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Abstract— This work establishes that the physical layer can be
used to perform information-theoretic authentication in addifive
white Gaussian noise (AWGN) channels, as long as the adversary
is not omniscient. The model considered consists of an encoder,
decoder, and adversary, where the adversary knows the message
given to the encoder, has a non-causal noisy observation of
the encoder’s transmission and may use unlimited transmission
power, while the decoder observes a noisy version of the sum
of the encoder and adversary’s outputs. A method to modify
a generic existing channel code to enable authentication is
presented. This method relies on injecting message-dependent
noise into the transmission and accepting the transmission as
authentic only if the correct noise levels for the decoded message
are observed. One drawback to this method is that the encoder
must still transmit a low-power signal in the case where there is
no message to send. It is shown that this modification costs an
asymptotically negligible amount of the coding rate, while still
enabling authentication as long as the adversary’s observation
is not noiseless. Also notable is that this modification is not
(asymptotically) a function of the statistical characterization of
the adversary’s channel and no secret key is required. We believe
these features will pave the way for a robust practical implemen-
tation. Using these results, the channel-authenticated capacity
is calculated and shown to be equal to the non-adversarial
channel capacity. As our results will show, information-theoretic
authentication in AWGN channels is possible without the need
for the legitimate party to have a model-based advantage over
the adversary. While this modular scheme is designed for use
in the given channel model, it is applicable to a wide range of
settings.

Index Terms— Channel capacity, multiuser channels, authen-
tication, information theory, security, wireless.

[. INTRODUCTION

UTHENTICATION, or the act of verifying the identity
of an information source, is a crucial aspect of security;
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this is especially true in scenarios where the information
leads to an observable action (e.g., calling in a missile strike
or executing a stock-market trade). For a decoder to have
information-theoretically secure authentication, it must be able
to accept inputs deriving from the legitimate encoder while
rejecting those that have been tampered with by an adver-
sary, even when the adversary is computationally unbounded.
Thus, the objectives of the decoder change depending on the
presence of an adversary; if no adversary is present then
observations should be accepted and decoded into the message
given to the encoder, while if the adversary did tamper with
the decoder’s observation then the decoder only needs to iden-
tify this tampering.! We will consider information-theoretic
authentication in a communication system where the encoder,
decoder, and adversary are connected by noisy channels.
In this context, information-theoretic authentication has tradi-
tionally been achieved by exploiting a feature of the communi-
cation model that is unique between the encoder and decoder
that the adversary cannot imitate.

In the existing literature, two features are used: either
exploiting the channel in such a way that the adversary
cannot mimic a valid transmission, or by use of a secret
key shared by encoder and decoder. This work is classified
in the former category, as we will not allow the encoder
and decoder to share a secret key. For readers interested in
secret key-equipped information-theoretic authentication, see
Perazzone ef al. [1], [2] for an in-depth discussion on prior
works and the best results to date.

In cases where no secret key is available, information-
theoretic authentication can be obtained by exploiting (if
possible) the uniqueness of the channel from the encoder to
the decoder. This exploitation generally takes the form of
choosing an encoder that produces channel outputs that cannot
be reliably reproduced by the adversary. For this scenario, the
information that the adversary can obtain, and how they may
act given that information, is crucial to defining how capable
the adversary will be at their task. Previous work [3], [4], [5],
[6]. [71. [81. [9], [10] on this topic is mainly differentiated by
how the formulation defines the adversary’s abilities. A few
of these differentiating aspects are (without vs. with): the
allowance of simultaneous transmission by adversary and
encoder [3], [4], [6], [7] vs. [5], [8], [9], [10], side information
about the encoder’s message at the adversary [3], [4], [6],
[71. [8] vs. [5], [9]. [10], and a noisy copy of the encoder’s
output at the adversary [3], [4], [5], [71, [8], [10] vs. [6], [9].
It is not surprising then that most of this work is similar

1Of course, in the case the adversary tampers with the decoder’s observa-
tions and the decoder still produces a message estimate, this message estimate
should be equal to the message given to the encoder.
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in formulation, methodology, and results while still being
diverse in terminology. Our work here makes all three “with”
allowances. For simplicity, we will broadly characterize [3],
[41, [5], [61. [71, [8], [9]. [10].

To permit more formal discussion, let p(y|z,v) be the
conditional distribution of the decoder’s channel observation
(y) given the encoder’s channel input (z) and the adversary’s
channel input (v), and let Q be the (model dependent) set
of joint-probability distributions of encoder and adversary’s
channel inputs. Further, let () be the symbol that represents
the “not-transmitting” state; when the adversary chooses any
state other than the “not-transmitting” state, it is considered
tampering. As an example of how the adversary’s definition
affects Q, consider the case where the encoder and adversary
are not allowed simultaneous transmission. In this case, O will
contain only distributions such that g(z,v) > 0 only if z =0
or v = {). Continuing on, the previous literature divides the
set of channels into sets based upon the property” that

S lp(ylz’,0) = > p(ylz, v)q(v, )]s >0
T,v

for at least one encoder channel input z. To understand
how this property equips channels for information-theoretic
authentication, forget for the moment the need to transmit
a message and focus solely on the detection of tampering.
In particular, consider the case where the adversary wants
the decoder to think that the encoder has input =’ into the
channel k times. Further, assume that the decoder initially
believes that =’ has been input into the channel k times, but
wishes to verify this. If the adversary did not tamper, then
the decoder’s k channel observations should be distributed
approximately according to p(y|z’, 0). But, assuming that the
k channel inputs were actually distributed according to g(x),
then the closest the adversary will be able to do in approx-
imating this distribution is wx(y) = 3_, , p(y|z,v)q(v, ).
When wy(y) # p(y|z’,0), a binary hypothesis test can be
constructed that will detect the adversary’s tampering with a
probability of 1 — e~ Oky/lwys (v)—plylz’.0)|1)

As the previous example would suggest, some
encoder-output distributions are better than others for
authentication. That the output distribution would be good for
both communicating information and authentication cannot
be taken for granted. To circumvent this issue, much of
the previous work, specifically [3], [4]. [6]. [7]. [8]. [10],
[12], opts for a two-code concatenated approach. In this
approach, one of the codes is a long (in terms of symbols)
capacity-achieving code, while the other is a short low-rate
code that provides information-theoretic authentication. The
message is transmitted with the capacity-achieving code,
while a randomly-generated number and a hash of that
randomly-generated number and message are transmitted
with the low-rate code. After decoding both codes, the hash
(guaranteed to be authentic) can be used to authenticate
the transmitted message. Of course, this two-stage approach
requires that the adversary not be able to determine the hash

2Typically this property is denoted by an “-able™-suffixed term, such as
simulatable [3], [4]. [6]. [7] (pace Maurer [11]), or overwritable [8], [10],
U /I-overwritable [9]. The authors of [5] abstained from naming the channel
condition.
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prior to choosing their channel inputs. If the adversary was
able to decode the information sent with the low-rate code
before choosing their channel, they could alter the message
sent with the high-rate code to one that is valid for the given
hash.

Our work seeks to model communications in a wireless
environment where the adversary is overwhelmingly powerful.
There will exist an AWGN channel from the encoder to the
adversary, and the encoder and adversary share an AWGN
multiple access channel to the decoder. While both noise
sources are assumed to be independent and have non-zero vari-
ance, no assumption is made about their relative values. More
directly, the channel from the encoder to adversary can have a
lower noise variance than the best-case channel from encoder
to decoder. To ensure that the adversary is stronger than ever
could be encountered in practice, we will allow the adversary
to (i) non-causally view the encoder-to-adversary channel’s
output; (ii) know the message that is being transmitted by
the encoder; (iii) use unlimited computational power; and (iv)
use unlimited transmit power. Informally, the adversary can be
thought of as sitting at unknown location with as much power
as they need for computation and communication purposes,
they know what the message the encoder wants to send, and
they will be able to choose their outputs as a function of their
noisy copy of the signal.

Our desire to model realistic channels under extremely
adverse conditions costs us the traditional analysis. Indeed,
recall the binary hypothesis testing analogy where the distri-
bution of a specific set of symbols is tested. By considering
channels with inputs taken from uncountable sets, as opposed
to [3], [4], [5], [6]. [71. [8], [9]. [10], it becomes harder to
guarantee that there does not exist a particular input from the
adversary that allows them to mimic the correct distribution.
Furthermore, the non-causal and less-noisy observations at the
adversary prohibit the two-code approach. Even more than
that, this prohibits the ability to transmit information that the
adversary cannot decode.

Nevertheless, despite these adversarial advantages, our
scheme will achieve information-theoretic authentication along
with the following notable features:

« a construction that modifies a given deterministic channel
code;

« does not require a shared secret key or common random-
ness;

« will detect an adversary’s manipulation as long as the
adversary’s observations of the encoder outputs are not
completely noiseless;

« achieves rates arbitrarily close to the non-adversarial
channel capacity.

Informally then, our results prove that information-theoretic
authentication is possible in AWGN channels without the
legitimate party having an advantage over the adversary.?
The main drawback to our scheme is that it requires the
encoder output a low-power signal when not supplied with a
message. This will be discussed further in Remarks 10 and 22.
Still, despite the austere channel model, our scheme allows
for a robust detection. Furthermore, by choosing to modify

3This statement will be slightly qualified in Section TV-A.
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arbitrarily given channel codes we show that creating a code
from scratch is not necessary. This should allow researchers to
concentrate on modifying existing codes such as low-density
parity-check codes, turbo codes, polar codes, or repetition
codes.

Instead of relying on traditional information-theoretic secu-
rity concepts, we build on the insights of Graves ef al. [5] and
Beemer ef al. [9], who enabled authentication® by introducing
artificial noise at the output of the encoder. For a simple
example, consider a channel where the encoder can output
0 or 1, the adversary can output —1, 0, and 1, and where the
decoder receives the sum of the two. Given any deterministic
encoder © : M — {0,1}", if the adversary has knowledge
of the transmitted message they may in turn choose their
transmitted sequence as z(M) = x(a) — (M) so that the
decoder receives

y(M) = z(M) + z(M) = z(a),

which is indistinguishable from the case where the encoder
sends a € M and the adversary does not interfere. Suppose,
though, that the encoder passed their output through a binary
symmetric channel, with positive crossover probability p <
1/2, before inputting it into the channel to the decoder. Now,
the probability of false authentication decreases exponentially
with the number of coordinates 7 that z; # 0. Indeed, assume
that z; = 1, if the encoder inputs a 1 into the channel, which
it does with probability at least p regardless of the message,
then y; = 2. This outcome is only possible if the adversary
has tampered. Thus, it is easy to see that the probability of
false authentication is at most (1—p)!{#/:#0}|_ This probability
can be made arbitrarily small by starting with a well-chosen
channel code. The key is that adding the stochastic coding
element produces events that the adversary cannot account for
and hence leads to outputs that would not be expected were
the adversary not trying to modify the transmission. Of course,
our situation will be more complicated because the adversary
will have their own observations, but the premise remains the
same. Without complete knowledge of the encoder’s output,
the adversary’s actions will result in the decoder observing
unexpected channel outputs.

To take advantage of this insight, our code modifica-
tion strategy consists of first adding carefully constructed
message-dependent noise and then decimating the message set.
The message-dependent noise is determined by a novel coding
scheme that guarantees the adversary must always remove
some of the noise added to the channel in order to forge a mes-
sage. As long as the adversary’s observations themselves are
noisy, the adversary will not be able to completely eliminate
the message-dependent noise the encoder added to the channel.
In turn, whether or not there exists a remnant noise in the
channel observations determines if the transmission has been
tampered with. Specifically, this added noise will guarantee
that the adversary cannot modify a message to a specific
message of their own choosing. From there, decimating the
message set (a concept borrowed from Ahlswede and Dueck’s

“In fact, both works show something even more surprising: there exist
channels that require stochastic codes for information-theoretic authentication.

local strong converse [13]) extends this guarantee to ensure a
small maximum probability of false authentication.

To begin the formal treatment of this problem, the nota-
tion, model, and operational measures will be presented in
Section II. The results will be presented in Section III, with
many of the proofs being removed to the appendices for
readability. Section IV includes a discussion of topics for
further investigation, as well as a comparison of our scheme
to secret key-based authentication schemes. Conclusions are
presented in the Section V.

II. MODEL AND NOTATION

A. Notation

Uppercase letters will denote random variables, lowercase
constants, and script sets. In particular R denotes the set of
real numbers.

Bold font always denotes n-fold Cartesian products, with
n to be later defined as the block length of the code. For a
given x, z; is the i-th coordinate so that x = x]__; ;. While
Cartesian products of random variables and constants may
have unique coordinates, a set which is a Cartesian products
of sets will not (i.e., X = x2 ;X).

Throughout the paper, G, = xj—;Gp; will be used to
denote Cartesian product of n independent Gaussian random
variables with mean O and where the i-th coordinate has
variance p;. When all the variances are equal, (ie., p =
xI_;p) just the single variance will be listed (ie., G,).
Sometimes Gsome qualitative value Will be used in place of

Prome qualitative vaime SO AL it is easier to specify the source
of this randomness in the math. Finally, all values of G, unless
otherwise explicitly stated, should be assumed independent.

All logarithms are natural, and the following functions will
be used:

E[X]:AIfx(I)dI
D(X|[Y) = fR fx(z)log

Ix(z)
@
Da(al[b) = a]og% +(1—a)log 1 :‘;
Ha(a) = —aloga — (1 —a)log(1l — a)

ta al) = bDa(l®) + (1 - 5)Ds (8]

)

— Ha(b) — bHa(a) — (1 — Bz (bi - ‘;)

a
b

1 ifbe A
1a(b) = {{] else

@(I)Z/ J;_ﬂe_gdt

where fx is used to denote the (robability density function

of X. Furthermore, we will use to denote the set of all

b
b-element subsets of 4. For instance

({11373}) = {{1,2},{1,3},{2,3}}.
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Fig. 1.
dashed lines represent non-causal links.

B. Model

The model for communications (pictured in Figure 1) stud-
ied here consists of three entities: an encoder, decoder, and an
adversary. In this model, the encoder is tasked with sending
a message M to the decoder, where the message is assumed
to be uniform® over M. To do this the encoder will map the
message to an n-symbol sequence X (M) and send it across
the communications channel. It is important to note that the
code is allowed to be a random function of the message, and
all parties will know the code.

When the encoder sends its codeword, the adversary will
non-causally receive a noisy version of the encoder’s output,

V =X (M) + Gaav,

where pagv € (0, 0c) represents variance of the adversary’s
noise. Using this received information, the adversary will craft
their own n-symbol sequence to add to the channel. This
function will be modeled by Z : R x M — R. It is
worth noting® that X (M) and Z(V,M) are independent
given V, M. For discussion purposes, it can be generally
assumed that the adversary chooses this function to maximize
the probability of having the decoder produce a false message.

On the other hand, the decoder will receive a noisy copy of
the combination of n-symbol sequences sent by encoder and
adversary,

Y = X(M)+ Z(V,M) + Gpec,

where ppec € (0,00) represents the noise variance at the
decoder. From there, the decoder will attempt to estimate the
message the encoder sent as (Y ) or will output ! to indicate
that the adversary has altered the transmission.

The encoder, adversary, and the decoder know the value of
PDec, While only the adversary knows’ the value of PAdv -

C. Operational Parameters

The objective of this work is to construct a good code for
authenticated communications.

Definition 1 (Code): A code is a set of paired functions
X: M—=R,m: R — MU/{!} representing the encoder

5The distribution of this message will not play a role in the results.

6This observation will be critical to our authentication scheme as it will
preclude the adversary from canceling out stochastic X (M ).

TResults can be improved in the case that the encoder and decoder are also
aware of pagy. see Section IV-D for a brief discussion of this in the context
of a comparison of secret key authentication and our results in this work.

Channel with encoder X : M — R and decoder 1 : R — M U {!}, where Gpe. ~ Gaussian(0, ppec) and G'agy ~ Gaussian(0, pagy ). The

and decoder respectively. The symbol ! specifically repre-
sents the case that the decoder labels the observation as not
authentic.

Remark 2: A code not designed for authenticated communi-
cations can be considered as a special case of the code defined
here where m(y) # ! forall y € R.

Remark 3: Codes are assumed to have block length (number
of channel uses) n, unless otherwise stated.

Codes will be measured by the rate at which they can
send information, the power required to do so, the reliability
that the information is decoded when there is no adversarial
interference, and the likelihood the adversary can manipulate
the decoder into accepting a false message. Formal definitions
for the first three follow.

Definition 4 (Rate): The rate of a code H = (X,m) is

1§
T = ;log|.M|.

Definition 5 (Power Constraint): The power constraint of
acode H = (X,m) is
n

WwH = max

1 2
md ~E[X2(m)].

Definition 6 (Error Probability): For code H = (X, m) the
arithmetic-average error probability at noise variance ppec €
(0,00) is

EH {PDec) . Z

meM

& Pr (m(X (m) + Gpec) # m) .
M|

Note that the error probability is indeed a measure of
reliability when not under adversarial influence, since if
Z(V,M)=0then Y = X (M) + Gpec.

Two measures of the adversary’s ability to interfere will
be considered. The weaker of these two measures considers
the adversary’s ability to have the decoder accept a specific
message.

Definition 7 (Maximum Probability of Targeted False
Authentication): The maximum probability of targeted false
authentication for code H = (X ,m) with decoder noise
variance ppec € (0,00) and adversary noise variance paqv €
(0,00) is

a;{(pDec; PAdv) =
Pr (m(X (a) + Gpec + Z(V ,a)) =b),

sup
ZRxM—-R

aeM
be M\ {a}
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where
VY= X(a) + Gady-

A small probability of targeted false authentication does not
guarantee the decoder will not output a false message, instead
it guarantees that the adversary cannot choose which message
it is. This weaker metric will only play a brief role in this
study, with the main goal being to obtain codes that perform
well under the following, stronger metric.

Definition 8 (Maximum Probability of False Authentica-
tion): The maximum probability of false authentication for
code H = (X,m) with decoder noise variance ppe. and
adversary noise variance pagy is

a'H(PDec-p PAdv) =
Pr(m(X(a) + Gpec + Z(V,a)) ¢ {a,!}),

sup
ZRxM—-R
aeM

where
Y = X(a) + Gagy-

Unlike the targeted false authentication probability, a van-
ishing probability of false authentication does asymptotically
guarantee the decoder will not output a false message in the
presence of an adversary.

Remark 9: To better understand the relationship between
the two metrics observe that

Pr(m(X (a) + Gpec + Z(V,a)) € {a,!})

= Y Pr(m(X(a) + Gpe + Z(V,a)) =b),
beM\{a,'}

from which it is clear that having a small maximum probability
of targeted false authentication does not guarantee a small
maximum probability of false authentication, but a small
maximum probability of false authentication does guarantee
a small maximum probability of targeted false authentication.

Remark* 10: Readers familiar with information-theoretic
authentication literature® may be wondering why we have
not defined the impersonation attack. For those unfamiliar,
an impersonation attack is one where the adversary does not
wait for the encoder to produce an output, but directly sends
a value to the decoder.

We will not define this metric separately, since an appro-
priately defined code can already account for a “no-message-
to-transmit state.” That is, we may assume that A contains
an element (call it () that has the semantic meaning that
a message has not been input to the encoder. With this
“no-message” message built into the code, the maximum
probability of false authentication upper bounds the probability
of an impersonation attack since

aH (PDel:: PAl:lv)
> sup Pr(m(X(0)+ Gpec + Z(Gaav,90)) € {0,!}).-
ZRxM—R
In most settings the encoder does not produce a signal (i.e.,
X (0) = 0.) for the “no-message” message. Here though, this

8Primarily, the information-theoretic authentication literature whose genesis
is Simmons [14]. These works are primarily based on use of a secret key, and
thus are markedly different than ours.

practice leads to non-operational codes. Indeed, if X (0) =0
then the adversary could fool the decoder into producing any
given m’ € M by simply setting Z (G aay,0) = X (m’).

Given this observation, it should be unsurprising that our
coding scheme will require the encoder produce a non-zero
output for the “no-message” message. As such? if the original
code did not produce a signal for the “no message” message,
then our modified code will produce low-power noise for the
“no message” message.

One of the primary goals of our work will be to charac-
terize the authenticated capacity. Intuitively, the authenticated
capacity is the maximum rate possible under a given power
constraint and the requirement that the probability of error
and maximum probability of false authentication converge to
zero. In order to present the exact definition, the notation
X(n) 5 .f'\/f(n) —7 R(n),fﬁ(n) z R(n) — M(n) u {!} will
be used to denote codes with block length n.

Definition 11 (Authenticated Capacity): The authenticated
channel capacity is

c(p, PDecs PAdv) =
i FHm) = { X (n)» Pym) Fy )
such that
lim supwyy,,
n—oo

lim inf r
n—ono Hn)

limsupeyy,, (PDec) =0
n—oo

sups r€R

lim sup QOH () (pDEC'.! PAclv) =0
n—oo

.

Remark 12: If the authentication requirement were
removed, then only the reliability requirement would remain
and hence the capacity would be

1
— log (1 —f—i) ;
2 PDec

following from Shannon [15].

On a final note, as mentioned in the introduction,
Section III’s code construction results will be presented in
terms of a given channel code. These results will, however,
require the initial channel code be deterministic, i.e., the
encoder output is not random given the message.

III. RESULTS

In this section we will build a number of consecutive
results which lead to the conclusion that information-theoretic
authentication is possible in AWGN channels without the need
for the encoder to have an advantage over the adversary. Not
only this, but we will also show that arbitrary existing codes
can be equipped with information-theoretic authentication at
a small cost to the rate, power, and error probability of
the code. This may be surprising to readers familiar with
information-theoretic security where the legitimate party typi-
cally requires some exploitable advantage over the adversary.
Usually this advantage takes the form of a secret key or a
channel with certain desirable characteristics. These advan-
tages will not be required here as the legitimate party already
possesses a slight advantage over the adversary with regards

“Recalling that our methodology is to take a traditional channel code and
modify it into one that allows for authentication.

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on July 29,2023 at 02:53:01 UTC from IEEE Xplore. Restrictions apply.



GRAVES et al.: KEYLESS AUTHENTICATION FOR AWGN CHANNELS

to the operational objectives. The legitimate parties are suc-
cessful if the correct message is decoded or the adversary
is detected, while the adversary is only successful if a
non-legitimate message is produced.

Instead we will generally enable information-theoretic
authentication with two complementary code modifications.
The first of these modifications will (literally) add to the
encoder’s output a type of code which enables detection
of targeted authentication attacks. The second modification
will eliminate messages in the process, converting codes that
perform well under targeted false authentication into ones that
perform well under general authentication. With these results
in hand, we show that the costs asymptotically vanish while the
ability to detect manipulation remains. Furthermore, we show
that this is true regardless of the difference between the
adversary and decoder’s noise variance, instead only requiring
that the noise variance at the adversary be non-zero.

In pursuit of the modular scheme, we begin by constructing
a new type of code, termed an overlay code. Conceptually,
these codes are used to control the amount of a persistent'®
resource at each channel use for a given message. The overlay
code’s purpose is to guarantee that a portion of this persistent
resource must be removed by the adversary before they can
falsify a message. If the adversary is unable to remove the
persistent resource, then its presence can be used to detect the
intrusion. For the given channel model, the persistent resource
will take the form of Gaussian noise, and the adversary will
have to attempt noise cancellation in order to remove the
persistent resource’s presence.

Before introducing overlay codes in Definition 13, it will
be helpful to introduce the intuition behind their conception.
These codes are structured to enable basic statistical test-
ing practices to detect the overabundance of the persistent
resource. This is done by first limiting to a discrete set
the possible levels of persistent resource added per channel
use. All channel uses that have a given amount of persistent
resource (e.g., all channel uses which have had half of the
maximum amount of resource added) can be thought of as the
“test sets™ since these sets will eventually form the sets over
which we perform hypothesis testing in order to determine
the presence of an adversary. The most important property
of the overlay code is that for any given message and any
alternative message, one of the test sets for the given message
will correspond to channel uses whose persistent resource
level is always less than or equal to (with a certain amount
guaranteed to be strictly less than) the persistent resource level
of the alternative message. Consider this set-up in the context
of authentication, where the alternative message represents the
actual transmitted message and the given message the one
produced by the decoder. In this case, one of the test sets
for the given (decoded) message will correspond to a set of
channel uses where the encoder has added more of the persis-
tent resource for the alternative (transmitted) message. If the
adversary cannot remove this resource efficiently enough, then
its presence will alert the decoder. We now define the overlay
code.

10By “persistent” we mean that it is difficult to remove.
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Definition 13: Given finite set K C [0,1), and K = K U 1,
positive real number r, and y € (3,1), a function f : M — K
is a (r, K, v)-overlay code when

1
—log| M| =r;
n

,.2:; 114y (fi(m)) = £:= [%J

for all m € M and k € K;
« and for each distinct m,m’ € M there exists a k € K
such that

D 1y (fi(m) gy (fu(m')) < ¢
i=1
and for all j € K such that j < k

Zﬂ{k} (fi(m)) 15y (fi(m")) =0.

i=1

Uniform overlay codes are overlay codes with K =
{o.1k1,....1- -1}
Remark 14: For the remainder of the paper, let K:=Ku

1and £:= li%lJ

Remark 15: 1f f is an (r, K, v)-overlay code, then for each
M C M the function f : M — R defined by f(m) = f(m)
is a (Llog| M|, K, ~)-overlay code.

Remark 16: It would certainly be possible to define overlay
codes to allow the persistent resource levels a non-uniform
number of channel uses. That we did not do so is merely for
the sake of simplicity.

Note, fewer resource levels !f| implies more symbols share
each level, hence fewer levels implies that there are more
channel uses for each particular resource level. Obviously
though, fewer resource levels also means fewer unique output
sequences for the overlay code, hence the overlay code will
support fewer messages. To quickly see this, observe that if
K consisted of two elements, then there would be at most 2"
different possible code combinations.

The a priori existence of overlay codes should not be
taken for granted. For instance, consider a traditional random
coding argument where for each message the encoder outputs
are chosen at random from a predefined distribution. For
any two messages a and b, let Fj(a) and Fj(b) denote
the randomly chosen value of i-th coordinate resource level

for messages a and b. Observe that Pr(F;(a) < F;(b)) =
1-%, ¢ Pr(Fi(a)=k)?
2

. Thus for any choice of distribution other
than a deterministic one, Pr (Fj(a) < F;(b)) > 0, and hence
when rate 7 > —n~log Pr (F;(a) < F;(b)) this construction
will (with near certainty) produce a code such that for every
message a, there exists a message b whose resource levels are
always greater than or equal to a’s. Increasing the size of K
would exacerbate this problem. Nevertheless, overlay codes
do exist given certain conditions outlined in Theorem 17 and
Corollary 18.
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Theorem 17: There exists (r, K,~)-overlay code for all
positive real numbers r, finite X C [0,1), and v € (3.1)

such that
Iz (’)’

1
]
r= i) Z T
kel
where ny = n — £|{7 € K|j < k}|.
Corollary 18: For all v € (3,1) and finite K C [0,1),
if positive number

7 < ylog(|K]) — v —Ha(y),
then for large enough n there exists a (r, K, v)-overlay code.
Proof Sketch: The full proofs of Theorem 17 and Corol-
lary 18 can be found in Appendix B. Also to be found
in Appendix B is a detailed example of the overlay code
construction.

We prove the theorem using an iterated random coding
procedure. First we represent M as in bijection with a
product of smaller sets, that is M = xie{l,m,“q}.M,-. Next,
independently for each m; € M; we randomly select an
{-coordinate subset out of the total n coordinates. These £
coordinates are those that the overlay code outputs the smallest
resource concentration (i.e., the minimum value in K). This
process is repeated for all (mq,m2) € M; x My, with the
difference being that £ coordinates are selected from the set
of n — £ coordinates not selected for m; is used, and that
the second-smallest resource concentration is output for these
coordinates. This process of removing the selected coordinates
and then randomly selecting a new set of coordinates is
repeated until there are fewer than £ coordinates remaining; at
this point the remaining coordinates are assigned an overlay
output of 1.

From this process, the resulting form of Theorem 17 should
be clear. The summand over each & € K is simply the
maximum rate that our analysis guarantees that two messages
match on at most v#-chosen coordinates.

To see why this method works, consider the following.
For any two messages m,m’ € M there exist repre-
sentations (my,...,mx|) and (mj,...,m|;,) respectively.
Clearly, there exists a smallest value j € {1,...,|K]|} such that
mj # m. Now, for m and m' the overlay code coordinates
corresponding to the 1st through (7 — 1)th resource levels will
be equal since (m1,...,m;_1) = (mj,...,m;_,). For the
jth level though, the two messages will have different coordi-
nates. Furthermore, whenever the output overlay concentration
for message m is equal to the jth level, the concentration for
message m’ must be greater than or equal to the jth level
since all coordinates for resource levels less than that level
are shared. Using the appropriate random coding techniques,
we can then guarantee a certain percentage of coordinates that
do not share a level for m; and m.

+
i) 1 _E]Ognk\/}j g
Nk

ng

O
Remark 19: Of extreme importance here is that for a fixed
rate 7 and fixed -, there is a fixed || that guarantees the
existence of a overlay code for large enough n. Thus, the
value of |X| should be intuitively viewed as a constant when
dealing with asymptotic results.
Remark 20: We will not be concerned with choosing
the optimal values for inclusion in K in this paper. This

is primarily because the optimal values will depend on the
adversary’s noise variance, and we wish to have our code
construction be independent of this knowledge. We will return
to this discussion in Section IV.

Given the existence of overlay codes, we now go about
applying them to arbitrary codes to enable authentication.
Importantly, a secret key is not necessary in this application,
since authentication is enabled by the persistence of the
resource added. For our communication model, the persistent
resource is additive Gaussian noise. Our code modification will
make use of the overlay code to determine the variance of the
Gaussian noise added to the encoder’s output. For primarily
clerical reasons, another message-dependent signal, (M), will
also be added to the output of the encoder. We strongly suspect
it is not necessary for most practical codes, although it is
necessary for a result that is agnostic of the original code.

Code Modification 21:

Suppose

« adeterministiccode x : M — R, m: R — M,

« injection noise power pa € (0, o0),

« tolerance 4 € (0, 1), and

o an (1log|M|,K,~)-overlay code f :

some finite K C [0,1) and v € (3,1),
are given.

Independently for each m € M and i € {1,...,n} ran-
domly choose ¢;(m) € R according to a Gaussian distribution
with mean 0 and variance (1— f2(m))pa . Define the modified
encoder X' : M — R by

X'(M) =x(M) +t(M) + f(M) - Ga,

M — K, for

where - is the coordinate-wise product and Ga = G, . Define
the modified decoder ' : R — M U {!} by

!/ (y)
wm(y) if Vk € K

lyi — ti(m(y)) — zi((y)))?
! else

where 7 is the set of coordinates ¢ such that f;(m(y)) =k.

The resulting modified code is defined by X', .

Remark* 22: Here we reiterate Remark 10 from
Section II-B. When given a code (@) = 0, Code Modifi-
cation 21 produces a code where X'(0) =¢(0) + f(0) - Ga.
Thus, in this situation, the code modification produces
encoders that, in the absence of a message, send noise. Later it
will be shown that this noise should be extremely low power.
In practice, this means that the modified encoder would need
to be continuously transmitting.

Remark 23: Note the modified decoder is the original
decoder with the extra requirement that
12

<{(1+446
E2pA + ppec ( )
for all K € K. In this sense, the modified decoder can
be viewed as first using the original decoder to decode the
message, and then checking for manipulation by ensuring that
the extra requirement is met. For reference purposes, we shall
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adopt this two-stage decoder view, and refer to the checking
of the extra requirement as the defector.

To see why Code Modification 21 provides a small prob-
ability of fargefed false authentication, consider the steps an
adversary would have to perform in order to fool the decoder
into authenticating a particular message. First, the adversary,
given their a priori knowledge of the message and codebook,
would subtract out the output of the unmodified encoder for
the transmitted message as well as the ¢ term. Next they would
add in the unmodified encoder’s output and the ¢ term for the
alternative message they wished the decoder to accept. Finally,
the adversary would try to ensure that the correct amount of
noise is applied to the correct symbols so as to avoid detection.

But, while the adversary knows the variance of the
encoder-added noise per symbol, they will not know the
exact value of this added noise since their measurement is
itself noisy. As the injected noise power becomes smaller, the
variance of the adversary’s estimate will become increasingly
large relative to the variance of the encoder-added noise.
Eventually, the adversary’s estimate will be so poor that if
the adversary tries to cancel out the added noise, the resulting
variance would not be significantly less than that of the
encoder-added noise alone. Thus the scheme protects against
any message being forged into a different particular message,
since this different message will be guaranteed to have a set
of coordinates that have less noise variance per symbol than
the adversary can manage. Later we will extend this scheme
using Code Modification 33/Code Modification Corollary 26
to protect against all types of attacks.

While this does provide a form of information-theoretic
authentication, adding noise to the output of the encoder will
degrade the signal-to-noise ratio. In turn, this decrease in the
signal-to-noise ratio will reduce the maximum achievable rate
or, alternatively, increase the probability of decoding error.
Our analysis favors the increase in the probability of error.
Additionally, the increase in noise will increase the power
needed by the encoder. But, as Theorem 32/Corollary 24
formally shows, these costs can vanish while still allowing
detection of fargefed authentication attacks.

Corollary 24 (Theorem 32): Given injection noise power
pa = o(1) and tolerance 6 = o(pa ), then for all

o deterministic codes H =(z: M —= R, m: R — M),

o (ry,K,7)-uniform overlay code f : M — K for any

v € (1/2,1) and viable ||,

» and large enough n ,

Code Modification 21 yields with high probability a code [ =
(X' M—=R,m: R — MuU{!}) such that

TS =TH
wg < wi +O0(Vpa)

SJ(pDec) < EH(pDEC & n P&) +e
~O(npa)

—0(né?)

a}(PDEC) pAclv) <e

Remark 25: Corollary 24 is a corollary of Theorem 32
located in Appendix A. Theorem 32, unlike the above corol-
lary, does not fix the injection noise power, tolerance, or the
values in K. Furthermore, Theorem 32 specifies the error terms
instead of using order terms.
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Proof Sketch: The proof of Theorem 32 is found in
Appendix C, and Corollary 24 trivially follows.

Proving the rate is immediate, since it is unchanged from
the original code.

For the average power, we have to deal with the determin-
istic value of (M) added to the code, in particular analyzing
the probability that a spurious value of £(m) is chosen with a
large amount of correlation with the related x(m).

For the probability of error, we have to consider both the
probability of error of the original decoder with the added
noise and t as well as the probability of error introduced with
the detector. To upper bound the probability of error of the
original decoder, we use the fact that the randomly chosen
value of ¢ plus the message-dependent additive white Gaussian
noise terms is effectively a message-independent additive
white Gaussian noise term with variance pa . Hence, the error
averaged over all possible choices of £(M) is ey (ppec + pa)-
Using Hoeffding’s inequality, it follows that the random choice
of ¢ must yield a probability of error close to the average.
On the other hand, the probability of error of the detector is
straightforward to calculate since, under no manipulation, the
detector is checking to see if a sum of independent random
variables has the correct mean.

Finally for the probability of targeted false authentication,
we note that if the adversary does try to attack, then the
distribution of the received sequence at the decoder will consist
of independent Gaussian random variables where the variance
of the ith coordinate is

_ _fHm)papaav
1i(m) = 7*(fi(m)) : ff(m)P& Eo— + PDec;
and the mean is of the adversary’s choosing. For visualization
purposes, note that when pa becomes small this variance term
converges to f2(m)pa + ppec. By properties of the overlay
code though, for each message and alternative message, there
exists one set of overlay output coordinates whose output for
the decoded message is less than or equal to an alternative
message. The probability of detecting this increase in noise
variance (under the assumption that the decoded message is
not the one transmitted by the encoder) is calculated and
used to determine the probability of detecting the adversary’s
manipulation.
O
While Code Modification 21 does not allow the adversary
to impersonate any specific message, it does not guarantee that
the adversary cannot impersonate a message. This difference
is made plain by referring to the operational definitions and
observing again that

Pr(m(X(a) + Gpec + Z(V,a)) ¢ {a,!})

= Y Pr(m(X(a)+ Gpe + Z(V,a)) =b). (1)
beM\{a.!}
While Code Modification 21 produces codes such that each
summand Pr(m(X(a) + Gpec + Z(V,a)) =b) is small,
it does not guarantee the production of a code for which the
sum itself is small.
Some reflection, though, shows that the case where the
summand is small but this sum is not can only occur if there
is (in some sense) a densely packed set of decoding regions.
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Under this notion, it makes sense to randomly decimate
the message set, similar to how (and why) Ahlswede and
Dueck [13] chose to demonstrate the local strong converse.
While this does reduce the rate of the code, only a negligible
reduction will be needed.

We will resume with a slightly more formal description of
why this works after we introduce the coding modification.
For now, we must mention that the amount of decimation the
message set needs is dependent on operational measures of
the underlying code. Therefore, to improve readability we have
opted to produce a simplified version of the code modification
here, and leave the more precise result for Appendix A.

Code Modification Corollary 26 (Code Modification 33):
Suppose

» deterministiccode H=(z: M =R, m: R — M),

« injection noise power pa = o(1),

« tolerance d = o(pa ),

o (%log|M|,K,~)-overlay code f : M — K, for finite

Kc0,1) and vy € (3,1),
are given.

First apply Code Modification 21 to code H, to obtain code
X'": M- R, : R - MU {!}. Next, select M}

uniformly at random from (Lexp'?:‘ari) J), where

1
Ti:TH—O(p2A+ ogn)-

n

Define the modified encoder X* : M} — R by
X{ (M) = X'(M).
Define the modified decoder 7t : R — MU {1} by

" W(Y) ifm/(Y)e Mt
mi(y):{:n( ) el:( ) _

The resulting modified code is given by X ¥, .

Remark 27: Code Modification Corollary 26 is a corollary
of Code Modification 33 located in Appendix A. There, the
decimation terms are made explicit.

Remark* 28: Decimating the message set reduces the rate
of the code.

We now return to a more formal description of why this
works, which follows from two important facts. First, decimat-
ing the message set will not impact the maximum probability
of targeted false authentication for any two non-decimated
messages. Second, by decimating the message set to M?, the
probability of false authentication for a given encoded message
a € M and fixed adversary function Z can be written as

> L (b)Pr(i(X (a) + Gpee + Z(V,a)) =b).
beM\{a,'}
(2

Equation (2), when considered jointly with the decimated
message set M?* being randomly chosen, takes a form whose
concentration is analytically tractable. More specifically Equa-
tion (2) should with high probability be close to the mean,
which is at most |M*|/| M| since this is the probability a
message is not decimated.

The above intuition is overly-simplistic because all possible
attacks must be simultaneously considered. Nevertheless, the
technique is sufficient to prove the next theorem/corollary.

Corollary 29 (Theorem 34): Setting injection noise power
pa = o(1) and tolerance § = o(pa ), then for all

o deterministic codes H = (z : M — R, m: R — M)

with rate 7y = Q(n"!logn),

o (r3,K,~)-uniform overlay code f : M — K for any

7 € (1/2,1),

« and large enough n
Code Modification 33 with high probability yields a code J =
(X Mt R, mt: R — MU {!}) such that

I
oA+
wg <wy +0(/pa)

EJ(pDEC] < E"}"|'.(;0Dec: & P&) +e
a7(pDecs PAdv) < e~Omra),

—0(ns?)

Remark 30: Corollary 29 is a corollary of Theorem 34
located in Appendix A. Theorem 34, unlike the above corol-
lary, does not fix the injection noise power, tolerance, or the
values in K. Furthermore, Theorem 34 specifies the error terms
instead of using order terms.

Proof Sketch: The proof of Theorem 34 is found in
Appendix D; note that it relies on elements of the proof
of Theorem 32 since Code Modification 33 relies on Code
Modification 21.

The rate and power for the new code are straightforward,
while the probability of error calculation essentially follows
from Hoeffding’s inequality.

The major difficulty in the proof is bounding the probability
of false authentication. As the first step in proving this bound,
we recall a result from the proof of Theorem 32; specifically,
that the decoder’s observation when conditioned on a particular
message, adversary observation, and adversary attack is equal
to a sequence of independent random variables with the mean
of the adversary’s choosing but the variance fixed, i.e.,

YH{M,Y,Z =m,v,2} = Gy(my + u(m,v,2),

where u(m, v, z) is an arbitrary function (whose specification
is unimportant for this proof) and

ffz(m)P&PAdv
ff(m]PA + padv

Ti (m) wa + PDec
for each symbol 7 € {1,...,n}. Clearly, we can effectively
ignore the values of V' and Z by jointly considering G (m) +
pforallme M and p € R.

Now for any given 4 € R and m € M*, we start by noting
the probability of false authentication can be written

D> 1ae (B)Pr (B (Grmy) + 1) =),
bEM\{m.1}

3

where '’ is the modified decoder resulting from the applica-
tion of Code Modification 21 in Code Modification 33. Using
a modified version of the Hoeffding lemma we then bound the
concentration of equation (3). The problem that remains is to
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extend the above concentration to simultaneously work for all
peR.

Here we take a divide-and-conquer approach by separately
considering the sets of . € UT and p ¢ UT, where UT is a
bounded interval on the real number line. These bounds are
set sufficiently large so that p ¢ UT guarantees that for the
coordinates where p; ¢ UT, the probability of passing the
detector for each message is less than e """ —O(mr3)  and
hence the probability of passing any message detector is less
than e—©C("P) . For pu € UT, we show that there exists a finite
set Ut C R such that bounding all u = U* will suffice
to bound all ;2 € UT. From there, we use the union bound
to simultaneously guarantee the concentration of all pt € ut
(hence all . € U') and all m € M.

a

At this point, it is important to reflect on the form of
Theorem 34/Corollary 29. Specifically, consider Corollary 29
where & is chosen such that limné? = oo. For example
pa = Ynlogn and § = —Yn. In this case, the code
modifications have necessitated a loss in rate, an increase in
power, and require the code to be operational at a larger noise
level than the original code. However, each of these changes
disappear as n increases, and hence the rate converges back
to the original rate, the new power converges to the original
power, and the level of noise the code must be robust against
converges to the original noise level. Suppose then we start
with a capacity-achieving sequence of codes with average
power w — O(,/pa), and which are robust to a noise variance
of pa + ppec- Applying Theorem 34/Corollary 29 should give
us a sequence of codes with rate

_O(/5a
Toci s (1+“’7(‘0’"‘}) Ay (1+i),
n—oo 2 PA + PDec 2 PDec

which is capacity. At the same time, plugging the values into
the maximum probability of false authentication yields

im @7 (ppec, paav) < lim e~C(a) =g,
n—oo — 00

and thus we have the ability to authenticate. This essentially

proves the following theorem.
Theorem 31:

llog(1+—P—) it s D
C(p, PDec, PAdv) — {2 el 1 v
cIse.

Proof Sketch: The proof Theorem 31 is found in
Appendix E and is essentially a more formal version of the
discussion preceding the theorem. Additionally, we show that
if paay = 0 then the capacity is zero. This is somewhat obvi-
ous since the adversary knows the encoder’s output perfectly
in this case. m]

Notice that the capacity experiences a sharp jump at
paav = 0, but is otherwise independent of the value. From a
practical perspective, this is ideal. A perfect continuous chan-
nel is a physical impossibility. Our result therefore implies that
in practical wireless scenarios, information-theoretic authen-
tication is possible without use of a secret key. It is also
important to observe that the code modifications themselves
do not rely on knowledge of the adversary’s channel.
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Interestingly, our results indicate that obtaining information-
theoretic authentication from a channel differs significantly
from obtaining information-theoretic secrecy from a chan-
nel. Indeed, all practically relevant schemes for the wiretap
channel, dating back to Wyner’s seminal work [16], require
both knowledge of the adversary’s channel as well certain
guarantees on this channel which make implementation a
difficult proposition. In the relevant analog to our model,'
information-theoretic secrecy cannot be guaranteed when the
noise to the adversary is less than the noise to the decoder. This
is not an impediment to information-theoretic authentication
though, as our results demonstrate; importantly, knowledge
of the message is distinct from knowledge of the transmitted
sequence.

In the next section we will discuss the path forward in
more detail. Among other things, we will discuss unex-
plored alternatives for implementation, barriers to practical
implementation, difficulties in other channels, and different
implementation scenarios.

IV. DiscussioN & FUTURE DIRECTIONS

While we derive a scheme that leads to information-
theoretic authentication, there remains much to be done. It is
worth discussing these remaining questions with some candor,
so that those so motivated have a clear understanding of areas
for improvement. We also provide here further discussion on
the distinction (beyond the obvious) between secret key-based
authentication and what we accomplish here.

A. Legitimate Party Advantage

At various points in the paper we have made note that
the legitimate party does not need an advantage over the
adversary for the scheme to work. While this statement is
true for pedagogical purposes, it is also true that the method
of authentication is similar in spirit to the works [3], [4], [5],
[6]. [7]. [8], [9]. [10] mentioned in the introduction. Also as
mentioned in the introduction, these works present the legit-
imate party as being able to establish information-theoretic
authentication whenever the channels fit a given statisti-
cal characterization. Belonging to the set of channels that
allow for information-theoretic authentication can, and should,
be viewed as the advantage of the legitimate party.

Extracting this advantage from our results then leads to the
conclusion that, in our model, the legitimate party’s advantage
is that the channels have noise variance greater than zero.
We hope you, dear reader, will agree that calling this an
“advantage” would only make sense after our results were
known. So while the statistical channel characterizations of [3],
[4]. [51, [6]. [71, [8], [9], [10] can provide insight into how
authentication is achieved, it would be inappropriate here.

B. Overlay Code Improvements

When first formulating overlay codes, the goal was to ensure
the unique relationship of the output symbols for different
messages. In the construction, there were a number of different

! specifically, from Figure 1 remove the message side information given to
the adversary and remove the adversary’s output.
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parameters that could have been varied. In particular: the
number of coordinates for a given output concentration, the
overlap amount per coordinate, and the output levels them-
selves (i.e., K). To simplify our analysis, we chose to fix the
first two considerations, while leaving X variable. Surprisingly,
the actual values for K, while they do impact the efficiency
of the authentication scheme, are actually rather immaterial to
achieving authentication.

Further analysis showed the optimal values of XU depend
on the value of pag,. As a result, we chose not to optimize
over K since important to our claims is that the value of paay
need not be known when constructing the code. During the
review process, the question of the optimal value of XU was
raised. To that end, when pn = o(1) the optimal choice of

K ={0,kq),-..,kqx|—1)} converges to
. [(1 = 07)]“_1 PDec
= c(1-7) pa’
where

- X}/ PDec
7 '/Ppec + (1 =) "/Pa T ppec’
and yields a maximum probability of false authentication
(subject to our analysis) of essentially

exp (51—l =1+ ).

Still, use of this asymptotically optimal value did not simplify
our analysis and hence was not instituted.

This does, however, raise the question of what is being lost
(in terms of authentication ability) by choosing sub-optimal
values for K. Additionally, it remains an open question
whether allowing variable v and variable coordinates per
output symbol could further improve the final results.

C. Practical Implementation of Code Modifications

To enable authentication, message-dependent noise must
be added and then certain distance properties between the
codewords must be ensured. These two tasks appear here
as Code Modifications 21 and 33. Our original intent was
practicality in these code modifications; we were moderately
successful with regards to Code Modification 21, but not
so with 33. That Code Modification 21 could be reason-
ably implemented guided our decision to include here the
non-asymptotic versions of Theorem 32 and 34. Still, it is
worthwhile to discuss alternatives to our code modifications
that could allow for analytical bounds on the operational
parameters, as well as a practical implementation.

For Code Modification 21, the only real concern in terms of
practicality is the construction of the ¢ function. Indeed, since
the initial decoder is used in the first stage of the updated
decoder, the output of the decoder can be used to determine
what the appropriate value of ¢ should be for the estimated
message. It is worth mentioning that we suspect that setting
t equal to zero will suffice in most cases. Our suspicion
derives from the fact that ¢ is only needed to ensure that the
code appears to have uniform noise across all coordinates.
In practical decoders though, less noise per symbol is usu-
ally to the decoder’s benefit. Setting ¢ to zero would yield

wq < wy + pa, with the rate and probability of targeted false
authentication remaining as in Theorem 32. On the other hand,
the average arithmetic error could be estimated empirically.
Hence, this should result in a practical implementation of Code
Modification 21 for which Theorem 32 is relevant.

Code Modification 33, on the other hand, cannot be directly
implemented as currently stated. Choosing such a large subset
uniformly at random from the set of all such subsets is
clearly impossible in practice. There may of course be feasible
alternatives. For instance, the subset selection could be accom-
plished using a universal hash function, and the Hoeffding
concentration analysis replaced with one deriving from the
leftover hash lemma. Alternatively, it may be possible to show
that some codes do not actually require a rate reduction.
Indeed, our analysis for Code Modification 33 relies heavily
on the maximum probability of targeted false authentication
established by Code Modification 21. But the adversary can
only obtain this maximum by choosing a very specific output,
and cannot obtain it for multiple alternative messages at one
time. As a result, it seems likely that a more sophisticated
analysis, using the amount of perturbation from the optimal
output, could yield a maximum distance between codewords
required for there to be a successful attack. Ensuring that
the code’s minimum distance was greater than this maximum
would be sufficient to skip Code Modification 33 entirely.

D. Comparison With Secret Key-Based Authentication

The major advantage our authentication scheme has over
one that is secret key-dependent is that the secret key becomes
a finite resource when the channel to the adversary is better
than the channel to the decoder. Hence, in some channel
models, our scheme could operate in perpetuity while one
which is key-based would have a finite life span. That this is
particularly true in any case where the adversary has a better
channel is shown in Graves ef al. [2] whose converse proves
the key has a finite duration of use.

On the other hand, secret key-based authentication still
allows for two advantages over the non-secret key-based
authentication of this paper. First, it is still operational when
there is no noise over the channel to the adversary'? and when
the adversary knows, and can therefore cancel, the decoder’s
noise.'* Second, and more important, secret key-based authen-
tication experiences a better trade-off between rate loss and
how quickly the probability of false authentication converges
to zero.

For secret key-based authentication, we know that there
must exist a trade-off between the channel capacity and
the exponent for the probability of false authentication due
to the converse results from Graves and Wong [17] and
Graves et al. [2]. For some measures of false authentication,
this trade-off is linear, and in that sense the message rate
and probability of false authentication must share the channel
capacity.

Our results do not allow for this type of trade off. That is,
while our results require a reduction in rate from the channel
capacity in order to achieve authentication, the exponent for

12A physical impossibility.
13 Also a physical impossibility.
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the probability of false authentication is at most exp(—o(n))
whereas secret key-based authentication allows exp(—O(n)).
If we assume that the encoder knows the channel to the
adversary'* then it is possible to also achieve exp(—O(n))
with our results. Indeed, this is because in this case we do
not need pa to vanish, but instead just be sufficiently small.
Regardless, even under this unfair comparison, and further
assuming the more generous result on the power constraint
raised in Section IV-C and that the second code modification
was unnecessary, to obtain a maximum probability of false
authentication of exp(—O(np%)) requires that the difference
between the maximum rate and capacity be at least

1 p 1 P—pa )
i A 1 T L, . F T <
2 g( PDec) 2 g( PDec + pa

= Z ~(con)’
i=1

|t

where
P"‘PDEC
P+ Ppec + pa (1+ ;.%)

==

Hence, a loss of rate does not lead to a linear increase in
the exponent of maximum probability of false authentication
using our scheme.

E. Higher Order Wireless Channel Approximations

While Gaussian channels are great approximations for
free-space fixed point single antenna communications,'> there
exist other scenarios of wireless communications with their
own corresponding best channel approximations. Some of
these alternative channels consider mulfi-input multi-output
(MIMO) antenna arrays, fading channels, and multi-path chan-
nels.

Outright, we do not see any reason that the overlay code
concept cannot be modified and applied to these channels to
create codes that provide information-theoretic authentication.
However, any such modification will be highly dependent
on the assumptions placed on the encoder and decoder with
regards to knowledge of their own channels.

V. CONCLUSION

In this work, we have shown that physical layer authentica-
tion is possible for a channel that models wireless communi-
cation. Not only is physical layer authentication possible, but
our scheme can be used to detect any adversary as long as the
block length is sufficiently large and the adversary does not
have access to a completely noiseless copy of the encoder’s
output. Our scheme achieves this by adding artificial noise
into the system using the novel concept of overlay codes. This
approach allows for authentication by forcing the adversary to
remove the added noise when they attempt to insert a fake
message of their own.

14This comparison to secret key-based authentication is not entirely fair,
since knowledge of the channel to the adversary is not needed in that case.

I5This point is discussed by Massey [18] regarding deep-space communi-
cations.
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Although random coding elements were used in the proofs,
many of the usual difficulties in practical implementation do
not exist in our modular scheme. That is, only the encoder
needs to be constructed, since part of the concept of the
modular scheme is that the message can still be decoded using
the original decoder (see Section IV-C). Furthermore, our
modular scheme establishes that every deterministic channel
code can be modified to provide physical layer authentication.
We expect this to lower the implementation barrier since we
therefore do not require a completely new channel code be
added to the system design.

Open problems include those outlined in Section IV, as well
as investigating further scenarios where adding artificial noise
can provide authentication.

APPENDIX A
NON-ASYMPTOTIC VERSIONS OF COROLLARIES 24
AND 29 AND CODE MODIFICATION COROLLARY 26
Theorem 32: For all
¢ deterministic codes H =(z: M — R, m: R — M),
« injection noise power pa € (0, 00),
« tolerance 6 (0, 1), y
o and (1log|M|,K,~)-overlay codes f : M — K, for
finite £ C [0,1) and vy € (3,1),
Code Modification 21 with high probability yields a code J =
(X':M—=R,m :R— MU{!}) such that

T7=TH
wg < wi + 2V 2wnpa(rn +1)

) log |K
+pa (1+81,<| [m+1+ | |D

n

T
€7(Ppec) < €n(ppec +pa) + \/56‘7’“’“+ |K|e— ="

@y (Ppecs paay) < e HEA-DN 4 —denV®

where
(1+ 8)(k2pa + Prec)
A= 0 1-—
‘m"( Rk 4o (R) + (1 — ) (dx)
r(a) = PR

a’pa +p§dv
di. = min{d € K|d > k}.

Code Modification 33: Suppose

« deterministic code H = (x: M — R, m: R — M),

« injection noise power pa € (0, o0),

« tolerance 6 (0, 1), }

e (Llog|M|,K,~)-overlay code f : M — K, for finite

K c[0,1) and v € (3,1),

are given.

First, apply Code Modification 21 to code H and let X' :
M — R, m': R — MU/{!} be the result. Next, select M*

uniformly at random from , where r#
4 (Lexp(mm)
1—~)¢ 2 + log 26
Ti — (]_ = n_l)T'H = 7( FY) /\2 — 7+ ok
4n n
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and A, 7*, and dj, are as defined in Theorem 32, while

Bzmax(l,\/Sn[w,c—]—(pA + ppec) (1 +8 +2X2 +2 TJ)]) "

Define the modified encoder X* : M} — R by
X (M) = X'(M).
Define the modified decoder it : R — M* U {!} by

. W(Y) ifw/(Y)e Mt
mi(y):{:n( ) e]::( ) _

The new modified code is X ¥, mt.
Theorem 34: For all
o deterministic codes H = (x : M — R, m: R — M),
with rate
-t
T —)
« injection noise power pa € (0, o),
« tolerance 6 € (0, 1),
o and (1log|M|,K,~)-overlay codes f : M — K, for
finite £ C [0,1) and 7 € (3,1),
with high probability Code Modification 33 yields a code J =
(X : Mt = R, b : R — MEu) such that

T {l—q)fAQ_ ™y + 2+ log4né
4dn n

wg < wy + 2/ 2wypa(ry +1)

. log |
+PA(1-I—8EKII [m+1+ i ]D

n

2 + log 4nf

n—1

B

€7(ppec) < En(pDec + pa) + V2ne=mH + |Kle 3

]_ 1—y 2
< | e 88,
a7 (pDecs PAdY) < ( n+ 2m) e :
where @ is defined in Code Modification 33 and A is defined
in Theorem 32.

APPENDIX B
THEOREM 17 AND COROLLARY 18
The proof of theorem and corollary rely on the following
random code construction.
Code Construction 35: Suppose finite set L C [0,1) and
positive number v € (1/2,1) are given.
For convenience, for each k € K set

ne =n—£{j € Klj <k},
Nk = {1‘1"'7nk}1

N
e
+
n%) - ﬁ - n—i]ognk\/q )J

log [GXP (nk )Hz (’Y
ng

For k = 1, let ny and A} be defined as above, but let Sp =

&
ng
Next for each k € K let My = {1,...,e™ "¢}, allowing
that M = xpex My

T =

and Tk —[};

Independently for each k € K and each m; € My, choose
a set Sg(myg) uniformly at random from &i. Then, for each
m = xXgcxkmp € M and j € {1,...,n} set

filtm)=k & J€gx _7(x;exi;crm;)(Sk(mi)),
where 7 (x jex|j<km;) is defined recursively by

T (X jexij<am;)
=T (xjex|j<km;s) — INe—T(x erycms) (S (M)

with Z(0) = {1,...,n}, and where g4—5 : A — B is the
lexicographical order-preserving mapping between two equal
size sets of natural numbers.

Prior to using this code construction to prove the theorem
and corollary, we will present an example to make the con-
struction more clear, as well as present a technical lemma in
order to streamline the proof.

A. Example Overlay Code Construction

Suppose n = 9 and K = {0,1/2}, (hence £ = |2| = 3)
are given. For simplicity, let rates rg, ., and r; be such
that e = 4, %/2 = 3, and 3™ = 1, yielding a total of
4 -3 -1 = 12 different messages, or a rate of % log 12. Note,
that we do not need to specify « in this case since its only
involvement in the code construction is choosing values for
the rates.

Suppose the randomly selected subsets, Sp(z) C {1,...,9}
for 1 € Mg and S.»(j) C {1,...,6} for j € Myy,, are

So(1) ={2,7,8} S, _
s o /2(1) - {2:415}
S0(4) ={1,5,9} e —35a)
then the resulting code constructed is

Jal) = 1. 0 s 4. s Y 0 0 4
F(12) = 1 B 1 12 Yz a4 0 0 idf2
F(13) = 1= 86 1 12 41 ¥z 0 0 1
F(21) = 0 @ 1 2 1 0 Y2 1 1
f22) = 0 0 1 1 12 0 12 1 12
J(23) = 0 0 Y3 1 Y 0 1. Iz 1
f31) = 1 0 12 1 12 0 Y2 1 O
F32) = 1 0 1 12 3k 0 1 16 0
J33) = T2 0 1 a0 00 tas T D
f41) = 0 1 121 0 2 12 1 O
F42) = 0 1 1 Y2 0 1 1 a4 0
F(43) = 0 42 1 4/ 0 1 a2 1T 0

In more detail, take for example f(32) which corresponds
to So(3) = {2,6,9} and S115(2) = {3,4,6}. Here f(32) is
constructed by first assigning a 0 to all indices in Sp(3), after
which these indices are removed from the pool of possible
indices {1,2,3,4,5,6,7,8,9} leaving indices {1, 3,4,5,7,8}.
Now considering the remaining indices ({1, 3,4,5,7,8}) as
an ordered set, of these the S./,(2) indices (the {3,4,6}-th
smallest, i.e., {4,5,8}) are assigned a value of 1 and all
remaining unassigned indices ({1, 3, 7}) are given 1.

Also from this example, the important aspect of the overlay
code can be observed. Namely, for any fixed message one
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of the sets of coordinates for the message which produce the
same output (e.g., for 33, {2, 6,9} produce 0, {1,4, 7} produce
1/2, and {3,5,8} produce 1) is strictly not greater than the
corresponding outputs produced for any alternative message.

B. Technical Lemma

Lemma 36: For integers a,b,c, such that a > b > ¢ >
max(b— (a —b),1),

(£) ()
L
A L (P ( £
a b
Proof: This lemma follows nearly directly from Robbins’

remark'® on Stirling’s formula [19], along with some basic
algebra. More specifically

()

:clogg +(b—¢)log

b 1

E) g — 2loga.

b—c

a—2b+c b—ec
—t—(a—?b—l—c)logﬁ—I—(b—c)loga_b
—blogé—(a—b)loga_b
a a
—¢'—log = @

(b—c)y/2mac(a —2b+c) i
for some ¢’ such that
gtz : s
=12 " 12(a—0)  12(a—b)+1 ' 12b+1°

by Robbins’ remark. Clearly though ¢’ < 1 since a > b > 1,
while

log Mab) < 2loga
(b—c)y/2mac(a — 2b+c)

due to the constraints placed on a, b, ¢ in the lemma statement.
To simplify the remainder of the statement recognize that

b]ogE = (b— c:')lcrgE —I—clogE (5)
a a a

i Byl S = (a2 Mo 22
a
+b—c)log 2, ©)
hence
c]ogg—i—(b—c)logb_c
a—2b+c b—e¢
—!—(a—?b—l—c)logﬁ—I—(b—c}loga_b
a—2b

16For all positive integers n, n! = v/2mn (%)n e¢ for some ¢ such that
1 1
1201 <€ < mm-

b cllb b b—cl|lb
=efee(3l2)+ (-2)e(El2)] @

and thus proving the lemma. |

C. Proof of Theorem 17
Proof:

Once again m = Xgcxmg and M = X e M.

The theorem will be proven by showing that Code Con-
struction 35 can produce (r, K, v)-overlay codes with non-
zero probability. Note, the fact that it can produce a code
with non-zero probability directly implies the existence of
such a code. Also note that the code construction near directly
provides two of the (r, K, v)-code requirements. Indeed,

log M| =) log | M| ©
kckl
+
> Z ng |Iz ("y i) . 3logﬂk\/g
koK g 3'.’1;; g
(10)
>r (11)
since [e'““J > ela=11" While
D 1y (fi(m) =¢ (12)
=1

for each k € K and m € M is already directly implied by
the code construction. What therefore remains to prove is that
for each distinct pair of messages m,m’ there exists a j € K
such that

D15 (film) Ly (fulm')) < AL (13)
i=1

and forall £ < j
Zﬂ{t} (fi(m)) Ly (fi(m")) = L. (14)
i=1

It should be noted that Equation (14) implies the third
overlay-code requirement of

mn
3 143 (im)) Ly (fi(m')) =0
i=1
for all £ < j.

To this end consider any m = xgcxmg € M and m' =
Xkexm) € M such that m # m'. Specifically, let!” j € K
be the minimum value such that mg # m;;, and note that for
all £ < j if fi(m) =1 then f;(m’) = ¢ since

(15)

gN;—rI(x‘-En‘-{tmi)(St (mt))
o gNg—»I(xiem‘-{‘m;) (Sk{mg))

""The value j is used here since it will become the value of j that satisfies
Equations (13) and (14).
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Clearly then for all £ < j

Y 14 (film) 1y (fu(m')) = €. (16)
i=1

‘What remains is to show that
> gy (fi(m) 15y (ful(m')) < L, an

i=1

which will be done via random coding arguments. In par-
ticular, for each k € K we will show that with probability
greater than zero the random choice of subsets in Code
Construction 35 yields a code such that

|Sk(a) N Sk(b)| < £ (18)

forall k € K, a € Mg, and b € My \ {a}. If a code with
property (18) is produced, then

1453 (fi(m)) 15y (fi(m")) < |S;(my) N S;(mf)| < AL,
i=1
(19)

St the (fomblnaUOn of IN; T (xsexciecsms) being an invert-
ible mapping and

gNj_’I(XiEEIicjmi) i gNj—’I(XiEEIi<jm;) i

imply that

film) = fi(m') =j
v’ =
& gN}—»I(qumaﬁ-m.-)({z}} € Sj(m;) N S;(mj).

To prove a code with Property (18) can be produced from
the code construction, consider any £ € K, and without
loss of generality assume M; = {1,2,...,|M;|}. Further
let Si(a) be the random variable representing the randomly
chosen subset of A particular to each a € Mj. Observe
that the probability Code Construction 35 generates a code
satisfying (18) is

( lMHQk(G))

where for each a € M;

M|

H Pr (Qk(a)|ng= (20)

1Qx (b))

a—1

() {ISk(a) N Sk (B)] < 7£}.

b=1

Qx(a) =

But,
Pr (Qx(a)|n5=1 Qx(2))

=1 — Pr (U221 Sk(a) N Sk(c)| > v£|ng=1 Qx (b)) , (21)
a—1

>1—) Pr(|S(a) N Sk(c)| > v|g=1 Qc(b)) (22)
c=1

>1— (a—1)Pr(|Sk(a) N Sk(1)| > ~£); (23)

where (21) follows by De Morgan’s Law; (22) is the union
bound; and (23) is because {Sk(a)}acm, are independent

and identically distributed. Therefore, from combining equa-
tions (20), (23), and the independence of the layer construc-
tion, it follows that if

log | My + log Pr (|Sk(1) N Sk(2)] > 1) <0 (24)

for all £ € K, then the probability Code Construction 35
produces a code with property (18) for all values of k € K is
greater than 0. To prove Equation (24) is indeed true, observe
that

log Pr (|Sk(1) N Sk(2)] > v£)

£
—log 3 Pr(ISk(1) nSk(2)| =)

e

) Se(@)) || (Ne — Sk(2)

)| |

= 1ogi=zr;ﬂ | ( J\‘;k) (26)
=log Z —(E) (nk _IE) (27)

i=[~y£]

(28)

< —me |l (’r i) = (29)
ng 31’1;: nE

< —log | Mg|; (30)

where (28) is from Lemma 36 and because the probability of
an event is at most 1; (29) is because v > 3 > E for all &,

in turn implying
|| £ £]i] £ £
I (3= ) > 1 il 28 >l | v||[—
)| ng £ |Ing ng
and because a summation is always less than the maxi-
mum summand multiplied by total number of summands;

finally (30) is by code construction. |

D. Proof of Corollary 18
Proof:
Given v € (3,1) and finite K C [0,1), recall that for all
kek

N —n — ka
where

N [%J i = {a € Kla < k}|.

As a first step, observe that fn; < n2, hence

Zﬂk Ia (’y i) - i — Elogfnk
ke
l
S ( —|—410gn) +) el (THn_k) (31)

kel

+
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and what remains is to lower bound ngls (fy nik) . To this
end observe that
(o)
ngla | || —
ng
l
> €Dy (’r”—) (32)
ng
- n— il
e 3 - = .
> ¢ [1og (1K1 — i) + (1= og (220 )|
— £Ha(y) (33)
> tylog (K] - jx) — Ba(7); (34)

where (32) is by the fact that the KL divergence is always
greater than zero; (33) is because

) P
og [T%] Jk

and (34) is because

> log(|K| — jk);

n—jgl>n—(Gr+1)(>0.
Using this bound,

£
gcnkuz (’r”a) (35)
& |K|—1 N
2 |7 —|K[H2(7) +7 Y log(IK|—3) | (36)
151 par
= |57 ] (1Kl + vlog(1K) (37)
> |2 | (—iibiae) +miki10g L (38)
~ LIk e
> (n— K| = 1) [y log K| — 7 — Ha(7)] (39)

where (38) is a consequence of Stirling’s Approximation of the
factorial. Combining Equations (31), (38) with some further
basic algebra and Theorem 17 yields the corollary statement.

]

APPENDIX C
THEOREM 32

A technical lemma (which is essentially the Hoeffding
lemma [20]), a basic calculation, an intuitively obvious lemma,
and a bookkeeping lemma will be useful in the proof of
Theorem 32. These are presented first, as to help streamline
the proofs of the theorem.

Lemma 37:
= —3n jfe<1
P G2.zn(l+ o =
(Satznazan) {50 0
for all ¢ > 0.
Proof:

What follows is essentially the derivation of Hoeffding [20,
Equation (2.1)] followed by a loosening of the bound. Proving

Pr (Z Gpi>n(l+ c)p) Lerand
i=1

51

for all ¢ > 0 since a bound for
2,>-n(l—c)p) follows with the same

Br{-3¢ 7

steps. Thus, the lemma can be derived as follows

Pr (Z Gf,?i >n(l+ c)p)
i=1

= minPr ( PR G > Bm(HC)p) e
t>0
< nline_m(1+c)p[|.:et Xia Gi,i 41)
t>0
1
— mine—thFpTT L 42
age S o= w
- e—tn(1+e)p T
minc (1 — 2tp) (43)
—e £ 3 (1 1 C) z (44)
—12n -
e 3 ife<l1
< { (P . i
e 8 else

where (40) is Bernstein’s trick; (41) is Markov’s inequality;
(42) is because G, ; is independent for each 7 and hence

n
2 2
IEetz;‘=1 Gp_.i — I I IEetGp,i

while
E I:etci,i:l :/ 1 e_%'t'txzdz
R 2‘JT
1 I
_ (1-t2p) 35 dI
27r
/ _Pd:z
\/1 —2tp Jr 217
Y =7 Qtp
where p = 1—-"27, (44) is the result of solving the rmmnuz.atlon
problem, and then substituting the minimum ¢ = A1op _H,) G back
in; finally (45) is because
2 1 :
¢ 1 1?2 ife<1
—log(1 > —— > -
c=lapli+e) Igfu.c]Ql—f—cu _{ic else
for all ¢ > 0 by Taylor’s theorem.
O

Calculation 38: If X = G, then

p
X{X +Ga =2} =Gogm + 1.

Proof: Letting Y = G, and Z = X + Y, and fx vz
denote the probability density functions of the various random
variables, the calculation follows

Ixiz(zl|z)
. fzx (2|z) fx ()
Jz(z)
+a z—1x)? I2 22
PT2 p o T
Tpa 2a 2(p—|—a)
2 2
P+Gexp T 2a+p“’z - (a+p)2z
2mpa 2-P1

atp
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2
e
1 (:I: z)
=l g 2= =P —% (46)
7r40+c1 a+p
|

Lemma 39: Let G be independent (but not identical)
Gaussian RVs with mean 0 and finite (but otherwise arbitrary)
variance, and let i € R be fixed. For all fixed a > 0

Pr (i((;i +pi)? < a) <Pr (ia? < a) )
i=1 i=1

Proof: To prove the lemma, we need to show

Pr ((Gi —I—,u.‘;)2 5 a) < Pr (G? < a) 47

since the more general lemma will then follow from repeated
use of the following observation that uses Equation (47)

Pr (Z (Geipd) < a)

i=1

- /Pr ((Gl +m)2<a- b)dPr (Z (G; —|—,u,—)2 < b)

i=2

= /Pr (G} <a—b)dPr (Zn: (Gi+mi)® < b)

i=2
n

=Pr (G%—rZ(Gi ) < a) :
i=2

To prove Equation (47), it is helpful to simplify it to

Pf(—#i—\/aﬁaiﬁ—#i‘l'\/a

<Pr(—va<G; < Va), (48)
or even more directly
(£55)-a(22)
VP N7
g@(,/i)—i’(— =1 49)
Pi Pi

by taking square roots and then using basic algebraic manipu-
lation. Equation (49) can be validated by showing that p; = 0
maximizes
q,(—pm/a) _@(—p,—— ﬁ)
Vpi VPi

Using the basic calculus approach, the derivative of Equa-
tion (50) is

o500 -1

O V2mpi
Setting the derivative equal to zero and solving gives |u; +
va| = | — i ++/a|, which can be further simplified to 2u; =
0 since a > 0. Furthermore, the second derivative at p; = 0 is

5 R
_ _038 2 < 0,
TP;

thus guaranteeing that p; = 0 is the global maximum in turn
proving Equation (47) and the lemma. |

(50)

2Zpg — £ 2p;

(51)

[ _Cpitv@? _<—u.-—«a)?]
€

Lemma 40: Suppose that 7; > a > 0 for ¢ € {1,...,n},
and that 5 > «. Then for all positive real numbers b, ¢, and
7, where v < 2|{i € {1,...,n}|n < B},

n
Pr (Z Gi__t— <n(l+ c]b) g/ R i R
i=1

where
(L+c)b
poi- (1 — ’r)ﬁ) '
Proof: Choose any B C {1,...,n} such that |B| = nvy
and all coordinates in B correspond to 7; < /3, i.e.,
BC{ie{l,...,n}n < B}

let B={1,...,n}\B.
Now the proof is trivial for A = 0, otherwise when A > 0 the
results follows as so.

Pr (2": Gf,?i <n(l+ c)b)
i=1

/\:max(O,l—

=Pr|) GZ,+) Gi,<n(l+c)p (52)
icB icB

SBAY "2y EGiJ <n(l+eb| (53)
icB T icB Tz

<Pr (Z 262, <ny(1- /\)a)
B

+Br [ ) E_Gi,i <n(1-7)1-2)8 (54)
icB i
B e—%n-p\z s e—%n(l—T)Az (55)

where (53) is because a/7; <1 foralli € Band 3/7; < 1 for
all i € B; (54) is by using the inequality

Pr(A+B <a+b) <Pr({A <a} or {B<b})
< Pr(A <a)+Pr(B <b)

in conjunction with
n(1+c)b < ny(1—-A)a+n(l—7)(1-A)B;
and (54) is by Lemma 37 and because 2G%, = G2 and

Ti

EG—?—; o G%- =

Ti

A. Proof of Theorem 32

Proof Sketch: Let H=(z : M — R, m' : R — M)
be the original code, and let 7 = (X' : M — R, w’ :
R — MU {!}) be the modified code obtained from Code
Modification 21. By Zx(m), for each k € K and m € M,
denote all coordinates z € {1,...,n} such that f;(m) =k.

Both the power constraint and the average arithmetic prob-
ability of error arguments will rely on random coding (due
to the random choice of ¢ : M — 7R). Because of this,
let T : M — R be the random variable representing
the randomly chosen value of ¢ in the code construction.
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The random coding construction will proceed by show-
ing that the random choice of T with probability greater

than
2
= (1—1—”’—) e =
m

yields a code with the stated power constraint, and with
probability greater than

I—e ™

yields a code with the stated average arithmetic probability of
error. Clearly, this also implies that the random choice of T’
yields a code which satisfies both the power constraint and the
average arithmetic probability of error bound with probability

greater than
2
1-— (2—|— \/ —) &5
m

For readability, we have separated the derivation of each
bound by a dividing line.

(Rate)
Encoders for 7 and ‘H have the same domain hence

Ty =TH.

(Power) Towards the power constraint observe that for each
message m € M

st |
> ~E[(Xi(m))’]

i=1

E [(zi(m) + ti(m) + fi(m)Ga i)?] (56)

-
II
m

| |
L7)s LD
Sim 3m

(z2(m) + t}(m) + 2ti(m)zs(m) + f7(m)pa) ;

=1
(57)
<wy+— 22 tir; +— Z Z (t2(m) + K®pa) ;
keﬁ i€y (m)
(58)

where (57) is because E [GA ;] = pa and E[Ga;] = 0;
and (58) is by definition of the power constraint. Thus, we need
to bound the tail probability for choosing large values of 2 (m)
and 2t;(m)z;(m).

To this end, for each m € M and k € K

Pr| Y TXm)>£(1+¢)(1—K*)pa
i€y (m)
< e—nlrw+1l-log K],

(59)

where

il

?

c:8n[ +1+log|K:|:|
£ n
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by Lemma 37. That with probability 1 —e™™ a T =t is
chosen such that

Y (#(m) +Kpa)<n (1+8€ [ - logﬂ!,‘ﬂ]) 0
i=1
(60)

for all m follows by applying the union bound to extend (59)
to simultaneously consider all m € M and k € K (while
observing that ¢;(m) = 0 for all i € 7;(m)).

The other term in the summation, Y"1, 2 z;(m)Ti(m),
follows directly from basic laws of probability. Specifically,
for each m € M we have

Pr (Z 2 z;(m)Ti(m) > n 2/ 2wn(ry + 1)%)
i=1

—n2y/ 2wy (rn +1)pa
=& 61
(\/Z? A (m)(1 - f.?(m)).oa) ©D
_ nPon(rn+1)
‘fe"" ( S 22 (m)(1— f.?(m))) €5
< J; —ﬂ(fﬂ-i-l) (63)

where (61) is because 2z;(m)T;(m) is a sum of independent
Gaussian random variables by the code construction; (62) is
because ®(¢) < %e_% for ¢t < 0; and (63) is because 0 <
film) <1 for all coordinates ¢ € {1,...,n} and m € M.
Once again, that with probability greater than 1 — \/%e_“ a
T =t is chosen such that

Y "2 zi(m)ti(m) < n 2¢/2wp(rH + 1)pa
i=1

follows by applying the union bound to Equation (63) as to
consider all m jointly.

(64)

Combining Equations (58), (60), (64), and that § < |K|
shows that with probability
/2
1-— (1 + —) c
™
a T =t is chosen such that
wg < wi + 2V 2wn(rH + 1)pa
~ log |IC
+ (1+8|}C[ [ +14 o8l lD pa. (65

(Average arithmetic probability of error)
To prove the bound on the average arithmetic error probability,
observe that the condition for error given M = m,

' (z(m) +t(m) + f(m) - Ga + Gpec) #m,  (66)
occurs if and only
m(z(m) +t(m) + f(m) - Ga + Gpec) #m,  (67)
or if there exists a k € K such that
2, (ki?;,ffp“;“"')z > 01+, (69)
i€Ti(m) e
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Hence
e7(ppec) < o 3 am(®) + o D bm(R),  (69)
IMI m% IMI ,;C
meM
where
am(t) = Pr (m(z(m) + t(m) + f(m) - Ga + Gpec) # m)
(EGai+ G'Dec.i}2
binE)= - - >{1+9)],
™ iegm) ksz + PDec ( !

by the union bound. Note from the code construction that
random variables a.,(T") and a,,/(T) are independent when
m # m’, and that 0 < a,,,(T") < 1 for all m € M, and that

Elam(T)] = Pr ((x(m) + Gpa+pp..) # ™)

because Ti(m)+ fi(m)Ga i +Gpec,: has a Gaussian distribu-
tion with mean 0 and variance pa + ppec for each coordinate
i. Therefore

(70)

am(T) n —n
Pr > en(pa + poec) + 1[5 | <e
(Z.5 <+ \ o
(71)
follows from Hoeffding’s inequality because
Pr (m(z(m) + Gpa+ppec) 7 ™)
Z |MT& £ = e1(pA + PDec)-
meM
On the other hand
b (k) < e~ 8% (72)
comes directly from Lemma 37 since £52:7%Decs are jnde-

5 2 2 ksz +p]:lec =
pendent Gaussian random variables with mean 0 and variance

1 for each coordinate i. Therefore, with probability greater
than 1 — e ", a function T = t will be chosen such that
+|K|e 3%

£7(Ppec) < €n(pDec + pa) + (73)

2||

(Maximum probability of targeted false authentication)
To prove the bound on the maximum probability of targeted
false authentication, fix messages M = m and m' # m with
the intention that m’ is the targeted message, let k € K be the
index such that

Z 1ixy (fi(m)) Lixy (fi(m')) <AL,
i=1
and
Zi{k} (fi(m)) 15 (fi(m')) =0
i=1

for all j < k. The probability that the decoder will produce
m’ is always less than

pe( >

i€lp(m’)

(Y; — ti(m’) — z;(m’))?
k%pa + ppec

<t1+38)|, (79

where as a reminder
Y =z(m) +t(m) + f(m) - Ga + Z(V,m),

due to the code modification to the decoder.

Assume for now (we will come back to prove this after
finishing the proof, see after break) that

OH<Pr| Y GZ, <E1+8)(Kpa + poec) |,
€Tk (m’)

(75)
where

ri(m) = 7*(f(m) = 2 IPPAY

Fi(m)pa + paav

With Equation (74) assumed, the following properties of the
overlay-code allow for application of Lemma 40:

ec-

|Ze(m)| = ¢,

Zk(m’) N i (m)| < L,

k2PAPAdv
7i(m)=7"(k) = V——m8M8M +
i(m) (k) kQP&"_PAdV PDec
for all 7 € Zp(m') N Ig(m),
« and
d2papad
i(m) > 7%(dg) = =T ;
i(m) 2 7°(de) d%P&"’PAdV =

where dx = min{a € Kla > k}, for all i € Tx(m') \
Ik (m).
With these overlay-code properties we can directly apply
Lemma 40 to upper-bound the right-hand side of Equation (75)
in turn yielding

(18) < e~ ¥07% ¢~ HO-TN (76)
where
(1 +8)(K2pa + ppec) )
A == 0’ 1 _
S ( yr* (k) + (1 — )7 (dk)

Recall now that Equation (74) assumed a fixed m and
m’ # m and that the maximum probability of targeted false
authentication is a maximum over all pairs of m, m’ # m.
Thus the maximum, over all m and m’' # m, of the
right-hand side of Equation (76) is also an upper bound
on o%(padv, Ppec). Clearly though, the maximum of the
right-hand side of Equation (76) corresponds to the minimum

value of Ax. Hence the final result
ajy(padv, PDec) < € A e at-DE. o

where

— ymax mi - (1—{_6)(""729& +PDec)
s (0 reR! 77*(k)+(1—7)'f*(dk))'
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We now return to prove Equation (75). Here we will
primarily use the inequality Pr(-) < sup, Pr(-|A = a) along
with calculation 38. To that end note

Y — a(m’) — t(m'){V,Z = v,2} = Grm) + u(v, 2)

(78)

where

pi(v,2) = z; — zi(m') — t;(m’)
fi(m)pa (vi — zi(m) — t:(m))
f,;z(m)PA + paav

f2(m)papaav
f?(m)Pa + pAdv

+

Ti(m) = ;

as a consequence of calculation 38. Hence (74) must itself be
less than

2
Z (G'r(m),i + pi(v, Z)) <clV,.Z=v,z
i€l (m'")

sup Pr

(79)

where ¢ = £(1+6)(k?pa + ppec). Applying Lemma 39 to (79),
and recognizing that the resulting probability is independent
of V, Z proves

2
M) <Pr| > (Gremy) <cl, (80)

i€ (m’)

which is exactly Equation (75).
O

APPENDIX D
THEOREM 34

The proof of the Theorem 34 will rely on the following
technical lemmas.

The first of these technical lemmas will be used to create
a finite subset of points that when bounded also bound the
original set.

Lemma 41: Let X* C [a, b], for real numbers a and b > a.

For a given positive real number c, there exists an X’ fcrR
such that |XT| = | (b — a)c|™ and

sup Pr(G,+x* € D)
ETrCX*

< maxPr(GI‘,—i—:.t‘:JF € D) +c
zcxt

simultaneously for all D C R.
Proof;
First we identify X'f, where

At = {a+cta+2c7,...,a+ [(b—a)c|c},

as the set guaranteed in the lemma. It is immediate that | XT| =
(b~ a)e|.

Now, for each & € X'* consider the corresponding =' =
arg ming; x+ |z — x|, and note that ' € Xt by definition.

515
Here, |z; — )| < ¢! for all coordinates i € {1,...,n}.
Hence, for  and corresponding 1 it follows that
|Pr (G, +z € D) —Pr(G, +z' € D)
1
< \/EID(Gp'i_:EI[Gp—’_:Ei) (81)
(82)

where (81) is by Pinsker’s inequality and the convexity of the
KL divergence; while (82) is because

D (G allGp+a) =3 Tom <

i=1 2"01

This proves the lemma since for all * € AX™* there is
a corresponding zf € X1 such that Equation (82) holds
independent of D.

O

Next we provide a corollary of the well known Hoeffding
Lemma. While we will prove the corollary, we point readers
to [20, Section 5] for proof of the lemma, and note that uni-
formly selecting m values without replacement is equivalent
to uniformly selecting a subset of size m.

Lemma 42 ([20, Section 5]): Let A be a finite set, 3 an
integer less than |A|, and let p : A — [0,1]. If B is uniform
A) then
B

over

Pr (Z 1(s) (@) p(a) > cmu) < exp(—ADs(cull)),

ac A
< exp(—28[(c — 1)u]?),

where p = [A|7'Y" .., p(a), for all real numbers ¢ €

(Lp™).
Corollary 43: Additionally if max,c 4 p(a) = n < 1 then

Pr (Z 145} (a) pa) > cﬁp)

acA

< -

for all real numbers ¢ € (1,7p1).
Proof: The first inequality comes from substituting Z
for p(a) (and subsequently % for ) in Lemma 42.
The second inequality comes from recognizing that

§ -
(1 - Ec:') log 'L > (1 - Ec) log (1 — Ec)
i = n n

and that if a € [0, b], where 0 < b < 1, then

a? a?

(1_a)1og(1—a)2—a—m2_“_m

by Taylor’s theorem. |

p(a)
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A. Proof of Theorem 34

Proof:

Since Code Modification 33 builds on Code Modifica-
tion 21, let H = (x : M — R, : R — M) be the original
encoder and decoder, and let L= (X'": M — R,m': R —
MU {!}) be the code after Code Modification 21. We will
assume that the operational measures of £ are bounded as in
Theorem 32.

From the Proof of Theorem 32 it is important to recall that
for each m, v, z there exists some g € R such that

Y|{M,V,Z:m,v,z}:G,.(m)+p (83)

where

s o fiz(m)PAPAdv
im) = (fi(m)) = g S
Key to the proof of the upper-bound on the maximum prob-
ability of false authentication is that the decimation of the
message set will not change the above.

The proof will rely on the random selection of the new
(decimated) message set, M, for the final code 7 = (X* :
Mt — Rt : R — MU {!}). To represent this
random selection, let M* be the random variable representing
the chosen value of M?* in the code construction of 33.
The random code construction will be useful in calculating
bounds for both the average arithmetic error and the maximum
probability of false authentication. In particular, we will show
that with probability 1—e~™ the randomly chosen value of M?*
yields a code with the stated average arithmetic error bound,
and with probability 1 — e~™/2 yields a code with the stated
maximum probability of false authentication bound. Note then
the probability of selecting a code which satisfies both bound
simultaneously must be at least 1 — e~ — e~"/2 due to the
union bound.

Once again for readability, we have separated by a dividing
line the bound for each for the operational measures.

ec-

(Rate)
For the rate, first assume that ry > @. In this case

rg =n"llog [exp (m’i)J

>n"llog (exp (nrt) - 1) (84)
=7 +ntlog (1- exp(—nrt ) (85)
>+ + nllog (1 — exp(—nryg)) (86)
>t —p1 log (2n) (87)

where the last line is from the assumption. Plugging in the
definition of 7 yields

(L—7)¢ 2.
4n A

(88)

4 + 2+ log 4nf
i s -

where

(o — (1 Ok + poec)
£ (O’kexl vf*{kH(l—?)’r*(dk))

f# =max (1,\/371 [w + (pa + ppec) (1 +0+4222 2 T"H)]) .

What remains is to prove the assumption, to that end observe

lexp(nr?))

= [exp (('n, — )y — (l%)g,\? —2—log 29)J (89)

> |exp (log2n)| = 2n (90)
since
(n—1)ry > q)ﬁ + 2+ log4né.
(Power)
For the power constraint,
wg <wg on

< wy + 24/ 2wnpa(ry +1)
] log |K
+pa (1+(8[K,| +1) [TH+1+%HD 92)

since X *(m) = X'(m) whenever m € {M?*}.

(Average arithmetic probability of error)
Next, for the average arithmetic error, let

a(m) = Pr (m/(X'(m) + Gpec) # m)

so that the average arithmetic probability of error for M =
M* can be written

g Z 1 gt (m) a(m).
meM
From Lemma 42 though

Pr (B_Mtz L{arsy (m)a(m) > ex(ppec)+/ ge""*)
meM

<e™ (93)

since e ) g a(m) = ex(ppec). Thus with probability
greater than 1 — e~ ™ the chosen M* will yield

[ +
£7(ppec) < £c(ppec) + 5" (94)
< en(ppec + pa) + V2ne=mr* + [Kle™57
(95)

(Maximum probability of false authentication)
Finally for the probability of false authentication recall from
the proof of Theorem 32 that for each M f=—m, V=, and
attack Z(V,m) = z there exists a & € R such that

}f|{ﬂ{f¢1 V.Z=m,v,z} = Gr(m) + .
Therefore, by letting
bm.u(¢) = Pr (1’ (Gr(m) + 1) = c)

the maximum probability of false authentication of code .J
can be expressed as

> 1 (@) bmule)

ceM\{m}

(96)

max sup
m perR

since 7 (y) = m’(y) when 7’ (y) € M*. An upper bound on
a g can therefore be obtained by computing an upper bound
on ZceM_{m} 1 a4 (€) b pu(c) that holds simultaneously for
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all m € M and p € R. To that end we will employ a divide
and conquer approach based on if

peld’ where Ut =(—0,6).
To begin, for i ¢ UT there must be a coordinate of i €
{1,...,n} such that |u;| > 6. But
Gr(mys S 7a(€) + 14(e) — pa £ \/ €1+ 8)(F2()par + pec)
97
is required for /(G r(m) + ) = c thanks to Code Modi-
fication 21. Clearly the event in (97) is the probability that
a Gaussian random variable lies in a particular interval. If
pi = 0, then the key inequality is
Gor(my < 7i(©) + () + /L1 + 8)(FA(S)pa + pec) — s

while for p; < —0 it is

Gorimy = 7€) + () — /L1 +8)(FA()pa + pec) — i
Indeed, if p; > @ then it follows that

£(€) + ta(c) + \/€(1 + 8)(F2()pa + ppec) — ps
< w4+ V(1 +6)(pa + poec)
—V/3n[wk + (pa + pec) (1 +6 +2X2 +2 r3¢)] (98)
< vrwg + /(1 +6)(pa + ppec)
— K — \/n(1+6)(pa + poec)
— V/2n(pa + ppec) A2 + ]
< —v/2n(pa + ppec) A2 + T3]

where (98) is plugging in the maximum values of z;(c) +
ti(c) (itself due to the power constraint), p;, and f;(c); (99)
is because the concavity of the square root implies
V3(@a+b+c) > Ja+ vVb+ \/c; (100) is because n > £.
Hence when p > 6 we can use the key inequality to bound
the probability of (97) as follows

® (xi(c) +ti(e) + A1+ 8 (FF(c)pa + pec) —u:—)

99)
(100)

V71i(m)

i (_\/(2’&?‘7{ + 2nA2%)(pa + PDec)) (101)
7i(m)
<® (—\/2 RS 2n,\2) (102)
< \/ge—nru—n)\z (103)
m

where (101) is because of (100) and ®(a) > ®(a’) if and only
if @ > a’; (102) is because 0 < f?{m} < 1 for all 7 and m
implies
PA + PDec _
7i(m)

PA + PDec

f2(m)papadv
f" [m)Pa +Padv + pDBC

> 1

?

finally (103) follows from ®(a) < \/%e—%ﬂz for a < 0.
A similar derivation follows for the p; < —6@ case. Thus
Equation (103) proves

bm, - < Ee—nru—nAZ
HF=Vax

(104)
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for all m € M' and p ¢ U', and hence

Y 1 () bm(e) < \Ee—“"z

ce M\ {m}

for all pu ¢ UT regardless of the choice of M?.

We now move on to the case that 1 € UT. Let Ut be the
set guaranteed by Lemma 41 with respect to UT and positive
constant 2e— 5" It will be important for later to note that

(105)

|u¢| B log(28)+n1—g"££A2_ (106)

From here, our strategy is to show that with high probability

2,

ee M\ {m}
for all u € U* and m € M. With this result in hand

Z 12} (€) bm,u(c) <
eeM\{m}

1(ar} (€) bmu(c) < 2 ne #4-MX (107

e—3(1-7)A?

(2 n—+ 5 ec)
(108)

for all p € U' and m € M follows by Lemma 41.
To prove (107) first note that for any given p € U* and
m € M we have €7 > 2 n by Equation (90),

bm,u(c) < az(Ppec; padv) < 2'3_%“1_7))\2

by the assumptions that code £ satisfies the operational bounds
set forth in Theorem 32, and

¥

ceM

_“T-Tbm?p(c) < eI

IMI

because ) 1(bm u < 1. Hence we also have

o Z Loarsy (€) bm,ulc) = 2 sie—ati—TA"
C‘EM\{m]
< exp (—ﬂ? [m P s g]) 5
8n 2

by Corollary 43 and simple algebra. Using the union bound
(recalling (106)) and that

v (g L= Whyp. 2 H0EN
4dn i

yields

Pr | max ZIL{M 3 (€) bm,u(€)>2 ne” s 2B,
::;eeti‘[ ee M\ {m}

(110)

So, as discussed prior, Equation (110) shows that Equa-
tion (107) is true for all g € U* and m € M with
exponentially high probability, hence (108) is true for all
i € Ut and m € M with exponentially high probability
as a consequence of Lemma 41.

As a final step in the proof, we note that the upper bound
on the probability of false authentication for p € ut, Equa-
tion (108), is greater than the upper bound on the probability
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of false authentication given u ¢ U*, Equation (105). Hence
combining the two, we have

7 (pDec, PAdv) = Sup Z 1 pm: () bmﬂu(c) (111)
52}4 ceM\{m}
]. — 172
<|(2n+-—— By (112
( 2\/npnec)
finishing the proof.
|
APPENDIX E
THEOREM 31
Proof: First let
pa=o0(1) and & =o(pa) (113)

be sufficiently large and note by the channel capacity theorem
of Shannon [15], for all positive real finite numbers a and b
there exists a sequence of codes H(,) = (T(n) : M) —
R(n); Mn) : R(n) = M(n)) such that

lim r3y,, = log (1 + %)

n—oo

lim w a
n—oo Himy =

EH(m(b) = 0.

Letting a = p — O(,/pa) and b = pa + ppec and applying
Theorem 34 yields a sequence of codes 7, such that

lim wg,, < ]Jm 1 WH +0(/pa)=p

n—oo
(114)
. . i 2
lim &7, (Ppec) < lim_ e3¢(ppec + pa) +e” ")
(115)
=0 (116)
lim a7, (PDec; paay) < e~ O3). =0, 117)
n—oo
while
lim T
n—oo
1
> lim ry,, —O (,of, + Og”) (118)
n—oo
—O(\/pa 1
= lim m(HM) _o(pg+ﬂ)
e PA T+ PDec n
(119)
_ p
g (1 2 ) (120)
PDec

This proves %log (1 + m%) is achievable, and by [15] it is
also an upper bound, hence

1
c(p, PDec, pPAdv) = 2 log (1 + p.%)

ec

(121)

for pagvy > 0.

On the other hand if pagy = 0, then V = X (M) for any
code X, m. Hence the adversary may choose Z(V ,M) =
X (m') —V, to produce

Y = X(m') + Gpec.

Thus

ax m(ppec; 0) > 1 — £x mm(pDec, 0),

and consequently

c(p, ppec,0) = 0. (122)
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