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Abstract— Although ice sheet internal temperature is a
first-order control on glacier dynamics, relatively few in situ
borehole temperature profiles exist. The ultra-wideband software-
defined microwave radiometer (UWBRAD) was designed to esti-
mate internal ice sheet temperature (Ti ) by measuring microwave
brightness temperatures (Tb) from 0.5 to 2 GHz. The retrieval
of Ti from Tb is not straightforward, however, due in part to
the complicating effects of ice density fluctuations on Tb. In this
article, we report a simulation study to assess the feasibility of
realizing three science goals: the retrieval of: 1) Ti at 10 m depth
to within 1 K; 2) vertically averaged Ti to within 1 K; and
3) the vertical Ti profile to within 1 K RMSE. Two analyses
along the Greenland ice divide are presented. First, we assess
the ideal UWBRAD Ti retrieval precision via the Cramér–Rao
lower bound (CRLB). Second, we perform a “virtual experiment”
(VE) using synthetic UWBRAD observations. Both the CRLB
and VE analyses indicate that the science goals are achievable
with the caveats that ice thickness and UWBRAD Tb precision
impact performance. Assuming a UWBRAD Tb precision of 0.5 K,
and for places where ice sheet thickness is less than 3 km, all
science goals can be achieved. The results of the study provide
a strong indication of the potential of UWBRAD to provide
valuable Greenland ice temperature profile information to the
scientific community.

Index Terms— Bayesian, ice sheet, microwave radiometry,
temperature.

I. INTRODUCTION

ICE sheet internal temperature (Ti ) is an essential factor

for understanding glacier dynamics and predicting future

changes of glacier ice. However, temperature borehole data

are relatively scarce. Spaceborne and airborne remote sens-

ing instruments characterize most of the important variables

necessary to understand current ice sheet behaviors and to

predict future changes. Derived geophysical quantities include
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ice sheet surface elevation change, mass change, ice sheet

thickness, surface accumulation rate, internal layer stratigra-

phy, seaward bathymetry, and basal geology [1]. At present,

internal ice sheet temperature is absent from this list. Tem-

peratures at 10 m depth are characteristic of mean-annual

surface-temperature and are recognized as an important cli-

mate monitoring parameter [2]. Consequently, ice temperature

information is important for monitoring the regional climate

and is fundamental for understanding changes in ice sheet

mass balance and dynamics. Glacier deformation rates are

significantly affected by the thermal status of the constituent

ice because the stiffness of ice is temperature dependent.

Jezek et al. [3] describe a radiometric approach for mea-

suring ice sheet temperature via multispectral low-frequency

microwave emission measurements. Preliminary work by [4]

using soil moisture and ocean salinity mission (SMOS) L-band

data to retrieve Antarctica internal ice sheet temperatures

demonstrated that the approach is promising. By examination

of measurements of SMOS, it showed clear evidence of the

influence of deeper subsurface emissions [5]. Because the

brightness temperature of an ice sheet results from a combina-

tion of emission, attenuation, and scattering effects from many

internal ice sheet layers, the retrieval of even depth-averaged

temperatures from a single frequency brightness temperature

alone is challenging. The use of multiple frequencies provides

measurements in bands which are influenced by particular

properties (scattering for example) to differing degrees and

with varying penetration. The approach capitalizes on the fact

that over the frequency range 0.5–2 GHz, penetration depths

are large, ranging from 500 to 3000 m or more [6]. Following

concepts from atmospheric temperature sounding [7], mea-

surements of upwelling microwave radiation at higher frequen-

cies corresponds to microwave radiation emanating from ice

nearer to the ice sheet surface. Similarly, emissions at lower

frequencies upwell from deeper within the ice column. Mea-

suring emissions across a range of frequencies thus provides

the potential for inference of ice temperature vertical profiles.

The ultra-wideband software-defined microwave radiometer

(UWBRAD) funded by the NASA Instrument Incubator Pro-

gram (IIP) is designed to measure low-frequency microwave

emissions [8], [9]. UWBRAD was designed to provide nadirial

brightness temperature observations from 0.5 to 2 GHz using

multiple frequency channels. Because this frequency range is

not a protected portion of the spectrum, UWBRAD must allow

for brightness temperature measurements in the presence of

other, man-made, radio frequency interference (RFI). The goal

is achieved by sampling the 0.5–2 GHz frequency range into
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12–88 MHz bandwidth frequency channels so that advanced

RFI detection and mitigation methods can be applied in real

time. Brightness temperatures within each 88 MHz bandwidth

channel are further resolved at a frequency resolution of

0.24 MHz, allowing both the detection and filtering of interfer-

ence as well as use as a “hyperspectral” radiometer for specific

applications. This process enables UWBRAD to identify open

portions of the spectrum that can be used for radiometric

observations even in the presence of other transmitting sources.

In this study, we assess the feasibility of inferring ice

temperature from UWBRAD. The principal challenge with this

problem is overcoming the confounding effects of ice density

variations on the microwave signal. Tan et al. [6] explored

the impact of ice density variations on microwave emission

at UWBRAD frequencies. Essentially, limited knowledge in

ice density degrades the ability to infer ice sheet temper-

atures. Such confounding factors (also known as “nuisance

parameters”) are commonplace in retrieval problems, and

often require careful consideration to mitigate their impact

on retrieval performance. The specific science goals over the

Greenland Ice Sheet and the reason for setting up these goals

are as follows.

1) Retrieval of Ti at 10 m depth to within 1 K. 10 m

temperatures approximate the mean annual temperature

and so it represents an important climate parameter [2].

2) Retrieval of vertically averaged Ti to within 1 K. Spatial

variations in average temperature can be used as a proxy

for improving temperature-dependent ice-flow models.

3) Retrieval of vertical Ti profile to within 1 K RMSE.

Remote sensing measurements of temperature-depth

profiles can substantially improve ice flow models.

We assess the feasibility of achieving the three science

goals by presenting two analyses along the Greenland ice

divide. First, we assess the ideal UWBRAD Ti precision

via the Cramér–Rao lower bound (CRLB). Second, we per-

form a “virtual experiment” (VE) using synthetic UWBRAD

brightness temperature (Tb) observations. In the context of

the VE, we present a Bayesian Markov chain Monte Carlo

(MCMC) approach for temperature profile retrieval. These

two analyses complement each other: the CRLB is the best

possible precision realizable in theory, given the sensitivity

of the observables to the quantities being estimated; however,

it does not guarantee that such a solution can be realized. The

VE demonstrates retrieval with a particular algorithm, but (in

isolation from the CRLB) is more susceptible to misinterpre-

tation. A successful realization of scientific goals from both

the UWBRAD and VE analyses (as is demonstrated in what

follows) supports ongoing retrieval efforts with UWBRAD

measured data, as will be reported in subsequent publications.

II. STUDY AREA AND DATASETS

A. Study Area

The assumed flight path for UWBRAD in Greenland that

is considered in the simulation study is shown in Fig. 1, and

stretches from American Thule Air Force Base in northwestern

Greenland along the ice divide (as illustrated by the flow

lines [10] in Fig. 1) south to Crete station, and then southwest

to Sondestrom Air Base. This flight path was chosen to

overlap existing locations where ice cores exist, providing

Fig. 1. Nominal flight path of the UWBARD airborne experiment overlaid
on a Radarsat-1 [11] mosaic image of Greenland. All analyses in this study
are performed along the flight line. White lines indicate the ice flow. Small
circles are the 47 waypoints used for synthetic experiments.

temperature validation data; eight deep ice core sites are

covered. Moreover, temperature retrieval along the ice divide is

relatively simpler than at other locations because: 1) horizontal

ice advection is minimized, simplifying the ice temperature

modeling and 2) the snow and firn are dry, minimizing the

influence of liquid water on the microwave emission. The sim-

ulated flight path covers 1674 km, divided into 47 waypoints

roughly separated by 36 km for CRLB and VE analyses.

B. Datasets

A model of ice sheet internal temperature Ti is used in

both the CRLB and VE analyses and is described in detail

in Section III. Datasets to drive the ice temperature model

include: 1) ice sheet surface temperature from the regional

atmospheric climate model (RACMO) [12], a multidecadal

average of the monthly reanalysis data; 2) snow accumu-

lation rate, also from RACMO, obtained similar to surface

temperature; 3) ice sheet thickness from Operation Ice Bridge

(OIB) measurements [13]; and 4) geothermal heat flux from

satellite magnetic data [14], available as a gridded dataset for

the Community Ice Sheet Model (CISM) via [15]. Plots of all

these quantities at the 47 points along the nominal path are

shown in Fig. 2.

The Ti model assumes a steady state temperature profile; to

examine the effect of this assumption on our analysis, we make

use of the Ti vertical profile measured via the GISP2 ice

core [16], [17].
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Fig. 2. Traces of the four input parameters related to modeling ice sheet
temperature along the flight path. (a) Geothermal heat flux. (b) Surface
temperature. (c) Snow accumulation rate. (d) Ice thickness.

We further use borehole measurements of ice density from

Summit station [18] (located near GRIP in Fig. 1) to represent

the average ice density with depth, and neutron probe mea-

surements [19], [20] of density from T41 station near Summit

to assist in the modeling variations of ice density at centimetric

spatial scales. These ice density fluctuations play in important

role in microwave emission, as discussed below.

III. METHODS

In both the VE and CRLB analyses, two models are

used to relate the synthetic Tb observations to the Ti vertical

profiles: an ice temperature model based upon 1-D heat flow

(Section III-A) and a radiative transfer model (RTM) that links

vertical profiles of Ti and nuisance parameters with microwave

emission (Section III-B). Section III-C describes the statistical

model of vertical density fluctuations that represents our treat-

ment of the nuisance parameters. The CRLB and VE analyses

are then described in Sections III-D and III-E, respectively.

A. Ice Sheet Temperature Model

In general, ice sheet temperatures are highly dynamic ver-

tically, governed at the surface by diurnal and interannual

meteorological variations, governed at the base by geothermal

heat and frictional heating from basal slip, and by the advec-

tion of heat laterally along glacier flow paths. In this study,

we estimate only temperature at 10 m and greater, where

temporal fluctuations are governed by long-term climate rather

than short-term meteorological processes. Moreover, we limit

our analyses to locations along the Greenland ice divide, where

advection is minimal, as is heating due to ice deformation.

Thus, in this exploratory study, we use a simple 1-D steady

state heat-flow model by Robin [21] to calculate the vertical

temperature profile. Because horizontally advected heat is

excluded, the model is only applicable over the ice divide,

where there is negligible horizontal ice movement. Given the

surface temperature (Ts) in [K], ice sheet thickness (H ) in [m],

snow accumulation rate (M) in [m/yr], and geothermal heat

flux (G) in [w/m2], the Robin model describes steady-state

temperatures T (z) in [K] as a function of elevation z above

the ice sheet base as

T (z) − Ts =
−G

√
π

2κq
[erf(zq) − erf(H q)]

q2 =
M

2KH
(1)

where K = 45 m2/yr is the ice thermal diffusivity and

κ = 2.7 W/m · K is the ice thermal conductivity [22], [23].

Note that the temperature at the bottom of the ice sheet

decouples from geothermal heat flux if the base of the ice sheet

is melting and the model above would need to be adjusted.

However, the base along the ice divide is mostly frozen [24].

Therefore, this study uses a model without any basal melting.

B. Radiative Transfer Model

The prediction of microwave emission from firn at

0.5–2.0 GHz is an active area of research. Tan et al. [6]

presented a coherent model of emission in the context of

the UWBRAD mission. They argue that in the UWBRAD

frequency range, the ice particle grain size will be relatively

small compared with the wavelength of microwave radia-

tion, and thus volume scattering can be ignored. They also

demonstrate that coherent superposition of electromagnetic

(EM) waves, controlled by variations in density, may be an

important factor in determining Tb spectra at these frequencies.

However, coherent model computations are relatively time

consuming, requiring a large number of statistical realizations

of the density profile. Thus, in these studies, we use a

modified version of the coherent model [25], referred to as the

“partially-coherent model.” By assuming that coherent effects

can be considered only between adjacent sections of firn, the

total number of computations and thus run time is significantly

reduced. Refer to [6] for further details on the model. The

RTM uses the temperature and density profiles as inputs.

Due to the stochastic model used for density fluctuations,

an average over realizations is required to predict the expected

average brightness temperature. The Tb results shown in what

follows were obtained by averaging over 500 realizations.

C. Density Profile Model

Brogioni et al. [26] showed that density fluctuations in the

upper part of the ice sheet strongly influence L-band brightness

temperatures. Following [27], we model density as the sum of

a mean density profile and fluctuating terms, using the two

data sources from Summit station described previously

ρ(d) = ρ̄(d) + ρn(d) (2)

where d = z − H is the depth relative to the surface of an ice

sheet with thickness H . The unit for all parts of the density is

g/cm3. We assume the mean density profile with depth ρ̄(d)
increases exponentially and is obtained by curve-fitting the

density data in [20]

ρ̄(d) = 0.917 − 0.55 × e−0.236d . (3)

The density fluctuations ρn are assumed to follow a multivari-

ate normal distribution exhibiting vertical autocorrelation and
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zero mean [6], [28]. The covariance of ρn between two points

d and d 0, Cρ(d, d 0) is given by

Cρ(d, d 0) = 12e−dα−1

e−|d−d 0|lc−1

. (4)

Thus, the variance of ρn decreases exponentially with distance

below the surface, with the scale factor α, standard deviation

at surface of 1 in kg/m3 and correlation length lc in meters.

D. Cramér–Rao Lower Bound

The CRLB provides a limit to achievable performance for

a given estimation problem: i.e., given the set of models

and geophysical datasets described previously, the CRLB

represents the smallest achievable uncertainty variance in an

estimate of ice temperatures.

Define the vector of radiometer measurements at N fre-

quencies { fi}N
i=1 as y. The environmental model vector x

consists of the set of unknown parameters that drive both the

ice temperature model and the density model. Receiver noise

not related to the ice emissions is represented by the vector

n across all frequencies. Assuming an additive zero-mean

Gaussian noise, it is possible to write the problem as

x = [Ts H M G α 1 lc]T (5)

y = [y f1
y f2

, . . . , y fN
]T (6)

y = f (x) + n. (7)

T superscript here indicates the matrix transpose operation

with all other parameters assumed known. Given this problem

formulation, the likelihood function is given by

L(x) = p(y|x) = (2π)−N/2|C|−1/2

× exp

[
−

(y − f (x))T C−1(y − f (x))

2

]
(8)

where C is the noise covariance matrix. The Fisher information

matrix (FIM) for this problem can then be computed using [29]

FIMi j (x) = −E

{
∂ ln p(y|x)

∂xi

∂ ln p(y|x)

∂x j

}

= −
∫

∂2 ln p(y|x)

∂xi∂x j

p(y|x)dx (9)

where each entry in the FIM corresponds to the i th and j th

environmental parameters xi and x j , and E{·} is the expected

value. As shown by [29], for the additive Gaussian noise case,

the FIM can be computed by

FIM(x)i j =
[
∂ f (x)

∂xi

]T

C−1(x)

[
∂ f (x)

∂x j

]

+
1

2
tr

[
C−1(x)

∂C(x)

∂xi

C−1(x)
∂C(x)

∂x j

]
(10)

where tr is the trace. The rms error any unbiased estimator

x̂ can achieve is thus bounded by the CRLB, which is the

inverse of the FIM

var(x̂) = E
{(

x̂ − x
)(

x̂ − x
)T

}
≥ CRLB = FIM−1. (11)

The CRLB is calculated for the seven parameters used in the

forward model. The CRLB of the temperature at any height

can then be obtained from the 7 × 7 CRLB matrix

CRLB(T (z)) =
[∂T (z)

∂x

]
CRLB(x)

[∂T (z)

∂x

]T

(12)

where T (z) is defined as in (1). The partial derivatives of T (z)
with respect to the input parameters are given by

∂T (z)

∂Ts

= 1,
∂T (z)

∂lc

=
∂T (z)

∂α
=

∂T (z)

∂1
= 0 (13)

∂T (z)

∂G
=

1

kc

√
π H kd

2M

[
erf

(
z

√
M

2kd H

)
−erf

(
H

√
M

2kd H

)]

(14)

∂T (z)

∂M
=

G

kc

√
8kd H M

×
[
−kd H

√
π

M

(
erf

(
z

√
M

2kd H

)

− erf

(
H

√
M

2kd H

))
+ z exp

(
−z2 M

2kd H

)

− H exp

(
−H 2 M

2kd H

)]

∂T (z)

∂ H
=

G

2kc H

[√
πkd H

2M

(
erf

(
z

√
M

2kd H

)
(15)

− erf

(
H

√
M

2kd H

))
−z

√
π exp

(
−z2 M

2kd H

)

− H exp

(
−H 2 M

2kd H

)]
. (16)

This enables projection of the uncertainties of the inverted

parameters x into those of the temperature at any location

along the flight path and depth.

E. Virtual Experiment

As noted above, the CRLB only provides a theoretical

lower limit for precision that an ice temperature estimator can

achieve, but it does not guarantee that a practical estimator

with estimator variance close to CRLB exists. Thus, we also

present a VE in which we produce synthetic observations and

apply a retrieval algorithm to estimate ice temperatures. Here

we use a MCMC retrieval algorithm to estimate ice sheet

temperature and density model parameters. The MCMC is a

method for obtaining a sequence of random samples from a

probability distribution for which direct sampling is difficult

or impossible. It works by generating a sequence of sample

values in such a way that, as more and more sample values are

produced, the distribution of values more closely approximates

the desired distribution. In this study, we use the Metropolis

algorithm [30].

MCMC sample values are produced iteratively, with the

distribution of the next sample being dependent only on

the current sample value. Specifically, at each iteration, the

algorithm picks a candidate for the next sample value based

on the current sample value. Then, with some probability, the

candidate is either accepted (in which case the candidate value

is used in the next iteration) or rejected (in which case the

candidate value is discarded, and the current value is reused

in the next iteration).

Among the parameters involved in modeling Tb, the geother-

mal heat flux G and the standard deviation of the density

fluctuation 1 are arguably the most highly uncertain ones.

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on July 29,2023 at 02:02:15 UTC from IEEE Xplore.  Restrictions apply. 



DUAN et al.: FEASIBILITY OF ESTIMATING ICE SHEET INTERNAL TEMPERATURES USING ULTRA-WIDEBAND RADIOMETRY 4306611

Fig. 3. Forward simulation (blue line) and UWBRAD synthetic observation
(red line) with 0.5 K noise added to the forward simulation for the Crete
waypoint along the flight path.

The surface temperature Ts , though can be attained in various

way, is influential for the ice temperature profile. So they

were treated as unknown in the VE. For each one of the

47 points selected along the flight path, synthetic UWBRAD

measurements were generated via the RTM with a specific

set of Ts , G, and 1, where Ts = TRACMO + 1, G = GCISM,

1 = 30 kg/m3, α = 70, and lc = 0.4 m. Stochastic density

parameters were computed from the density profile provided

by Morris [20]. RACMO temperatures are modified to match

the moderate resolution imaging spectroradiometer (MODIS)

values. Gaussian white noise with a standard deviation of

0.5 K (nominal case) is then added to the simulated Tb.

We explore sensitivity to various noise levels below. The

synthetic observation near Crete (waypoint 35) along the flight

path is illustrated in Fig. 3 as a show case.

In this study, we assume uniform estimates of these para-

meters (prior), with parameter ranges as follows.

1) Ts = Ts + dTs with −3 < dTs < 3 K.

2) 0.03 < G < Gmelt W/m2.

3) 20 < 1 < 60 kg/m3.

Where Gmelt is the maximum value that G can take without

the base temperature exceeding the melt temperature. dTs is

selected based on previous study of MODIS Ts offset from

actual Ts measurements [31]. We constructed separate Markov

Chains for each point along the flight path, based on the priors

and synthetic observations. We then computed estimates of

each of the forward statistics based on the MCMC chain.

We computed a temperature profile estimate based on the

estimated parameters.

Forward model itself uses a large number of stochastic real-

izations for generating stable Tb (500 realizations were used

in this study; see Section III-B) computation. Hence, running

the RTM at each step of the MCMC chain is computationally

expensive. A lookup table of size 5×5×5 for each parameter

was therefore generated to improve computation efficiency.

At each step, the Tb is evaluated by 3-D interpolation within

the lookup table.

F. Analyses

To demonstrate feasibility, we perform several CRLB and

VE experiments, varying the observation uncertainty, which

represents the expected level of noise in the UWBRAD

observations. This investigation of sensitivity of the analyses

to input parameters studies the likelihood of achieving science

goals. Both CRLB and VE are computed across a range of

assumptions regarding UWBRAD Tb observation precision,

from 0.5 to 5.0 K. We also perform the CRLB analysis with

several of the UWBRAD channels removed, to ascertain the

effect of losing information in one of the channels due to

RFI. We use the MCMC to explore the correlation between the

parameter estimates across the Markov chains, which explores

the uniqueness of the solutions. Finally, we use the MCMC

to explore the effect of the simple Robin Ti model in the

retrieval. We do this by constructing a separate experiment

where we simulate the UWBRAD Tb data using borehole Ti

data, perform retrieval using the Robin model as usual, and

compare retrieved and borehole Ti values.

IV. RESULTS

A. CRLB Analyses

1) Forward Model Parameter Estimates: The square roots

of CRLB for the seven parameters used in the forward model

are given in Fig. 4. The standard deviation of each parameter

is computed from the square root of the diagonal entries of the

CRLB matrix (σi = (CRLB(i, i))1/2). As expected, the results

given in Fig. 4 showed increased rms error with increasing

measurement noise. Thus, the results for a noise value of 0.5 K

are indicative of the best performance that can be expected

from the inversion. For a noise value of 0.5 K, Fig. 4 shows

that the surface temperature can be obtained with a standard

deviation of 0.8 K while the ice thickness can be estimated

with accuracy no better than 36 m. Geothermal heat flux and

accumulation rate can be estimated with standard deviation

values at Tn = 1 K better than 0.005 W/m2 and 0.05 m/yr,

respectively. The other parameters that characterized density

fluctuations are also estimated well using the UWBRAD sys-

tem. It is important to note that neither the partially coherent

RTM nor the Robin temperature models are suitable at the

beginning and the end of the flight path that include ablation

and wet ice zones. The current simulations show UWBRAD

capabilities if the assumed models hold along the entire flight

path.

2) Vertical Temperature Profile Estimates: The square root

of CRLB for the vertical profiles of Ti along the path are

provided in Fig. 5 with a noise level of 1 K. The standard

deviation is less than or around 1 K for most of the ice sheet

along the flight path, although there are a few regions where

the standard deviation goes up to 6 K. The overall mean value

is 1.3 K and the average standard deviation at 10 m depth

along the flight path is 0.9 K.

3) CRLB With RFI: Due to the ultra-wideband nature of

the method, instruments operating at L-band frequencies will

encounter numerous RFI sources operating at different fre-

quencies. Here, theoretical limits of the system are explored

when one or more channels are lost. The CRLB values

with varying number of channels are shown in Fig. 6. The

CRLB values will vary for simulations that use less than

all 12 channels, depending on which channel(s) is/are lost.

The best and worst performing scenarios, and the average of

all possible scenarios are plotted as min, max, and average

CRLB. As expected, the performance of the system degrades

when using a smaller number of channels. However, even for

UWBRAD operating with only ten frequency channels, the

CRLB values remain similar to those for the full 12-channel
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Fig. 4. Square root of the CRLB of ice sheet parameters along the track with varying noise temperatures.

system. The degradation in performance however rapidly

increases with further reduction in the number of frequencies

used. For cases with less than nine channels, the selection of

which frequencies are lost becomes important, with the large

gap between the max, mean, and minimum standard deviation

values obtained from the CRLB. The surface temperature

mean rms error increases from 0.8 to 2 K for example when

four frequencies are not used, while the error sharply increases

to 8 K when another frequency is lost.

One thing to mention is that each frequency provides infor-

mation on physical temperature for different depths of the ice

sheet. Retrieval success depends upon having a range of high

and low frequencies: having eight frequencies evenly spread

across the frequency range is likely to be more successful than

the eight highest frequencies. Thus, we cannot assess the value

of each individual channel.

B. Virtual Experiment Analyses

1) Forward Model Parameter Estimates: For each point, the

estimations of each parameter in the VE compared with the

truth and the prior are shown in Fig. 7. In Fig. 7(a) and (b),

the estimation of density variation and surface temperature are

improved toward the true value after the MCMC process for

44 out of 47 cases. The main reason for the incorrect results is

the highly nonlinear and complex cost function surface with a

large number of local minima in addition to the global minima.

As we are interested in the temperature profile, the density

parameters are nuisance parameters. However, they need to

be correctly computed simultaneously with the temperature

Robin parameters and this increases the dimensions of the

search space and sometimes causes the inversion algorithm to

get stuck in a local minima. This issue and how to design

robust estimators that can mitigate this problem are discussed

in detail in [32].

In Fig. 7(c), the prior error in geothermal heat flux can

only be partially corrected at the beginning and end of the

Fig. 5. Ice temperature (CRLB)1/2 along the flight path at all depths.

flight path. In addition to the local minima solution, there are

two possible explanations for this situation: mismatch in other

parameter estimates that cause G to move away from the true

value in compensation, or the greater thickness for this portion

of the path. For additional examination, we performed a

separate experiment with a geothermal heat flux prior specified

to be further from the truth, referred to as the “degraded

G” experiment hereafter. The G estimated in the degraded G

experiment remained close to the prior estimation in locations

where the ice is greater than 3 km thick, which suggests that

while the surface of the ice sheet can be well interpreted with

low-frequency microwave measurements, the basal situation of

the ice sheet remains highly uncertain in the VE retrieval. It is

also noted that in Fig. 7(a), 1 is consistently underestimated

along the flight line. Intuitively, this underestimation may be

compensating for estimation error in Ts and G. Further studies

on the relationship of these three parameters are needed.
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Fig. 6. Square root of the CRLB of ice sheet parameters as a function of the number of frequencies used.

Fig. 7. VE estimates (red) of density variation, surface temperature, and
geothermal heat flux along the nominal flight path compared with prior
estimation and true value. (a) Fluctuation of density variation. (b) Surface
temperature offset. (c) Geothermal heat flux.

2) Vertical Temperature Profile Estimates: Fig. 8 shows

the key three error statistics computed on the VE vertical

temperature profile estimates. In Fig. 8(a), 10 m temperatures

are all estimated to within 1 K, and mostly to within 0.5 K,

despite the prior estimate having a precision of only 1.0 K. All

47 10 m temperature estimates showed improvement over the

prior. In Fig. 8(b), the depth-averaged temperature estimates

are constrained to within 2.5 K and mostly to within 2 K; the

average error is within 1 K for the first 20 points along the

flight path, roughly corresponding to ice thicknesses less than

3000 m. In Fig. 8(c), rms errors of the UWBRAD estimates are

all within 3.3 K; 28 of the 47 points show improvement over

the prior; rms errors are generally less than 1 K when the ice is

Fig. 8. Error statistics of the MCMC temperature estimates. (a) 10 m tem-
perature estimation error. (b) Average temperature estimation error. (c) Root
mean square error of the temperature estimation. (d) RMS error of 100 m
depth averaged temperature estimation error.

less than 3000 m thick. Both the average temperature estimates

and the rms errors of the estimation showed improvements

over the prior estimations at the beginning and end of the

flight path. Fig. 8(d) shows all temperature estimate rms errors

along the flight path based on 100 m depth increments; note

that the rms for each bin is thus computed over a slightly

different number of estimates. From Fig. 8(d), the estimation

error increases with depth and stays below 1 K up to about

1500 m. This analysis emphasizes the role played by ice sheet

thickness on retrieval accuracy.

3) Correlation Between Model Parameters: The correlation

coefficient of the MCMC chains for the three parameters are
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Fig. 9. Correlation coefficient between each of the three pairs of parameters.
(a) Geothermal heat flux and fluctuation of density variation. (b) Geothermal
heat flux and surface temperature. (c) Fluctuation of density variation and
surface temperature.

calculated at each point and illustrated in Fig. 9. Along the

flight line, a consistently high correlation of over 0.95 between

surface temperature and density variations is observed in

Fig. 9(c), which means that multiple combinations of density

variations and surface temperatures in the sample space would

produce the same Tb. Despite the high correlation between

these two parameters, the 10 m temperature remains accurately

estimated and shows significant improvement over the prior

estimate. Correlation between the other two pairs of parame-

ters shown in Figs. 9(a) and 9(b) are still relatively high (up

to approximately 0.8 in some cases), but are much lower than

those shown in Fig. 9(c). Note that the correlation is greatest

for ice thicker than 3000 m. Highly correlated geophysical

parameters can result in poor MCMC/estimation performance

and can be addressed by reparametrization using coordinate

rotation [33].

We further explore the correlation between dTs and 1 in

Fig. 10. Fig. 10(a) shows all the samples in the Markov chain

excluding the burn-in period for the first point along the flight

path, with three particular samples highlighted. The Tb spectra

for the three highlighted samples are plotted in Fig. 10(b),

along with the synthetic observation. The corresponding

spectral difference for each sample is 3.11 K for blue, 3.05 K

for cyan, 4.21 K for red, and 3.92 K for black. The sample

with the coldest Ts and lowest value of 1 has the largest

spectral difference in Fig. 10(b) (shown in red in all three

plots), but the level of noise in the synthetic observation makes

extracting such information challenging; note that all four Tb

spectra are fairly similar. The temperature profiles generated

with each set of parameters for the three highlighted samples

are plotted in Fig. 10(c) along with the true temperature profile.

It can be observed in Fig. 10(a) that for the three selected

points, 1 varies from about 35 to 50 kg/m3. As 1 increases

from 35 (red) to 40 kg/m3(blue), it is slightly over the true

value of 30 kg/m3 and thus “pushes” the simulated Tb away

from the truth. Consequently, the surface temperature increases

about 5 K to compensate the loss as 1 continues to increase to

Fig. 10. MCMC chains reveal the relationship between parameter estimates
for the first point along the flight path. (a) Markov chain samples for dT and
1. The three highlighted samples are indicated by triangle markers. (b) Tb

profiles for the three highlighted samples. (c) Ti vertical profiles for the three
highlighted samples.

TABLE I

ERROR STATISTICS OF THE MCMC ESTIMATION WITH

DIFFERENT OBSERVATION ERROR

about 50 kg/m3 (cyan), which is further beyond the true value.

The surface temperature alone fails to compensate for the Tb

offset while maintaining a reasonable value. The geothermal

heat flux is therefore then adjusted to constrain the temperature

profile jointly. The use of additional prior information in the

estimation scheme in future work may help to resolve some

of these parameter dependencies.

4) Sensitivity to Observation Error: In previous experi-

ments, the observation error was specified as 0.5 K. The VE

Ti error statistics corresponding to the science goals averaged

over the entire flight path for various observation error levels

are presented in Table I. It is promising to see that even

when the observation is ten times larger than the original

experiment, the rms error averaged over 47 points increases

only from 1.07 to 1.81 K. The MCMC process is still capable

of producing a correct estimation even under fairly severe

observation degradation.

Estimations using the data obtained between Camp Century-

NEEM-NGRIP in [32] compares well with these results with

roughly 1 K estimation rms error with a noise temperature

of 1 K, similar to the values reported in Table I.

5) Effects of Robin Model: The Robin model assumes

steady state heat transfer while in reality, the seasonal variation

and paleoclimatic events would be recorded within the ice

sheet and cause fluctuations in the upper part of the in situ

measured temperature profile [17]. As the Robin model is

not capable of including this upper layer variation, use of the

model introduces additional uncertainty into the Ti estimates.
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Fig. 11. Bayesian temperature estimation results for (a) GISP2, (a) Camp
Century, (c) NEEM, and (d) NGRIP. Borehole data (blue) versus UWBRAD
estimate (red) along with ±2σ error bars using (a) simulated, (b)–(d) real
data.

The result of the experiment described above using the bore-

hole Ti as the basis for generating synthetic observations

is shown in Fig. 11(a). The 10 m estimation and average

estimation error are 0.27 and 1.57 K, respectively. The rms

error is 2.16 K with the maximum error of −3.84 K occurred

at the depth of 1951 m. Thus, the additional uncertainty

introduced by the Robin model is of the same approximate

magnitude as the error levels presented above.

Boreholes at three other locations along the flight path,

namely Camp Century, NEEM, and NGRIP, were also shown

in Fig. 11(b)–(d). These are the good candidates for dry ice

with no horizontal drift or other processes so Robin model

works well for these three locations. Actual data from [32]

are used in the Bayesian estimation for these locations. The

estimated profile and two standard deviation error bars (cor-

responding to 95% confidence interval) are also provided.

Results show that UWBRAD has the potential to achieve the

three main goals provided in Section I.

However, current formulation indeed limits the application

of UWBRAD to regions where Robin is valid. Using more

accurate models such as [34] or [35] it should be possible

to extend the validity region to cover all Greenland and

Antarctica.

V. DISCUSSION

It is remarkable that multispectral low-frequency measure-

ments of microwave emission near L-band carry information

on ice temperature profiles. This study presents a detailed

analysis characterizing that information. We showed in simu-

lation for Greenland, the 10 m temperature can be estimated to

high precision, but that Ti vertical profiles for ice greater than

3000 m in thickness is more challenging to estimate, meaning

that it is challenging but possible to achieve 1 K precision for

average and rms of the vertical temperature profile across the

entire Greenland ice divide. Note that these conclusions are

specific to Greenland, because the dielectric properties and

penetration depth are sensitive to ice temperature, and thus

should be interpreted with care.

We also show that Tb observation precision is critical, with

Ti uncertainty increasing when the Tb uncertainty is greater

than 2 K. This is a challenging precision target to hit, due to

RFI, as well as the general challenge of operating of airborne

radiometers in very cold environmental conditions. Nonethe-

less, there are good reasons for optimism regarding the ability

of UWBRAD observations to infer ice temperatures. First,

we find that these results are essentially consistent between

two completely different analyses, the CRLB and VE using an

MCMC algorithm. The CRLB shows that the best achievable

precision falls within the desired science goals, in most cases,

while the VE demonstrates a particular algorithm capable of

achieving that precision. Second, both analyses use minimal

or no prior information: the CRLB uses no prior information

at all, whereas the MCMC prior is assumed to follow a

uniform distribution, and is thus relatively uninformative. Use

of additional observational datasets, and Gaussian or other

prior estimates of the forward model parameters may yield

higher precision estimates, even if the UWBRAD observation

precision is coarser than that considered here. Also, comparing

the accuracies of the retrieved temperature related parameters

with the ones of different systems commonly used for each

parameter, the retrieval framework performed well in improv-

ing the knowledge of those parameters. For example, for Ts ,

It is claimed that the average bias of satellite-derived and

in situ ice-surface temperature is well within the rms error

of 2.1 K [36]. While for the UWBRAD, the CRLB provided

that the Ts can be obtained with a standard deviation of

0.8 K. Another good example will be the retrieval of G as the

Geothermal heat flux is largely unknown. Two geothermal heat

flux models are frequently used for Greenland: one inferred

from seismic tomography and the other from magnetic [37].

Maule et al. [14] claims the uncertainty of the magnetic anom-

alies derived geothermal heat flux data is 0.021–0.027 W/m2 in

Antarctica. The results in CRLB shows that geothermal heat

flux can be estimated with standard deviation better than

0.005 W/m2.

VI. CONCLUSION

We find that both the CRLB and VE analyses support the

conclusion that UWBRAD Tb observations can be used to infer

Ti profiles at precisions high enough to enable new scientific

understanding of the Greenland ice sheet. In particular, the

10 m temperature has been shown to be retrievable with

the desired precision, despite the challenges of disentangling

the effects of temperature and ice density variations on the

microwave emission. For ice deeper than approximately

3000 m, the precision of the retrievals is degraded but overall

goals of the system can still be satisfied as shown in [32].

Observation precision is an important control on final Ti

precision, but even in the case of fairly high Tb uncertainty,

our experiments indicate there is significant information in

the observations. The results shown here with no prior (for

the CRLB) or with a noninformative prior (for the VE)

are useful in establishing the information content in the

UWBRAD observations. Use of more informative priors is

expected to improve the estimates. Thus, measurements of

microwave emission near L-band carry information on ice

temperature profiles, in agreement with the conclusions of

Jezek et al. [3]. This work lays a more formal basis for con-

fidence in UWBRAD temperature observations derived from
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real airborne observations, and thus supports new scientific

findings of temperature dynamics within ice sheets using this

unique measurement technique.
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