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The structural arrangement of collagen fibers in the plane of the dermis layer plays a critical role in accurately
predicting the mechanical behavior of skin tissues. This paper combines a histological analysis with statistical
modeling to characterize and model the in-plane collagen fiber distribution in the porcine dermis. The histology
data reveals that the fiber distribution in the plane of the porcine dermis is non-symmetric. The histology
data forms the basis of our model, which employs a combination of two z-periodic von-Mises distribution
density functions to create a non-symmetric distribution. We demonstrate that a non-symmetric in-plane fiber

distribution is a significant improvement over a symmetric distribution

1. Introduction

Skin tissues have been widely used in various fields and have found
great success in many biomechanical products [1] and medical appli-
cations, such as meshes for hernia repair [2] and breast reconstruction
[3]. To improve the quality of such products, it is essential to have bet-
ter insight into the factors affecting the mechanical behavior of skin
tissues.

Collagen fibers are one of the most important physical components
affecting the mechanical behavior of many soft biological tissues. In par-
ticular, the structural arrangement of the collagen fibers significantly
impact the mechanical behavior of soft biological tissues. Accordingly,
the distribution of the collagen plays a critical role in continuum-level
constitutive models for these materials [4-10]. Consequently, to better
inform continuum-level constitutive models, an accurate characteriza-
tion of the structural arrangement of the collagen fibers, which includes
both orientation and dispersion, is a significant contribution to consti-
tutive model accuracy.

In this work, we use porcine skin as representative of other soft
biological tissues because the fat-free dry weight of skin is composed of
77% of collagen [11], and the methodology developed for skin tissue
can be useful and applied to other tissues where collagen fibers are the
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main mechanical contributor. Further, porcine has similar mechanical
characteristics as the human dermis [12] and is found in larger sizes,
consequently preferred for various biomedical applications [13].

Typical skin tissues are composed of three major layers: i) the epi-
dermis, the outermost layer; ii) the dermis, the middle layer; and iii)
the hypodermis, the innermost layer. We specifically focus on the der-
mis layer to study the mechanics of skin tissues because the dermis is
the main mechanical component of the skin and is broadly composed
of a ground substance embedded with collagen fibers [14].

As mentioned previously and reported in the literature, the em-
bedded fibers are the predominant mechanical contributors to the soft
biological tissue [15-18]. Lanir [19,20] made seminal contributions in
the literature related to characterizing the structural arrangement of the
collagen fibers in biological tissues and established that the structural
arrangement of the embedded fibers is a key factor in determining the
accurate mechanical behavior of soft tissues. According to Lanir’s work,
the tissue structure is defined in terms of fiber orientation only. How-
ever, more recent literature indicates that the fibers are also dispersedly
oriented [21,22]. Accordingly, many experiments have been conducted
to study the collagen fiber distribution in soft biological tissues [cf. e.g.,
23-31]. A major broad outcome of all that work indicates that the col-
lagen fibers and their structural arrangement are the vital factors for
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Fig. 1. Schematic of a distribution for two collagen fiber families illustrating a
symmetric and a non-symmetric distribution.

characterizing the mechanical behavior and informing continuum-level
constitutive models.

Nearly all of the prior literature uses histological analysis, a
microscopy-based method used to determine the orientation, distribu-
tion, and other details of the collagen fibers. The relevant significant
findings from the prior literature may be summarized with just a few
main points. i) there are typically two fiber families in the dermis
[18,26], ii) the spatial collagen fiber distribution differs between in-
plane and out of plane [26,29,9], and iii) the collagen fiber distribution
in the plane of the dermis has a more significant effect on the mechani-
cal behavior than the out-of-plane distribution [26].

In the modeling literature related to the structural arrangement of
collagen fibers, two common approaches have been established to de-
scribe the spatial distribution of collagen fibers within the tissue: i)
the angular integration approach [24,32,33]; and ii) the generalized
structural tensor approach [4,29]. The angular integration approach
considers individual fiber contributions in its material description. Con-
sequently, the angular integration approach gives accurate results, but
it is not a viable option for efficient numerical implementation since it
requires a large number of calculations [5]. In contrast, the generalized
structural tensor approach considers the average of all the fibers in its
calculations and therefore is a viable option for numerical implementa-
tion since it requires fewer calculations and is amenable for implemen-
tation in a finite element environment [27]. For more details about the
difference between the angular integration and the generalized struc-
tural tensor approach, readers are referred to Holzapfel et al. [30].
Irrespective of the approach employed, the components characterizing
the structural arrangement, specifically the mean orientations and mea-
sure of fiber dispersion of the embedded fibers, are paramount to the
continuum level constitutive model.

It is well known that the true collagen fiber distribution is three-
dimensional. However, as reported in the literature, the fiber distribu-
tion in the plane of the dermis is more significant than the out-of-plane
distribution [26]. Accordingly, this work focuses on characterizing and
modeling the collagen fiber distribution in the plane of the porcine der-
mis, which we experimentally observed to be non-symmetric. Fig. 1
shows a schematic that clarifies the difference between a symmetric
fiber distribution and a non-symmetric planar fiber distribution employ-
ing the z-periodic von-Mises distribution for two fiber families. As the
name suggests, the fibers are symmetrically distributed for a symmetric
fiber distribution with two distinct fiber families. In Fig. 1 this is indi-
cated by the equal orientations and identical peak heights and widths.
In contrast, the non-symmetric distribution with two fiber families still
has two peaks with different heights, widths, and mean orientations.

Focusing on the generalized structure tensor approach to describe
the fiber distribution, the main physical quantities are: i) the mean fiber
orientation; and ii) the measure of the dispersion from the mean orien-
tation. Within the context of the generalized structural tensor approach,
these are termed structural parameters, and significant prior literature
exists. The most notable work is Gasser et al. [4], where the foundation
of this approach originated and was focused on modeling artery walls.
Gasser et al. [4] proposed a statistical-based model to characterize the
collagen fiber spatial distribution considering the mean orientation and
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dispersion, assuming transverse isotropy for an arterial wall. A few more
seminal contributions are Jor et al. [26], Annaidh et al. [27], Holzapfel
et al. [29], Holzapfel et al. [30], Ueda et al. [34] and Witte et al. [7]. Jor
et al. [26] focused on characterizing collagen fiber distribution through
the thickness of the porcine dermis. Annaidh et al. [27] applied the
method of Gasser et al. [4] to skin tissues but mostly kept the underly-
ing model unchanged. More recently, Holzapfel and co-workers [29,30]
have enhanced their seminal contribution from Gasser et al. [4], but the
in-plane fiber distribution is still assumed to be symmetric. The work of
Ueda et al. [34] and Witte et al. [7] have experimentally shown that
the human dermis has non-symmetric fiber distribution, but it was not
explicitly modeled.

Although a lot has gone into characterizing the structural arrange-
ment of collagen fibers, the existing literature has not yet made use of a
non-symmetric planar fiber distribution to characterize and model the
fiber distribution in the plane of dermis. Many state-of-the-art constitu-
tive models require the details of the structural arrangement of fibers
as input. Accordingly, there is a clear gap in properly informing con-
tinuum level constitutive models, which may be improved by using a
more physically relevant fiber distribution, i.e., considering the non-
symmetry of planar fiber distribution.

Our experimental investigation demonstrates that the fiber distri-
bution in the plane of the dermis is non-symmetric, and accordingly
we hypothesize that the in-plane collagen fiber distribution is more
accurately described by a non-symmetric model than a symmetric dis-
tribution. Accordingly, the objective of this paper is to experimentally
characterize and model the collagen fiber distribution in the plane of
the dermis. This is accomplished by measuring the collagen fiber distri-
bution in the plane of the porcine dermis through the use of histology
analysis and employing a ubiquitously used z-periodic von-Mises dis-
tribution model ([4,26,35,29,36]), which is enhanced to capture the
non-symmetric planar fiber distribution with two fiber families. The
enhanced model is general and should be applicable to any soft biolog-
ical tissue composed of collagen fibers. Here we use porcine dermis as
a representative material.

The remainder of this paper is organized as follows. Section 2
overviews the procedure of sample preparation for histology analysis,
including staining and image acquisition, and also describes the details
of the modeling approach. Section 3 summarizes the results obtained.
4 discusses the observations of results and the final Section 5 summa-
rizes what is learned from this research and provides some concluding
remarks.

2. Materials and methods

The porcine skin tissue used in this work was produced by Midwest
Research Swine (Glencoe, MN). Midwest Research Swine has an estab-
lished quality-controlled process to provide high-quality porcine tissue
and live research swine typically used for biomedical applications. The
porcine skin was obtained from a six-month male 241 pound American
Yorkshire-Landrace-Duroc, the skin was debristled, and the hypodermis
was removed per MRS established process [37].

2.1. Sample preparation

We received the skin tissue in the form of rectangular sheets. Fig. 2
shows a schematic of two adjacent tissue sections taken from the left
and right of the spine, nearest to the tail, along with our coordinate sys-
tem. The tissue sheets have notches indicating the head and spine sides
to ensure a consistent reference system. Following the approach of [37]
after receiving the tissue, the sheets were stored in a freezer at —80°C
to prevent any degradation. Before use, the tissue sheets were defrosted
for 24 hours in a 4°C refrigerator before preparing the histology sam-
ples using a custom steel rule die. A custom die allows us to produce
histology samples keeping the orientation known with respect to the
head and spine. This will ensure that the orientation of the identified
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Fig. 2. Schematic of two sections of porcine dermis showing the various locations from where the fifteen histology samples were taken. The approximate size of

each section is 300 mm x 450 mm. The image is not drawn to scale.

collagen fibers can then be measured relative to the head and spine as
references.

The schematic in Fig. 2 also shows various locations labeled as rows
and columns, which we use to indicate where the samples for histol-
ogy analysis have been extracted from the sheet. In our convention,
columns closer to the spine are labeled C1, and the columns further
from the spine are labeled C2. And rows nearest to the tail are labeled
as R1 and continue to increase, moving upward towards the head. The
coordinates of the locations marked as rows and columns have been de-
termined to have a physical sense of length scale. We have used ImageJ
software [38] to obtain the coordinates of the locations labeled using
our row-column convention. The coordinates represent the center posi-
tion of each location, taking the end of the spine towards the tail as the
reference.

The die-cut tissue samples were then placed in individual histol-
ogy cassettes to keep proper track of the locations. We followed the
established procedure for the histology analysis used at the New Jer-
sey Medical School, an institution affiliated with and neighboring NJIT.
Cassettes containing samples were fixed in 10% neutral buffered Forma-
lin [39,40] for 24 hours followed by storage in 70% Ethanol [41] and
sent for histology analysis.

2.2. Histology imaging

Histology samples were processed at the New Jersey Medical School.
The hypodermis side of the tissue sample was faced, and imaging was
done at 300 microns deep from the hypodermis side to ensure that the
histology samples were taken from the dermis layer. We have used a
well-established method to identify the collagen bundles in the dermis
by employing the picrosirius red stain [42,43,40]. A Nikon Eclipse mi-
croscope was employed under polarized light using a Nikon Plan Apo
4x objective with numerical aperture of 0.2, and the 4x images were
stitched together to view the full tissue histology sample of 9.5 mm x
9.5 mm. Representative images of samples from both the left and the
right of the spine are shown in Fig. 3.

A limitation of our work, is that the imaging for the collagen fiber
distributions was performed post mortem. And this may affect the
macroscopic dimensions of the tissue as well as the microscopic colla-
gen fiber distribution due to loss of residual stress or pre-tension among
other factors [44]. We believe that more accurate fiber distributions

may be measured if the data were obtained in vivo, however that is out-
side the scope of our work in this contribution.

2.3. Obtaining individual fiber orientations

To obtain the planar fiber orientations, we employ OrientationJ vec-
tor field, a plugin of ImageJ [38]. The software uses an image-based
region of interest to obtain the fiber orientations utilizing the coordi-
nate system shown in Fig. 2.

The collagen fibers in the dermis are predominantly oriented along
cleavage lines, also known as Langer lines [cf. e.g., 45-47,6, and ref-
erences therein]. In the porcine dermis, the cleavage lines can be seen
as running in a direction transverse to the spine [48,49]. Accordingly,
we have taken the transverse to the spine direction as our reference for
fiber orientation measurement as shown in Fig. 3b.

Our testing indicates that the results are affected primarily by the
size of the region of interest, the so-called o parameter in OrientationJ
vector field. Accordingly, in order to determine an appropriate value for
o, a convergence study was conducted on the fiber orientations. Based
on the mean orientation results shown in Fig. 4, it can be observed
that the mean orientations for both the first fiber family and the second
fiber family are converging around o = 4, therefore for good measure,
all analyses reported here use o = 6.

2.4. Models for the fiber distribution

The existing literature almost ubiquitously uses the very common z-
periodic von-Mises distribution probability density function. This den-
sity function is for the directional statistics for unimodal circular data
[4,26,35,29,36]. As it serves as the foundational building block for
much of the description of collagen fibers, for clarity it is briefly sum-
marized here. For an angle ¢, it’s given by

_ [ explbcos2(¢—a)]
p(P) = { B Y AT } ,
—n/2L<¢p<n/2

2.1

where « is the mean orientation, b is a measure of the fiber concentra-
tion, and 7;,(b) is the modified Bessel function of the first kind of order
zero and defined as
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Fig. 3. a) Representative images (each is approximately 9.5 mm x 9.5 mm) of the stained histology samples from the left and right sides of the spine under polarized

light, b) Schematic of reference chosen for measurement of fiber orientation.
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k3

Iy(b) = i/exp(bcosq&)dq&.

0

(2.2)

Further, the density distribution function (2.1) must satisfy the follow-
ing normalization condition

/2

/ p(p)dep=1.

—-r/2

(2.3)

To account for two distinct fiber families, as will be shown in
what follows, we employ a combination of two z-periodic von-Mises
distribution probability density functions for modeling the fiber distri-
bution in the plane of the porcine dermis. As mentioned in Section 1,
the existing literature for modeling the fiber distribution considers a
symmetric distribution [27,29]. However, our experimental results (see
Fig. 5) and others in the literature [34,7] show that the fiber distribu-
tion in the plane of the porcine dermis is non-symmetric. Accordingly,
we hypothesized that a non-symmetric distribution could more accu-
rately characterize the fiber distribution in the plane of the dermis.
Therefore, in this work, building upon the prior modeling literature
[4,29], we have enhanced the existing z-periodic von-Mises distribu-
tion probability density functions to capture the non-symmetric planar
fiber distribution, and it was compared with a well-established symmet-
ric distribution model to test our hypothesis.

2.4.1. Symmetric planar fiber distribution

To give context, we find it useful to first describe the standard sym-
metric planar fiber distribution. For a symmetric planar distribution of
collagen fibers, as shown in Fig. 1, the mean orientations are equal and

opposite, and the fiber dispersion for both the fiber families is identi-
cal. Consequently, the total probability density function for the in-plane
symmetric fiber distribution is given by

exp[bcos2(¢p — a)]
27 1y(b)

exp[bcos2(¢p + a)]
27 1,(b)

Psym(P) = { 249
The fiber dispersion for the symmetric distribution is then obtained
through

/2
oy = / { exp(bcos 2¢) } sin2(@)dg, 0< Koym < 1/2, 2.5)

wly(b)
—/2

and the normalization condition for symmetric fiber distribution is
given by

/2 /2

_ explbcos2(¢p +a)]  exp[bcos2(¢p — a)] _
[ ramras= /{ e S }d¢—1.
-r/2 —-r/2

(2.6)

2.4.2. Non-symmetric planar fiber distribution

For a non-symmetric planar fiber distribution, as shown in Fig. 1 and
the foundation of our hypothesis, both fiber families have distinct mean
orientations and dispersions, with the total probability density function
given by

explb; cos2(¢p — a;)]
221,(by)

2.7)

pnon-sym(¢) = { eXp[bz €os 2(¢ - 0’2)] } )

271y(by)



S. Jaiswal, R. Hannineh, S. Nadimpalli et al.

Medical Engineering and Physics 115 (2023) 103973

o5 x10* LT R4CH %10% LT R4C2 «10% LT R3C1
X :-35.509 mm 25 (% . 149377 mm X :-31.877 mm 0.8
é 2 1Y :400.152 mm s % 21Y : 399.009 mm los= é 2 [Y :289.001 mm 06=
§15 » 215 ~ 8 =
= £ 045
5 4 = 04°% & c
P &1 : £ 8
* o5 0.5 2/ & 024
0 0 0 ol Qo
-90 0 20 90 0 90 -90 0 90
¢ (deg) ¢ (deg) ¢ (deg)
x10*  LTR3C2 x10* LT R2C1 0B «10* LT R2C2
X : -143.967 mm X :-34.849 mm % X : -144.501 mm 10.8
= |Y:292.532 mm . p|Y:192.583 mm = 2|Y :196.901 mm _
g 06 = £ g 106 =
8 » 3 8 =
5 043 & = 04
= § o1 a1 g
i 022 & = 02 A
0 0 e} o] 0 0 o o 0
‘ -90 0 90 -90 0 90
¢ (deg) ¢ (deg) ¢ (deg)
x10* LTR1C1 «10% LTR1C2 «10% RT R4C1
X : -39.700 mm 0.8 X : 145,313 mm X : 60.503 mm 0.8
= 2 Y : 101.549 mm 063 % 21 Y :104.521 mm 06=% = 2 Y : 372.364 mm - s
5 S 3 S 5 D
9] o o > 9 -~
; 045 i 045 z
21 g 21 g 21 g
& 65 &= 10.2 = A
o o0
0 0 0 0
-90 0 90 90 -0 20 90 0 20
¢ (deg) ¢ (deg) ¢ (deg)
x10* RT R4C2 «10* RT R3C1 <10 RT R3C2
% :1;(7;3;15 it o X:62.001 mm 4 o 25X . 179.553 mm 0.8
<2 e loes B2 Y:265.963 mm " 21y :269.697 mm | —
5 S 8 062 5 S
> o 1. int
= 045 o 0z 21 QY 04 &
g1 Z 84 4% g 4 Z
2 o 2 3 Lo 5}
e 102R = 02~R g5 102 2
0 0 0 0 0 o Q0
-90 0 90 -90 0 20 90 0 90
¢ (deg) ¢ (deg) ¢ (deg)
4 RT R1C2
x10* RT R2C1 «10% RT R2C2 10
25 OYX : 62.357 mm -10.8 2.5 : 178.791 mm -10.8 2.5 %YX 3 ;ZSFSE-/I mj& 10.8
1 164.414 : 168.148 mn g 1 72.542 mu ‘ .
‘é 2 o mm% 06 3 é 2 o% 106 = *é 2 10.6 =
g15 . t1s = 8 z
5 4 1047 5 04 %2 g
2 g = A = A
=05 022 F g5 10.2 =
ole Lo i) ole o0
-90 0 20 90 0 90
¢ (deg) ¢ (deg)
Histogram —— Model: Non-Symmteric

Model: Symmteric

(e]

Measured Density

Fig. 5. Histogram of measured fiber counts from histological analysis for all locations. Superimposed are the measured fiber density, as well as the calibrated

non-symmetric and symmetric models.

where a; and b, are the mean orientation and concentration, respec-
tively for the first fiber family, and «, and b, are the same for the second
fiber family. Further, the fiber dispersion for each fiber family can be
obtained from

/2
(by cos2¢) | .
Ky = / {%}smz(@d¢, and
-n/2
/2
_ exp(b, cos2¢) | . ,
Ky —_[2 {—ﬂfo(bz) }sm (Pp)do, (2.8)

where 0 <k, <1/2, and 0 <k, <1/2. And the normalization condition
for non-symmetric distribution is given by

explb; cos2(¢p — )]
27 1y(by)

exp[b, cos2(¢p — a,)]
27 1y(by)

(2.9)

}d¢=1.

Employing the normalization condition given by equation (2.9) is
equivalent to using different weights to two sets of fiber families.

/1

—r/2

3. Results

As mentioned in Section 2.1, we have fifteen histology samples from
the various locations of the porcine dermis in the vicinity of the tail,
as indicated in Fig. 2. Using the methods described in Sections 2.2 and
2.3, the planar fiber orientations were obtained and analyzed. The pla-
nar fiber orientations obtained from each histology sample are plotted
as histograms with 5° bin intervals as shown in Fig. 5. These histograms
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List of structural parameters obtained by calibration of a model consisting of a combination of two von-Mises distributions
with the planar fiber orientations considering various locations with respect to the spine employing both the symmetric

distribution and non-symmetric distribution approach.

Location Coordinates (mm) Symmetric Non-symmetric
a Ksym a; a, Ky Ky

LT R4C1 X: -35.509 29.85° 0.165 —35.8° 23.89° 0.147 0.159
Y: 400.152

LT R4C2 X: -149.377 26.67° 0.206 —25.63° 27.75° 0.203 0.208
Y: 399.009

LT R3C1 X: -31.877 37.21° 0.181 —24.29° 43.11° 0.264 0.102
Y: 289.001

LT R3C2 X: -143.967 29.19° 0.260 —32.85° 21.0° 0.217 0.317
Y: 292.532

LT R2C1 X: -34.849 38.80° 0.139 —33.89° 41.67° 0.207 0.0923
Y: 192.583

LT R2C2 X: -144.501 39.42° 0.186 —25.55° 47.43° 0.235 0.102
Y: 196.901

LT R1C1 X: -39.700 34.71° 0.123 -30.47° 36.77° 0.199 0.078
Y:101.549

LT R1C2 X:-145.313 22.96° 0.254 -17.75° 27.03° 0.271 0.232
Y: 104.521

RT R4C1 X: 60.503 37.12° 0.133 —40.50° 34.60° 0.181 0.091
Y: 372.364

RT R4C2 X:179.172 30.70° 0.160 —26.53° 37.41° 0.095 0.210
Y: 369.748

RT R3C1 X: 62.001 43.38° 0.099 —46.82° 37.94° 0.058 0.157
Y: 265.963

RT R3C2 X:179.553 36.13° 0.181 —38.99° 33.88° 0.278 0.116
Y: 269.697

RT R2C1 X: 62.357 46.50° 0.104 —44.25° 48.80° 0.102 0.100
Y: 164.414

RT R2C2 X:178.791 46.21° 0.123 —53.48° 38.80° 0.085 0.110
Y: 168.148

RT R1C2 X:178.054 44.93° 0.149 -55.11° 34.68° 0.0848 0.119
Y: 72.542

LT: Left Tail; RT: Right Tail.

represent the number of fibers oriented along different directions. The
fiber counts were also converted into experimentally measured fiber
density, ensuring that the normalization condition given by (2.9) is sat-
isfied for each sample. The experimentally measured fiber density is
superimposed on the histograms in Fig. 5. From the experimental mea-
surements shown in Fig. 5 one may clearly observe that, in general, the
actual fiber distribution is non-symmetric, and thus a model considering
the non-symmetric fiber distribution will better capture the actual fiber
distribution as compared to a model that considers only symmetric dis-
tribution ubiquitously found in the literature. The prior literature based
on the symmetric fiber distribution (2.4), and the enhanced model con-
sidering the non-symmetric fiber distribution (2.7), are calibrated using
the least-squares method to the measured distribution and are superim-
posed on the histograms in Fig. 5 as lines.

4. Discussion

In Fig. 5 the solid lines represent the non-symmetric distribution,
and the dash-dot lines indicate the symmetric planar fiber distribu-
tion. As expected, it is clear from the Fig. 5 that the non-symmetric
fiber distribution modeled through (2.7) more accurately characterizes
the structural arrangement of the collagen fibers than the symmetric
distribution model. Table 1 provides the specific parameter values for

the mean orientations and dispersion of the fiber distributions obtained
from calibration for both the models.

Further, to evaluate the predictive quality of both models, we have
calculated the Root Mean Square Error (RMSE) and the R? (also known
as “goodness of fit”) for both the symmetric and non-symmetric models.
Fig. 6 is a box-plot that shows that the non-symmetric model is supe-
rior to the symmetric model for this data set. For completeness, Table 2
summarizes the values of RMSE for both the models. It can be noticed
that the error caused by employing symmetric distribution is more than
the non-symmetric distribution in all cases, with improvements as large
as 200% achieved through the use of the new non-symmetric distribu-
tion. Additionally, Table 3 provides the tabulated comparison between
the symmetric and non-symmetric distributions by using R?. Again, it
is clear that the non-symmetric distribution shows a considerable im-
provement over the symmetric distribution in all cases. In three cases,
RT R1C2, LT R2C2, and LT R3C1, the improvement in terms of R? val-
ues demonstrated by the non-symmetric distribution approach is more
than 70%, a remarkably significant improvement.

5. Conclusion
We have experimentally demonstrated that the fiber distribution in

the plane of the porcine dermis is generally non-symmetric with two
sets of fiber families. This was accomplished by experimentally measur-
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Fig. 6. Box-plots showing the comparison of symmetric and non-symmetric distribution in terms of a) Root Mean Square Error (RMSE), and b) R?.

Table 2

Summary of RMSE values for symmetric and non-symmetric approach demon-
strating a significant reduction in root mean square error by non-symmetric
method over symmetric method while capturing the real fiber orientation.

Table 3

Summary of R?> values for symmetric and non-symmetric approach demon-
strating a significant improvement by non-symmetric method over symmetric
method while capturing the real fiber orientation.

Location Coordinates Symmetric, Non-symmetric, % difference in Location Coordinates Symmetric, Non-symmetric, % improvement
(mm) RMSE RMSE RMSE values (mm) R? R?

LT R3C1 X: -31.877 0.1128 0.0365 209.20% RT R1C2 X: 178.054 0.493 0.894 81.3%
Y: 289.001 Y: 72.542

LT R2C2 X: -144.501 0.1114 0.0382 191.67% LT R2C2 X: -144.501 0.528 0.945 79.0%
Y: 196.901 Y: 196.901

RT R3C2 X:179.553 0.0900 0.0324 178.02% LT R3C1 X: -31.877 0.557 0.954 71.3%
Y: 269.697 Y: 289.001

RT R4C2 X:179.172 0.0927 0.0355 160.96% RT R3C2 X:179.553 0.669 0.957 43.0%
Y: 369.748 Y: 269.697

LT R3C2 X: -143.967 0.0685 0.0278 145.99% RT R2C2 X:178.791 0.671 0.918 36.8%
Y: 292.532 Y: 168.148

RT R1C2 X:178.054 0.1428 0.0653 118.56% LT R3C2 X: -143.967 0.749 0.959 28.0%
Y: 72.5424 Y: 292.532

RT R2C2 X:178.791 0.1172 0.0587 99.76% RT R4C2 X:179.172 0.764 0.965 26.3%
Y: 168.148 Y: 369.748

LT R1C1 X: -39.700 0.0890 0.0461 92.84% RT R3C1 X: 62.001 0.774 0.929 20.0%
Y:101.549 Y: 265.963

LT R4C1 X: -35.509 0.0577 0.0300 92.25% LT R2C1 X: -34.849 0.774 0.923 19.3%
Y: 400.152 Y: 192.583

RT R3C1 X: 62.001 0.1063 0.0597 78.11% LT R1C1 X: -39.700 0.810 0.949 17.16%
Y: 265.963 Y: 101.549

LT R1C2 X:-145.313 0.0479 0.0276 73.37% RT R4C1 X: 60.503 0.807 0.935 15.9%
Y: 104.521 Y: 372.364

RT R4C1 X: 60.503 0.0813 0.0473 71.94% LT R4C1 X: -35.509 0.895 0.972 8.6%
Y: 372.364 Y: 400.152

LT R2C1 X: -34.849 0.0847 0.0495 71.13% LT R1C2 X:-145.313 0.914 0.971 6.2%
Y: 192.583 Y: 104.521

RT R2C1 X: 62.357 0.0665 0.0580 14.66% RT R2C1 X: 62.357 0.888 0.914 3.0%
Y: 164.414 Y: 164.414

LT R4C2 X:-149.377 0.0232 0.0225 3.39% LT R4C2 X: -149.377 0.980 0.982 0.2%
Y: 399.009 Y: 399.009

LT: Left Tail; RT: Right Tail.

ing the orientations of collagen fibers in the plane of the porcine dermis
using histology analysis. Based on the histology data, we have devel-
oped and verified an enhanced statistical-based model that considers
the non-symmetry of the fiber distribution by employing a combination
of two z-periodic von-Mises distribution density functions.

The main novelty of this work is experimentally demonstrating that
a non-symmetric in-plane fiber distribution model more accurately cap-

LT: Left Tail; RT: Right Tail.

tures the collagen distribution of real tissue and does so without any
additional experimental or computational effort in terms of cost and
time when compared with the ubiquitous symmetric distribution. Fur-
ther, we expect our method to easily extend to all soft biological tissues
since almost all soft biological tissues consist of collagen fibers in a
softer matrix.
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We believe this work has far-reaching implications for structure-
based continuum level constitutive models that make use of the struc-
tural arrangement of fibers as input. The improvements shown here
using our non-symmetric model, when used as part of a simulation tool,
can lead to the development of new and improved devices and appli-
cations, which may impact many lives. While much was learned in this
work, there is still much to be done. Future studies aim to characterize
the effect of aging and gender on the collagen fiber microstructure in
the porcine dermis.
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