm)
Symmetric, 
RMSE

Non-symmetric, 
RMSE

% difference in 
RMSE values

LT R3C1 X: -31.877 0.1128 0.0365 209.20%
Y: 289.001

LT R2C2 X: -144.501 0.1114 0.0382 191.67%
Y: 196.901

RT R3C2 X: 179.553 0.0900 0.0324 178.02%
Y: 269.697

RT R4C2 X: 179.172 0.0927 0.0355 160.96%
Y: 369.748

LT R3C2 X: -143.967 0.0685 0.0278 145.99%
Y: 292.532

RT R1C2 X: 178.054 0.1428 0.0653 118.56%
Y: 72.5424

RT R2C2 X:178.791 0.1172 0.0587 99.76%
Y: 168.148

LT R1C1 X: -39.700 0.0890 0.0461 92.84%
Y:101.549

LT R4C1 X: -35.509 0.0577 0.0300 92.25%
Y: 400.152

RT R3C1 X: 62.001 0.1063 0.0597 78.11%
Y: 265.963

LT R1C2 X: -145.313 0.0479 0.0276 73.37%
Y: 104.521

RT R4C1 X: 60.503 0.0813 0.0473 71.94%
Y: 372.364

LT R2C1 X: -34.849 0.0847 0.0495 71.13%
Y: 192.583

RT R2C1 X: 62.357 0.0665 0.0580 14.66%
Y: 164.414

LT R4C2 X: - 149.377 0.0232 0.0225 3.39%
Y: 399.009

LT: Left Tail; RT: Right Tail.

ing the orientations of collagen fibers in the plane of the porcine dermis 
using histology analysis. Based on the histology data, we have devel-
oped and verified an enhanced statistical-based model that considers 
the non-symmetry of the fiber distribution by employing a combination 
of two !-periodic von-Mises distribution density functions.

The main novelty of this work is experimentally demonstrating that 
a non-symmetric in-plane fiber distribution model more accurately cap-

Table 3
Summary of *2 values for symmetric and non-symmetric approach demon-
strating a significant improvement by non-symmetric method over symmetric 
method while capturing the real fiber orientation.
Location Coordinates 

(mm)
Symmetric, 
*2

Non-symmetric, 
*2

% improvement

RT R1C2 X: 178.054 0.493 0.894 81.3%
Y: 72.542

LT R2C2 X: -144.501 0.528 0.945 79.0%
Y: 196.901

LT R3C1 X: -31.877 0.557 0.954 71.3%
Y: 289.001

RT R3C2 X: 179.553 0.669 0.957 43.0%
Y: 269.697

RT R2C2 X: 178.791 0.671 0.918 36.8%
Y: 168.148

LT R3C2 X: -143.967 0.749 0.959 28.0%
Y: 292.532

RT R4C2 X: 179.172 0.764 0.965 26.3%
Y: 369.748

RT R3C1 X: 62.001 0.774 0.929 20.0%
Y: 265.963

LT R2C1 X: -34.849 0.774 0.923 19.3%
Y: 192.583

LT R1C1 X: -39.700 0.810 0.949 17.16%
Y: 101.549

RT R4C1 X: 60.503 0.807 0.935 15.9%
Y: 372.364

LT R4C1 X: -35.509 0.895 0.972 8.6%
Y: 400.152

LT R1C2 X: -145.313 0.914 0.971 6.2%
Y: 104.521

RT R2C1 X: 62.357 0.888 0.914 3.0%
Y: 164.414

LT R4C2 X: -149.377 0.980 0.982 0.2%
Y: 399.009

LT: Left Tail; RT: Right Tail.

tures the collagen distribution of real tissue and does so without any 
additional experimental or computational effort in terms of cost and 
time when compared with the ubiquitous symmetric distribution. Fur-
ther, we expect our method to easily extend to all soft biological tissues 
since almost all soft biological tissues consist of collagen fibers in a 
softer matrix.
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We believe this work has far-reaching implications for structure-
based continuum level constitutive models that make use of the struc-
tural arrangement of fibers as input. The improvements shown here 
using our non-symmetric model, when used as part of a simulation tool, 
can lead to the development of new and improved devices and appli-
cations, which may impact many lives. While much was learned in this 
work, there is still much to be done. Future studies aim to characterize 
the effect of aging and gender on the collagen fiber microstructure in 
the porcine dermis.
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