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EFFECT OF STACKING 2D LEAD CHLORIDE PEROVSKITES 
INTO VERTICAL HETEROSTRUCTURES 
ON PHOTOLUMINESCENCE INTENSITY

D. R. Graupner and D. S. Kilin* UDC 535.37:548.736.442.6

Two-dimensional organic-inorganic hybrid lead halide perovskites are of interest for photovoltaic and light emitting 
devices due to their relative stability when compared to bulk lead halide perovskites and favorable properties that 
can be tuned. Tuning of the material can be performed by adjusting halide composition or by taking advantage of 
con¿ nement eৼ ects. Here we use the density functional theory and excited state dynamics treated by the reduced 
density matrix method to examine the eৼ ects of the variation of the perovskite layer thickness on the ground-state and 
excited-state photo-physical properties of the materials; further we explore the eৼ ects of a vertical heterostructure 
of perovskite layers. Nonadiabatic couplings were computed based on the on-the-À y approach along a molecular 
dynamic trajectory at ambient temperatures. The density matrix-based equation of motion for electronic degrees of 
freedom is used to calculate the dynamics of electronic degrees of freedom. We found that the vertical stacking of 
two-dimensional perovskites into heterostructures shows an increase in photoluminescence intensity by two orders 
of magnitude when compared to the individual two-dimensional perovskites.  
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Introduction. Full inorganic CsPbX3 (X = Cl, Br, I) bulk lead halide perovskites (LHPs) have become popular 
candidates for next generation opto-electronic devices due to their high quantum yields, high color purity, tunable emission 
over the visible spectrum, and low cost [1, 2]. However, these materials show poor stability when exposed to moisture or 
photoirradiation [3–5]. This has led to the examination of two-dimensional inorganic-organic hybrid perovskites which o൵ er 
increased stability [6] and higher tunability of physical properties [7, 8]. The ¿ rst room-temperature perovskite light-emitting 
diodes (LEDs) were reported in 2014 [9] and have shown impressive progress with two-dimensional (2D) perovskite LEDs 
achieving 20.2% external quantum e൶  ciency (EQE) in 2020 [10]. While there has been an increase in EQE for perovskite 
LEDs, there is still a need to generate high e൶  ciency perovskite LEDs for pure colors to meet commercial viability [11, 12].

2D halide perovskites are de¿ ned by a stoichiometric formula A'n'An–1MnX3n+1, A' – monovalent or divalent cation; 
n' = 2 or 1; A = Cs+, methylammonium (MA), formadamidinium (FA); M = Pb2+, Sn2+, etc.; X = Cl–, Br–, I–), and are 
classi¿ ed based on the thickness of the inorganic layer as indicated in the stochiometric formula (n = 1, 2, 3, etc.) and the 
stacking orientation of the inorganic layers [(100), (110), (111) with respect the ideal cubic perovskite] [13]. The layered 
structures of 2D perovskites can be divided into di൵ erent categories; Dion–Jacobson (DJ) phase [14, 15], Ruddlesden–Popper 
(RP) phase [16], Aurivilius phase [17], and alternating cation in the interlayer space (ACI) [18]. The relative stacking of the 
layers results in the di൵ erences between these categories. The DJ perovskites show the ability to stack with no displacement 
due to the divalent interlayer spacers. 2D perovskites structures possess natural quantum-well structures, that induce both 
dielectric and quantum con¿ nement e൵ ects [19]. The strong con¿ nements lead to large exciton binding energies [20]. 
Further, it is observed that 2D perovskites often form in a mixed-phase structures rather than a single phase structures due 
to the similar formation energies of the di൵ erent thickness 2D perovskites [21]. The mixed-phase 2D perovskites result in 
heterostructures that o൵ er the possibilities of manipulation of the recombination, transport, and generation of charge carriers 
due to the change in band gap energies at the heterojunction [22].
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Here we report the e൵ ects that combining 2D DJ LHPs into a vertical heterostructure provide for the photo-
luminescence (PL) of the materials. The combination of the di൵ erent size layers is hoped to create an insulating e൵ ect that will 
increase the photoluminescence quantum yield (PLQY) of the thicker layer involved in the heterostructure. Examination of 
the ground state electronic properties of various 2D DJ LHPs by density functional theory (DFT) is performed to serve as a 
basis for the vertical heterostructure. To characterize the e൵ ect of the heterostructure on PL properties, we compute excited-
state dissipative dynamics by computing the nonadiabatic couplings (NACs) between nuclear and electronic degrees of 
freedom from adiabatic molecular dynamics trajectories. Nonradiative relaxation rates are computed from the NACs using 
the reduced density matrix formalism within Red¿ eld theory. PLQY is then computed from the nonradiative relaxation rates 
and radiative relaxation rates, computed from Einstein coe൶  cients.

Methods. From the bulk CsPbCl3 crystal structure, 2 × 2 × n unit cells carved out, giving three Cs/Cl terminated 
surfaces and three Pb/Cl terminated surfaces providing a composition of Cs4nPb4nCl12n. Four Cs atoms are removed from 
one face of the perovskite structure and replaced with butyl diammonium (BdA) molecules. Four Cl atoms are then added on 
the opposite end of the BdA molecules in line with the octahedral Pb/Cl structures from the initial crystal structure. Overall, 
this gives a structure of BdA4Cs4(n–1)Pb4nBr12n+4. The model has a simulation cell size of 10 × 10 × (6+5.5n) Å3 (Fig. 1).

DFT with the generalized gradient approximation (GGA) Perdew–Burke–Ernzerhof (PBE) functional [23] in a plane-
wave basis set along with projector augmented-wave (PAW) pseudopotentials [24, 25] in Vienna ab initio Simulation 
Package (VASP) [26] software was used to calculate the ground-state electronic structure of our atomistic model. Subsequent 
single point calculations were performed using noncollinear spin DFT including the spin–orbit coupling (SOC) interaction 
and used to compute observables for the systems. All calculations were performed at the Ƚ point. The model is periodic.

Noncollinear spin DFT [27, 28] is used as the electronic basis, and we include the SOC interaction due to the large 
angular momentum of conduction band Pb2+ 6p orbitals. A self-consistent noncollinear spin DFT uses four densities UVV'(r)
and rests on the Kohn–Sham (KS) equation:
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Solutions of Eq. (1) produce spinor KS orbitals (SKSOs), which are two-component 

wavefunctions composed of a superposition of _D² and _E² spin components:
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Within the noncollinear spin DFT framework, relativistic e൵ ects can be incorporated using second-order scalar 
relativistic corrections:

 H rel = H SR + H SOC ,    (3)

where HSR is the scalar relativistic term and HSOC is the SOC term. The HSR term describes relativistic kinetic energy 
corrections and HSOC describes energy shifts of spin occupations. Up to the second order, HSOC is represented as
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where L is the angular momentum operator and S is composed of Pauli spin matrices.
For each model, we computed the electronic density of states DOS:
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where SKSO
iH  is the band eigenenergy and HF is the Fermi level � �SKSO,HOMO SKSO,LUMO

F  2i iH  H �H . We use the independent 
orbital approximation (IOA) in which excited states are described as a pair of orbitals, as opposed to a superposition of 
orbitals commonly used in TDDFT or Bethe–Saltpeter approaches. Optical transitions between SKSO i and j can be found 
through transition dipole matrix elements, which can be used to compute oscillator strengths:
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where Qij represents the transition frequency between SKSO i and j. The transition frequency Qij is related to the transition 
energy 'Eij by hQij = 'Eij. With known oscillator strengths, an absorption spectrum can be computed through

 
� � ^ `eq eqSKSO ( ) ij ij ii jj

i j
f

�
D H  G Z � Z U � U¦ = = .   (8)

To dynamically couple electronic and nuclear degrees of freedom, we used adiabatic molecular dynamics (MD). 
This provides kinetic energy of nuclei to break orthogonality of electronic states. The nuclear degrees of freedom are treated 
in the classical path approximation (CPA) with the nuclei following the classical path trajectories. The initial velocities of 
nuclei are scaled to keep a constant temperature with forces acting on the nuclei depending on

Fig. 1. Atomistic models of lead chloride organic-inorganic hybrid perovskite. Two 
models contain a single layer of perovskite where thickness of the perovskite layer is 
(a) n = 1 and (b) n = 4. The third model is a (c) vertical heterostructure that contains both 
n = 1 and n = 4 perovskite layer. White, cyan, blue, brown, green, and purple spheres 
represent hydrogen, carbon, nitrogen, lead, chlorine, and cesium atoms, respectively.
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where RI represents ionic coordinates; MI is the mass of the I th nuclei; kB is the Boltzmann constant; T is temperature; and 
> @� �ˆI UF  is the force acting on the ions which we specify as a functional of the electronic density. 

The Red¿ eld quantum master equation [29, 30] in the density matrix formalism is used to describe the time evolution 
of electronic degrees of freedom that are weakly coupled to a thermal bath. Typical implementation of Red¿ eld approach 
assumes the Markov approximation, where the model is immersed into a heat bath so that the bath temperature is constant 
as the bath is in¿ nitely larger than the model of explicit interest:
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where F is the many-electron Fock matrix, which includes exchange and correlation, and U is the density matrix. The ¿ rst 
term is the Liouville–von Neumann equation describing the unitary time evolution of a closed system, while the second term 
describes electronic energy dissipation due to weak coupling to a thermal bath. The dissipative transitions are parameterized 
from NACs computed 'on-the-À y' in the basis of SKSO orbitals
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Due to the nuclear kinetic energy of nuclei, the orthogonality relation is broken and provides a 'mixing' of SKSOs. 
NACs are converted into rates of transitions by taking the Fourier transform of the autocorrelation function 
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which provides components for the Red¿ eld tensor:
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The Red¿ eld tensor controls the dissipative dynamics of the density matrix:
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From the Red¿ eld tensor Rijkl we can approximate a nonradiative recombination rate knr from Red¿ eld matrix 
elements

 nr .  HO LUk R �|    (16)

Along the excited-state trajectory we can compute time-resolved observables such as changes in charge carrier 
occupations:
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and average charge carrier energy
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To get the rates of charge carrier relaxation to band edges, we convert the energy expectation value from Eq. (18) 
into dimensionless energy [Eq. (19)]. We ¿ t Eq. (19) to an exponential decay, assuming a single exponential decay, and 
solve for the rate constant ke [Eq. (20)]
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Time-resolved emission in the excited state can be found based on the presence of inverse occupations along the 
excited-state trajectory and the intensity of oscillator strength between states i and j:
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An emission spectrum can be generated by integrating the time-resolved emission along the trajectory:
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Rates of radiative recombination kr can be found from Einstein coe൶  cients for spontaneous emission [31]:
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where fHO–LU is the oscillator strength, QHO–LU represents the transition frequency for the HO–LU transition where i = HO 
and j = LU, gi is the degeneracy of the ith electronic state, and the rest of the variables represent the fundamental constants. 
From the radiative recombination rate kr and knr we compute a PLQY:
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Results and Discussion. In Fig. 2a,b we examine the ground state density of states (DOS) for the three models 
studied here. Peaks are labeled with numbers (prime numbers) that increase as they move away from the bandgap. The 
electronic structure of the n = 1 and n = 4 single-layer models serve as a basis for the examination of the electronic structure 
of the heterostructure model for properties inherent to the single-layer models. It is observed that the heterostructure model 
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shows a similar pattern of peaks compared to the n = 4 single-layer model only approximately 0.2 eV higher in energy. 
Due to the use of noncollinear spin approach with spin-orbit coupling we see a narrowing of the bandgap. Figure 2c shows 
the projected density of states (PDOS) for the heterostructure model. We note that the ¿ rst band in both the conduction 
and valence band is localized entirely on the n = 4 layer of the model, which we attribute to the n = 4 region showing less 
quantum-con¿ nement resulting in lower energy. It is not until the ¿ rst sub-band that we see a contribution from the n = 1 
layer of the model. The organic layer is seen to provide minimal contribution to the electronic structure over the region 
that we have studied. Computed absorption spectra, shown in Fig. 2d, are labeled with the transitions that contribute to the 
peaks based on the numerical labeling of the pair of peaks in the DOS. It is observed that the transitions that contribute to 
the peak pattern for both the n = 4 single layer and the heterostructure are the same with the energy for the transitions in the 
heterostructure model being about 0.4 eV greater than the corresponding transition in the n = 4 single-layer model. 

NACs between SKSOs i and j computed using Eq. (12), are used to determine nonradiative relaxation dynamics 
of the photoexcited states. The Red¿ eld tensors, Riijj depend on the NACs and are illustrated in Fig. 3 for the n = 1 single- 
layer, n = 4 single-layer, and heterostructure models. The Red¿ eld tensors represent the rates of state-to-state transitions in 
units of ps–1. These rates are used to compute nonradiative recombination rates knr [Eq. (16)]. Note that only o൵  diagonal 
tensor elements are nonzero while all diagonal elements are zero. For Fig. 3a–c it is observed that there are alternating high 
intensity transitions near the main diagonal and numerous low intensity transitions away from the main diagonal. The Riijj 
value for the HO–LU transition is of particular interest due to its use for calculating the PLQY of the models. The alternating 

Fig. 2. (a) Conduction band and (b) valence band density of states for ground state 
n = 1 single-layer, n = 4 single-layer, and heterostructure models. Arrows are used as 
labels for the peaks in the band structure. Valence band peaks are labeled using natural 
numbers, larger numbers are deeper in the valence band. Conduction band peaks are 
labeled by prime-natural numbers, larger numbers are deeper in the valence band. (c) 
Projected density of states for the heterostructure model. Inset shows a closer view 
of the PDOS. (d) Computed absorption spectra, Eq. (8), for n = 1 single-layer, n = 4 
single-layer, and heterostructure models. Arrows show the transition for the absorption 
contributed by transitions from a pair of peaks A ĺ A' in valence and conduction band.
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high intensity transitions are between near-degenerate states, which result from the inclusion of spin–orbit coupling into the 
calculations. 

Figure 4 show hot-carrier cooling along the excited-state trajectory for n = 1 single-layer, n = 4 single-layer, and 
heterostructure models from a nonequilibrium state to the ¿ rst excited state. The initial conditions for the n = 1 and n = 4 
single-layer models represent the highest oscillator strength excitation that does not involve one of the near-degenerate 
principal band gap orbitals. The initial condition for the heterostructure model represents the highest oscillator strength 
transition that occurs on the n = 1 layer in the model. The energy axis is in reference to the Fermi level of the model with 
the time axis in log scale normalized to 1 ps. The green color indicates background reference charge density, blue indicates 
the average occupation of charge density distribution in the valence band, and yellow indicates the average occupation of 
charge density distribution in the conduction band. Horizontal dotted/solid lines represent the energy expectation values 
of charge carriers [Eq. (19)]. The vertical dashed lines labeled with Wh and We [Eq. (20)], represent time of relaxation from 
HO – x to HO and LU + y to LU, respectively. For the single-layer models, it is observed that there is a long lived, compared 
to the ke/h, population in a higher excited state than the ¿ rst excited state.  This is attributed to a mismatch between electronic 
transition energy and available normal modes. 

A competing mechanism for nonradiative dissipation is radiative relaxation in the form of photons. Figure 5a,b 
shows the time-resolved [Eq. (21)] and time-integrated [Eq. (22)] emission for the n = 1 single-layer model along the excited 
state trajectory. Figures 5c–f show the same plots for the n = 4 single-layer and heterostructure models, respectively. The 
blue background color corresponds to no photoluminescence (PL) at a given time and transition energy, while the natural 
colors from blue to yellow correspond to the intensity of the PL. It is observed that there is an initial emission event at 
the initial excitation before cooling to the bandgap. Once the hot-carriers cool to the bandgap we see emission arising 
from the HO–LU transitions. Figure 5b,d,f shows the time-integrated intensity for the transitions along the trajectory. The 
n = 4 model shows a higher relative intensity of the intra-band emissions when compared the HO–LU transition, which is 
attributed to the long-lived excited state for this model.  It is seen that the emission at the HO–LU transition is the most 
intense transition for all the models.  However, we observe that the intensity of the HO–LU transition for the heterostructure 
model is 2 orders of magnitude greater than the HO–LU transition for the n = 1 single layer model and 3 orders of magnitude 
greater than for the n = 4 single layer model. 

To determine the e൶  ciency of PL for the single-layer and heterostructure models, we compute PLQY [Eq. (24)] 
from kr and knr. The Einstein coe൶  cient for spontaneous emission in terms of oscillator strength is used to calculate kr 
[Eq. (23)] and the corresponding Red¿ eld tensor element RHO–LU is used for knr [Eq. (16)]. Table 1 shows the kr, knr, 
and PLQY for the models presented here. The PLQY noted in the Table 1 is calculated as an average value of the PLQY 
calculated for all the HO–LU degenerate transitions. It is observed that the heterostructure models shows a higher PLQY 
than the single layer models. 

Lifetimes characterizing charge carrier dissipative electronic dynamics trajectories for the hole and electron; Wh and 
We [Eq. (20)] represent time of relaxation from HO – x to HO and LU + y to LU, respectively (Fig. 6). It is observed that for 
the hole and the electron in the heterostructure we see a linear relationship between dissipation energy and charge carrier 

Fig. 3. Red¿ eld tensor for (a) n = 1 single-layer, (b) n = 4 single-layer, and 
(c) heterostructure models. The Riijj axis represents the nonradiative state to state 
transition rates. The alternating high intensity transitions near the main diagonal are 
between near-degenerate states; i and j are orbital indexes.
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lifetime. This linear relationship is in agreement with the energy gap law; however, this relationship only holds true for 
dissipation energy above 0.5 eV for the n = 4 single-layer model and 1.0 eV for the n = 1 single-layer model. 

The intensities of the emission at the HO–LU transitions are greater than the intensities for any other transition for 
their respective model due to the increased lifetime of emission for the HO–LU transition. The increased intensity of the 
HO–LU transition for the heterostructure model compared to the single-layer models is attributed to the increased relative 
size of the spacer region of the structure. In the n = 4 single-layer model the perovskite layers are separated by a single 
butyl diammonium space. Although this organic carbon chain is an insulator, its short length may allow some level of 
hybridization between separate n = 4 layers. In the heterostructure model, each n = 4 layer of perovskite is separated by two 
butyl diammonium spacers and a n = 1 perovskite layer, all of a higher gap than the n = 4 perovskite layer. This is more than 
double the separation between the n = 4 perovskite layers making them more isolated. This isolation prevents hybridization 
of the electron and hole beyond the border of the slab and hypothetically con¿ nes the electron and hole in the same spatial 
region. This activity of the spacers is expected to increase the transition dipole, and by extension the oscillator strength. This 
is analogous to the passivation of semiconductor nanocrystals with organic ligands of extended length. 

Fig. 4. Nonradiative relaxation for the (a) n = 1 single-layer, (b) n = 4 single-layer, 
and (c) heterostructure models. The yellow line represents the charge density of the 
electron, while the blue line represents the charge density of the hole. The vertical 
dashed lines labeled with Wh and We represent time of relaxation from HO – x and 
LU + y, respectively. The horizontal solid and dashed lines show the energy expectation 
value for the hole and electron, respectively. The initial conditions for the n = 1 and 
n = 4 single-layer models represent the highest oscillator strength excitation that does 
not involve one of the near-degenerate principal band gap orbitals. The initial condition 
for the heterostructure model represents the highest oscillator strength transition that 
occurs on the n = 1 layer in the model. All cases show both the blue and yellow line 
starting at a greater distance from each other and moving closer to each other. Wh and We 
or the single layer models occur after the energy expectation values approach the band 
gap energies due to relatively long-lived excited states.

TABLE 1. Oscillator Strength fij [Eq. (7)], Radiative Recombination Rate kr [Eq. (23)], Nonradiative Recombination Rate knr 
[Eq. (16)], Resultant PLQYs for Each Model Studied [Eq. (24)]

Model fij kr,1/fs knr,1/fs PLQY

n = 1 single layer 0.32 2.00Â10–6 1.86Â10–6 0.3326

n = 4 single layer 0.07 2.64Â10–6 2.81Â10–6 0.3355

Heterostructure 0.60 3.22Â10–6 1.21Â10–6 0.6667
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The intensity of the emission for the HO – 5 – LU + 6 transition for the heterostructure model shows the second 
highest intensity for this structure and has an energy comparable to the HO–LU transition energy for the n = 1 single-layer 
model. This indicates the potential for dual emission with energies that correspond to both the n = 1 and n = 4 single-layer 
models. This would be an indication that these models may not follow Kasha's rule [32]. This duel emission is in agreement 
to the multiple emission found experimentally [33].

Fig 5. Radiative relaxation along the excited-state electronic dynamics trajectory with 
(a, c, e) showing time-resolved emission and (b, d, f) showing time-integrated radiative 
emission for the (a, b) n = 1 single-layer, (c, d) n = 4 single-layer, and (e, f) heterostructure 
models. The initial conditions for this ¿ gure correspond to those in Fig. 4. The blue 
background corresponds to no PL at a given time and transition energy. Natural colors 
from blue to yellow correspond to intensity of the time-resolved PL. For each model, it 
is observed that the HO–LU transition is the most intense. We observed that the HO–LU 
transition for the heterostructure shows two orders of magnitude greater intensity than the 
n = 1 single-layer and three orders of magnitude greater intensity than the n = 4 single-
layer.
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Table 1 shows the oscillator strength, non-radiative and radiative rates of relaxation, and photoluminescence 
quantum yield for the three models of interest. The oscillator strength shown here is for the HO–LU transition but the 
radiative and nonradiative rates of relaxation and PLQY shown factor in all four transitions between the near-degenerate 
HO–LU states. Due to this, we see a larger radiative recombination rate and PLQY for the n = 4 single layer model than 
would be expected looking just at the oscillator strength reported in Table 1. The combination of the near-degenerate 
transitions also a൵ ects the relative di൵ erence in PLQY of the models when compared to their PL intensity. The larger PLQY 
for the heterostructure is due to the consistent nature of the radiative recombination rate across these four transitions, in 
addition to have a smaller nonradiative recombination rate, compared to the single-layer models. The single-layer models 
by comparison show two transitions where the radiative rate of relaxation is an order of magnitude lower than for the 
heterostructure model.

Conclusions. Here we use density functional theory and nonadiabatic excited-state dynamics calculations to 
explore the photo-physical properties of single layer and vertical heterostructures of two-dimensional hybrid lead chloride 
perovskites. We observed an increase in intensity of the photoluminescence for the vertical heterostructure 2D lead halide 
perovskites attributed to the increase in e൵ ective insulation between the perovskite layers. Radiative dynamics show that 
for the single-layer models there is a smaller relative intensity of emission when compared to the vertical heterostructure 
model. The smaller intensity in the single-layer models is attributed to the smaller relative size of the space between layers 
allowing for a greater overlap of orbitals/bands/ between layers. In the heterostructure model, this space between the larger 
n = 4 perovskite layers in adjacent periodic cells is made up of two organic layers and a smaller n = 1 layer of perovskite, all 
of which have a larger gap than the n = 4 perovskite layers. This increased separation prevents the overlap across multiple 
layers and con¿ nes the electron and hole in the same spatial region.

Fig. 6. Lifetimes characterizing charge carrier dissipative electronic dynamics 
trajectories for the (a) hole and (b) electron, inset shows high dissipation energy region 
for the electron. It is observed that for the hole and the electron in the heterostructure 
we see a linear relationship between dissipation energy and charge carrier lifetime. This 
linear relationship is in agreement with the energy gap law. This relationship only holds 
true for dissipation energy above 0.5 eV for the n = 4 single-layer model and 1.0 eV for 
the n = 1 single-layer model.
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It is also seen for the heterostructure model that there is a radiative emission around the same energy as the n = 1 
single-layer model, though lower in intensity than the HO–LU transition emission. This indicates that it may be possible 
to observe e൵ ects from the individual layers of the heterostructure model separately and that these models may not follow 
Kasha's rule.

This has the potential to lead to an improvement in the e൶  ciency of perovskite light emitting diodes. However, two 
important areas for continued research are the evaluation of polarons in the perovskites and the inclusion of momentum 
dispersion in the calculations.
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