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Abstract— Although ice sheet internal temperature is a
first-order control on glacier dynamics, relatively few in situ
borehole temperature profiles exist. The ultra-wideband software-
defined microwave radiometer (UWBRAD) was designed to esti-
mate internal ice sheet temperature (7;) by measuring microwave
brightness temperatures (7;) from 0.5 to 2 GHz. The retrieval
of T; from T, is not straightforward, however, due in part to
the complicating effects of ice density fluctuations on 7;. In this
article, we report a simulation study to assess the feasibility of
realizing three science goals: the retrieval of: 1) 7; at 10 m depth
to within 1 K; 2) vertically averaged 7; to within 1 K; and
3) the vertical 7; profile to within 1 K RMSE. Two analyses
along the Greenland ice divide are presented. First, we assess
the ideal UWBRAD 7; retrieval precision via the Cramér-Rao
lower bound (CRLB). Second, we perform a ‘virtual experiment”
(VE) using synthetic UWBRAD observations. Both the CRLB
and VE analyses indicate that the science goals are achievable
with the caveats that ice thickness and UWBRAD 7} precision
impact performance. Assuming a UWBRAD T, precision of 0.5 K,
and for places where ice sheet thickness is less than 3 km, all
science goals can be achieved. The results of the study provide
a strong indication of the potential of UWBRAD to provide
valuable Greenland ice temperature profile information to the
scientific community.

Index Terms—Bayesian, ice sheet, microwave radiometry,
temperature.

I. INTRODUCTION

CE sheet internal temperature (7;) is an essential factor

for understanding glacier dynamics and predicting future
changes of glacier ice. However, temperature borehole data
are relatively scarce. Spaceborne and airborne remote sens-
ing instruments characterize most of the important variables
necessary to understand current ice sheet behaviors and to
predict future changes. Derived geophysical quantities include
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ice sheet surface elevation change, mass change, ice sheet
thickness, surface accumulation rate, internal layer stratigra-
phy, seaward bathymetry, and basal geology [1]. At present,
internal ice sheet temperature is absent from this list. Tem-
peratures at 10 m depth are characteristic of mean-annual
surface-temperature and are recognized as an important cli-
mate monitoring parameter [2]. Consequently, ice temperature
information is important for monitoring the regional climate
and is fundamental for understanding changes in ice sheet
mass balance and dynamics. Glacier deformation rates are
significantly affected by the thermal status of the constituent
ice because the stiffness of ice is temperature dependent.
Jezek et al. [3] describe a radiometric approach for mea-
suring ice sheet temperature via multispectral low-frequency
microwave emission measurements. Preliminary work by [4]
using soil moisture and ocean salinity mission (SMOS) L-band
data to retrieve Antarctica internal ice sheet temperatures
demonstrated that the approach is promising. By examination
of measurements of SMOS, it showed clear evidence of the
influence of deeper subsurface emissions [5]. Because the
brightness temperature of an ice sheet results from a combina-
tion of emission, attenuation, and scattering effects from many
internal ice sheet layers, the retrieval of even depth-averaged
temperatures from a single frequency brightness temperature
alone is challenging. The use of multiple frequencies provides
measurements in bands which are influenced by particular
properties (scattering for example) to differing degrees and
with varying penetration. The approach capitalizes on the fact
that over the frequency range 0.5-2 GHz, penetration depths
are large, ranging from 500 to 3000 m or more [6]. Following
concepts from atmospheric temperature sounding [7], mea-
surements of upwelling microwave radiation at higher frequen-
cies corresponds to microwave radiation emanating from ice
nearer to the ice sheet surface. Similarly, emissions at lower
frequencies upwell from deeper within the ice column. Mea-
suring emissions across a range of frequencies thus provides
the potential for inference of ice temperature vertical profiles.
The ultra-wideband software-defined microwave radiometer
(UWBRAD) funded by the NASA Instrument Incubator Pro-
gram (IIP) is designed to measure low-frequency microwave
emissions [8], [9]. UWBRAD was designed to provide nadirial
brightness temperature observations from 0.5 to 2 GHz using
multiple frequency channels. Because this frequency range is
not a protected portion of the spectrum, UWBRAD must allow
for brightness temperature measurements in the presence of
other, man-made, radio frequency interference (RFI). The goal
is achieved by sampling the 0.5-2 GHz frequency range into
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12-88 MHz bandwidth frequency channels so that advanced
RFI detection and mitigation methods can be applied in real
time. Brightness temperatures within each 88 MHz bandwidth
channel are further resolved at a frequency resolution of
0.24 MHz, allowing both the detection and filtering of interfer-
ence as well as use as a “hyperspectral” radiometer for specific
applications. This process enables UWBRAD to identify open
portions of the spectrum that can be used for radiometric
observations even in the presence of other transmitting sources.

In this study, we assess the feasibility of inferring ice
temperature from UWBRAD. The principal challenge with this
problem is overcoming the confounding effects of ice density
variations on the microwave signal. Tan et al. [6] explored
the impact of ice density variations on microwave emission
at UWBRAD frequencies. Essentially, limited knowledge in
ice density degrades the ability to infer ice sheet temper-
atures. Such confounding factors (also known as “nuisance
parameters”) are commonplace in retrieval problems, and
often require careful consideration to mitigate their impact
on retrieval performance. The specific science goals over the
Greenland Ice Sheet and the reason for setting up these goals
are as follows.

1) Retrieval of 7; at 10 m depth to within 1 K. 10 m
temperatures approximate the mean annual temperature
and so it represents an important climate parameter [2].
Retrieval of vertically averaged 7; to within 1 K. Spatial
variations in average temperature can be used as a proxy
for improving temperature-dependent ice-flow models.
Retrieval of vertical T; profile to within 1 K RMSE.
Remote sensing measurements of temperature-depth
profiles can substantially improve ice flow models.

2)

3)

We assess the feasibility of achieving the three science
goals by presenting two analyses along the Greenland ice
divide. First, we assess the ideal UWBRAD T7; precision
via the Cramér—Rao lower bound (CRLB). Second, we per-
form a “virtual experiment” (VE) using synthetic UWBRAD
brightness temperature (7,) observations. In the context of
the VE, we present a Bayesian Markov chain Monte Carlo
(MCMC) approach for temperature profile retrieval. These
two analyses complement each other: the CRLB is the best
possible precision realizable in theory, given the sensitivity
of the observables to the quantities being estimated; however,
it does not guarantee that such a solution can be realized. The
VE demonstrates retrieval with a particular algorithm, but (in
isolation from the CRLB) is more susceptible to misinterpre-
tation. A successful realization of scientific goals from both
the UWBRAD and VE analyses (as is demonstrated in what
follows) supports ongoing retrieval efforts with UWBRAD
measured data, as will be reported in subsequent publications.

II. STUDY AREA AND DATASETS
A. Study Area

The assumed flight path for UWBRAD in Greenland that
is considered in the simulation study is shown in Fig. 1, and
stretches from American Thule Air Force Base in northwestern
Greenland along the ice divide (as illustrated by the flow
lines [10] in Fig. 1) south to Crete station, and then southwest
to Sondestrom Air Base. This flight path was chosen to
overlap existing locations where ice cores exist, providing
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Fig. 1. Nominal flight path of the UWBARD airborne experiment overlaid
on a Radarsat-1 [11] mosaic image of Greenland. All analyses in this study
are performed along the flight line. White lines indicate the ice flow. Small
circles are the 47 waypoints used for synthetic experiments.

temperature validation data; eight deep ice core sites are
covered. Moreover, temperature retrieval along the ice divide is
relatively simpler than at other locations because: 1) horizontal
ice advection is minimized, simplifying the ice temperature
modeling and 2) the snow and firn are dry, minimizing the
influence of liquid water on the microwave emission. The sim-
ulated flight path covers 1674 km, divided into 47 waypoints
roughly separated by 36 km for CRLB and VE analyses.

B. Datasets

A model of ice sheet internal temperature 7; is used in
both the CRLB and VE analyses and is described in detail
in Section IIl. Datasets to drive the ice temperature model
include: 1) ice sheet surface temperature from the regional
atmospheric climate model (RACMO) [12], a multidecadal
average of the monthly reanalysis data; 2) snow accumu-
lation rate, also from RACMO, obtained similar to surface
temperature; 3) ice sheet thickness from Operation Ice Bridge
(OIB) measurements [13]; and 4) geothermal heat flux from
satellite magnetic data [14], available as a gridded dataset for
the Community Ice Sheet Model (CISM) via [15]. Plots of all
these quantities at the 47 points along the nominal path are
shown in Fig. 2.

The T; model assumes a steady state temperature profile; to
examine the effect of this assumption on our analysis, we make
use of the 7; vertical profile measured via the GISP2 ice
core [16], [17].

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on July 29,2023 at 02:02:15 UTC from IEEE Xplore. Restrictions apply.



DUAN et al.: FEASIBILITY OF ESTIMATING ICE SHEET INTERNAL TEMPERATURES USING ULTRA-WIDEBAND RADIOMETRY

260
0.07

255

—0.06
S £ 250
io.os @
0.04 245
X 240
%% 10 20 s 40 0 10 20 30 40
point point
(@) (®)
0.6 3500
05 3000
- 2500
>0.4 =
E 12000
0.3
= 1500
02 1000
0.1 500
0 10 20 30 40 0 10 20 30 40
point point
© (@
Fig. 2. Traces of the four input parameters related to modeling ice sheet

temperature along the flight path. (a) Geothermal heat flux. (b) Surface
temperature. (c) Snow accumulation rate. (d) Ice thickness.

We further use borehole measurements of ice density from
Summit station [18] (located near GRIP in Fig. 1) to represent
the average ice density with depth, and neutron probe mea-
surements [19], [20] of density from T41 station near Summit
to assist in the modeling variations of ice density at centimetric
spatial scales. These ice density fluctuations play in important
role in microwave emission, as discussed below.

III. METHODS

In both the VE and CRLB analyses, two models are
used to relate the synthetic 7}, observations to the 7; vertical
profiles: an ice temperature model based upon 1-D heat flow
(Section ITI-A) and a radiative transfer model (RTM) that links
vertical profiles of 7; and nuisance parameters with microwave
emission (Section III-B). Section III-C describes the statistical
model of vertical density fluctuations that represents our treat-
ment of the nuisance parameters. The CRLB and VE analyses
are then described in Sections III-D and III-E, respectively.

A. Ice Sheet Temperature Model

In general, ice sheet temperatures are highly dynamic ver-
tically, governed at the surface by diurnal and interannual
meteorological variations, governed at the base by geothermal
heat and frictional heating from basal slip, and by the advec-
tion of heat laterally along glacier flow paths. In this study,
we estimate only temperature at 10 m and greater, where
temporal fluctuations are governed by long-term climate rather
than short-term meteorological processes. Moreover, we limit
our analyses to locations along the Greenland ice divide, where
advection is minimal, as is heating due to ice deformation.
Thus, in this exploratory study, we use a simple 1-D steady
state heat-flow model by Robin [21] to calculate the vertical
temperature profile. Because horizontally advected heat is
excluded, the model is only applicable over the ice divide,
where there is negligible horizontal ice movement. Given the
surface temperature (7) in [K], ice sheet thickness (H) in [m],
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snow accumulation rate (M) in [m/yr], and geothermal heat
flux (G) in [w/m?], the Robin model describes steady-state
temperatures 7(z) in [K] as a function of elevation z above
the ice sheet base as

GJT

T(2) — T, = ——[erf(zq) — erf(Hq)]
2K q
¢ = o 1
2KH
where K = 45 m?/yr is the ice thermal diffusivity and

x = 2.7 W/m - K is the ice thermal conductivity [22], [23].
Note that the temperature at the bottom of the ice sheet
decouples from geothermal heat flux if the base of the ice sheet
is melting and the model above would need to be adjusted.
However, the base along the ice divide is mostly frozen [24].
Therefore, this study uses a model without any basal melting.

B. Radiative Transfer Model

The prediction of microwave emission from firn at
0.5-2.0 GHz is an active area of research. Tan et al. [6]
presented a coherent model of emission in the context of
the UWBRAD mission. They argue that in the UWBRAD
frequency range, the ice particle grain size will be relatively
small compared with the wavelength of microwave radia-
tion, and thus volume scattering can be ignored. They also
demonstrate that coherent superposition of electromagnetic
(EM) waves, controlled by variations in density, may be an
important factor in determining 7}, spectra at these frequencies.
However, coherent model computations are relatively time
consuming, requiring a large number of statistical realizations
of the density profile. Thus, in these studies, we use a
modified version of the coherent model [25], referred to as the
“partially-coherent model.” By assuming that coherent effects
can be considered only between adjacent sections of firn, the
total number of computations and thus run time is significantly
reduced. Refer to [6] for further details on the model. The
RTM uses the temperature and density profiles as inputs.
Due to the stochastic model used for density fluctuations,
an average over realizations is required to predict the expected
average brightness temperature. The 7}, results shown in what
follows were obtained by averaging over 500 realizations.

C. Density Profile Model

Brogioni et al. [26] showed that density fluctuations in the
upper part of the ice sheet strongly influence L-band brightness
temperatures. Following [27], we model density as the sum of
a mean density profile and fluctuating terms, using the two
data sources from Summit station described previously

p(d) = p_(d) + pn (d) (2)

where d = z — H is the depth relative to the surface of an ice
sheet with thickness H. The unit for all parts of the density is
g/cm?. We assume the mean density profile with depth 5(d)
increases exponentially and is obtained by curve-fitting the
density data in [20]

p(d) = 0.917 — 0.55 x ¢ 02364, (3)

The density fluctuations p, are assumed to follow a multivari-
ate normal distribution exhibiting vertical autocorrelation and
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zero mean [6], [28]. The covariance of p, between two points
dand d', C,(d,d’) is given by

C/) (d, d/) — Aze—d(lile—k]—d’uvil. (4)

Thus, the variance of p, decreases exponentially with distance
below the surface, with the scale factor o, standard deviation
at surface of A in kg/m?® and correlation length /. in meters.

D. Cramér—Rao Lower Bound

The CRLB provides a limit to achievable performance for
a given estimation problem: i.e., given the set of models
and geophysical datasets described previously, the CRLB
represents the smallest achievable uncertainty variance in an
estimate of ice temperatures.

Define the vector of radiometer measurements at N fre-
quencies {f;}¥, as y. The environmental model vector x
consists of the set of unknown parameters that drive both the
ice temperature model and the density model. Receiver noise
not related to the ice emissions is represented by the vector
n across all frequencies. Assuming an additive zero-mean
Gaussian noise, it is possible to write the problem as

x=[[,HM Ga A I.]" (5)
Y=00h Ypoeos vl (6)
y=/f&x+n @)

T superscript here indicates the matrix transpose operation
with all other parameters assumed known. Given this problem
formulation, the likelihood function is given by

L(x) Qr) N2 c|t?
(y—fx)’C 'y — f(X))] ®
2

where C is the noise covariance matrix. The Fisher information
matrix (FIM) for this problem can then be computed using [29]

_E{ 0ln p(y|x) dIn p(yIX)}

8x,» an

0> In p(y|x)
6x,»8x j
where each entry in the FIM corresponds to the ith and jth
environmental parameters X; and x;, and E{-} is the expected
value. As shown by [29], for the additive Gaussian noise case,
the FIM can be computed by

=pylx) =

X exp [—

FIM,‘]‘ (X)

p(yIx)dx 9

S [aj;(f)} iix ){afix)}
i J
. t[C ()ac}fx) ()%] (10)
i j

where tr is the trace. The rms error any unbiased estimator
X can achieve is thus bounded by the CRLB, which is the
inverse of the FIM

var®) = E{ (R - x) (X - x)" } = CRLB=FIM"". (11)

The CRLB is calculated for the seven parameters used in the
forward model. The CRLB of the temperature at any height
can then be obtained from the 7 x 7 CRLB matrix

oT (z) 6T(z)}
ox

CRLB(T (7)) = [ }CRLB( )[ (12)
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where T'(z) is defined as in (1). The partial derivatives of 7'(z)
with respect to the input parameters are given by

oT oT oT oT
() _1 () 0T _ oT() _0 (13)
oT, al. da oA
T 1 H M M
0 (Z):_ 7 Hkq erf( z —erf| H
oG k. \ 2M 2k, H 2k, H
(14)
oT(z) G
oM k./8ksHM
—kyH
M 2k H
t(u |- M + 2 M
— €I c —
2k, H LXP\ T o H
— Hexp | —H? M
P 2k, H
oT (z) G wkaH M
- £ 15
oH 2kCH[ M (er (Z 2de) (1)
M M
—erf(H — 2
er( \ 2de>) Zﬁe"p(z 2de>
H w M (16)
— X — .
P 2 H

This enables projection of the uncertainties of the inverted
parameters x into those of the temperature at any location
along the flight path and depth.

E. Virtual Experiment

As noted above, the CRLB only provides a theoretical
lower limit for precision that an ice temperature estimator can
achieve, but it does not guarantee that a practical estimator
with estimator variance close to CRLB exists. Thus, we also
present a VE in which we produce synthetic observations and
apply a retrieval algorithm to estimate ice temperatures. Here
we use a MCMC retrieval algorithm to estimate ice sheet
temperature and density model parameters. The MCMC is a
method for obtaining a sequence of random samples from a
probability distribution for which direct sampling is difficult
or impossible. It works by generating a sequence of sample
values in such a way that, as more and more sample values are
produced, the distribution of values more closely approximates
the desired distribution. In this study, we use the Metropolis
algorithm [30].

MCMC sample values are produced iteratively, with the
distribution of the next sample being dependent only on
the current sample value. Specifically, at each iteration, the
algorithm picks a candidate for the next sample value based
on the current sample value. Then, with some probability, the
candidate is either accepted (in which case the candidate value
is used in the next iteration) or rejected (in which case the
candidate value is discarded, and the current value is reused
in the next iteration).

Among the parameters involved in modeling 7}, the geother-
mal heat flux G and the standard deviation of the density
fluctuation A are arguably the most highly uncertain ones.
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Fig. 3. Forward simulation (blue line) and UWBRAD synthetic observation
(red line) with 0.5 K noise added to the forward simulation for the Crete
waypoint along the flight path.

The surface temperature 7y, though can be attained in various
way, is influential for the ice temperature profile. So they
were treated as unknown in the VE. For each one of the
47 points selected along the flight path, synthetic UWBRAD
measurements were generated via the RTM  with a specific
set of T, G, and A, where T, = Tracmo + 1, G = Geisum,
A = 30 kg/m3, a = 70, and /[, = 0.4 m. Stochastic density
parameters were computed from the density profile provided
by Morris [20]. RACMO temperatures are modified to match
the moderate resolution imaging spectroradiometer (MODIS)
values. Gaussian white noise with a standard deviation of
0.5 K (nominal case) is then added to the simulated 7.
We explore sensitivity to various noise levels below. The
synthetic observation near Crete (waypoint 35) along the flight
path is illustrated in Fig. 3 as a show case.

In this study, we assume uniform estimates of these para-
meters (prior), with parameter ranges as follows.

1) T, =T, +dT, with =3 < dT, <3 K.

2) 0.03 < G < Gpeix W/m?.

3) 20 < A < 60 kg/m®.

Where Gepe 18 the maximum value that G can take without
the base temperature exceeding the melt temperature. d7; is
selected based on previous study of MODIS T offset from
actual 7; measurements [31]. We constructed separate Markov
Chains for each point along the flight path, based on the priors
and synthetic observations. We then computed estimates of
each of the forward statistics based on the MCMC chain.
We computed a temperature profile estimate based on the
estimated parameters.

Forward model itself uses a large number of stochastic real-
izations for generating stable 7}, (500 realizations were used
in this study; see Section III-B) computation. Hence, running
the RTM at each step of the MCMC chain is computationally
expensive. A lookup table of size 5 x5 x5 for each parameter
was therefore generated to improve computation efficiency.
At each step, the T} is evaluated by 3-D interpolation within
the lookup table.

F. Analyses

To demonstrate feasibility, we perform several CRLB and
VE experiments, varying the observation uncertainty, which
represents the expected level of noise in the UWBRAD
observations. This investigation of sensitivity of the analyses
to input parameters studies the likelihood of achieving science
goals. Both CRLB and VE are computed across a range of
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assumptions regarding UWBRAD T, observation precision,
from 0.5 to 5.0 K. We also perform the CRLB analysis with
several of the UWBRAD channels removed, to ascertain the
effect of losing information in one of the channels due to
RFI. We use the MCMC to explore the correlation between the
parameter estimates across the Markov chains, which explores
the uniqueness of the solutions. Finally, we use the MCMC
to explore the effect of the simple Robin 7; model in the
retrieval. We do this by constructing a separate experiment
where we simulate the UWBRAD 7,, data using borehole 7;
data, perform retrieval using the Robin model as usual, and
compare retrieved and borehole 7; values.

IV. RESULTS
A. CRLB Analyses

1) Forward Model Parameter Estimates: The square roots
of CRLB for the seven parameters used in the forward model
are given in Fig. 4. The standard deviation of each parameter
is computed from the square root of the diagonal entries of the
CRLB matrix (¢; = (CRLB(i, i))'/?). As expected, the results
given in Fig. 4 showed increased rms error with increasing
measurement noise. Thus, the results for a noise value of 0.5 K
are indicative of the best performance that can be expected
from the inversion. For a noise value of 0.5 K, Fig. 4 shows
that the surface temperature can be obtained with a standard
deviation of 0.8 K while the ice thickness can be estimated
with accuracy no better than 36 m. Geothermal heat flux and
accumulation rate can be estimated with standard deviation
values at 7, = 1 K better than 0.005 W/m? and 0.05 m/yr,
respectively. The other parameters that characterized density
fluctuations are also estimated well using the UWBRAD sys-
tem. It is important to note that neither the partially coherent
RTM nor the Robin temperature models are suitable at the
beginning and the end of the flight path that include ablation
and wet ice zones. The current simulations show UWBRAD
capabilities if the assumed models hold along the entire flight
path.

2) Vertical Temperature Profile Estimates: The square root
of CRLB for the vertical profiles of 7; along the path are
provided in Fig. 5 with a noise level of 1 K. The standard
deviation is less than or around 1 K for most of the ice sheet
along the flight path, although there are a few regions where
the standard deviation goes up to 6 K. The overall mean value
is 1.3 K and the average standard deviation at 10 m depth
along the flight path is 0.9 K.

3) CRLB With RFI: Due to the ultra-wideband nature of
the method, instruments operating at L-band frequencies will
encounter numerous RFI sources operating at different fre-
quencies. Here, theoretical limits of the system are explored
when one or more channels are lost. The CRLB values
with varying number of channels are shown in Fig. 6. The
CRLB values will vary for simulations that use less than
all 12 channels, depending on which channel(s) is/are lost.
The best and worst performing scenarios, and the average of
all possible scenarios are plotted as min, max, and average
CRLB. As expected, the performance of the system degrades
when using a smaller number of channels. However, even for
UWBRAD operating with only ten frequency channels, the
CRLB values remain similar to those for the full 12-channel
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Fig. 4. Square root of the CRLB of ice sheet parameters along the track with varying noise temperatures.
system. The degradation in performance however rapidly VCRLB of T(2)

increases with further reduction in the number of frequencies
used. For cases with less than nine channels, the selection of
which frequencies are lost becomes important, with the large
gap between the max, mean, and minimum standard deviation
values obtained from the CRLB. The surface temperature
mean rms error increases from 0.8 to 2 K for example when
four frequencies are not used, while the error sharply increases
to 8 K when another frequency is lost.

One thing to mention is that each frequency provides infor-
mation on physical temperature for different depths of the ice
sheet. Retrieval success depends upon having a range of high
and low frequencies: having eight frequencies evenly spread
across the frequency range is likely to be more successful than
the eight highest frequencies. Thus, we cannot assess the value
of each individual channel.

B. Virtual Experiment Analyses

1) Forward Model Parameter Estimates: For each point, the
estimations of each parameter in the VE compared with the
truth and the prior are shown in Fig. 7. In Fig. 7(a) and (b),
the estimation of density variation and surface temperature are
improved toward the true value after the MCMC process for
44 out of 47 cases. The main reason for the incorrect results is
the highly nonlinear and complex cost function surface with a
large number of local minima in addition to the global minima.
As we are interested in the temperature profile, the density
parameters are nuisance parameters. However, they need to
be correctly computed simultaneously with the temperature
Robin parameters and this increases the dimensions of the
search space and sometimes causes the inversion algorithm to
get stuck in a local minima. This issue and how to design
robust estimators that can mitigate this problem are discussed
in detail in [32].

In Fig. 7(c), the prior error in geothermal heat flux can
only be partially corrected at the beginning and end of the
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Fig. 5. Ice temperature (CRLB)!/? along the flight path at all depths.

flight path. In addition to the local minima solution, there are
two possible explanations for this situation: mismatch in other
parameter estimates that cause G to move away from the true
value in compensation, or the greater thickness for this portion
of the path. For additional examination, we performed a
separate experiment with a geothermal heat flux prior specified
to be further from the truth, referred to as the “degraded
G” experiment hereafter. The G estimated in the degraded G
experiment remained close to the prior estimation in locations
where the ice is greater than 3 km thick, which suggests that
while the surface of the ice sheet can be well interpreted with
low-frequency microwave measurements, the basal situation of
the ice sheet remains highly uncertain in the VE retrieval. It is
also noted that in Fig. 7(a), A is consistently underestimated
along the flight line. Intuitively, this underestimation may be
compensating for estimation error in 75 and G. Further studies
on the relationship of these three parameters are needed.
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2) Vertical Temperature Profile Estimates: Fig. 8 shows
the key three error statistics computed on the VE vertical
temperature profile estimates. In Fig. 8(a), 10 m temperatures
are all estimated to within 1 K, and mostly to within 0.5 K,
despite the prior estimate having a precision of only 1.0 K. All
47 10 m temperature estimates showed improvement over the
prior. In Fig. 8(b), the depth-averaged temperature estimates
are constrained to within 2.5 K and mostly to within 2 K; the
average error is within 1 K for the first 20 points along the
flight path, roughly corresponding to ice thicknesses less than
3000 m. In Fig. 8(c), rms errors of the UWBRAD estimates are
all within 3.3 K; 28 of the 47 points show improvement over
the prior; rms errors are generally less than 1 K when the ice is

perature estimation error. (b) Average temperature estimation error. (c) Root
mean square error of the temperature estimation. (d) RMS error of 100 m
depth averaged temperature estimation error.

less than 3000 m thick. Both the average temperature estimates
and the rms errors of the estimation showed improvements
over the prior estimations at the beginning and end of the
flight path. Fig. 8(d) shows all temperature estimate rms errors
along the flight path based on 100 m depth increments; note
that the rms for each bin is thus computed over a slightly
different number of estimates. From Fig. 8(d), the estimation
error increases with depth and stays below 1 K up to about
1500 m. This analysis emphasizes the role played by ice sheet
thickness on retrieval accuracy.

3) Correlation Between Model Parameters: The correlation
coefficient of the MCMC chains for the three parameters are
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calculated at each point and illustrated in Fig. 9. Along the
flight line, a consistently high correlation of over 0.95 between
surface temperature and density variations is observed in
Fig. 9(c), which means that multiple combinations of density
variations and surface temperatures in the sample space would
produce the same 7,. Despite the high correlation between
these two parameters, the 10 m temperature remains accurately
estimated and shows significant improvement over the prior
estimate. Correlation between the other two pairs of parame-
ters shown in Figs. 9(a) and 9(b) are still relatively high (up
to approximately 0.8 in some cases), but are much lower than
those shown in Fig. 9(c). Note that the correlation is greatest
for ice thicker than 3000 m. Highly correlated geophysical
parameters can result in poor MCMC/estimation performance
and can be addressed by reparametrization using coordinate
rotation [33].

We further explore the correlation between d7; and A in
Fig. 10. Fig. 10(a) shows all the samples in the Markov chain
excluding the burn-in period for the first point along the flight
path, with three particular samples highlighted. The 7} spectra
for the three highlighted samples are plotted in Fig. 10(b),
along with the synthetic observation. The corresponding
spectral difference for each sample is 3.11 K for blue, 3.05 K
for cyan, 4.21 K for red, and 3.92 K for black. The sample
with the coldest 7; and lowest value of A has the largest
spectral difference in Fig. 10(b) (shown in red in all three
plots), but the level of noise in the synthetic observation makes
extracting such information challenging; note that all four 7}
spectra are fairly similar. The temperature profiles generated
with each set of parameters for the three highlighted samples
are plotted in Fig. 10(c) along with the true temperature profile.
It can be observed in Fig. 10(a) that for the three selected
points, A varies from about 35 to 50 kg/m®. As A increases
from 35 (red) to 40 kg/m>(blue), it is slightly over the true
value of 30 kg/m® and thus “pushes” the simulated 7}, away
from the truth. Consequently, the surface temperature increases
about 5 K to compensate the loss as A continues to increase to
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TABLE I

ERROR STATISTICS OF THE MCMC ESTIMATION WITH
DIFFERENT OBSERVATION ERROR

Observation Mean 10m Mean Average Mean RMS
error error error error
0.5K 0.0743 -0.4529 1.0741

2K -0.1052 -0.3678 1.4037
3K -0.1478 -0.4085 1.6544
SK -0.4762 -0.5822 1.8148

about 50 kg/m® (cyan), which is further beyond the true value.
The surface temperature alone fails to compensate for the 7},
offset while maintaining a reasonable value. The geothermal
heat flux is therefore then adjusted to constrain the temperature
profile jointly. The use of additional prior information in the
estimation scheme in future work may help to resolve some
of these parameter dependencies.

4) Sensitivity to Observation Error: In previous experi-
ments, the observation error was specified as 0.5 K. The VE
T; error statistics corresponding to the science goals averaged
over the entire flight path for various observation error levels
are presented in Table I. It is promising to see that even
when the observation is ten times larger than the original
experiment, the rms error averaged over 47 points increases
only from 1.07 to 1.81 K. The MCMC process is still capable
of producing a correct estimation even under fairly severe
observation degradation.

Estimations using the data obtained between Camp Century-
NEEM-NGRIP in [32] compares well with these results with
roughly 1 K estimation rms error with a noise temperature
of 1 K, similar to the values reported in Table I.

5) Effects of Robin Model: The Robin model assumes
steady state heat transfer while in reality, the seasonal variation
and paleoclimatic events would be recorded within the ice
sheet and cause fluctuations in the upper part of the in situ
measured temperature profile [17]. As the Robin model is
not capable of including this upper layer variation, use of the
model introduces additional uncertainty into the 7; estimates.
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The result of the experiment described above using the bore-
hole 7; as the basis for generating synthetic observations
is shown in Fig. 11(a). The 10 m estimation and average
estimation error are 0.27 and 1.57 K, respectively. The rms
error is 2.16 K with the maximum error of —3.84 K occurred
at the depth of 1951 m. Thus, the additional uncertainty
introduced by the Robin model is of the same approximate
magnitude as the error levels presented above.

Boreholes at three other locations along the flight path,
namely Camp Century, NEEM, and NGRIP, were also shown
in Fig. 11(b)—(d). These are the good candidates for dry ice
with no horizontal drift or other processes so Robin model
works well for these three locations. Actual data from [32]
are used in the Bayesian estimation for these locations. The
estimated profile and two standard deviation error bars (cor-
responding to 95% confidence interval) are also provided.
Results show that UWBRAD has the potential to achieve the
three main goals provided in Section I.

However, current formulation indeed limits the application
of UWBRAD to regions where Robin is valid. Using more
accurate models such as [34] or [35] it should be possible
to extend the validity region to cover all Greenland and
Antarctica.

V. DISCUSSION

It is remarkable that multispectral low-frequency measure-
ments of microwave emission near L-band carry information
on ice temperature profiles. This study presents a detailed
analysis characterizing that information. We showed in simu-
lation for Greenland, the 10 m temperature can be estimated to
high precision, but that 7; vertical profiles for ice greater than
3000 m in thickness is more challenging to estimate, meaning
that it is challenging but possible to achieve 1 K precision for
average and rms of the vertical temperature profile across the
entire Greenland ice divide. Note that these conclusions are
specific to Greenland, because the dielectric properties and
penetration depth are sensitive to ice temperature, and thus
should be interpreted with care.

4306611

We also show that 7}, observation precision is critical, with
T; uncertainty increasing when the 7}, uncertainty is greater
than 2 K. This is a challenging precision target to hit, due to
RFI, as well as the general challenge of operating of airborne
radiometers in very cold environmental conditions. Nonethe-
less, there are good reasons for optimism regarding the ability
of UWBRAD observations to infer ice temperatures. First,
we find that these results are essentially consistent between
two completely different analyses, the CRLB and VE using an
MCMC algorithm. The CRLB shows that the best achievable
precision falls within the desired science goals, in most cases,
while the VE demonstrates a particular algorithm capable of
achieving that precision. Second, both analyses use minimal
or no prior information: the CRLB uses no prior information
at all, whereas the MCMC prior is assumed to follow a
uniform distribution, and is thus relatively uninformative. Use
of additional observational datasets, and Gaussian or other
prior estimates of the forward model parameters may yield
higher precision estimates, even if the UWBRAD observation
precision is coarser than that considered here. Also, comparing
the accuracies of the retrieved temperature related parameters
with the ones of different systems commonly used for each
parameter, the retrieval framework performed well in improv-
ing the knowledge of those parameters. For example, for 7,
It is claimed that the average bias of satellite-derived and
in situ ice-surface temperature is well within the rms error
of 2.1 K [36]. While for the UWBRAD, the CRLB provided
that the 7y can be obtained with a standard deviation of
0.8 K. Another good example will be the retrieval of G as the
Geothermal heat flux is largely unknown. Two geothermal heat
flux models are frequently used for Greenland: one inferred
from seismic tomography and the other from magnetic [37].
Maule et al. [14] claims the uncertainty of the magnetic anom-
alies derived geothermal heat flux data is 0.021-0.027 W/m? in
Antarctica. The results in CRLB shows that geothermal heat
flux can be estimated with standard deviation better than
0.005 W/m?.

VI. CONCLUSION

We find that both the CRLB and VE analyses support the
conclusion that UWBRAD T}, observations can be used to infer
T; profiles at precisions high enough to enable new scientific
understanding of the Greenland ice sheet. In particular, the
10 m temperature has been shown to be retrievable with
the desired precision, despite the challenges of disentangling
the effects of temperature and ice density variations on the
microwave emission. For ice deeper than approximately
3000 m, the precision of the retrievals is degraded but overall
goals of the system can still be satisfied as shown in [32].
Observation precision is an important control on final 7;
precision, but even in the case of fairly high 7} uncertainty,
our experiments indicate there is significant information in
the observations. The results shown here with no prior (for
the CRLB) or with a noninformative prior (for the VE)
are useful in establishing the information content in the
UWBRAD observations. Use of more informative priors is
expected to improve the estimates. Thus, measurements of
microwave emission near L-band carry information on ice
temperature profiles, in agreement with the conclusions of
Jezek et al. [3]. This work lays a more formal basis for con-
fidence in UWBRAD temperature observations derived from
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real airborne observations, and thus supports new scientific
findings of temperature dynamics within ice sheets using this
unique measurement technique.

ACKNOWLEDGMENT

The authors would like to thank the Ohio State Super-
computer Center for their support in the high-performance
computing resources during this study [38].

[1]
[2]
[3]

[4

=

[5

[ty

[6

=

[7

—

[8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19] E

[20]
[21]
[22]

[23]

[24]

REFERENCES

C. Mitzler, Thermal Microwave Radiation: Applications for Remote
Sensing, vol. 52. Edison, NJ, USA: IET, 2006.

E. M. Morris and D. G. Vaughan, “Snow surface temperatures in West
Antarctica,” Antarctic Sci., vol. 6, no. 4, pp. 529-535, Dec. 1994.

K. C. Jezek et al., “Radiometric approach for estimating relative changes
in intraglacier average temperature,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 1, pp. 134-143, Jan. 2014.

G. Macelloni, M. Leduc-Leballeur, F. Montomoli, M. Brogioni, C. Ritz,
and G. Picard, “On the retrieval of internal temperature of Antarctica ice
sheet by using SMOS observations,” Remote Sens. Environ., vol. 233,
Nov. 2019, Art. no. 111405.

G. Macelloni, M. Leduc-Leballeur, M. Brogioni, C. Ritz, and G. Picard,
“Analyzing and modeling the SMOS spatial variations in the east Antarc-
tic plateau,” Remote Sens. Environ., vol. 180, pp. 193-204, Jul. 2016.
S. Tan et al., “Physical models of layered polar firn brightness temper-
atures from 0.5 to 2 GHz,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 8, no. 7, pp. 3681-3691, Jul. 2015.

F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing:
Active and Passive, From Theory to Applications, vol. 3. Norwood, MA,
USA: Artech House, 1986.

J. T. Johnson et al., “Measurements of 0.5-2 GHz thermal emission
spectra from the Greenland ice sheet, sea ice, and permafrost: Results
from September 2017 campaign,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., Jul. 2018, pp. 8525-8527.

M. J. Andrews et al., “The ultrawideband software-defined microwave
radiometer: Instrument description and initial campaign results,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 10, pp. 5923-5935, Oct. 2018.
R. Thomas et al., “Mass balance of the Greenland ice sheet at high
elevations,” Science, vol. 289, no. 5478, pp. 426-428, Jul. 2000.

I. Joughin and K. Jezek, “The Radarsat-1 mosaic data,” 2007.

E. Van Meijgaard et al., The KNMI Regional Atmospheric Climate Model
RACMO Version 2.1. De Bilt, The, Netherlands: Koninklijk Nederlands
Meteorologisch Instituut, 2008.

C. Leuschen, P. Gogineni, F. Rodriguez-Morales, J. Paden, and C. Allen,
Icebridge Mcords L2 Ice Thickness, Version 1. Boulder, CO, USA:
NASA National Snow and Ice Data Center Distributed Active Archive
Center, 2010, doi: 10.5067/GDQOCUCVTE2Q.

C. F. Maule, M. E. Purucker, N. Olsen, and K. Mosegaard, “Heat flux
anomalies in Antarctica revealed by satellite magnetic data,” Science,
vol. 309, no. 5733, pp. 464—467, Jul. 2005.

G. Granzow. (2012). Greenland Basal Heat Flux. [Online]. Available:
http://websrv.cs.umt.edu/isis/index.php/1km_Greenland_data_set

M. Stuiver, P. M. Grootes, and T. F. Braziunas, “The GISP, 6180 climate
record of the past 16,500 years and the role of the sun, ocean, and
volcanoes,” Quaternary Res., vol. 44, no. 3, pp. 341-354, Nov. 1995.
G. D. Clow, “GISP2-D temperature. PANGAEA,” 1999, doi:
10.1594/PANGAEA.55517.

T. H. Shoji, K. Kawada, O. Watanabe, and H. Clausen, “An empirical
relation between overburden pressure and firn density,” Ann. Glaciol.,
vol. 20, pp. 87-94, 1994, doi: 10.3189/1994A0G20-1-87-94.

. M. Morris and D. J. Wingham, “The effect of fluctuations in
surface density, accumulation and compaction on elevation change rates
along the EGIG line, central Greenland,” J. Glaciol., vol. 57, no. 203,
pp. 416-430, 2011.

E. Morris and K. Jezek, “T41 station neutron data near summit,” 2014.
G. D. Q. Robin, “Ice cores and climatic change,” Philos. Trans. Roy.
Soc. London. B, Biol. Sci., vol. 280, no. 972, pp. 143-168, 1977.

C. Ritz, “Interpretation of the temperature profile measured at Vos-
tok, east Antarctica,” Ann. Glaciol., vol. 12, pp. 138-144, 1989, doi:
10.3189/50260305500007102.

A. Salamatin, V. Lipenkov, and K. Blinov, “Vostok (Antarctica) cli-
mate record timescale deduced from the analysis of a borehole-
temperature profile,” Ann. Glaciol., vol. 20, pp. 207-214, 1994, doi:
10.3189/1994A0G20-1-207-214.

J. MacGregor et al., “A synthesis of the basal thermal state of the
Greenland ice sheet,” J. Geophys. Res., Earth Surface, vol. 121, no. 7,
pp. 1328-1350, 2016.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

and

L. Tsang, T. L. Wang, J. T. Johnson, K. C. Jezek, and S. R. Tan,
“A partially coherent microwave emission model for polar ice sheets with
density fluctuations and multilayer rough interfaces from 0.5 to 2 GHz,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2016,
pp- 7082-7084.

M. Brogioni, G. Macelloni, F. Montomoli, and K. C. Jezek, “Simulating
multifrequency ground-based radiometric measurements at dome C—
Antarctica,” [EEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 8, no. 9, pp. 4405-4417, Sep. 2015.

R. D. West, D. P. Winebrenner, L. Tsang, and H. Rott, “Microwave
emission from density-stratified Antarctic firn at 6 cm wavelength,”
J. Glaciol., vol. 42, no. 140, pp. 63-76, 1996.

M. Brogioni, S. Pettinato, F. Montomoli, and G. Macelloni, “Snow lay-
ering effects on L-band passive measurements at dome C—Antarctica,”
in Proc. 13th Specialist Meeting Microw. Radiometry Remote Sens.
Environ. (MicroRad), Mar. 2014, pp. 61-64.

S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory, vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data
Analysis. Boca Raton, FL, USA: Chapman & Hall, 1995, ch. 11.2
Metropolis and Metropolis-Hastings Algorithms, pp. 320-344.

D. K. Hall, J. C. Comiso, N. E. DiGirolamo, C. A. Shuman, J. R. Key,
and L. S. Koenig, “A satellite-derived climate-quality data record of the
clear-sky surface temperature of the Greenland ice sheet,” J. Climate,
vol. 25, no. 14, pp. 4785-4798, Jul. 2012.

C. Yardim et al., “Greenland ice sheet subsurface temperature estima-
tion using ultrawideband microwave radiometry,” IEEE Trans. Geosci.
Remote Sens., vol. 60, pp. 1-12, 2022.

C. Yardim, P. Gerstoft, and W. S. Hodgkiss, “Estimation of radio refrac-
tivity from Radar clutter using Bayesian Monte Carlo analysis,” I[EEE
Trans. Antennas Propag., vol. 54, no. 4, pp. 1318-1327, Apr. 2006, doi:
10.1109/TAP.2006.872673.

S. Rezvanbehbahani, C. J. Veen, and L. A. Stearns, “An improved
analytical solution for the temperature profile of ice sheets,” J. Geophys.
Res., Earth Surf., vol. 124, no. 2, pp. 271-286, Feb. 2019.

H. Seroussi, M. Morlighem, E. Rignot, A. Khazendar, E. Larour, and
J. Mouginot, “Dependence of century-scale projections of the Green-
land ice sheet on its thermal regime,” J. Glaciol., vol. 59, no. 218,
pp- 1024-1034, 2013.

D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and
K. Steffen, “Comparison of satellite-derived and in-situ observations
of ice and snow surface temperatures over Greenland,” Remote Sens.
Environ., vol. 112, no. 10, pp. 3739-3749, Oct. 2008.

N. Shapiro, “Inferring surface heat flux distributions guided by a global
seismic model: Particular application to Antarctica,” Earth Planet. Sci.
Lett., vol. 223, nos. 1-2, pp. 213-224, Jun. 2004.

(1987). Ohio Supercomputer Center. [Online]. Available: http://osc.edu/
ark:/19495/t5s1ph73

Yuna Duan received the B.S. degree from Hohai
University, Nanjing, China, in 2014. She is currently
pursuing the Ph.D. degree with the School of Earth
Science, The Ohio State University, Columbus, OH,
USA.

Her research interests include passive microwave
remote sensing of snow, Bayesian modeling, and
thermal dynamics of glaciers.

Caglar Yardim (Member, IEEE) received the Ph.D.
degree in electrical engineering from the University
of California at San Diego, La Jolla, CA, USA,
in 2007.

He was a Scientist at the Marine Physical Labora-
tory, Scripps Institution of Oceanography, La Jolla,
until 2014. He is currently a Research Assistant
Professor with the ElectroScience Laboratory (ESL),
Electrical and Computer Engineering Department,
The Ohio State University (OSU), Columbus, OH,
USA. He is also the Head of the Atmospheric
Oceanographic Electromagnetics and Marine Systems Laboratory,

-4

ESL-OSU. His research interests include atmospheric propagation, non-
standard atmospheric conditions, remote sensing, numerical electromagnetic
(EM) techniques, radar, clutter modeling, microwave radiometry, applied
signal processing, Bayesian techniques, adaptive beamforming, interferometry,
underwater acoustics, and seismics.

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on July 29,2023 at 02:02:15 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.5067/GDQ0CUCVTE2Q
http://dx.doi.org/10.1594/PANGAEA.55517
http://dx.doi.org/10.3189/1994AoG20-1-87-94
http://dx.doi.org/10.3189/S0260305500007102
http://dx.doi.org/10.3189/1994AoG20-1-207-214
http://dx.doi.org/10.1109/TAP.2006.872673

DUAN et al.: FEASIBILITY OF ESTIMATING ICE SHEET INTERNAL TEMPERATURES USING ULTRA-WIDEBAND RADIOMETRY

Michael Durand received the B.S. degree in
mechanical engineering and biological systems engi-
neering from the Virginia Polytechnic Institute,
Blacksburg, VA, USA, in 2002, and the M.S. and
Ph.D. degrees in civil engineering from the Univer-
sity of California at Los Angeles, Los Angeles, CA,
USA, in 2004 and 2007, respectively.

He is currently an Associate Professor with the
Byrd Polar and Climate Research Center, School
of Earth Sciences, The Ohio State University,
Columbus, OH, USA.

Kenneth C. Jezek received the B.S. degree
in physics from the University of Illinois
Urbana—Champaign, Urbana, IL, USA, in 1973,
and the M.S. and Ph.D. degrees in geophysics from
the University of Wisconsin—-Madison, Madison,
WI, USA, in 1977 and 1980, respectively, where
he studied the behavior of the Ross Ice Shelf
Antarctica using ice sounding radar data collected
during several visits to the Antarctic.

He was in charge of the McMurdo Station,
Antarctica Cosmic Ray Laboratory, Ross Island,
Antarctica, in winter 1974. Before joining OSU’s Byrd Polar Research
Center as the Director in 1989, he was a Geophysicist with the U.S. Army
Cold Regions Research and Engineering Laboratory, Hanover, NH, USA,
where he researched the electromagnetic (EM) and acoustical properties
of sea ice in the laboratory and in the Arctic. He also served a two-year
term as the Manager for the NASA’s Polar Oceans and Ice Sheets Program.
From 1997 to 2007, he led the Radarasat Antarctic Mapping Project.
From 2007 to 2010, he was Co-Leader of the International Polar Year Global
Inter-agency International Polar Snapshot Year (GIIPSY) Project which
involved the participation of 12 space agencies. He has chaired the Land Ice
Science Team for NASA’s Operation Icebridge from 2010 to 2013. He is
a Professor Emeritus at the Byrd Polar Research Center, School of Earth
Sciences, The Ohio State University (OSU), Columbus, OH, USA.

Joel T. Johnson (Fellow, IEEE) received the bach-
elor’s degree in electrical engineering from the
Georgia Institute of Technology, Atlanta, GA, USA,
in 1991, and the S.M. and Ph.D. degrees from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 1993 and 1996, respectively.

He is currently a Professor with the Department
of Electrical and Computer Engineering and the
ElectroScience Laboratory, The Ohio State Univer-
. 4 sity, Columbus, OH, USA. His research interests

- include microwave remote sensing and propagation,
and electromagnetic (EM) wave theory.

Dr. Johnson is a member of Commissions B and F of the International Union
of Radio Science (URSI), Tau Beta Pi, Eta Kappa Nu, and Phi Kappa Phi.
He received the Best Paper Award from the IEEE Geoscience and Remote
Sensing Society in 1993, was named an Office of Naval Research Young
Investigator, received the National Science Foundation Career Award and
the Presidential Early Career Award for Scientists and Engineers (PECASE)
Award in 1997, and was recognized by the U.S. National Committee of URSI
as a Booker Fellow in 2002.

Alexandra Bringer received the M.S. and
Ph.D. degrees in physics from the Universite du
Sud-Toulon-Var, La Garde, France, in 2009 and
2012, respectively.

She joined the Electroscience Laboratory, The
Ohio State University, Columbus, OH, USA,
for a post-doctoral position in 2014, where she
is currently a Senior Research Associate. Her
studies were focused on physical oceanography
and remote sensing. She is involved in microwave
radiometry for cryosphere applications and radio
frequency interference detection and mitigation. Her research interests
include microwave remote sensing, ocean and cryosphere remote sensing,
and signal processing.

4306611

Shurun Tan (Member, IEEE) received the B.E.
degree in information engineering and the M.Sc.
degree in electromagnetic (EM) field and microwave
techniques from Southeast University, Nanjing,
China, in 2009 and 2012, respectively, and the Ph.D.
degree in electrical engineering from the University
of Michigan, Ann Arbor, MI, USA, in 2016.

From December 2010 to November 2011, he was
a Visiting Student with the Department of Electri-
cal and Computer Engineering, The University of
Houston, Houston, TX, USA. From September 2012
to December 2014, he was a Ph.D. Student with the Department of Electrical
Engineering, University of Washington, Seattle, WA, USA. From January
2015 to December 2018, he was with the Radiation Laboratory and the
Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, first as a Ph.D. Student, and then as a Post-Doctoral
Research Fellow since January 2017. He is currently an Assistant Profes-
sor with Zhejiang University/University of Illinois at Urbana-Champaign
Institute, International Campus of Zhejiang University, Haining, China. He
is also with the State Key Laboratory of Modern Optical Instrumentation
and the College of Information Science and Electronic Engineering, Zhejiang
University, Hangzhou, China. He is an Adjunct Assistant Professor with the
Department of Electrical and Computer Engineering, University of Illinois
at Urbana—Champaign, Urbana, IL, USA. He is working on EM theory,
computational, and applied EMs. His research interests include EM scattering
of random media and periodic structures, microwave remote sensing, EM
information systems with EM wavefunctional devices, EM integrity in high-
speed and high-density electronic integration, EM environment, and reliability
of complex electronic systems.

Leung Tsang (Life Fellow, IEEE) received the B.S.,
M.S., and Ph.D. degrees from the Massachusetts
Institute of Technology, Cambridge, MA, USA, in
1983.

From 1983 to 2014, he was a Professor at the
University of Washington, Seattle, WA, USA, where
he was the Chair of the Department of Electrical
Engineering from 2006 to 2011. From 2001 to 2004,
he was a Professor at the City University of
Hong Kong, Hong Kong. He is currently a Professor
with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI, USA. He has
coauthored Theory of Microwave Remote Sensing and Scattering of Elec-
tromagnetic Waves (volumes 1-3). His research interests include remote
sensing, waves in random media, rough surfaces, electromagnetic (EM) theory,
computational EM, signal integrity, EM compatibility, and plasmonics.

Dr. Tsang was the President of the IEEE Geoscience and Remote Sens-
ing Society from 2006 to 2007. He received the William Pecora Award
co-sponsored by the United States Geological Survey (USGS) and NASA in
2012, and the IEEE Electromagnetics Award in 2013. He is on the Editorial
Board of IEEE ACCESS and is the Chair of the Progress in Electromagnetics
Research (PIERS).

Mustafa Aksoy (Member, IEEE) received the B.S.
degree in electrical and electronics engineering from
Bilkent University, Ankara, Turkey, in 2010, and
the M.S. and Ph.D. degrees in electrical engineering
from The Ohio State University, Columbus, OH,
USA, in 2014 and 2015, respectively.

He was a Post-Doctoral Research Associate at the
Joint Center for Earth Systems Technology, Uni-
versity of Maryland Baltimore County, Baltimore,
MD, USA, and at the NASA Goddard Space Flight
Center, Lanham, MD, USA. He is currently an
Assistant Professor with the Department of Electrical and Computer Engineer-
ing, University at Albany, SUNY, Albany, NY, USA. His research interests
include microwave remote sensing, electromagnetic (EM) theory, and signal
processing.

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on July 29,2023 at 02:02:15 UTC from IEEE Xplore. Restrictions apply.



