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EFFECT OF STACKING 2D LEAD CHLORIDE PEROVSKITES
INTO VERTICAL HETEROSTRUCTURES
ON PHOTOLUMINESCENCE INTENSITY

D. R. Graupner and D. S. Kilin" UDC 535.37:548.736.442.6

Two-dimensional organic-inorganic hybrid lead halide perovskites are of interest for photovoltaic and light emitting
devices due to their relative stability when compared to bulk lead halide perovskites and favorable properties that
can be tuned. Tuning of the material can be performed by adjusting halide composition or by taking advantage of
confinement effects. Here we use the density functional theory and excited state dynamics treated by the reduced
density matrix method to examine the effects of the variation of the perovskite layer thickness on the ground-state and
excited-state photo-physical properties of the materials; further we explore the effects of a vertical heterostructure
of perovskite layers. Nonadiabatic couplings were computed based on the on-the-fly approach along a molecular
dynamic trajectory at ambient temperatures. The density matrix-based equation of motion for electronic degrees of
freedom is used to calculate the dynamics of electronic degrees of freedom. We found that the vertical stacking of
two-dimensional perovskites into heterostructures shows an increase in photoluminescence intensity by two orders
of magnitude when compared to the individual two-dimensional perovskites.
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Introduction. Full inorganic CsPbXj3 (X = Cl, Br, I) bulk lead halide perovskites (LHPs) have become popular
candidates for next generation opto-electronic devices due to their high quantum yields, high color purity, tunable emission
over the visible spectrum, and low cost [1, 2]. However, these materials show poor stability when exposed to moisture or
photoirradiation [3—5]. This has led to the examination of two-dimensional inorganic-organic hybrid perovskites which offer
increased stability [6] and higher tunability of physical properties [7, 8]. The first room-temperature perovskite light-emitting
diodes (LEDs) were reported in 2014 [9] and have shown impressive progress with two-dimensional (2D) perovskite LEDs
achieving 20.2% external quantum efficiency (EQE) in 2020 [10]. While there has been an increase in EQE for perovskite
LEDs, there is still a need to generate high efficiency perovskite LEDs for pure colors to meet commercial viability [11, 12].

2D halide perovskites are defined by a stoichiometric formula A’,/A,_1M,,X3,+1, A'— monovalent or divalent cation;
n=2orl;A= Cs+, methylammonium (MA), formadamidinium (FA); M = Pb2+, Sn2+, etc.; X =CI, Br, I'), and are
classified based on the thickness of the inorganic layer as indicated in the stochiometric formula (n = 1, 2, 3, etc.) and the
stacking orientation of the inorganic layers [(100), (110), (111) with respect the ideal cubic perovskite] [13]. The layered
structures of 2D perovskites can be divided into different categories; Dion—Jacobson (DJ) phase [ 14, 15], Ruddlesden—Popper
(RP) phase [16], Aurivilius phase [17], and alternating cation in the interlayer space (ACI) [18]. The relative stacking of the
layers results in the differences between these categories. The DJ perovskites show the ability to stack with no displacement
due to the divalent interlayer spacers. 2D perovskites structures possess natural quantum-well structures, that induce both
dielectric and quantum confinement effects [19]. The strong confinements lead to large exciton binding energies [20].
Further, it is observed that 2D perovskites often form in a mixed-phase structures rather than a single phase structures due
to the similar formation energies of the different thickness 2D perovskites [21]. The mixed-phase 2D perovskites result in
heterostructures that offer the possibilities of manipulation of the recombination, transport, and generation of charge carriers
due to the change in band gap energies at the heterojunction [22].
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Here we report the effects that combining 2D DJ LHPs into a vertical heterostructure provide for the photo-
luminescence (PL) of the materials. The combination of the different size layers is hoped to create an insulating effect that will
increase the photoluminescence quantum yield (PLQY) of the thicker layer involved in the heterostructure. Examination of
the ground state electronic properties of various 2D DJ LHPs by density functional theory (DFT) is performed to serve as a
basis for the vertical heterostructure. To characterize the effect of the heterostructure on PL properties, we compute excited-
state dissipative dynamics by computing the nonadiabatic couplings (NACs) between nuclear and electronic degrees of
freedom from adiabatic molecular dynamics trajectories. Nonradiative relaxation rates are computed from the NACs using
the reduced density matrix formalism within Redfield theory. PLQY is then computed from the nonradiative relaxation rates
and radiative relaxation rates, computed from Einstein coefficients.

Methods. From the bulk CsPbClj crystal structure, 2 X 2 x n unit cells carved out, giving three Cs/Cl terminated
surfaces and three Pb/Cl terminated surfaces providing a composition of Csg,,Pbs,Cly5,. Four Cs atoms are removed from
one face of the perovskite structure and replaced with butyl diammonium (BdA) molecules. Four Cl atoms are then added on
the opposite end of the BdA molecules in line with the octahedral Pb/Cl structures from the initial crystal structure. Overall,
this gives a structure of BdA4Csy(,—1)Pb4,Br2,+4. The model has a simulation cell size of 10 x 10 x (6+5.5n) A3 (Fig. 1).

DFT with the generalized gradient approximation (GGA) Perdew—Burke—Ernzerhof (PBE) functional [23] in a plane-
wave basis set along with projector augmented-wave (PAW) pseudopotentials [24, 25] in Vienna ab initio Simulation
Package (VASP) [26] software was used to calculate the ground-state electronic structure of our atomistic model. Subsequent
single point calculations were performed using noncollinear spin DFT including the spin—orbit coupling (SOC) interaction
and used to compute observables for the systems. All calculations were performed at the I" point. The model is periodic.

Noncollinear spin DFT [27, 28] is used as the electronic basis, and we include the SOC interaction due to the large
angular momentum of conduction band Pb>* 6p orbitals. A self-consistent noncollinear spin DFT uses four densities pg5/(T)
and rests on the Kohn—Sham (KS) equation:

Z (_860’V2 + vcesgf’ [pcc' (l')]) (Pics(r) =& Qi (l') > (1)

i,o'=a,B

where v&T[poo ()] is the 2 x 2 matrix operator of effective potential and o and B are orthogonal spin indices. In accordance

with the self-consistent theorem KS, the 2 x 2 effective potential is a functional of the electronic density for a NV electron
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system Voo = . Solutions of Eq. (1) produce spinor KS orbitals (SKSOs), which are two-component
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wavefunctions composed of a superposition of |a) and |B) spin components:
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Within the noncollinear spin DFT framework, relativistic effects can be incorporated using second-order scalar
relativistic corrections:

where HR is the scalar relativistic term and H>CC is the SOC term. The H® term describes relativistic kinetic energy
corrections and HC describes energy shifts of spin occupations. Up to the second order, H SOC is represented as
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peoc o N1 Pt g (4)
4m*c= r Or

where L is the angular momentum operator and S is composed of Pauli spin matrices.
For each model, we computed the electronic density of states DOS:

i
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Fig. 1. Atomistic models of lead chloride organic-inorganic hybrid perovskite. Two
models contain a single layer of perovskite where thickness of the perovskite layer is
(a) n=1and (b) n =4. The third model is a (¢) vertical heterostructure that contains both
n =1 and n =4 perovskite layer. White, cyan, blue, brown, green, and purple spheres
represent hydrogen, carbon, nitrogen, lead, chlorine, and cesium atoms, respectively.

where al.SKSO is the band eigenenergy and &g is the Fermi level ep = (8,~SKSO’HOMO + S?KSO’LUMO ) / 2 . We use the independent

orbital approximation (IOA) in which excited states are described as a pair of orbitals, as opposed to a superposition of
orbitals commonly used in TDDFT or Bethe—Saltpeter approaches. Optical transitions between SKSO i and j can be found
through transition dipole matrix elements, which can be used to compute oscillator strengths:

) elarfais o) (7). ;
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where v;; represents the transition frequency between SKSO i and j. The transition frequency v;; is related to the transition
energy AE; by hv;; = AE;;. With known oscillator strengths, an absorption spectrum can be computed through

i<j

To dynamically couple electronic and nuclear degrees of freedom, we used adiabatic molecular dynamics (MD).
This provides kinetic energy of nuclei to break orthogonality of electronic states. The nuclear degrees of freedom are treated
in the classical path approximation (CPA) with the nuclei following the classical path trajectories. The initial velocities of
nuclei are scaled to keep a constant temperature with forces acting on the nuclei depending on
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where R; represents ionic coordinates; M is the mass of the /th nuclei; kg is the Boltzmann constant; 7 is temperature; and
([f)]) is the force acting on the ions which we specify as a functional of the electronic density.

The Redfield quantum master equation [29, 30] in the density matrix formalism is used to describe the time evolution
of electronic degrees of freedom that are weakly coupled to a thermal bath. Typical implementation of Redfield approach
assumes the Markov approximation, where the model is immersed into a heat bath so that the bath temperature is constant
as the bath is infinitely larger than the model of explicit interest:

d . i dpij
EP_ h%(F;‘kpkj_pikaj)'{_[T diss’ (11)

where F'is the many-electron Fock matrix, which includes exchange and correlation, and p is the density matrix. The first
term is the Liouville—von Neumann equation describing the unitary time evolution of a closed system, while the second term
describes electronic energy dissipation due to weak coupling to a thermal bath. The dissipative transitions are parameterized
from NACs computed 'on-the-fly' in the basis of SKSO orbitals
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Due to the nuclear kinetic energy of nuclei, the orthogonality relation is broken and provides a 'mixing' of SKSOs.
NAC:s are converted into rates of transitions by taking the Fourier transform of the autocorrelation function
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which provides components for the Redfield tensor:
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The Redfield tensor controls the dissipative dynamics of the density matrix:

dp;
(thjdiss B ZZmRijlmplm : (15)
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From the Redfield tensor R;j;; we can approximate a nonradiative recombination rate &y, from Redfield matrix
elements

kne =Ryo-ru- (16)

Along the excited-state trajectory we can compute time-resolved observables such as changes in charge carrier
occupations:

n'“ (e, t) = Z PP D5 (e — &), AP (g,0)=n"“P (e,0)—n* (e,1), (17)

and average charge carrier energy
(Ae (1) = ZiZLUPu‘(f)gt(f) . (Ae, () = ZiSHOPa'(f)Si(f)- (18)

To get the rates of charge carrier relaxation to band edges, we convert the energy expectation value from Eq. (18)
into dimensionless energy [Eq. (19)]. We fit Eq. (19) to an exponential decay, assuming a single exponential decay, and
solve for the rate constant k., [Eq. (20)]
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Time-resolved emission in the excited state can be found based on the presence of inverse occupations along the
excited-state trajectory and the intensity of oscillator strength between states i and j:

E (ho, t) =Y f;8 (ho — hoy ) {p; () = pu(0)} . 21)

J>i

An emission spectrum can be generated by integrating the time-resolved emission along the trajectory:
T
tot 1
E (ho) = — [ E (ho, 1) (22)
T

Rates of radiative recombination &, can be found from Einstein coefficients for spontancous emission [31]:

8n’v? e’
kr = Apo_rv = —Ho-LU- LU /fHo LU > (23)
ggm, C

where fro_ru is the oscillator strength, viyo_p y represents the transition frequency for the HO-LU transition where i = HO
andj = LU, g; is the degeneracy of the ith electronic state, and the rest of the variables represent the fundamental constants.
From the radiative recombination rate %, and k,,, we compute a PLQY:

k,
PLQY = ——. 24
Q ke + ko @4

Results and Discussion. In Fig. 2a,b we examine the ground state density of states (DOS) for the three models
studied here. Peaks are labeled with numbers (prime numbers) that increase as they move away from the bandgap. The
electronic structure of the n = 1 and n = 4 single-layer models serve as a basis for the examination of the electronic structure
of the heterostructure model for properties inherent to the single-layer models. It is observed that the heterostructure model
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Fig. 2. (a) Conduction band and (b) valence band density of states for ground state
n = 1 single-layer, n = 4 single-layer, and heterostructure models. Arrows are used as
labels for the peaks in the band structure. Valence band peaks are labeled using natural
numbers, larger numbers are deeper in the valence band. Conduction band peaks are
labeled by prime-natural numbers, larger numbers are deeper in the valence band. (c)
Projected density of states for the heterostructure model. Inset shows a closer view
of the PDOS. (d) Computed absorption spectra, Eq. (8), for n = 1 single-layer, n = 4
single-layer, and heterostructure models. Arrows show the transition for the absorption
contributed by transitions from a pair of peaks A — A’in valence and conduction band.

shows a similar pattern of peaks compared to the n = 4 single-layer model only approximately 0.2 ¢V higher in energy.
Due to the use of noncollinear spin approach with spin-orbit coupling we see a narrowing of the bandgap. Figure 2¢ shows
the projected density of states (PDOS) for the heterostructure model. We note that the first band in both the conduction
and valence band is localized entirely on the n = 4 layer of the model, which we attribute to the n = 4 region showing less
quantum-confinement resulting in lower energy. It is not until the first sub-band that we see a contribution from the n = 1
layer of the model. The organic layer is seen to provide minimal contribution to the electronic structure over the region
that we have studied. Computed absorption spectra, shown in Fig. 2d, are labeled with the transitions that contribute to the
peaks based on the numerical labeling of the pair of peaks in the DOS. It is observed that the transitions that contribute to
the peak pattern for both the n = 4 single layer and the heterostructure are the same with the energy for the transitions in the
heterostructure model being about 0.4 eV greater than the corresponding transition in the n = 4 single-layer model.

NACs between SKSOs i and j computed using Eq. (12), are used to determine nonradiative relaxation dynamics
of the photoexcited states. The Redfield tensors, R;;;; depend on the NACs and are illustrated in Fig. 3 for the n =1 single-
layer, n = 4 single-layer, and heterostructure models. The Redfield tensors represent the rates of state-to-state transitions in
units of psfl. These rates are used to compute nonradiative recombination rates k,, [Eq. (16)]. Note that only off diagonal
tensor elements are nonzero while all diagonal elements are zero. For Fig. 3a—c it is observed that there are alternating high
intensity transitions near the main diagonal and numerous low intensity transitions away from the main diagonal. The R;;;
value for the HO-LU transition is of particular interest due to its use for calculating the PLQY of the models. The alternating
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Fig. 3. Redfield tensor for (a) n = 1 single-layer, (b) n = 4 single-layer, and

(c) heterostructure models. The R;;; axis represents the nonradiative state to state

ijj
transition rates. The alternating high intensity transitions near the main diagonal are

between near-degenerate states; i and j are orbital indexes.

high intensity transitions are between near-degenerate states, which result from the inclusion of spin—orbit coupling into the
calculations.

Figure 4 show hot-carrier cooling along the excited-state trajectory for n = 1 single-layer, n = 4 single-layer, and
heterostructure models from a nonequilibrium state to the first excited state. The initial conditions for the n =1 and n = 4
single-layer models represent the highest oscillator strength excitation that does not involve one of the near-degenerate
principal band gap orbitals. The initial condition for the heterostructure model represents the highest oscillator strength
transition that occurs on the n = 1 layer in the model. The energy axis is in reference to the Fermi level of the model with
the time axis in log scale normalized to 1 ps. The green color indicates background reference charge density, blue indicates
the average occupation of charge density distribution in the valence band, and yellow indicates the average occupation of
charge density distribution in the conduction band. Horizontal dotted/solid lines represent the energy expectation values
of charge carriers [Eq. (19)]. The vertical dashed lines labeled with t;, and 1, [Eq. (20)], represent time of relaxation from
HO—xto HO and LU + y to LU, respectively. For the single-layer models, it is observed that there is a long lived, compared
to the k., population in a higher excited state than the first excited state. This is attributed to a mismatch between electronic
transition energy and available normal modes.

A competing mechanism for nonradiative dissipation is radiative relaxation in the form of photons. Figure 5a,b
shows the time-resolved [Eq. (21)] and time-integrated [Eq. (22)] emission for the n = 1 single-layer model along the excited
state trajectory. Figures Sc—f show the same plots for the n = 4 single-layer and heterostructure models, respectively. The
blue background color corresponds to no photoluminescence (PL) at a given time and transition energy, while the natural
colors from blue to yellow correspond to the intensity of the PL. It is observed that there is an initial emission event at
the initial excitation before cooling to the bandgap. Once the hot-carriers cool to the bandgap we see emission arising
from the HO-LU transitions. Figure 5b,d,f shows the time-integrated intensity for the transitions along the trajectory. The
n =4 model shows a higher relative intensity of the intra-band emissions when compared the HO-LU transition, which is
attributed to the long-lived excited state for this model. It is seen that the emission at the HO-LU transition is the most
intense transition for all the models. However, we observe that the intensity of the HO-LU transition for the heterostructure
model is 2 orders of magnitude greater than the HO-LU transition for the n = 1 single layer model and 3 orders of magnitude
greater than for the n = 4 single layer model.

To determine the efficiency of PL for the single-layer and heterostructure models, we compute PLQY [Eq. (24)]
from k; and k.. The Einstein coefficient for spontaneous emission in terms of oscillator strength is used to calculate k;
[Eq. (23)] and the corresponding Redfield tensor element Ry is used for &, [Eq. (16)]. Table 1 shows the k;, &y,
and PLQY for the models presented here. The PLQY noted in the Table 1 is calculated as an average value of the PLQY
calculated for all the HO-LU degenerate transitions. It is observed that the heterostructure models shows a higher PLQY
than the single layer models.

Lifetimes characterizing charge carrier dissipative electronic dynamics trajectories for the hole and electron; t; and
7. [Eq. (20)] represent time of relaxation from HO —x to HO and LU + y to LU, respectively (Fig. 6). It is observed that for
the hole and the electron in the heterostructure we see a linear relationship between dissipation energy and charge carrier
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Fig. 4. Nonradiative relaxation for the (a) n = 1 single-layer, (b) n = 4 single-layer,
and (c) heterostructure models. The yellow line represents the charge density of the
electron, while the blue line represents the charge density of the hole. The vertical
dashed lines labeled with t;, and 1, represent time of relaxation from HO — x and
LU + y, respectively. The horizontal solid and dashed lines show the energy expectation
value for the hole and electron, respectively. The initial conditions for the n = 1 and
n = 4 single-layer models represent the highest oscillator strength excitation that does
not involve one of the near-degenerate principal band gap orbitals. The initial condition
for the heterostructure model represents the highest oscillator strength transition that
occurs on the n = 1 layer in the model. All cases show both the blue and yellow line
starting at a greater distance from each other and moving closer to each other. 1 and 7,
or the single layer models occur after the energy expectation values approach the band
gap energies due to relatively long-lived excited states.

TABLE 1. Oscillator Strength f;; [Eq. (7)], Radiative Recombination Rate &, [Eq. (23)], Nonradiative Recombination Rate kp,
[Eq. (16)], Resultant PLQYs for Each Model Studied [Eq. (24)]

Model i ks 1/ K, 1/ PLQY
n = 1 single layer 0.32 2.00-10°° 1.86:10°° 0.3326
n = 4 single layer 0.07 2.64:10°° 2.81-10°° 0.3355
Heterostructure 0.60 3221076 1.21-10°° 0.6667

lifetime. This linear relationship is in agreement with the energy gap law; however, this relationship only holds true for
dissipation energy above 0.5 eV for the n = 4 single-layer model and 1.0 eV for the n = 1 single-layer model.

The intensities of the emission at the HO-LU transitions are greater than the intensities for any other transition for
their respective model due to the increased lifetime of emission for the HO-LU transition. The increased intensity of the
HO-LU transition for the heterostructure model compared to the single-layer models is attributed to the increased relative
size of the spacer region of the structure. In the n = 4 single-layer model the perovskite layers are separated by a single
butyl diammonium space. Although this organic carbon chain is an insulator, its short length may allow some level of
hybridization between separate n = 4 layers. In the heterostructure model, each n = 4 layer of perovskite is separated by two
butyl diammonium spacers and a n = 1 perovskite layer, all of a higher gap than the n = 4 perovskite layer. This is more than
double the separation between the n = 4 perovskite layers making them more isolated. This isolation prevents hybridization
of the electron and hole beyond the border of the slab and hypothetically confines the electron and hole in the same spatial
region. This activity of the spacers is expected to increase the transition dipole, and by extension the oscillator strength. This
is analogous to the passivation of semiconductor nanocrystals with organic ligands of extended length.
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Fig 5. Radiative relaxation along the excited-state electronic dynamics trajectory with
(a, c, e) showing time-resolved emission and (b, d, f) showing time-integrated radiative
emission for the (a, b) n =1 single-layer, (c, d) n = 4 single-layer, and (e, f) heterostructure
models. The initial conditions for this figure correspond to those in Fig. 4. The blue
background corresponds to no PL at a given time and transition energy. Natural colors
from blue to yellow correspond to intensity of the time-resolved PL. For each model, it
is observed that the HO—LU transition is the most intense. We observed that the HO-LU
transition for the heterostructure shows two orders of magnitude greater intensity than the
n = 1 single-layer and three orders of magnitude greater intensity than the n = 4 single-
layer.

The intensity of the emission for the HO — 5 — LU + 6 transition for the heterostructure model shows the second
highest intensity for this structure and has an energy comparable to the HO-LU transition energy for the n = | single-layer
model. This indicates the potential for dual emission with energies that correspond to both the n = 1 and » = 4 single-layer
models. This would be an indication that these models may not follow Kasha's rule [32]. This duel emission is in agreement
to the multiple emission found experimentally [33].
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Fig. 6. Lifetimes characterizing charge carrier dissipative electronic dynamics
trajectories for the (a) hole and (b) electron, inset shows high dissipation energy region
for the electron. It is observed that for the hole and the electron in the heterostructure
we see a linear relationship between dissipation energy and charge carrier lifetime. This
linear relationship is in agreement with the energy gap law. This relationship only holds
true for dissipation energy above 0.5 eV for the n = 4 single-layer model and 1.0 eV for
the n = 1 single-layer model.

Table 1 shows the oscillator strength, non-radiative and radiative rates of relaxation, and photoluminescence
quantum yield for the three models of interest. The oscillator strength shown here is for the HO-LU transition but the
radiative and nonradiative rates of relaxation and PLQY shown factor in all four transitions between the near-degenerate
HO-LU states. Due to this, we see a larger radiative recombination rate and PLQY for the n = 4 single layer model than
would be expected looking just at the oscillator strength reported in Table 1. The combination of the near-degenerate
transitions also affects the relative difference in PLQY of the models when compared to their PL intensity. The larger PLQY
for the heterostructure is due to the consistent nature of the radiative recombination rate across these four transitions, in
addition to have a smaller nonradiative recombination rate, compared to the single-layer models. The single-layer models
by comparison show two transitions where the radiative rate of relaxation is an order of magnitude lower than for the
heterostructure model.

Conclusions. Here we use density functional theory and nonadiabatic excited-state dynamics calculations to
explore the photo-physical properties of single layer and vertical heterostructures of two-dimensional hybrid lead chloride
perovskites. We observed an increase in intensity of the photoluminescence for the vertical heterostructure 2D lead halide
perovskites attributed to the increase in effective insulation between the perovskite layers. Radiative dynamics show that
for the single-layer models there is a smaller relative intensity of emission when compared to the vertical heterostructure
model. The smaller intensity in the single-layer models is attributed to the smaller relative size of the space between layers
allowing for a greater overlap of orbitals/bands/ between layers. In the heterostructure model, this space between the larger
n =4 perovskite layers in adjacent periodic cells is made up of two organic layers and a smaller n = 1 layer of perovskite, all
of which have a larger gap than the n = 4 perovskite layers. This increased separation prevents the overlap across multiple
layers and confines the electron and hole in the same spatial region.
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It is also seen for the heterostructure model that there is a radiative emission around the same energy as the n = 1
single-layer model, though lower in intensity than the HO-LU transition emission. This indicates that it may be possible
to observe effects from the individual layers of the heterostructure model separately and that these models may not follow
Kasha's rule.

This has the potential to lead to an improvement in the efficiency of perovskite light emitting diodes. However, two
important areas for continued research are the evaluation of polarons in the perovskites and the inclusion of momentum
dispersion in the calculations.
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