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EXTREMAL EVENT GRAPHS: A (STABLE) TOOL FOR ANALYZING NOISY

TIME SERIES DATA

Abstract. Local maxima and minima, or extremal events, in experimental time series can be used
as a coarse summary to characterize data. However, the discrete sampling in recording experimental
measurements suggests uncertainty on the true timing of extrema during the experiment. This
in turn gives uncertainty in the timing order of extrema within the time series. Motivated by
applications in genomic time series and biological network analysis, we construct a weighted directed
acyclic graph (DAG) called an extremal event DAG using techniques from persistent homology that
is robust to measurement noise. Furthermore, we define a distance between extremal event DAGs
based on the edit distance between strings. We prove several properties including local stability
for the extremal event DAG distance with respect to pairwise L∞ distances between functions in
the time series data. Lastly, we provide algorithms, publicly free software, and implementations on
extremal event DAG construction and comparison.

1. Introduction

Experimental time series data are ubiquitous in today’s science and provide a window through
which we can observe the underlying dynamics of complex systems, ranging from cells to ecosystems
and climate. We study collections of time series which are also referred to as multivariate time
series in the literature [61, 65]. We construct a weighted directed graph descriptor of a collection of
time series data using persistent homology, a technique that belongs to a collection of approaches
known as Topological Data Analysis (TDA) that uses algebraic topology [25, 39] to extract shape
from data. TDA is used to study data from a wide range of applications including material science
[34], cancer biology [63], and political science [20]. Some of the classic and foundational papers in
TDA include [68, 26, 22, 18, 46].

Our descriptor characterizes a collection of time series by the order of their extrema in a way that
also captures the robustness of this order with respect to measurement uncertainty. Our motivation
comes from the desire to mathematically capture and compare collections of ‘omics time series data,
such as transcriptomics, proteomics, and others. In particular, the coarse information of orders
of extrema have been used to assess regulatory network models of gene/protein interactions [16].
Other applications involve quantifying similarity between gene expression time series [5, 57] across
repeated experiments.

Our mathematical methods are motivated by the combinatorial approaches in [16, 5, 44] that use
only the approximate timing of time series extrema as the relevant features of experimental data.
To take into account the uncertainty of capturing temporal orderings of extrema, [16] replaced
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the single time point locations of extrema with time intervals that were determined by manual
inspection. If the intervals are disjoint, then the ordering of extrema is interpreted to be robust
to measurement uncertainty. In the follow-up paper [5], an approach was developed in which the
intervals are algorithmically constructed using merge trees [19, 38], branch decompositions [37],
and sublevel sets. These intervals are called ε-extremal intervals and have the property that they
are the smallest intervals for which all continuous perturbations of a continuous function (with
additional technical restrictions) that lie within an ε-band are guaranteed to attain an extremum
under measurement uncertainty of size ε. Using the ε-extremal intervals, labeled directed acyclic
graphs (DAGs) are constructed to represent the time series data for any fixed value of ε. We refer
to these DAGs as ε-DAGs. Vertices or nodes in the ε-DAG represent extrema in the time series
data. Directed edges a → b indicate that we can unambiguously discern the order (in time) of
events corresponding to vertices a and b under measurement uncertainty of size ε.

Continuing this line of research, [44] defined a distance metric that compares two collections of
time series by comparing the corresponding ε-DAGs. This metric involves computing the directed
maximal common edge subgraph (DMCES) and was applied in [5] to quantify similarity in replicate
experiments of microarray yeast cell cycle data. Additionally, the metric was used in [57] to
provide quantitative evidence that an intrinsic oscillator drives the blood stage cycle of the malaria
parasite Plasmodium falciparum. The metric for ε-DAGs using the DMCES is effective in capturing
similarity between the time series, but is computationally expensive. This limits the total number
of extrema across all time series that can be effectively analyzed. Another limitation is that the
distance can only be measured at a single measurement uncertainty level ε, which is often unknown
and thus the distance has to be computed multiple times for a collection of ε values. A better
measurement would incorporate information about changes in similarity as a function of changing
ε in a single value.

We significantly expand and generalize the work of [5] and [44] by constructing a weighted DAG
that reflects robustness of the extremal ordering for all levels of measurement error ε. We call this
an extremal event DAG. Vertices in this graph again represent extrema in the time series data, and
a directed edge a → b indicates that extremum a occurs before extremum b. The node weights
measure prominence of extrema while the edge weights indicate the smallest ε level for which the
relative order between the two associated extrema can no longer be guaranteed. The node weights
are computed using sublevel set persistence [19]. After representing the collection of time series as
an extremal event DAG, we define a distance between extremal event DAGs as a modified version
of the edit distance (Chapter 15 of [15]). The edit distance quantifies similarity of two strings based
on the minimum number of operations (e.g., insertion, substitution, and deletion) it takes to align
the two strings. This distance is commonly used in many applications including DNA sequence
alignment, see [43] for one of the first papers on the topic. The standard algorithm for the edit
distance between two strings of length n can be computed via dynamic programming in Θ(n2)
(Chapter 15 of [15]).

We prove several key properties of the extremal event DAG weights. Most importantly for
computability and applications, Theorem 3.3 gives a simple criterion to compute edge weights.
Furthermore, we analyze stability properties of distances between extremal event DAGs. Section 5
gives stability results for distances used to compare extremal event DAGs with respect to pairwise
L∞ distance between the underlying continuous functions. These stability results show that small
changes within time series data lead to small changes in the corresponding extremal event DAG
distances. In Theorem 5.21, we show the extremal event DAG distance is stable in a local case:
two paired continuous functions from the two collections of time series must lie within an ε band
that allows for an unambiguous alignment of the minima and maxima between the two time series.
Additionally, one of the time series can have small amplitude additional maxima and minima.

Furthermore, extremal event DAGs and the extremal event DAG distance is computable. The
general pipeline of utilizing extremal event DAGs takes two datasets of collections of time series as
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and the dynamics of the underlying system [55, 1], characterizing gene regulatory networks [6], and
distinguishing between audio signals of the same note from different instruments [52]. The goal in
these approaches is to quantify periodicity of single variable time series whereas we are interested
in capturing order of local extrema in multivariate time series.

The second common method to study single variable time series using TDA is to apply sublevel
set persistence to detect prominent features. Applications include signal processing [28], Fourier
spectrum analysis and parameter detection [41], arrythmia detection [17], and cancer studies [33].
Additionally, in [10], sublevel set persistence is used to define a topological regularizer that can then
be used as a classifier for machine learning. Furthermore, sublevel set persistence on time series can
be used to determine noise that is often seen as small peaks in the time series [42]. We also apply
sublevel set persistence to detect prominent features, however, we also explore its connections to
capturing order and robustness of local extrema across multiple time series.

Lastly, TDA has been used to study other types of time dependent data. One includes dynamic
metric spaces that can be used to describe phenomena such as bird flocks, insect swarms, schools
of fish, and aphid trajectories. TDA techniques to study these types of data include vineyards
[14], CROCKER plots [60, 62, 66], spatiotemporal filtrations [30] and zig-zag persistence [9, 29].
Furthermore, time series data of fMRI images have been used to construct functional networks, and
then applying filtrations on the weights of these networks to extract topological features [58, 49].
A more extensive summary on TDA techniques to study time series can be found in [21].

1.2. Biological Motivation. Extremal event DAGs are developed abstractly for mulitvariate time
series in general, however, we focus on the application of analyzing ‘omics data that measures
expression levels of thousands of genes. Transcription of genes produces messenger RNA (mRNA)
which are translated to proteins. Gene expression, measured by either the amount of mRNA
produced (transcriptomics) or by the amount of corresponding protein (proteomics), can be used
to measure the level of activity of a given gene product. There is strong evidence that the relative
phases of oscillating regulators are important to controlling important cellular processes such as
the cell cycle [32], circadian rhythm, or malaria parasite periodic infection of human blood cells.
The assertion of [5, 16] is that the ordering of extrema is a reasonable approximation of control by
phase relationship.

For example, it is hypothesized that a small transcriptional regulatory network controlling the cell
cycle can activate hundreds of other transcription factors in a phase-specific manner to play a vital
role in maintaining the proper progression of DNA replication and cell division [8, 12, 45, 31, 54].
There are still many open questions about the precise role of the transcriptional network in the
ordering of cell cycle events [50, 53]. A reproducible ordering of gene expression such as what was
observed in [5] provides supporting evidence for the central role of the cell cycle gene regulatory
network in orchestrating timely expression of other cell cycle events.

A question of interest in biology is evaluating the similarity of two experiments across labs or
experimental conditions. For example, an experimentalist may wish to measure the similarity
of expression level of genes driving the cell cycle between replicate experiments between time
series collected under different growth conditions, or across organisms and tissues. For example,
circadian clock networks in different tissues that control the temporal ordering of phase specific gene
expression [40, 67]. Similarity and differences in timing of the same network in tissues like heart
and liver can tell us about their mutual coupling as well as coupling to the master circadian clock in
the brain [35, 51]. In summary, mathematically modeling and comparing orders of extremal events
in ‘omics data is useful for identifying time series differences in multiple biological applications.
In particular, extremal event DAGs and distances can be used to study the important biological
questions about time dependent cellular processes, some of which we have mentioned here.
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2. Background

We now summarize necessary terminology for the results that have been developed in this paper.
Many of these terms build off of ideas mentioned in Section 1. Throughout this section and the
rest of this paper, we use the following notation. Let X ⊂ R denote an arbitrary subset of R. Let
C := [a1, a2] ⊂ R be a closed interval of R.

2.1. Extrema. For a subset X ⊂ R, x ∈ X and ε > 0, let Bε(x) be the open neighborhood of
radius ε centered at x. That is

Bε(x) := {y ∈ X | |y − x| < ε}.
Definition 2.1 (Local Extrema). Let f : X → R be a function. We say f has a local minimum at
x ∈ X if there exists ε > 0 for which f(x) < f(y) for all y ∈ Bε(x) \ {x}. Similarly, f has a local
maximum at x ∈ X if there exists ε > 0 for which f(x) > f(y) for all y ∈ Bε(x) \ {x}. We refer to
any local minimum or local maximum as a local extremum of f . If x ∈ X with f(x) < f(y) for all
y ∈ X \ {x}, we say f has a global minimum at x. Similarly, for x ∈ X where f(x) > f(y) for all
y ∈ X \ {x}, we say f has a global maximum at x.

We often order the extrema of a function. To ease notation, we write [n] to be the set of the first
n integers. That is

[n] := {1, 2, . . . , n}.

2.2. Distances. We use the L∞ metric to quantify distances between collections of points and
functions.

Definition 2.2 (L∞ metric). Let R := R∪{∞}. For points p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) ∈
R
n
, we define the L∞ distance between points p and q as ‖p− q‖∞ = maxi |pi − qi|For functions

f, g : K → R where K ⊂ R is compact, we define the L∞ distance between functions f and g as
‖f − g‖∞ = supx∈K |f(x)− g(x)|.

For a subset X ⊂ R
n
, x ∈ X and ε > 0, let �ε(x) be the L∞ open neighborhood of radius ε

centered at x. That is

�ε(x) := {y ∈ X | ‖y − x‖∞ < ε}.

2.3. ε-Perturbations. We consider perturbations of a function f .

Definition 2.3 (ε-Neighborhood of f). Let f : K → R be a continuous function, where K ⊂ R is
compact. For ε ≥ 0, define

Nε(f) := {g : K → R | g is continuous and ‖f − g‖∞ < ε}
to be the ε-neighborhood of f . A function g ∈ Nε(f) is called an ε-perturbation of f .

2.4. ε-Extremal Intervals. Let INT(C) be the set of relatively open intervals contained in
C := [a1, a2] ⊂ R. To enable comparability between local extrema for functions in Nε(f) for differ-
ent levels of ε, we use the following definition.

Definition 2.4 (ε-Extremal Interval at t). Let f : C → R be a continuous function and T be the

set of domain coordinates of all local extrema of f . Let ε > 0. Define ϕf
ε : T → INT(C) such that

Case 1: If t ∈ T and (t, f(t)) is a local minimum, define ϕf
ε (t) to be the connected component

of (f − ε)−1(−∞, f(t) + ε) that contains t.

Case 2: If t ∈ T and (t, f(t)) is a local maximum, define ϕf
ε (t) to be the connected component

of (f + ε)−1(f(t)− ε,∞) that contains t.

We call ϕf
ε (t) the ε-extremal interval at t (see Figure 2).
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Next, we consider a nested sequence of sublevel sets. A filtration of a topological space X is
a nested family of subspaces (Xr)r∈T starting at the empty set, where T ⊂ R, such that for all
r, s ∈ T where r ≤ s, we have Xr ⊂ Xs, and

⋃
r∈T Xr = X. For f : X → R, the sequence of

all sublevel sets (f−1(−∞, r])r∈R, ordered by inclusion and indexed by R, is called the sublevel
set filtration. In particular, for r ≤ s, we have f−1(−∞, r] ⊂ f−1(−∞, s]. The inclusion map
ι : f−1(−∞, r]→ f−1(−∞, s] induces a homomorphism between homology groups

gr,sn : Hn(f
−1(−∞, r])→ Hn(f

−1(−∞, s]).

This homomorphism takes the homology of the sublevel set of f−1(−∞, r] to the homology of the
sublevel set of f−1(−∞, s]. The image of gr,sn contains all this important information. We define
the nth persistent homology groups to be the images of all the homomorphisms Hr,s

n := im(gr,sn ).
The nth persistent Betti numbers are the ranks; βr,s

n := rank(Hr,s
n ).

Next we describe how to encode the persistent homology groups into a multiset of points in the
extended plane. Consider a tame function f : X → R. Let (ri)

N
i=1 be the ordered sequence of

homological critical values of f . Since we are working with a tame function, there are only a finite
number of heights we need to consider where the sublevel sets change. To ease notation, we write

H i,j
n := H

ri,rj
n , βi,j

n := β
ri,rj
n , and gi,jn := g

ri,rj
n . The persistent homology group H i,j

n consists of
the homology classes of f−1(−∞, ri] that still persist in f−1(−∞, rj ]. The persistent Betti number

βi,j
n counts the number of homology classes that persist between f−1(−∞, ri] and f−1(−∞, rj ].

The first index for which a homology class appears is the birth of that class. When a class in
f−1(−∞, ri−ε] merges with another in f−1(−∞, ri], then the class dies at a height of ri. When
classes merge together we follow the elder rule (See section 7.1 of [19]) that requires the class with
a greater birth height to merge with the class of the lower birth height.

Definition 2.8 (Persistence Diagram Dn(f)). Let f : X → R be a tame function with homological
critical values R := {ri}Ni=1. Consider the set S := R ∪ {∞}. The nth dimensional persistence

diagram Dn(f) is the multiset set of points in R
2
such that the point p = (ri, rj) ∈ R × S where

ri ≤ rj is included with multiplicity,

µn(p) = lim
ε→0+

(βi,j
n − βi,j+ε

n )− (βi−ε,j
n − βi−ε,j+ε

n ).

We set p ∈ Dn(f) if, and only if, µn(p) > 0.

In regards to µn(p), the first difference counts the number of homology classes that are born
at or before a height of ri and die at a height of rj . The second difference counts the number of
homology classes that are born at or before a height of ri − ε and die at a height of rj .

The persistence diagram summarizes the homology groups as the height parameter ranges from−∞
to ∞. Each persistence point p = (b, d) ∈ Dn(f) is called a birth-death pair since it represents a
unique generator of the homology groups of the sublevel sets of f that is born at parameter b and
dies going into parameter d. In this work, we are concerned with a special type of tame function.

Definition 2.9 (Nicely Tame Functions). Let X ⊂ R be a topological space. A function f : X → R

is nicely tame if f is tame, continuous, and for each critical value y, the preimage f−1(y) is a finite
set.

Specifically, we work with a nicely tame function f : [a1, a2] → R where a1, a2 ∈ R. If the
function values at the local extrema are unique, then there is a one-to-one correspondence between
persistence points and the local minima of f . Then a persistence point (b, d) corresponds to the
local minimum (t, f(t) = b) since the homological critical values are the local minima and maxima
of f .

In the event that the values of several minima are the same, this correspondence is not unique.
However, a unique correspondence can be induced by fixing an order on the local minima (e.g.,
the domain coordinates) and using that ordering to break ties. For a multiset A, we write |A| for
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Observe the minima for f are the maxima of −f and vice-versa. Additionally, the absolute
difference in heights between extrema of f remain the same in both f and −f . Hence, we can
study the prominence of maxima of f by studying the minima of −f . This follows from [4] which
discusses the symmetry between persistence diagrams computed from height filtrations that are
ascending versus descending.

Definition 2.11 (Persistence of Extrema). Let f : C → R be a nicely tame function, and let
(b, d) ∈ D(f). The persistence of (b, d) is the difference between the birth and death heights, d− b.
Suppose t is the domain coordinate such that f(t) = b and (t, f(t)) is the local minimum of f
representing the pair (b, d). We define the persistence of the extremum (t, f(t)), denoted persf (t),
as

persf (t) :=





max(f)− f(t), if (t, f(t)) is the global minimum of f

d− b, if (t, f(t)) is a local (and not global) minimum of f

pers−f (t), if (t, f(t)) is a local maximum of f.

See Figure 4 for an example of computing the persistence of local extrema.

Definition 2.12 (Node Life). Let f : C → R be a nicely tame function with a local extremum at
domain coordinate t. The node life of t is persf (t)/2.

We sometimes omit the subscript f from persf (t) when the function we are computing the node

life from is clear. Proposition 2 and Corollary 1 from [5] states that ϕf
ε (t) is the smallest interval

for which any nicely tame ε-perturbation of f is guaranteed to have at least one local extremum of
the same type as t, as long as ε is less than the node life.

3. Extremal Event DAG

To define the extremal event DAG, that will capture information about extrema of multiple time
series, we need a notion of comparability of local extrema.

Definition 3.1 (Comparability of Extrema). Let f, g : C → R be nicely tame functions. Let
tf , tg be local extrema of f and g respectively. Let ε > 0. We declare tf ≺ε tg if for every nicely

tame ε-perturbation of f and g there exists ε-perturbed extrema t′f and t′g such that t′f ∈ ϕf
ε (tf ),

t′g ∈ ϕg
ε(tg), and t′f < t′g. We say tf and tg are comparable at ε if all of the following hold.

(1) persf (tf ) > 2ε
(2) persg(tg) > 2ε
(3) tf ≺ε tg or tg ≺ε tf

If at least one of these conditions does not hold, then tf and tg are incomparable at ε.

Definition 3.1 relates order of extrema to possible ε-perturbations of functions. Using this defi-
nition, we are ready to define the extremal event DAG.

Definition 3.2 (Extremal Event DAG). Let F = {fi : C → R}ni=1 be a collection of nicely tame
functions. For i ∈ [n], let ti1 < ti2 < · · · < tini

be the domain coordinates for the local extrema of fi.
The extremal event DAG of F is the directed graph, DAG(F ) := (V,E, ωV , ωE), where

• V := {v(i, j) | i ∈ [n] and j ∈ [ni]}. In particular v(i, j) ∈ V corresponds to the extremum
of fi at t

i
j .

• E := {(v(i, j), v(r, s)) | tij < trs}.
• ωV : V → R≥0 is defined by the node life ωV (v(i, j)) :=

1
2persfi(t

i
j). We call ωV the node

weights.
• ωE : E → R≥0 is defined by ωE(v(i, j), v(r, s)) := inf{ε | tij and trs are incomparable}. We
call ωE the edge weights.
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3.1. Computing Edge Weights. In Appendix 8.1, we prove a few properties of ε-extremal in-
tervals that are needed to prove the condition for computing edge weights. We state a condition
for checking that requirement 3 of Definition 3.1 is met.

Theorem 3.3 (Computing Edge Weights). Let F = {fi : C → R}ni=1 be a collection of nicely tame
functions where ti1 < ti2 < · · · < tini

are all the domain coordinates of the local extrema of fi. Let
DAG(F ) := (V,E, ωV , ωE) be the extremal event DAG of F . For all edges (v(i, j), v(c, d)) ∈ E, the
following statements hold

(1) If i = c, then

ωE(v(i, j), v(c, d)) = min{ωV (v(i, j)), ωV (v(c, d))}.

(2) If i 6= c, then

ωE(v(i, j), v(c, d)) = min{ωV (v(i, j)), ωV (v(c, d)), ε
∗(tij , t

c
d)},

where
ε∗(tij , t

c
d) := inf{ε | ϕfi

ε (t
i
j) ∩ ϕfc

ε (tcd) 6= ∅}.

The proof of Theorem 3.3 is technical and involves analyzing several cases. We provide the proof
of Theorem 3.3 in Appendix 8.2.

3.2. Example of Extremal Event DAG Construction. We give an example of constructing
an extremal event DAG.

Example 3.4. We construct the extremal event DAG for sin(x) : [0, 2π]→ R, cos(x) : [0, 2π]→ R

as illustrated in Figure 5. First we compute the persistence diagram from a sublevel set filtration
of sin(x), − sin(x), cos(x), and − cos(x). This computes the node lives of all local extrema in sin(x)
and cos(x). These node lives are the node weights in the extremal event DAG. Next we compute
edge weights between nodes based on Theorem 3.3(1).

For an illustration of this, consider the local extrema at x = 0 and x = π
2 of sin(x). The node

lives of these two local extrema are 0.5 and 1 respectively. The edge weight between the two
corresponding vertices in the extremal event DAG is the minimum of these two node lives: 0.5.

Computing the edge weights between two vertices corresponding to different function is more
involved. We need to apply Theorem 3.3(2). To illustrate this, consider the local extrema at
x = π

2 of sin(x) and x = π of cos(x). Since sin(x) and cos(x) are translations of one another, the

ε-extremal intervals grow at the same rate for both sin(x) and cos(x). We know that ϕsin
ε (π/2)

and ϕcos
ε (π) first intersect at the half-way point of the domain coordinates, which is 3π

4 . Using the
definition of the ε-extremal intervals we find

sin(π/2)− ε = sin(3π/4) + ε

ε =
1

4
(2−

√
2) ≈ 0.14

cos(π) + ε = cos(3π/4)− ε

ε =
1

4
(2−

√
2) ≈ 0.14

The epsilon value computed is the infimum ε for which ϕsin
ε (π/2) and ϕcos

ε (π) both contain 3π
4 .

Hence this is also the infimum ε for which ϕsin
ε (π/2)∩ϕcos

ε (π) 6= ∅. Since 0.14 is less than the node
life of either extremum, then by Theorem 3.3(2), the edge weight between the vertices corresponding
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and removing all edges and edge weights; the nodes are ordered by their corresponding domain
coordinates. Then, the data associated to each node v ∈ V is a string representing which type of
local maxima (min or max) along with the node weight ωV (v). This backbone for f is denoted as
B(f). See Figure 7 for an example.

0.25 0.5 0.5 0.016 0.016 0.25
min min minmax max max

(a) Sine Backbone 1

0.25 0.5 0.250.042 0.042 0.5
min min minmax max max

(b) Sine Backbone 2

Figure 7. Extracting Sine Backbones from Extremal Event DAG 1 and Extremal
Event DAG 2. Figure 7a illustrates the backbone where each node corresponds to a
local extremum of the sine labeled curve from Dataset 1 (see Figure 6a). Mathemat-
ically, this backbone is the sequence (min, 0.25), (max, 0.5), (min, 0.5), (max, 0.016),
(min, 0.016), (max, 0.25). Figure 7b illustrates the backbone where each node cor-
responds to a local extremum of the sine labeled curve from Dataset 2 (see Fig-
ure 6b). Mathematically, this backbone is the sequence (min, 0.25), (max, 0.042),
(min, 0.042), (max, 0.5), (min, 0.5), (max, 0.25).

Remark 4.3 (Backbones as Sets). We consider functions over backbones to other spaces. For
these settings, we think of a backbone as an ordered multiset, x = {x1, x2, . . . , xn}, (i.e., repeated
elements are allowed) equipped with an injective index function, ιx : x→ [n] where ιx(xi) = i. Let
0 := (0, 0). We also define x̃ = {0} ∪ x, where 0 is the empty node. The function ι is not extended
to x̃.

Next we discuss alignments and how to compute a distance between two backbones using an
optimal alignment.

Definition 4.4 (Alignment). Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn) be backbones. An
alignment is a totally ordered correspondence between x̃ and ỹ that does not repeat elements of x
or y and respects the labels (or strings) of the backbones. We say that the number of pairs in the
correspondence is the length of the alignment. In particular, we represent an alignment of length
k between x and y as a function α : [k] → x̃ × ỹ, where α(i) can be written as two coordinate
functions α(i) := (αx(i), αy(i)), such that

(1) No Null Alignments. The pair (0,0) is not in the image of α, which we denote by im(α).

(2) Preserves Order of Backbones. The coordinate functions αx : [k] → x̃, αy : [k] → ỹ
are partially monotone. The function αx is partially monotone if for every i, j ∈ [k] such
that αx(i) 6= 0 and αx(j) 6= 0, we have

ιx(αx(i)) < ιx(αx(j)) if and only if i < j.

An analogous definition applies to αy.
(3) No Misalignments. For each ((sx, wx), (sy, wy)) ∈ im(α), we either have equality in

strings sx = sy, or one of (sx, wx), (sy, wy) is equal to 0.



EXTREMAL EVENT GRAPHS 15

(4) Restriction to Matching. Each element of x and y appears in the image of αx and αy

exactly once. That is, for each xi ∈ x, there exists exactly one j ∈ [k] for which αx(j) = xi.
The analogous statement holds for each yi ∈ y.

If α(i) = (αx(i),0), we say that αx(i) is aligned with an insertion; similarly for α(i) = (0, αy(i)).
We denote the restriction of α to the first h integers, [h] = {1, 2, . . . , h} ⊂ [k] as α[1 : h].

Notation 4.5 (Elements in im(α)). When we use the notation (x, y) ∈ im(α), we always assume
that x 6= 0 and y 6= 0. We also use notation (x,0) ∈ im(α) and (0, y) ∈ im(α) to denote that x or
y is aligned with an insertion.

Note that the restriction of im(α)∩ (x×y) is a partial matching (that is, each element in x×y,
if not aligned with an insertion, is aligned with a distinct element of the other backbone). We call
any pair (x, y) ∈ im(α) ∩ (x × y) a nontrivial match. An example of two different alignments of
the sine backbones shown in Figure 7 is given in Figure 8. Figure 8a is aligned without insertions,
while Figure 8b has two insertions in each of the backbones. Notice that the insertions occur at
the small noisy extrema in each of the time series.

0.25 0.5 0.250.042 0.042 0.5
min min minmax max max

0.25
maxmax

0.25 0.0160.5 0.5
min

0.016
min minmax

0.25
max

(a) Alignment 1

0.25 0.5 0.250.042 0.042 0.5
min min minmax max max

0.25

max

0.016 0.016 0.25
minmax max

0.25 0 0 0.5 0.5
min 0 min0 max

0
0

0
0

(b) Alignment 2

Figure 8. Two Possible Alignments of Sine Backbones. We consider the backbones
shown in Figure 7. Call these x and y respectively. The top row consists of nodes
from x while the bottom row consists of nodes from y. Figure 8a gives an alignment,
α1 : {1, 2, . . . , 6} → x̃ × ỹ of the two backbones where α1(i) = (xi, yi). Figure 8b
gives an alignment α2 : {1, 2, . . . , 8} → x̃× ỹ where α2(1) = (x1, y1), α2(2) = (0, y2),
α2(3) = (0, y3), α2(4) = (x2, y4), α2(5) = (x3, y5), α2(6) = (x4,0), α2(7) = (x5,0),
and α2(8) = (x6, y6).

Definition 4.6 (Cost of Alignment). Let x and y be backbones and α : [k]→ x̃×ỹ be an alignment
of length k. The cost of α is defined as

cost(α) :=
∑

(x,y),(x,0),(0,y)∈im(α)

|wx − wy|,

where x = (sx, wx) and y = (sy, wy). We define the cost of the partial alignment cx,y(i, j) to be
the minimum cost of aligning x[1 : i] with y[1 : j], that is,

cx,y(i, j) := min{cost(α) | α is an alignment of x[1 : i] and y[1 : j]}.
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Referring again to Figure 8, we compute that the alignment in Figure 8b has a lower cost, 0.116,
than that in Figure 8a, 0.932.

Definition 4.7 (Optimal Alignment). Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn) be back-
bones. We call an alignment α : [k]→ x̃× ỹ optimal if cost(α) = cx,y(m,n).

An optimal alignment minimizes cost. We note that there could be multiple alignments that
minimize cost and so an optimal alignment is not necessarily unique.

We define the distance between two backbones x and y using an optimal alignment. To do this,
we need to identify nontrivial matches, i.e., those alignment pairs that do not involve insertions.

Definition 4.8 (Backbone Distance). The backbone distance between backbones x and y is defined
as

(1) dB(x,y) = inf
α




∑

(x,y)∈im(α)

|wx − wy|+
∑

(x,0)∈im(α)

wx +
∑

(0,y)∈im(α)

wy




where α ranges over all alignments between x and y.

The backbone distance finds the best alignment between x and y, then defines the distance to
be the L1 norm between a vector consisting of the node weights in x̃ and a vector consisting of
the matching node weights in ỹ. The first term of Equation 1 accounts for the cost of the nodes
in x that are aligned with nodes in y, the second term accounts for the cost of the nodes in x that
are aligned with an insertion, and the third term accounts for the cost of the nodes in y that are
aligned with an insertion. We show that this distance is in fact a metric in Appendix 8.3.

4.2. Extremal Event DAG Distance. Using the backbone distance, we define a distance be-
tween two extremal event DAGs, D and D′, constructed from comparable datasets. In other words,
the number and identity of the time series are the same between the two datasets so that the choice
of which backbones to align is clear. Once the alignments have been computed, we construct a
supergraph based on D and D′ where there is a vertex for each node pair from each alignment. We
add a directed edge between two vertices if the edge exists between the two vertices in either D or
D′. After we construct the supergraph, we impose two weight functions on the vertices and nodes
given by the weights of the nodes and edges in D and D′ respectively. The difference between these
weight vectors is the extremal event DAG distance between D and D′.

Definition 4.9 (Extremal Event Supergraph). Let D = (V,E, ωV , ωE) and D′ = (V ′, E′, ω′
V , ω

′
E)

be two extremal event DAGs with n pairs of aligned backbones. Let x1,x2, . . . ,xn be the backbones
of D, and y1,y2, . . . ,yn be the backbones of D′ and, for each i ∈ [n], let α(i) : [ki]→ x̃i× ỹi be the
corresponding alignments where ki = len(αi). Just as we expanded α to two coordinate functions in

Definition 4.4, α(i) can be expanded into two coordinate functions α(i) := (αxi
, αyi

). The extremal

event supergraph determined by the alignments {α(i)}ni=1 of D and D′ is a doubly weighted directed
graph (Vα, Eα, ωα, ω

′
α), where

• Vα := {v(i, j) | i ∈ [n], j ∈ [ki]}. That is, the vertices of Vα are in one-to-one correspondence
with each element of every alignment. Note V ∪ V ′ ⊂ Vα.
• An ordered pair of vertices (v(i, j), v(k, l)) ∈ Vα × Vα is a directed edge in Eα if and only if
either one or both of the following is true
◦ (αxi

(j), αxk
(l)) ∈ E

◦ (αyi
(j), αyk

(l)) ∈ E′.
Note E ∪ E′ ⊂ Eα.
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• The weight function ωα : Vα ∪ Eα → R≥0 is defined by

ωα(x) =





ωV (v(i, j)), x = v(i, j) ∈ V ⊂ Vα

ωE(v(i, j), v(k, l)), x = (v(i, j), v(k, l)) ∈ E ⊂ Eα

0 otherwise.

• The weight function ω′
α : Vα ∪ Eα → R≥0 is defined by

ω′
α(x) =





ω′
V (v((i, j)), x = v(i, j) ∈ V ′ ⊂ Vα

ω′
E(v(i, j), v(k, l)), x = (v(i, j), v(k, l)) ∈ E′ ⊂ Eα

0 otherwise.

We give an example of an extremal event supergraph and its weights in Figure 9.
We define the extremal event DAG distance to be the sum of absolute differences in node and

edge weights from the extremal event supergraph determined by the best alignment we can easily
compute.

Definition 4.10 (Extremal Event DAG Distance). D and D′ be two extremal event DAGs where
x1,x2, . . .xn are the backbones of D and y1,y2, . . . ,yn are the backbones of D′. The extremal
event DAG distance is defined as:

dED(D,D′) =
n∑

i=1

dB(xi,yi) + inf
{αi}ni=1

∑

(u,v)∈Eα

|ωα
D(u, v)− ωα

D′(u, v)|.

where {αi}ni=1 ranges over all sets of optimal alignments between the backbones.

We define extremal event DAG distance using optimal alignments between backbones because
of its computability. As we show in Section 9, we use modified edit distance alignment algorithms
to efficiently compute backbone alignments.

An open conjecture is that the sum of differences of edge weights is minimized only under an
optimal alignment; that is,

dED(D,D′) = inf
{α}ni=1




∑

u∈Vα

|ωα
D(u)− ωα

D′(v)|+
∑

(u,v)∈Eα

|ωα
D(u, v)− ωα

D′(u, v)|




where {αi}ni=1 ranges over all sets of alignments between the backbones.
If this conjecture is true, then we can prove the triangle inequality for the extremal event DAG

distance using the same composition of alignments that we used for showing the triangle inequality
holds for the backbone metric. If the conjecture is not true, then it is possible that the triangle
inequality does not hold for the extremal event DAG distance. For the biological applications
we have in mind, the key property that we desire is from a distance is stability, which is the
property that small changes in two datasets does not cause a large jump in the distance between
the associated extremal event DAGs. We show this property holds in Section 5 when the functions
are “close” to one another.

5. Stability of Extremal Event DAGs

In this section, we prove a Lipschitz stability result: that small changes in functions that are
sufficiently close result in small distances between the corresponding extremal event DAGs. Our
results are similar in flavor to stability for persistence diagrams [13].
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5.1. Stability in Backbone Distance. We begin by proving stability results for the backbone
distance. The main result of this section is Corollary 5.13, which states the backbone distance
between backbones of two nicely tame real valued functions from a closed interval is bounded by a
constant times the L∞ distance between the two functions. That is,

dB(B(f), B(f ′)) ≤ K
∥∥f − f ′

∥∥
∞
.

To get there, we show that the maximum difference in node weights arising from an optimal
alignment is bounded by the L∞ distance of the two corresponding functions (Theorem 5.12). This
leads us to comparing the backbone distance to the following distance that looks at the maximum
distance between aligned node weights that arises from an optimal backbone alignment.

Definition 5.1 (Backbone Infinity Distance). Let x, y be backbones. We define the backbone
infinity distance between x and y as

dB∞
(x,y) = inf

α
max |ωx(αx(i))− ωy(αy(i))|

where α ranges over all alignments of x and y.

In Appendix 8.4, we prove the backbone infinity distance is a metric. The proof is a simplified
version of the proof that the backbone distance is a metric (Proposition 8.7).

5.1.1. Relationship Between Local Extrema, Points in Persistence Diagrams, and Backbone Nodes.
We prove backbone distance stability by moving between concepts of local extrema of functions,
points in persistence diagrams, and backbone nodes. We describe the relationship between these
three concepts next.

Let f : C → R be a nicely tame function and (t, f(t)) be a local minimum of f that does not
represent the essential component in D(f). Recall from Section 2.6 that at a height of f(t) in the
sublevel set filtration, a new connected component is born. The death of this connected component
happens at the height of a local maximum denoted as ζf (t) (recall Definition 2.10). This implies
existence of a point (f(t), ζf (t)) ∈ D(f) in the persistence diagram.. We then compute the node

life, 1
2persf (t) =

1
2(ζf (t) − f(t)). This shows that the node (min, 12persf (t)) ∈ B(f) is a backbone

node. In summary, a local minimum (t, f(t)) corresponds to a point in the persistence diagram
(f(t), ζf (t)) ∈ D(f), and a vertex in a backbone (min, 12persf (t)) ∈ B(f).

Now suppose t represents the essential component in D(f), which means that t is a global
minimum of f . Then, (t, f(t)) corresponds to (f(t),∞) ∈ D(f) and (min, 12persf (t)) ∈ B(f) where
1
2persf (t) =

1
2(max(f)− f(t)).

There is the same type of correspondence for local maxima of f by applying the same process
to −f . All the local maxima of f become local minima of −f . To make the correspondence
between nodes in backbones, extrema, and points in persistence diagrams more precise, we define
the following.

Definition 5.2 (Truncated Persistence Points). Let f : C → R be a nicely tame function. Let
(t, f(t)) be a local minimum of f . The point (f(t), ζf (t)) is the truncated persistence point of
(t, f(t)).

We often refer to the truncated persistence points as persistence points. We note that if (t, f(t))
is a local maximum of f , then we declare the point (−f(t), ζ−f (t)) as the persistence point of
(t, f(t)). Because of the correspondence between extrema, persistence points, and backbone nodes,
we discuss pairings of extrema or persistence points to get aligned pairs in backbone alignments.

Remark 5.3 (Persistence Diagram Containing Diagonal). Persistence diagrams are often defined as
in Definition 2.8 along with a union of all points on the diagonal ∆ = {(x, x) ∈ R2} counted with
infinite multiplicity. The addition of the diagonal is useful for defining distances between persistence
diagrams. For the remainder of this section, we assume that persistence diagrams contain all points



20 R. BELTON AND B. CUMMINS AND B. T. FASY AND T. GEDEON

p q r

f

f(q)

f(s)

f(r)

s t

f(t)

f(p)

(a) f

∞

( f(s), f(r))

(b) D(f)

min

min

max

max

max

1

2
pers

f
(p)

1

2
pers

f
(q)

1

2
pers

f
(r)

1

2
pers

f
(s)

1

2
pers

f
(t)

(c) B(f)

Figure 10. Moving Between Local Minima, Persistence Diagrams, and Back-
bone Nodes. The local minimum, (s, f(s)) in light blue corresponds to the point
(f(s), f(r)) ∈ D(f) and (min, 12persf (s)) ∈ B(f).

on the diagonal counted with infinite multiplicity. This representation is useful for constructing
alignments between backbones.

5.1.2. dB∞
is stable. A key result that we use is the Box Lemma, that is proved in [13] to prove

stability for persistence diagrams.

Lemma 5.4 (Box Lemma ([13])). Let X be a topological space, f, g : X → R be tame functions

and let ε = ‖f − g‖∞. For a < b < c < d, let R = [a, b]× [c, d] be a box in the extended plane, R
2
,

and Rε = [a+ ε, b− ε]× [c+ ε, d− ε] be the box obtained by shrinking R by ε on all sides. Then,

|D(f) ∩Rε| ≤ |D(g) ∩R| .
The next result is similar in flavor to the Easy Bijection Lemma from [13]. We first prove stability

for the backbone infinity distance in a special case. The result will depend on two constants.

Definition 5.5 (Constants δmin, δmax ). Let X be a topological space and f : X → R be a tame
function. Define δmin to be half of the smallest distance between two distinct off-diagonal points,
or a point in D(f) and a point on the diagonal, that is,

δmin :=
1

2
min{‖p− q‖∞ | p ∈ D(f) \∆, q ∈ D(f), p 6= q}.

The constant δmax is defined analogously using D(−f).
Next, we note a relationship between Definition 5.5 and the minimum node life of extrema of f .

Lemma 5.6 (Minimum of Node Lives is Bounded Below by δmin). Let f : C → R be a nicely
tame function. Let {ti}ni=1 be the domain coordinates for local minima of f . Define δ to be half the
minimum of the node lives of ti, that is,

δ :=
1

2
min{persf (ti)}ni=1.

Then δmin ≤ δ.
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Proof. Let t ∈ {ti}ni=1 such that 1
2persf (t) = δ. Observe the point (12persf (t),

1
2persf (t)) is the

orthogonal projection of (f(t), ζf (t)) onto the diagonal. In particular,

(12persf (t) + f(t), 12persf (t) + f(t)) is the closest point on the diagonal to (f(t), ζf (t)). Notice,

|ζf (t)− (
1

2
persf (t) + f(t))| = |ζf (t)− (

1

2
ζf (t)−

1

2
f(t) + f(t))|

= |1
2
ζf (t)−

1

2
f(t)|

=
1

2
persf (t).

Furthermore,

|f(t)− (
1

2
persf (t) + f(t))| = |f(t)− (

1

2
ζf (t)−

1

2
f(t) + f(t))|

= |1
2
f(t)− 1

2
ζf (t)|

=
1

2
persf (t).

Therefore,
∥∥∥∥(f(t), ζf (t))− (

1

2
persf (t) + f(t),

1

2
persf (t) + f(t))

∥∥∥∥
∞

=
1

2
persf (t) = δ.

Additionally, since for all ti ∈ {ti}ni=1 where ti 6= t, we have 1
2persf (ti) ≥ δ, it must be the case that

∥∥∥∥(f(ti), ζf (ti))− (
1

2
persf (ti) + f(ti),

1

2
persf (ti) + f(ti))

∥∥∥∥
∞

≥ δ.

This implies that half the minimum distance between a point p ∈ D(f) \ ∆ and a point on the
diagonal is equal to δ, that is,

1

2
min{‖p− q‖∞ | p ∈ D(f) \∆, q ∈ ∆} = δ.

Lastly, since

{‖p− q‖∞ | p ∈ D(f) \∆, q ∈ ∆} ⊂ {‖p− q‖∞ | p ∈ D(f) \∆, q ∈ D(f), p 6= q}
we conclude δmin ≤ δ. �

Using the same proof but with −f and D(−f), we find δmax ≤ δ. We use the two constants δmin

and δmax to determine when functions are “close”.

Definition 5.7 (Very Close). Let f : C → R be a nicely tame function. Let δf = min{δmin, δmax}.
A nicely tame function f ′ : C → R is very close to f if ‖f − f ′‖∞ < δf .

Next we prove an analogue of the Easy Bijection Lemma [13] for backbones. We start by
constructing an alignment between two backbones arising from nicely tame functions f and f ′

where f ′ is very close to f . Figure 11 shows an example on how to construct the direct alignment
between very close functions.

Construction 5.8 (Direct Alignment). Let f, f ′ : C → R be nicely tame functions such that f ′

is very close to f . Let ε = ‖f − f ′‖∞. Note, that since f, f ′ are very close, we have ε < δf . The
direct alignment construction consists of two steps:

(1) Pairing nodes in B(f) with B(f ′). Recall that each node in B(f) and B(f ′) corresponds to
a local extremum of f and f ′, respectively. We begin by pairing local minima of f with local
minima of f ′. By definition of persistence diagrams, there is a one-to-one correspondence
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between the local minima of f and the points in D(f). Thus, we can pair local minima of
f and f ′ by pairing off diagonal points in D(f) and D(f ′), respectively.

Let p = (p1, p2) ∈ D(f) \ ∆. We describe what point in D(f ′) is paired with p. Since
p ∈ �ε(p), the Box Lemma tells us that the multiplicity µ(p) of p satisfies

µ(p) ≤
∣∣D(f ′) ∩�ε(p)

∣∣ ≤ |D(f) ∩�2ε(p)| .
By definition of δf and the assumption ε < δf , we know that p is the only point contained
in the set D(f) ∩ �2ε(p). Therefore, |D(f ′) ∩�ε(p)| = µ(p). Furthermore, since p ∈
D(f) ∩ �ε(p), there is the same number of points, with multiplicity, in D(f ′) ∩ �ε(p) and
in D(f) ∩�ε(p).

We explain how to define a bijection by pairing the points in the squares D(f) ∩ �ε(p)
and D(f ′)∩�ε(p). Let n = µ(p) and let {ti}ni=1 be the set of the domain coordinates of the
local minima of f for which f(ti) = p1. Let q = (q1, q2) ∈ D(f ′)∩�ε(p). Observe q1 = f ′(t)
for some local minimum (t, f ′(t)) of f ′. Because p, q ∈ �ε(p), we have ‖p− q‖∞ ≤ ε < δf .
In particular,

|p1 − q1| = |f(ti)− f ′(t)| < δf , for all i ∈ [n].

This implies that

f(ti)− δf < f ′(t) < f(ti) + δf , for all i ∈ [n].

This inequality, the fact that δf ≤ δmin, and f(ti) = p1 for all i ∈ [n] implies

t ∈ A := (f − δf )
−1(−∞, p1 + δf ).

By Lemma 5.6, δf ≤ 1
2 min{persf (ti)}ni=1. Applying Proposition 1 of [5], we find A is a

disjoint union of intervals and each contains exactly one ti, i.e., A =
⋃n

i=1 ϕδf (ti). Let t
∗
i ∈

{ti}ni=1 such that t ∈ ϕδf (t
∗
i ). For our alignment, we pair the local minima (t∗i , f(t

∗
i )) with

(t, f ′(t)). Iterating this process for all points q ∈ D(f ′)∩�ε(p) results in a bijection between
points in the squares D(f) ∩�ε(p) and D(f ′) ∩�ε(p).

Iterating the above procedure for all points p ∈ D(f) \∆, we pair all local minima of f
with local minima of f ′. All remaining local minima of f ′ are paired with an empty node.
The order of the alignment is given by the domain coordinates of f ′.

What remains are the local maxima of f and f ′. To pair these extrema, we apply the
same exact process to minima of −f and −f ′ since they are local maxima of f and f ′.

(2) Indexing the pairs so that order of the backbones for B(f) and B(f ′) are preserved. Let
x = B(f) and x′ = B(f ′). Since extrema in f (and f ′) are in one-to-one correspondence
with nodes in x (and x′, respectively), we know that each pair of aligned extrema in Step (1)
correspond to a pair of nodes in x̃× x̃′. To construct the direct alignment α : [k]→ x̃× x̃′,
we order the pairs found in Step (1) based on the order of the domain coordinates of the
local extrema of f ′. It follows that k is the number of local extrema of f ′. Let (t′i, f

′(t′i))
be the ith extremum based on order of domain coordinates of f ′, and assume, without loss
of generality, that this extremum is a local minimum. Then, α(i) = (αx(i), αx′(i)) is given
by αx′(i) = (min, 12persf ′(t′i)) and αx(i) is the paired node from Step (1).

Lemma 5.9 (Direct Alignment is an Alignment). Let f, f ′ : C → R be nicely tame functions such
that f ′ is very close to f . Let x = B(f) and x′ = B(f ′). The direct alignment, α : [k] → x̃ × x̃

′

constructed in Construction 5.8 is an alignment.

Proof. We show Definition 4.4 holds. By Construction 5.8, we immediately see we have no null
alignments, misalignments, and have a restriction to matching. Hence, Property (1), Property (3),
and Property (4) hold. What remains is showing the alignment preserves order of backbones.

Since the nodes of x′ are ordered by domain coordinates of local extrema of f ′, the alignment
α preserves the order of nodes of x′. We now show that the alignment α also preserves the order



EXTREMAL EVENT GRAPHS 23

of nodes in B(f). Consider nodes αx(i), αx(j) ∈ x = B(f) such that i < j and αx(i), αx(j)
map to local extrema (t, f(t)) and (s, f(s)), respectively. Trivially, t, s are contained in ϕδf (t)

and ϕδf (s), respectively. Since ‖f − f ′‖∞ < δf ≤ min{12persf (ti)}ni=1 by Lemma 5.6, then if t and
s are not adjacent, ϕδf (t) ∩ ϕδf (s) = ∅ by Proposition 1 of [5]. Otherwise t and s are adjacent
and by Lemma 8.2, Statement (3), we have t /∈ ϕδf (s) and s /∈ ϕδf (t). Either way, we find
ι(αx′(i)) < ι(αx′(j)) implies ι(αx(i)) < ι(αx(j)). The same argument in reverse can be used to
show that if i < j, then ι(αx(i)) < ι(αx(j)). Therefore, the order of the backbones B(f) and B(f ′)
is preserved and we have constructed an alignment between B(f) and B(f ′). �

Next, we prove a bound on the absolute difference between aligned weights in the direct align-
ment.

Lemma 5.10 (Bound in Difference in Node Weights in Direct Alignment). Let f, f ′ : C → R

be nicely tame functions such that f ′ is very close to f . Let ε := ‖f − f ′‖∞. Let x = B(f),
x′ = B(f ′), and α : [k]→ x̃× x̃

′ be the direct alignment as defined in Construction 5.8. Then, the
absolute difference in weights between aligned nodes is bounded by ε; that is, for all (x, x′) ∈ im(α),
|wx − wx′ | ≤ ε.

Proof. Let (x, x′) ∈ im(α). Either both represent extrema from f and f ′, or the node x′ is the
empty node.

First, assume that both nodes represent extrema. For this proof, we assume they are minima and
note an analogous argument holds for maxima. Let (t, f(t)) and (t′, f ′(t′)) be the local minima
corresponding to nodes x and x′, respectively. Either both of these extrema do not represent the
essential component in D(f) and D(f ′) or at least one of them does. Suppose neither represents
the essential component. Consider the persistence points p = (f(t), ζf (t)), q = (f ′(t′), ζf ′(t′)) in
D(f) \∆ and D(f ′) \∆ respectively. From Construction 5.8, we know that both p, q ∈ �ε(p). This
implies ‖p− q‖∞ ≤ ε. Hence,

|wx − wx′ | = 1

2
|persf (t)− persf ′(t′)|

=
1

2
|(ζf (t)− f(t))− (ζf ′(t′)− f ′(t′))|

=
1

2
|(ζf (t)− ζf ′(t′)) + (f ′(t′)− f(t))|

≤ 1

2
|ζf (t)− ζf ′(t′)|+ 1

2
|f ′(t′)− f(t)|

≤ ε

2
+

ε

2
= ε.

Next, consider the case at least one of (t, f ′(t)) or (t′, f ′(t′)) represents the essential component.
By the Box Lemma, we can infer that both points have to represent the essential component. Then
we know these points are global minima of f and f ′. Since (f(t),∞) and (f ′(t′),∞) are both
contained in the square of radius ε centered at (f(t),∞) in the extended plane, |f(t)− f ′(t′)| ≤ ε.
Additionally, by Construction 5.8 we know that tmax, a global maximum of f , is paired with t′max, a
global maximum of f ′ such that t′max ∈ ϕδf (tmax). This implies |f(tmax)− f ′(t′max)| ≤ ε. Applying
the same computation as above, we see |wx − wx′ | ≤ ε.

Lastly, consider the case (t′, f ′(t′)) is paired with an empty node. Consider the point (f ′(t′), ζf ′(t′)) ∈
D(f ′). The Box Lemma implies �ε((f

′(t′), ζf ′(t′))) must contain at least one point from D(f). By
assumption (t′, f ′(t′)) is paired with an empty node, and so �ε((f

′(t′), ζf ′(t′)) must contain a point
on the diagonal. Therefore, (f ′(t′), ζf ′(t′)) is within an L∞ distance of ε from a point on the di-

agonal. Because the point (12persf ′(t′) + f(t′), 12persf ′(t′) + f(t′)) is the orthogonal projection of

(f ′(t′), ζf ′(t′)) onto the diagonal, it is the closest point on the diagonal in R2 to (f ′(t′), ζf ′(t′)).
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(c) Direct Alignment between B(f) and B(f ′)

Figure 11. Construction of Direct Alignment. In Figure 11a, f is the black func-
tion while f ′ is the pink function. The black labeled ticks denote the domain co-
ordinates of the local extrema of f and the pink labeled ticks denote the domain
coordinates of the local extrema of f ′. The ε-extremal intervals for the local extrema
of f are illustrated. Since any two points in D(f) where one is not a diagonal point,
have a distance of at least ε, and f ′ ∈ Nε(f), we have f

′ is very close to f . Applying
the Direct Alignment Lemma, we get pairings of points in D(f) and D(f ′) as shown
in Figure 11b. From the pairings in D(f) and D(f ′), we get pairings of nodes with
the label “min” that preserve order. The preservation of order comes from how the
ε-extremal intervals for minima of f are disjoint. We apply an analogous process to
pair nodes with the label “max”. The alignment that is constructed in the Direct
Alignment Lemma for f and f ′ is shown in Figure 11c.

Therefore

(2)

∥∥∥∥(f
′(t′), ζf ′(t′))− (

1

2
persf ′(t′) + f(t′),

1

2
persf ′(t′) + f(t′))

∥∥∥∥
∞

≤ ε.
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Comparing the x-coordinates of pair of points in (2), we find (12persf ′(t′) + f(t′))− f ′(t′) ≤ ε and

comparing the y-coordinates we find ζf ′(t′)− (12persf ′(t′) + f(t′)) ≤ ε. Observe

(
1

2
persf ′(t′) + f(t′))− f ′(t′) = ζf ′(t′)− (

1

2
persf ′(t′) + f(t′)) =

1

2
persf (t).

We find 1
2persf ′(t′) ≤ ε.

We conclude that for all paired extrema,

|wx − wx′ | ≤ ε.

�

We can now prove local stability for the backbone infinity distance.

Lemma 5.11 (Local Backbone Infinity Stability). Let f, f ′ : C → R be nicely tame functions such
that f ′ is very close to f . Then,

dB∞
(B(f), B(f ′)) ≤

∥∥f − f ′
∥∥
∞
.

Proof. In Lemma 5.10, we showed that using the direct alignment between B(f) and B(f ′), the
absolute difference in aligned node weights is bounded by ‖f − f ′‖∞. Since the backbone infinity
distance is defined by using an optimal alignment, we get

dB∞
(B(f), B(f ′)) ≤

∥∥f − f ′
∥∥
∞
.

�

To remove the assumption that f and f ′ are very close and thus to globalize the backbone
infinity stability result, we construct a straight-line homotopy between f and f ′ and consider a
finite number of functions within this homotopy for which every two successive functions are very
close. For each such pair of functions, Lemma 5.11 applies and we are able to apply almost the same
argument as the proof of the Interpolation Lemma in [13]. Because we sample functions between
f and f ′ in the homotopy, we are able to conclude that dB∞

(B(f), B(f ′)) ≤ ‖f − f ′‖∞.

Theorem 5.12 (Backbone Infinity Stability). Let f, f ′ : C → R be nicely tame functions. Then,

dB∞
(B(f), B(f ′)) ≤

∥∥f − f ′
∥∥
∞
.

Proof. Let c := ‖f − f ′‖∞. Define hλ := (1 − λ)f + λf ′ where λ ∈ [0, 1]. This is the family of
convex combinations of f and f ′ forms a linear interpolation between the two functions, starting
at h0 = f and ending at h1 = f ′. Furthermore, we define δ(λ) := δhλ

as in Definition 5.7. Consider
the open cover U of [0, 1] by open intervals Jλ = (λ − δ(λ)/2c, λ + δ(λ)/2c) for all λ ∈ [0, 1]. The
compactness of [0, 1] implies the existence of a finite subcover U ′ of U . Let λ1 < λ2 < · · · < λn be
the midpoints of the open intervals in U ′. Observe, that half the length of Jλ is equal to δ(λ)/2c.
Since any two consecutive intervals Jλi

and Jλi+1
have a non-empty intersection,

λi+1 − λi ≤ δ(λi)/2c+ δ(λi+1)/2c

≤ 2max{δ(λi)/2c, δ(λi+1)/2c}
= max{δ(λi), δ(λi+1)}/c

Furthermore, note

|hλi
− hλi+1

| = |((1− λi)f + λif
′)− ((1− λi+1)f + λi+1f

′)|
= |f(λi+1 − λi)− f ′(λi+1 − λi)|
=

∥∥f − f ′
∥∥
∞
(λi+1 − λi).
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This implies ∥∥hλi
− hλi+1

∥∥
∞

= c(λi+1 − λi) ≤ max{δ(λi), δ(λi+1)}.
Therefore, hλi

is very close to hλi+1
or vice-versa. Either way, Lemma 5.11 applies and we have

dB∞
(hλi

, hλi+1
) ≤

∥∥hλi
− hλi+1

∥∥
∞

for all 1 ≤ i ≤ n − 1. Setting λ0 = 0 and λn+1 = 1, we see the inequality also holds for i = 0 and
i = n because hλ1 is very close to hλ0 , and hλn+1 is very close to hλn

Therefore,

dB∞
(B(f), B(f ′)) ≤

n∑

i=0

dB∞
(B(hλi

), B(hλi+1
))

≤
n∑

i=0

∥∥hλi
− hλi+1

∥∥
∞

= ‖f − g‖∞ .

The first inequality follows from the triangle inequality of the backbone infinity distance (Lemma 8.8).
The last equality follows from how the collection hλi

samples the straight line homotopy from f to
f ′. Thus dB∞

(B(f), B(f ′)) ≤ ‖f − f ′‖∞ . �

5.1.3. Backbone Stability Results. Using Theorem 5.12, we also get stability results for the backbone
distance. If the alignment that realizes the backbone infinity distance between two backbones,
B(f) and B(f ′) is of length K, then the sum of absolute differences of node weights is bounded by
K ‖f − f ′‖∞. This is because the backbone distance is bounded by the sum of absolute differences
in node weights from the alignment realizing the backbone infinity distance.

Corollary 5.13 (Backbone Stability). Let f, f ′ : C → R be nicely tame functions. Let K be the
length of the alignment realizing the backbone infinity distance between B(f) and B(f ′). Then,

dB(B(f), B(f ′)) ≤ K
∥∥f − f ′

∥∥
∞
.

If we are unable to compute K, note that we can bound K by the number of extrema of f plus
the number of extrema of f ′ because that is the longest possible length of an alignment between
B(f) and B(f ′).

5.2. Local Extremal Event DAG Stability. We showed stability between backbones. In this
section, we extend those results to the entire extremal event DAG in a local case (when f ′ is
extremely close to f). We start by proving that the direct alignment for functions we call extremely
close is the optimal backbone alignment for the backbones of those two functions.

Definition 5.14 (Extremely Close). Let f : C → R be a nicely tame function. Let δf be as defined
in Definition 5.5. A nicely tame function f ′ : C → R is extremely close to f if ‖f − f ′‖∞ < δf/2.

The difference between functions that are very close and extremely close is that the constant is
δf is divided by two for functions that are extremely close. This is needed to show that the direct
alignment between two functions that are extremely close is the unique optimal alignment. Proving
this involves several technical lemmas which we prove in Appendix 8.5.

5.2.1. Bounding Differences in Aligned Node and Edge Weights. We next prove a few lemmas that
bound differences in node weights of aligned extrema.

For the rest of this subsection, we use the following assumptions and notation:
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Assumptions 5.15 (Local Stability Assumptions). Let F = {fi}ni=1 and F ′ = {f ′
i}ni=1 be collections

of nicely tame functions from C to R. Furthermore, suppose f ′
i is extremely close to fi for each

i ∈ [n]. Let D = (V,E, ωV , ωE) and D′ = (V ′, E′, ω′
V , ω

′
E) be the extremal event DAGs of F and

F ′, respectively. Let Sα = (Vα, Eα, ωα, ω
′
α) be the extremal event supergraph arising from the set

of alignments α = {αi}ni=1 that is used to compute the extremal event DAG distance between D
and D′.

Lemma 5.16 (Bound on Difference in Node Lives). Assume Assumptions 5.15. Let v(i, j) ∈ Vα.
Then,

|ωα(v(i, j))− ω′
α(v(i, j))| ≤

∥∥fi − f ′
i

∥∥
∞
.

Proof. By Lemma 8.12, the alignment αi between B(fi) and B(f ′
i) is the direct alignment. In

Lemma 5.10, we showed the absolute difference in node weights between aligned nodes is bounded
by ‖fi − f ′

i‖∞. Therefore,

|ωα(v(i, j))− ω′
α(v(i, j))| ≤

∥∥fi − f ′
i

∥∥
∞
.

�

From Lemma 5.16, we can conclude that if f ′ is extremely close to f , then the backbone distance
between B(f) and B(f ′) is bounded by the number of extrema in f ′ multiplied by ‖f − f ′‖∞. This
is because the direct alignment has a length of B(f ′) and the absolute difference in aligned node
weights for each pair is bounded by ‖f − f ′‖∞.

Corollary 5.17 (Bound on Backbone Distance for Extremely Close Functions). Let f, f ′ : C → R

be nicely tame functions such that f ′ is extremely close to f . Let k be the number of extrema of f ′.
Then,

dB(B(f), B(f ′)) ≤ k
∥∥f − f ′

∥∥
∞
.

Next we give a bound on the absolute difference in heights of aligned extrema when every pair
of functions is extremely close. In the following lemma we simplify notation as follows:

• uj := αB(fi)(j)
• u′j := αB(f ′

i)
(j).

Lemma 5.18 (Bound on Difference in Heights of Aligned Extrema). Assume Assumptions 5.15.
Let v(i, j) be a vertex in Sα. Let {αi}ni=1 be the set of backbone alignments between B(fi) and B(f ′

i)
that determines Sα. Let uj ∈ B(fi) and u′j ∈ B(f ′

i). Let (t, fi(t)) and (t′, fi(t
′)) be the local extrema

corresponding to uj and u′j, respectively. Then,

|fi(t)− f ′
i(t

′)| ≤
∥∥fi − f ′

i

∥∥
∞
.

Proof. By Lemma 8.12, αi is the direct alignment for all i ∈ [n]. Recall from Construction 5.8,
that both (fi(t), ζfi(t)) and (f ′

i(t
′), ζf ′

i
(t′)) are contained in the square centered at (fi(t), ζfi(t)) of

radius ‖fi − f ′
i‖∞. Hence, |fi(t)− f ′

i(t
′)| ≤ ‖fi − f ′

i‖∞. �

We now have a bound on the maximum difference between node weights in extremal event
DAGs. What remains is bounding the difference in edge weights between extremal event DAGs
when each pair of functions is extremely close. Let (v(i, k), v(j,m)) be an edge in the extremal
event supergraph. We show

|ωα(v(i, k), v(j,m))− ω′
α(v(i, k), v(j,m))| ≤ max{

∥∥fi − f ′
i

∥∥
∞
,
∥∥fj − f ′

j

∥∥
∞
}.

For Lemma 5.19, recall from Theorem 3.3 that ε∗(t, s) is the infimum ε for which ϕε(t)∩ϕε(s) 6= ∅.
Furthermore, we simplify notation as follows:
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• uk := αB(fi)(k)
• u′k := αB(f ′

i)
(k)

• sm := αB(fj)(m)

• s′m := αB(f ′

j)
(m).

Lemma 5.19 (Bound on Difference of Extremal Interval Intersection Values). Assume Assump-
tions 5.15. Let (v(i, k), v(j,m)) ∈ Eα such that i 6= j, and all four nodes defining these two edges,
uk, u′k, sm, s′m are not empty nodes. Suppose the extrema these nodes represent are (t, fi(t)),
(s, fj(s)), (t

′, f ′
i(t

′)), and (s′, f ′
j(s

′)), respectively. Then,

|ε∗(t, s)− ε∗(t′, s′)| ≤ εi,j

where εi,j := max{‖fi − f ′
i‖∞ ,

∥∥∥fj − f ′
j

∥∥∥
∞
}.

Proof. Consider the case that both (t, fi(t)) and (s, fj(s)) are local minima. In the case that one
or both are local maxima, we replace one, or both fi, fj by the corresponding negative function
and convert the problem to a problem about two minima. Hence, only considering the case that
both are local minima is sufficient. Additionally, we omit superscripts on ε-extremal intervals to
avoid notational clutter. An input of t or s indicates the ε-extremal interval is computed from
fi or fj , respectively. An input of t′ or s′ indicates the ε-extremal interval is computed from

f ′
i or f ′

j , respectively. For convenience of exposition, let εi = ‖fi − f ′
i‖∞, εj =

∥∥∥fj − f ′
j

∥∥∥
∞
, and

εij := max{εi, εj}.
Suppose ε∗(t, s) < ε∗(t′, s′). Let ε > ε∗(t, s). Then ϕε(t) ∩ ϕε(s) 6= ∅. By Lemma 5.18,

|fi(t)− f ′
i(t

′)| ≤ εi ≤ εi,j .

Hence, fi(t) ≤ f ′
i(t

′) + εi,j . Additionally, since ‖fi − f ′
i‖∞ ≤ εi,j ,

(f ′
i − εi,j)(x) ≤ fi(x) for all x ∈ C.

These two inequalities imply fi(t) + ε ≤ f ′
i(t

′) + ε + εi,j and (f ′
i − ε − εi,j)(x) ≤ fi(x) − ε for all

x ∈ C. Recall

ϕε(t) is the connected component of (fi − ε)−1(fi(t) + ε) containing t,

ϕε+εi,j (t
′) is the connected component of (f ′

i − ε− εi,j)
−1(f ′

i(t
′) + ε+ εi,j) containing t′.

Therefore, left(ϕε+εi,j (t
′)) < left(ϕε(t)) and right(ϕε+εi,j (t

′)) > right(ϕε(t)). We get ϕε(t) ⊂
ϕε+εi,j (t

′). Similarly, we get ϕε(s) ⊂ ϕε+εi,j (s
′). The non-empty intersection of ϕε(t) ∩ ϕε(s) im-

plies ϕε+εi,j (t
′) ∩ ϕε+εi,j (s

′) 6= ∅. This non-empty intersection holds true for all ε > ε∗(t, s). Since
ε∗(t, s) < ε∗(t′, s′), we get

ε∗(t′, s′) ≤ εi,j + ε∗(t, s).

Therefore,

ε∗(t′, s′)− ε∗(t, s) ≤ εi,j .

In the case ε∗(t′, s′) < ε∗(t, s), we get ϕε(t
′) ⊂ ϕε+εi,j (t) and ϕε(s

′) ⊂ ϕε+εi,j (s) by symmetry.
Therefore,

ε∗(t, s)− ε∗(t′, s′) ≤ εi,j .

Combining these two cases, we conclude

|ε∗(t, s)− ε∗(t′, s′)| ≤ εi,j .

�

Next, we can bound the absolute difference in aligned edge weights.
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Figure 12. Nested ε-extremal intervals. We see that ϕfi
ε (t) ⊂ ϕ

f ′

i
ε+εi,j

(t′).

Lemma 5.20 (Bound on Differences in Edge Weights). Assume Assumptions 5.15. Then,

|ωα(v(i, k), v(j,m))− ω′
α(v(i, k), v(j,m))| ≤ max{‖fi − gi‖∞ , ‖fj − gj‖∞}.

Proof. Let (t, fi(t)), (s, fj(s)), (t′, f ′
i(t

′)), and (s′, f ′
j(s

′)) be the local extrema corresponding to

nodes αB(fi)(k), αB(fj)(m), αB(f ′

i)
(k), and αB(f ′

j)
(m), respectively. Additionally, we omit super-

scripts on ε-extremal intervals to avoid notational clutter. An input of t or s indicates the ε-extremal
interval is computed from fi or fj , respectively. An input of t′ or s′ indicates the ε-extremal interval
is computed from f ′

i or f
′
j , respectively.

We prove this lemma by discussing several cases. First, we assume that ωα(v(i, k), v(j,m)) and
ω′
α(v(i, k), v(j,m)) are non-zero. Then, by definition,

Ediff := |ωα(v(i, k), v(j,m))− ω′
α(v(i, k), v(j,m))|

= |min{1
2
pers(t),

1

2
pers(s), ε∗(t, s)} −min{1

2
pers(t′),

1

2
pers(s′), ε∗(t′, s′)}|.

Let εi = ‖fi − gi‖∞, εj = ‖fj − gj‖∞, and εi,j = max{εi, εj}. Now we begin to go through
the cases. Note that Ediff can be one of nine absolute differences depending on which value the
minimum is achieved. In the cases where the difference comes from node weights of the same node
or the extremal intersection values, we can apply either Lemma 5.16 or Lemma 5.19. In all other
cases we split the equality Ediff = |U1 −U2| into two cases Ediff = U1 −U2 or Ediff = U2 −U1. We
replace the larger term with one of the possible values from Ediff so that we can apply Lemma 5.16
or Lemma 5.19. For example, in one of the cases, if we assume Ediff = 1

2(pers(s
′)− pers(t)). Then,

pers(s′) ≤ pers(t′). Applying Lemma 5.16, we find

Ediff =
1

2
(pers(s′)− pers(t)) ≤ 1

2
(pers(t′)− pers(t)) ≤ εi ≤ εi,j .

All together, we have 15 cases. We explicitly write these 15 cases out in Appendix 8.6. Based on
these bounds, we conclude in the case that ωα(v(i, k), v(j,m)) and ω′

α(v(i, k), v(j,m)) are non-zero,
Ediff ≤ εi,j .
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Now assume one of ωα(v(i, k), v(j,m)) or ω′
α(v(i, k), v(j,m)) is equal to zero. Without loss of

generality, suppose ω′
α(v(i, k), v(j,m)) = 0. Then,

Ediff = min{1
2
pers(t),

1

2
pers(s), ε∗(t, s)}.

Applying Lemma 5.16, we find

1

2
pers(t) ≤ εi ≤ εi,j ,

1

2
pers(s) ≤ εj ≤ εi,j .

If Ediff = ε∗(t, s), then ε∗(t, s) ≤ 1
2pers(t) ≤ εi ≤ εi,j . Hence, Ediff ≤ εi,j .

Combining all the cases, we can conclude

|ωα(v(i, k), v(j,m))− ω′
α(v(i, k), v(j,m))| ≤ εi,j .

�

Using the bounds we established between aligned node and edge weights in the extremal event
supergraph arising from extremely close functions, we can bound the extremal event DAG distance.

Theorem 5.21 (Extremal Event DAG Stability). Assume Assumptions 5.15. Let ki be the number
of extrema in f ′

i . Let εi := ‖fi − f ′
i‖∞ and εi,j := max{εi, εj}. Let P be the set of unordered pairs

between the first n positive integers. Let Sα|αi
be the restricted subgraph of Sα that is induced by

αi. Furthermore, let i 6= j and denote Ei,j to be the set of cross edges in Sα, that is, (u, v) ∈ Ei,j

if u ∈ Sα|αi
and v ∈ Sα|αj

. Then,

dED(D,D′) ≤
n∑

i=1

kiεi +

n∑

i=1

(
ki
2

)
εi +

∑

(i,j)∈P

|Ei,j |εi,j .

Proof. Let Ei be the set of edges in the extremal event supergraph restricted to the subgraph
induced by αi. Hence, for each edge (u, v) ∈ Ei, we have u, v ∈ Sα|αi

. The extremal event DAG
distance between D and D′ can be expressed as the sum of three terms.

dED(D,D′) =

n∑

i=1

dB(B(fi), B(f ′
i)) +

∑

(u,v)∈Ei

|ωα(u, v)− ω′
α(u, v)|

+
∑

(u,v)∈Ei,j

|ωα(u, v)− ω′
α(u, v)|.

The first term is the sum of backbone distances between B(fi) and B(f ′
i) for each i ∈ [n]. The

second term is the sum of the absolute difference in edge weights where the nodes defining each
edge are from the same backbone alignment. The third term is the sum of the absolute difference
in edge weights where the nodes defining each edge are contained in different backbones.

Applying Corollary 5.17, we know that dB(B(fi), B(f ′
i)) ≤ kiεi. Hence, we can bound the first

term
n∑

i=1

dB(B(fi), B(f ′
i)) ≤

n∑

i=1

kiεi.

Applying Lemma 5.20, and noting both u, v ∈ Sα|αi
, we know that if (u, v) ∈ Ei, then |ωα(u, v)−

ω′
α(u, v)| ≤ εi. There are

(
ki
2

)
edges in Ei. Hence, we can bound the second term by

∑

(u,v)∈Ei

|ωα(u, v)− ω′
α(u, v)| ≤

n∑

i=1

(
ki
2

)
εi.



EXTREMAL EVENT GRAPHS 31

Let |Ei,j | be the cardinality of the set Ei,j . Applying Lemma 5.20, we can bound the third term
∑

(u,v)∈Ei,j

|ωα(u, v)− ω′
α(u, v)| ≤

∑

(i,j)∈P

|Ei,j |εi,j .

Combining the three bounds we find that

dED(D,D′) ≤
n∑

i=1

kiεi +
n∑

i=1

(
ki
2

)
εi +

∑

(i,j)∈P

|Ei,j |εi,j .

�

Note that Theorem 5.21 requires that in collections {fi}ni=1 and {f ′
i}ni=1 each pair (fj , f

′
j) is

extremely close. Therefore, this is a local stability result. Theorem 5.12 offers an approach to use
a local result (Lemma 5.11) to prove a global result. This globalization approach uses a homotopy
that is sampled sufficiently densely so that each consecutive pair satisfies the assumptions of the
local result. However, the key ingredient used to aggregate the local results to a global estimate is
a triangle inequality. It remains an important open question whether extremal event DAG distance
satisfies the triangle inequality. If so, than a similar globalization process would yield a version of
Theorem 5.21 without restrictions on closeness of fj and f ′

j .

6. Applications

We apply the extremal event DAG construction and distance to two applications: (1) quantifying
similarity in replicate experiments of microarray yeast cell cycle data and (2) providing quantitative
evidence that an intrinsic oscillator drives the blood stage cycle of the malaria parasite Plasmodium
falciparum. We discuss how to apply the extremal event DAG construction and distance to the
discrete setting in the supplementary materials. These two datasets were analyzed in [5] and [57],
respectively, using a directed maximal common edge subgraph (DMCES) metric that compared
ε-DAGs (recall ε-DAGs described after Definition 3.2) with a sequence of fixed ε. Because of
the computational complexity of computing the DMCES metric, these calculations were done on
a limited number of time series with a limited number of extrema per time series, i.e., on less
noisy data. Additionally, since the ε-DAGs specify a value of a parameter ε, the experiments were
performed over a range of ε between 0 and 0.15. The construction of extremal event DAGs does not
need the value of ε to be specified. Additionally, both the extremal event DAG construction and
distance can be computed much more quickly than the DMCES metric which has an exponential
time complexity. This all means we can compute distances over much larger sets of genes in a
significantly shorter amount of time.

6.1. Yeast Cell Cycle Data. The first dataset consists of microarray time series transcriptomics
from the yeast Saccharomyces cerevisiae, published in [45]. The yeast cell cycle is well studied
and has experimental validation [23, 11, 24, 54]. The amplitude of the data has been normalized
between -0.5 and 0.5 and its phase has been shifted by alignment using CLOCCS analysis, see
“Appendix A: Yeast Data Analysis” in [5]. Using the CLOCCS analysis, the replicate experiments
were aligned so that the time series start at the same point in the yeast cell cycle. Furthermore,
the data were truncated to one period so that the data analysis focuses on the extrema from a
synchronized cell population, since the production of daughter cells causes increasing levels of cell
division asynchrony that reduces the periodic signal. We analyze two collections of time series data
D1 and D2 that each consists of 16 genes and 265 time points.

We perform three different comparison computations:

(1) We focus on a subset of D1 and D2 that consists of the time series for four genes: SWI4,
YOX1, NDD1, and HCM1. We denote these sub-datasets as D′

1 and D′
2 respectively. We
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then compute the extremal event DAG distance between the extremal event DAGs of D′
1

and D′
2,

dED(DAG(D′
1),DAG(D′

2)).

(2) We consider dataset D′
2 but switch labels between time series for CLB2 and Y OX1. We

call this mislabeled dataset D′
3. Then we compute

dED(DAG(D′
1),DAG(D′

3)).

The comparison between dED(DAG(D′
1),DAG(D′

2)) to dED(DAG(D′
1),DAG(D′

3)) indicates
the impact of the replacement of one time series by another on the extremal event DAG
distance.

(3) Lastly, we assess the distance between the full datasets D1 and D2 by constructing a baseline
distribution for the expected distance. We do this by first by scrambling the gene names in
D2 to create a dataset D̂2. We then compute

dED(DAG(D1),DAG(D̂2)).

We repeat this computation 100 times for 100 random name assignments. This experiment
gives us an idea on the range of possible distances between D1 and D2. We then compare
this distribution to the actual distance

dED(DAG(D1),DAG(D2)).

Since the extremal event DAG distance can be any non-negative number, it can be difficult to
discern how similar D1 and D2 are solely based on computing dED(DAG(D1),DAG(D2)). To gain
a better understanding of how similar D1 and D2 are, we perform computation (3) to get a baseline
distribution of distances between the time series in D1 and time series in D2. This distribution can
then be used as a null hypothesis H0 for testing H1 that D1 and D2 measure gene expression in the
identically behaving cell in the same environmental condition.

Computations 1 & 2. We computed

dED(DAG(D′
1),DAG(D′

2))) = 10.34

dED(DAG(D′
1),DAG(D′

3))) = 15.48.

The mismatched gene dataset causes a 50% increase in distance even though only 25% of the dataset
was perturbed, a substantial change. This result is consistent with the result from numerical
experiment 3 in [5] where the same data were analyzed using ε-DAGs and the DMCES metric.
Specifically, DMCES similarity was computed between the ε-DAGs at ε values ranging between 0
and 0.15. A similarity score of one indicated that the ε-DAGs are equal whereas a similarity score
of 0 indicates the ε-DAGs are very dissimilar. The similarity ranged between 0.7 and 1 for D′

1

and D′
2, whereas the similarity ranged between 0.4 and 0.6 for D′

1 and D′
3. The same qualitative

conclusion can be drawn from our results and the earlier work; namely that replacing one time
series with another decreases similarity, or increases distance, between datasets.

Computation 3. After computing dED(DAG(D1)),DAG(D̂2)) 100 times we get the distribution
of distances shown in Figure 13 with the following statistics

• Maximum Distance = 384.30
• Mean Distance = 341.90
• Minimum Distance = 273.95
• Standard Deviation = 23.14

We found dED(DAG(D1),DAG(D2)) = 150.44. Therefore dED(DAG(D1),DAG(D2)) is roughly
eight standard deviations (see Figure 13) below the mean of the estimated null distribution, which
suggests that there is a significant amount of similarity between D1 and D2.
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a common starting point. Furthermore, Plasmodium falciparum was down-sampled by removing
every odd datapoint. More details on the experiments and data preprocessing can be found in the
supplementary materials of [57]. After the pre-processing steps, our time series contain 119 parasite
genes and 107 mouse genes.

To gain a better understanding of how similar our datasets are, we created a baseline distribution
for each strain or tissue by randomly interchanging gene names and shifting each time series by a
random amount, using the same random shifts as in [57]. Specifically, if we view the values of a
time series as an ordered list h1, h2, . . . , hn of length n, we randomly select 1 ≤ m ≤ n to create a
new shifted time series

hm, hm+1, . . . , hn, h1, h2, . . . , hm−1.

The phase shift operation preserves characteristics of the dataset except for the ordering of ex-
trema. For each strain and tissue, the baseline distance was computed between the unpermuted
and unshifted reference dataset and the permuted and shifted datasets.

We use the following notation for the parasite datasets:

• Let D1 be the collection of time series from strain 3D7. This is the reference dataset.
• Let D2 be the collection of time series from strain FVO-NIH.
• Let D3 be the collection of time series from strain SA250.
• Let D4 be the collection of time series from strain D6.
• Let D′

2 be the collection of shifted and permuted time series of D2.
• Let D′

3 be the collection of shifted and permuted time series of D3.
• Let D′

4 be the collection of shifted and permuted time series of D4.

We perform the following computations to study the parasite data.

(1) Pick 1500 random subsets of 15 genes. With the arbitrary choice of 15 genes fixed, let D̂i

denote the subset of the corresponding time series from Di for i ∈ {1, 2, 3, 4}. Compute

dED(DAG(D̂1),DAG(D̂j))

for each random subset and each j ∈ {2, 3, 4}.
(2) Pick a new set of 1500 random subsets of 15 genes, where D̂i for i ∈ {1, 2, 3, 4} is defined

as above for each subset. Let D̂′
j denote the subset of the shifted and permuted time

series D′
j for j ∈ {2, 3, 4}. Compute dED(DAG(D̂1),DAG(D̂′

j)) for each random subset and

j ∈ {2, 3, 4}.
We do analogous experiments to study the mouse gene data. We use the following notation.

• Let Da be the collection of time series recorded from liver tissue. This is the reference
dataset.
• Let Db be the collection of time series recorded from kidney tissue.
• Let Dc be the collection of time series recorded from lung tissue.
• Let D′

b be the collection of shifted and permuted time series of Db.
• Let D′

c be the collection of shifted and permuted time series of Dc.

We perform the following experiments to study the mouse tissue data.

(1) Pick 1500 random subsets of 15 genes. Let D̂i denote the subset of the corresponding time

series from Di for i ∈ {a, b, c}. Compute dED(DAG(D̂a),DAG(D̂j)) for each random subset
and j ∈ {b, c}.

(2) Pick a new set of 1500 random subsets of 15 genes, where D̂i for i ∈ {1, 2, 3, 4} is defined as

above for each subset. Let D̂′
j denote the subset of the shifted and permuted time series D′

j

for j ∈ {b, c}. Compute dED(DAG(D̂a),DAG(D̂′
j)) for each random subset and j ∈ {b, c}.
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in our samples, 15 versus 6, and incorporated information about all levels of ε instead of only a
small fixed subset of ε. The consistency of results found between the computations validates the
methodology of using extremal event DAGs in place of ε-DAGs.

7. Conclusion

We constructed a weighted directed graph descriptor of collections of time series data that keeps
track of the order and prominence of extrema, and is robust to experimental noise that arises from
taking discrete time samples of a continuous process. Furthermore, we define a distance between
these extremal event DAGs that constructs an extremal event supergraph using a modified version
of the edit distance and then computes the distance by taking the L1 distance between aligned node
and edge weights in the extremal event supergraph. The benefit of this distance is that it can be
computed via dynamic programming and efficiently. We used this distance to compare the similarity
of experimental replicates in yeast cell cycle data, the similarity of circadian gene expression in
different mouse tissues, and the similarity of gene expression across malaria parasite strains. Our
results are consistent with results from other literature [5, 57] that used directed maximal common
edge subgraphs of ε-DAGs [44]. The benefit to using the extremal event DAG methodology is
that the savings in memory and computation speed facilitates the analysis of significantly larger
datasets.

Furthermore, we prove several stability results. In particular, the backbone distance arising
from two functions is bounded by the L∞ distance of the two functions multiplied by the number
of nodes in the backbone infinity alignment. Using backbone stability, we prove the extremal event
DAG distance is stable in a local case. Local here means that the individual time series in one
collection differs from the corresponding time series in the other collection by the amount that
allows direct alignment of the minima and maxima between the two time series. Additionally,
one of the time series can have small amplitude additional maxima and minima. Extension of
the local stability result to a stability between arbitrary multivariate time series is challenging. If
the triangle inequality for the extremal event DAG distance holds, then the local stability of the
extremal event DAG can be used to prove a global stability result using the same technique as in
the proof of backbone stability (Theorem 5.12). While in this paper we define the extremal event
DAG distance using the L1 norm, we suspect that stability also holds if we use any Lp norm. We
leave this generalization as future work.

We focus on a descriptor that is robust to measurement error that arises from taking discrete
time samples of a continuous process. However, there can be other types of uncertainty present in
the data. One type is related to signal processing and is seen as small peaks in the data. If we
want to remove this type of measurement errors from our analysis, we can apply a preprocessing
step using techniques from [42]. This technique applies sublevel set persistence to a time series to
determine a node life threshold. Nodes with a node life below the threshold are classified as results
of signal processing errors, or as noise. Eliminating nodes classified as noise and then computing
extremal event DAGs gives a smaller descriptor of a collection of time series that further increases
the size of computationally feasible datasets. Similar preprocessing steps to remove small peaks
can be made using Fourier transforms [7, 27].

In summary, extremal event DAGs are a new computational tool that can be used alone or in
combination with noise reduction algorithms to summarize and compare collections of time series
data.
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[16] Bree Cummins, Tomáš Gedeon, Shaun Harker, and Konstantin Mischaikow. Model rejection and parameter
reduction via time series. SIAM Journal of Applied Dynamical Systems, 17(2):1589–1616, 2018.

[17] Meryll Dindin, Yuhei Umeda, and Frédéric Chazal. Topological Data Analysis for Arrhythmia Detection through
Modular Neural Networks. In CanadianAI 2020 - 33rd Canadian Conference on Artificial Intelligence, Proc. 33rd
Canadian Conference on Artificial Intelligence, May 2020., Ottawa, Canada, May 2020. 7 pages, 4 figures.

[18] Herbert Edelsbrunner and John Harer. Persistent homology - a survey. Surveys on Discrete and Computational
Geometry: Twenty Years Later, pages 257–282, 2008.

[19] Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. Applied Mathematics. Amer-
ican Mathematical Society, 2010.

[20] Michelle Feng and Mason A. Porter. Persistent homology of geospatial data: A case study with voting. SIAM
Review, 63:67–99, 2021.

[21] Shafie Gholizadeh and Wlodek Zadrozny. A short survey of topological data analysis in time series and system
analysis. arXiv:1809.10745, 2018.

[22] Robert Ghrist. The persistent topology of data. American Mathematical Society. Bulletin. New Series., 45:61–75,
2008.

[23] David Günther, Joseph Salmon, and Julien Tierny. Mandatory critical points of 2d uncertain scalar fields.
Computer Graphics Forum, 33:31–40, 2014.

[24] Steven B. Haase and Curt Wittenberg. Topology and control of the cell-cycle-regulated transcriptional circuitry.
Genetics, 196:65–90, 2014.

[25] Allen Hatcher. Algebraic Topology. Algebraic Topology. Cambridge University Press, 2002.
[26] Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek. Computational Homology, volume 157.

Springer-Verlag, 2004.
[27] Sunil D. Kamath and Philipos C. Loizou. A multi-band spectral subtraction method for enhancing speech

corrupted by colored noise. 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, 4,
2002.

[28] Firas A. Khasawneh and Elizabeth Munch. Topological data analysis for true step detection in periodic piecewise
constant signals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 474, 2018.

[29] Woojin Kim and Facundo Mémoli. Stable signatures for dynamic metric spaces via zigzag persistent homology,
2017. arXiv:1712.04064.

[30] Woojin Kim and Facundo Mémoli. Spatiotemporal persistent homology for dynamic metric spaces. Discrete
Computational Geometry, 66:831–875, 2021.



38 R. BELTON AND B. CUMMINS AND B. T. FASY AND T. GEDEON

[31] Laura A. Simmons Kovacs, Michael B. Mayhew, David A. Orlando, Yuanjie Jin, Qingyun Li, Chenchen Huang,
Steven I. Reed, Sayan Mukherjee, and Steven B. Haase. Cyclin-dependent kinases are regulators and effectors
of oscillations driven by transcription factor network. Molecular Cell, 45(5):669–679, 2012.

[32] Laura A. Simmons Kovacs, David A. Orlando, and Steven B. Haase. Transcription networks and cyclin/cdks:
The yin and yang of cell cycle oscillators. Foundations of Computational Mathematics, 7:2626–2629, 2008.

[33] Peter Lawson, Andrew B. Sholl, J. Quincy Brown, Brittany Terese Fasy, and Carola Wenk. Persistent homology
for the quantitative evaluation of architectural features in prostate cancer. Scientific Reports, 9(1139), 2019.

[34] Yongjin Lee, Senja D. Barthel, Pawe l D lotko, Seyed Mohamad Moosavi, Kathryn Hess, and Berend Smit. High-
throughput screening approach for nanoporous materials genome using topological data analysis: Application to
zeolites. Journal of Chemical Theory and Computation, 14(8):4427–4437, 2018.

[35] Di Ma, Tongyu Liu, Lin Chang, Crystal Rui, Yuanyuan Xiao, Siming Li, John B. Hogenesch, Y. Eugene Chen,
and Jiandie D. Lin. The liver clock controls cholesterol homeostasis through trib1 protein-mediated regulation of
pcsk9/low density lipoprotein receptor (ldlr) axis*. Journal of Biological Chemistry, 290(52):31003–31012, 2015.

[36] John Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.
[37] Dimitriy Morozov and Gunther H. Weber. Distributed merge trees. In Proceedings of the Annual Symposium on

Principles and Practice of Parallel Programming, pages 93–102. ACM, February 2013.
[38] Dmitriy Morozov, Kenes Beketayev, and Gunther H. Weber. Interleaving distance between merge trees. Discrete

Computational Geometry, 49:22–45, 2013.
[39] James R. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.
[40] Ludovic S. Mure, Hiep D. Le, Giorgia Benegiamo, Max W. Chang, Luis Rios, Ngalla Jillani, Maina Ngotho,

Thomas Kariuki, Ouria Dkhissi-Benyahya, Howard M. Cooper, and Satchidananda Panda. Diurnal transcriptome
atalas of primate across major neural and peripheral tissues. Science, 359, 2018.

[41] Audun Myers and Firas A. Khasawneh. On the automatic parameter selection for permutation entropy. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 30(033130), 2020.

[42] Audun Myers, Firas A. Khasawneh, and Brittany Terese Fasy. Separating persistent homology of noise from
time series data using topological signal processing. arXiv:2012.04039, 2020.

[43] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular Biology, 48:443–453, March 1970.

[44] Riley Nerem, Peter Crawford-Kahrl, Bree Cummins, and Tomáš Gedeon. A poset metric from the directed
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8. Appendix

8.1. Properties of ε-Extremal Intervals. We prove some properties of the ε-extremal intervals
that are useful for computing the edge weights. For Lemma 8.1 and Lemma 8.2, we omit the

superscript and subscript f from ϕf
ε and persf since f is the only function we are considering.

Lemma 8.1 (Nesting of ε-Extremal Intervals). Let f : C → R be a nicely tame function. Let t be
the domain coordinate of a local extremum of f . If 0 < ε0 < ε1, then,

ϕε0(t) ⊂ ϕε1(t).

Proof. Assume t is the domain coordinate of a local minimum. Since sublevel sets of a function
form a filtration, we have

(f − ε0)
−1(−∞, f(t) + ε0) ⊂ (f − ε0)

−1(−∞, f(t) + ε1).

At the same time, because ε0 < ε1,

(f − ε0)
−1(−∞, f(t) + ε1) ⊂ (f − ε1)

−1(−∞, f(t) + ε1).

Combining these two statements we find that

(3) (f − ε0)
−1(−∞, f(t) + ε0) ⊂ (f − ε1)

−1(−∞, f(t) + ε1).

Note that ϕε0(t) ∩ ϕε1(t) 6= ∅ because they are connected components of
(f − ε0)

−1(−∞, f(t) + ε0) and (f − ε1)
−1(−∞, f(t) + ε1) respectively that contain t. Therefore

(3) implies ϕε0(t) ⊂ ϕε1(t). An analogous argument holds if t is the domain coordinate of a local
maximum. �

Lemma 8.2 (Properties of ϕε(ti)). Let f : C → R be a nicely tame function. Let t1 < t2 < ... < tn
be the domain coordinates of the local extrema of f . The following statements hold.

(1) The length len(ϕf
ε (t)) increases as a function of ε.

(2) For i < n, ε ≤ 1
2 |f(ti)− f(ti+1)| if and only if ti+1 /∈ ϕε(ti) and ti /∈ ϕε(ti+1).
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(3) For i < n, if ε ≤ 1
2 min{pers(ti), pers(ti+1)}, then ti+1 /∈ ϕε(ti) and ti /∈ ϕε(ti+1).

Proof. Let f and T = {ti}ni=1 be defined as in the lemma statement. We prove the three statements
for local minima first. Let i ∈ [n]. Assume that (ti, f(ti)) is a local minimum. Note that, since
minimum and maximum alternate in T , we know that ti+1 (if it exists) is a local maximum.

Proof of Statement (1) for minima. Consider two values 0 < ε0 < ε1. By Lemma 8.1, we find

ϕε0(ti) ⊂ ϕε1(ti).

Therefore len(ϕε0(ti)) ≤ len(ϕε1(ti)).
Proof of Statement (2) for minima. For the forward direction, we assume i < n and ε ≤ 1

2 |f(ti)−
f(ti+1)|. Since ti is a local minimum and ti+1 is a local maximum, we have ε ≤ 1

2(f(ti+1)− f(ti)),
which implies

(4) f(ti+1)− ε ≥ f(ti) + ε.

By definition of ε-extremal intervals (Definition 2.4) and since ti is a local minimum, any point
x ∈ ϕε(ti) satisfies f(x) − ε < f(ti) + ε. Since we already established that f(ti+1) − ε ≥ f(ti) + ε
in Equation (4), we know that ti+1 /∈ ϕε(ti). Similarly, since ti+1 is a maximum, for any point y ∈
ϕε(ti+1), we know that f(y)+ ε > f(ti+1)− ε. Along with Equation (4), we conclude ti /∈ ϕε(ti+1).

Next, we prove the backward direction by contrapositive. Assume i < n and ε > 1
2 |f(ti)−f(ti+1)|.

Since ti is a local minimum and ti+1 is a local maximum, we have

f(ti+1)− ε < f(ti) + ε.

Therefore, ti+1 ∈ (f − ε)−1(−∞, f(ti) + ε). In order for ti+1 ∈ ϕε(ti), we need to show that ti+1 is
in the connected component of (f−ε)−1(−∞, f(ti)+ε) containing ti. Recalling that left(∗) denotes
the left endpoint of an interval and since ti ∈ ϕε(ti), we have left(ϕε(ti)) < ti < ti+1. In addition,
since ti and ti+1 are adjacent, right(ϕε(ti)) > ti+1. We conclude that ti+1 ∈ ϕε(ti). Therefore,
Statement (2) holds for minima.

Proof of Statement (3) for minima. Statement (3) follows directly from [5, Proposition 4].
For the case where (ti, f(ti)) is a local maximum, we substitute −f for f and follow the proofs

above. �

8.2. Computing Edge Weights Lemma. We prove Theorem 3.3. We first need the following
lemma.

Lemma 8.3 (Comparability of Extrema from Same function when ε is Smaller than Node Weights).
Let F = {fi : C → R}ni=1 be a collection of nicely tame functions where ti1 < ti2 < · · · < tiki are all

the domain coordinates of the local extrema of fi. Let DAG(F ) := (V,E, ωV , ωE) be the extremal
event DAG of F . Let (v(i, j), v(c, d)) ∈ E. Suppose i = c, ε < min{ωV (v(i, j)), ωV (v(c, d))}, and
ϕfi
ε (tij) ∩ ϕfc

ε (tcd) 6= ∅. Then tij and tcd are comparable.

Proof. Since i = c in this case, we omit the superscripts i and c of tij and tcd. Additionally we set

f := fi. Furthermore, we omit the subscript and superscript f from the functions persf and ϕf
ε .

By Proposition 1 and Theorem 2 of [5], one of tj or td is the domain coordinate of a local maximum
while the other is the domain coordinate of a local minimum, and these two extrema are adjacent,
i.e. there are no extrema of f between tj and td. Without loss of generality, suppose (tj , f(tj)) is
a local minimum, (td, f(td)) is a local maximum, and tj < td. By way of contradiction, suppose
tj and td are incomparable. Since we assume that the first two requirements of Definition 3.1 are
satisfied, it is the third condition that is violated. Therefore it is not true that tj ≺ε td nor it is
true that td ≺ε tj . Since tj < td, there exists g ∈ Nε(f) such that for every t′j ∈ ϕε(tj) that is a

domain coordinate of a local minimum of g, and t′d ∈ ϕε(td) that is a domain coordinate of a local
maximum of g, we have t′j > t′d. Consider such t′j and t′d that are adjacent.
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We claim that g(t′j) > f(td)−ε. On the contrary, suppose g(t′j) ≤ f(td)−ε. We show there exists

a local maximum (t′g, g(t
′
g)) such that t′g ∈ ϕε(td) and t′j < t′g, which contradicts the assumption tj

and td are incomparable.
Since g ∈ Nε(f), we have f(td) − ε < g(td). Hence, g(t′j) < g(td). Suppose C = [a1, a2] where

a1, a2 ∈ R. We discuss two cases: either right(ϕε(td)) = a2 or right(ϕε(td)) 6= a2.
We prove Case 1 that right(ϕε(td)) 6= a2. By definition of ε-extremal intervals, f(right(ϕε(td)))+

ε = f(td)− ε. Since g ∈ Nε(f),

g(right(ϕε(td))) < f(right(ϕε(td))) + ε = f(td)− ε.

Recall, f(td) − ε < g(td). Therefore, g(right(ϕε(td))) < g(td). By Statement (3) of Lemma 8.2,
we have td /∈ ϕε(tj). Hence, t′j < td. Furthermore, by assumption t′d < t′j where t′d ∈ ϕε(td).

Hence, t′j > t′d > left(ϕε(td)) and t′j < td < right(ϕε(td)). Thus, t
′
j ∈ ϕε(td). All together we have,

t′j < td < right(ϕε(td)), g(t′j) < g(td), g(td) > g(right(ϕε(td))).

This and the assumption g is nicely tame implies there exists a local maximum (t′g, g(t
′
g)) such

that t′g ∈ (t′j , right(ϕε(td))). Hence, t
′
g ∈ ϕε(td) and t′j < t′g.

We prove Case 2 right(ϕε(td)) = a2. Using the same reasoning as in the case (right(ϕε(td)) 6= a2),
we find

t′j < td < right(ϕε(td)), g(t′j) < g(td).

Furthermore, we must have either

g(td) > g(right(ϕε(td))) or g(a2) = g(right(ϕε(td))) ≥ g(td).

Either way, we can conclude there exists a local maximum t′g ∈ (t′j , a2] ⊂ ϕε(td) of g.

In both cases (right(ϕε(td)) = a2 and right(ϕε(td)) 6= a2) we find there exists a local maximum
(t′g, g(t

′
g)) such that t′g ∈ ϕε(td) and t′j < t′g. This shows that tj ≺ε td, which is a contradiction.

Therefore the claim

g(t′j) > f(td)− ε

holds. A similar argument can be used to show

g(t′d) < f(tj) + ε.

By Statement (3) of Lemma 8.2, tj /∈ ϕε(td) since ε < min{ωV (v(i, j)), ωV (v(c, d))} = 1
2 min{pers(tj), pers(td)}.

Applying Statement (2) of Lemma 8.2, we get ε ≤ 1
2(f(td)− f(tj)). Hence,

g(t′j) > f(td)− ε ≥ 1

2
(f(td) + f(tj)).

g(t′d) < f(tj) + ε ≤ 1

2
(f(td) + f(tj)).

This implies that

g(t′d) < g(t′j).

Since t′d < t′j and (t′d, g(t
′
d)) is a local maximum while (t′j , g(t

′
j)) is local minimum of g, there must

exist domain coordinates of a local minimum and maximum of g between t′d and t′j . Hence, we reach

a contradiction with the assumption that t′d and t′j are adjacent extrema. Therefore, we conclude
that tj and td are comparable.

�

Theorem 3.3 (Computing Edge Weights). Let F = {fi : C → R}ni=1 be a collection of nicely tame
functions where ti1 < ti2 < · · · < tiki are all the domain coordinates of the local extrema of fi. Let

DAG(F ) := (V,E, ωV , ωE) be the extremal event DAG of F . For all edges (v(i, j), v(c, d)) ∈ E, the
following statements hold
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(1) If i = c, then

ωE(v(i, j), v(c, d)) = min{ωV (v(i, j)), ωV (v(c, d))}.

(2) If i 6= c, then

ωE(v(i, j), v(c, d)) = min{ωV (v(i, j)), ωV (v(c, d)), ε
∗(tij , t

c
d)},

where

ε∗(tij , t
c
d) := inf{ε | ϕfi

ε (t
i
j) ∩ ϕfc

ε (tcd) 6= ∅}.

Proof. Assume all hypotheses.
First, we prove Statement (1). Since i = c in this case, we omit the superscripts i and c of tij

and tcd. Additionally we set f := fi. Furthermore, we omit the subscript and superscript f from

the functions persf and ϕf
ε .

First, suppose ε < min{ωV (v(i, j)), ωV (v(c, d))}. We show that tj and td are comparable. We
consider two cases.

Suppose ϕε(tj) ∩ ϕε(td) = ∅. Without loss of generality, assume tj < td. Let g ∈ Nε(f). Using
Proposition 2 and Corollary 2 of [5], we get that ϕε(tj) and ϕε(td) contain local extrema t′j and t′d
of the same type as tj and td. Since ϕε(tj) ∩ ϕε(td) = ∅, tj < td implies t′j < t′d. Therefore, tj and
td are comparable.

Next suppose ϕε(tj)∩ϕε(td) 6= ∅. This is the content of Lemma 8.3 in Appendix 8.2. Altogether
we find that if ε < min{ωV (v(i, j), ωV (v(c, d))}, then tj and td are comparable.

Lastly, we consider the case that ε ≥ min{ωV (v(i, j), ωV (v(c, d))}. By Definition 3.1, tj and td
are incomparable.

We have shown that tj , td are comparable for all ε < min{ωV (v(i, j)), ωV (v(c, d))} and tj , td are
incomparable for all ε ≥ min{ωV (v(i, j)), ωV (v(c, d))}. Therefore,

min{ωV (v(i, j)), ωV (v(c, d))} = inf{ε | tj and td are incomparable}.
We conclude ωE(v(i, j), v(c, d)) = min{ωV (v(i, j)), ωV (v(c, d))}.

Next, we prove Statement (2). Let (tij , fi(t
i
j)) and (tcd, fc(t

c
d)) be local extrema. First, let

ε ≤ min{ωV (v(i, j)), ωV (v(c, d)), ε
∗}.

Then, by definition of ε∗, the intervals ϕfi
ε (tij) and ϕfc

ε (tcd) are disjoint. Additionally, from Proposi-

tion 2 and Corollary 2 of [5], both intervals guarantee existence of local extrema of the appropriate
type under any ε-perturbation. Therefore, tij and tcd are comparable.

Next, if ε∗ < ε ≤ min{ωV (v(i, j)), ωV (v(c, d))}, then ϕfi
ε (tij)∩ϕfc

ε (tcd) 6= ∅. Since a local extremum

of an ε-perturbation can happen anywhere in ϕε(t
i
j) and ϕε(t

c
d), then tij and tcd are incomparable

at ε.
Lastly, if ε ≥ min{ωV (v(i, j)), ωV (v(c, d))}, then by Definition 3.1, tij and tcd are incomparable.

We conclude that ωE(v(i, j), v(c, d)) = min{ωV (v(i, j), ωV (v(c, d)), ε
∗(tij , t

c
d)}. �

8.3. Backbone Distance is A Metric. In order to show the triangle inequality, dB(x, z) ≤
dB(x,y) + dB(y, z), we need a way of composing an alignment between x and y with an alignment
between y and z. This is the content of Construction 8.4 and Lemma 8.5.

Construction 8.4 (Composition of Alignments). Let x, y, z be backbones and α1 : [k]→ x̃×ỹ, α2 :
[l]→ ỹ× z̃ be alignment maps. The composition of α1 and α2 induces an ordered correspondence
between x̃ and z̃ whose nontrivial pairs are given by

A := {(x, z) | ∃y ∈ y s.t. (x, y) ∈ im(α1) and (y, z) ∈ im(α2)} .



EXTREMAL EVENT GRAPHS 43

The pairs in A are ordered using the order given in x. The set A, however does not form a complete
alignment of x and z because xi ∈ x with (xi,0) ∈ im(α1) and zj ∈ z with (0, zj) ∈ im(α2) are not
accounted for in pairs in A. We include all such pairs (xi,0) and (0, zj) to construct a function
α2 ◦ α1 : [s]→ x̃× z̃ in such a way that each pair satisfies

(a) If ιx(xi) < ιx(x) (ιx(x) < ιx(xj)) and (xi, zi) ∈ A ((xj , zj) ∈ A) then for

α2 ◦ α1(s1) = (xi, zi), α2 ◦ α1(s2) = (x,0), α2 ◦ α1(s3)(xj , zj)

we have the order s1 < s2 (s2 < s3).
(b) If ιz(zi) < ιz(z) (ιz(z) < ιz(zj)) and (xi, zi) ∈ A ((xj , zj) ∈ A) then for

α2 ◦ α1(s1) = (xi, zi), α2 ◦ α1(s2) = (0, z), α2 ◦ α1(s3)(xj , zj)

we have the order s1 < s2 (s2 < s3).

An extension of A to an alignment α2 ◦ α1 : [s] → x̃ × z̃ exists, but also that it may not be
unique since there may be multiple options on where to place consecutive insertions. We re-
solve this ambiguity arbitrarily in the following way. If there is a set of consecutive insertions
{(xi1 ,0), (xi2 ,0), . . . , (xik ,0), (0, zj1), . . . , (0, zjs)} between a pair (xi, zi) and a pair (xj , zj), then

we order them starting with the insertions {(xir ,0)}kr=1 ordered by the order given in x, followed
by the insertions {(0, zjr)}sr=1 insertions ordered by the order given in z. We hasted to point out
that the following results (Lemma 8.5, Lemma 8.6, and Lemma 8.8) hold for α2 ◦ α1 defined using
any choice of order of such consecutive insertions.

The ordered correspondence α2 ◦ α1 is, in fact, an alignment:

Lemma 8.5 (Composition is an Alignment). Let x, y, z be backbones and α1 : [k] → x̃ × ỹ,
α2 : [l]→ ỹ× z̃ be alignment maps. Then, α2 ◦ α1 is an alignment between x and z.

Proof. We show that all properties of Definition 4.4 hold. Since α1, α2 are alignments, they contain
no null alignments or misalignments. This implies that α2 ◦ α1 also contains no null alignments or
misalignments. Furthermore, im(α2 ◦α1) contains all x ∈ x that are nontrivially aligned with y ∈ y
along with all x ∈ x that are aligned with an insertion. Hence all x ∈ x appear in the image of
(α2 ◦α1)x exactly once. The same can be said for all z ∈ z. Therefore, Property (1), Property (3),
and Property (4) of Definition 4.4 hold.

Lastly, we show that α2 ◦ α1 preserves order of the backbones x and z. First consider the set of
nontrivial pairs A. We show the order of the (partial) backbones x and z is preserved in this set. By
construction, we know the order of x is preserved. Replacing each pair (x, z) ∈ A by (x, y) ∈ im(α1)
where (y, z) ∈ im(α2), we see the order of y is preserved because α1 is an alignment. Next, replacing
each of these pairs with (y, z) where (y, z) ∈ im(α2), we see that order z is preserved in A because α2

is an alignment. Hence, the order of the backbones x and z are preserved in A. By Construction 8.4,
each remaining trivial pair is added to the set A so that the order of the backbones x and z are
preserved. Thus, Property (2) of Definition 4.4 also holds and we have an alignment α2◦α1 between
x and z. �

Next, we prove that the backbone distance satisfies the triangle inequality. We consider three
backbones x,y, and z. We use optimal alignments between x and y, and y and z, to construct an
alignment between x and z. We show that the constructed alignment between x and z satisfies the
triangle inequality. Since the cost of the alignment between x and z that we find is an upper bound
of the cost of an optimal alignment between x and z, the backbone distance must also satisfy the
triangle inequality.

Lemma 8.6 (Backbone Distance Satisfies Triangle Inequality). Let x, y, z be backbones. Then,

dB(x, z) ≤ dB(x,y) + dB(y, z).
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Proof. Let α1 : [k] → x̃ × ỹ, α2 : [m] → ỹ × z̃ be optimal alignments. Consider the composition
alignment α2 ◦ α1 from Construction 8.4. Define A as in Construction 8.4,

Ax := {(x, y) ∈ im(α1) | ∃z ∈ z s.t. (y, z) ∈ im(α2)},
and

Az := {(y, z) ∈ im(α2) | ∃x ∈ x s.t. (x, y) ∈ im(α1)}.
We start by considering and justifying all the relations we need in the triangle inequality compu-
tation. Since dB(x, z) is computed using an optimal alignment between x and z and α2 ◦ α1 is one
alignment,

(5) dB(x, z) ≤
∑

(x,z)∈im(α2◦α1)

|wx − wz|+
∑

(x,0)∈im(α2◦α1)

wx +
∑

(0,z)∈im(α2◦α1)

wz

We apply the L1 norm triangle inequality to the first term in (5) to get

(6)
∑

(x,z)∈im(α2◦α1)

|wx − wz| ≤
∑

(x,y)∈Ax

|wx − wy|+
∑

(y,z)∈Az

|wy − wz|.

Now we discuss the second term in (5). Define

X(y,0) := {(x,0) ∈ im(α2 ◦ α1) | ∃y ∈ y s.t. (x, y) ∈ im(α1) \Ax}.
Observe, if (x, y) ∈ im(α1) \ Ax, then for all z ∈ z, (y, z) /∈ im(α2). Hence, (y,0) ∈ im(α2). This
implies the set

(x× {0}) ∩ im(α2 ◦ α1) = ((x× {0}) ∩ im(α1)) ∪X(y,0)

and this union is disjoint. Thus,

(7)
∑

(x,0)∈im(α2◦α1)

wx =
∑

(x,0)∈im(α1)

wx +
∑

(x,0)∈X(y,0)

wx.

By definition of X(y,0), for each (x,0) ∈ X(y,0), there exists y ∈ y such that (x, y) ∈ im(α1) \Ax

and, at the same time, (y,0) ∈ im(α2). Noting this observation and applying the triangle inequality
from the L1-norm to the last term of Equation (7), gives

∑

(x,0)∈im(α2◦α1)

wx ≤
∑

(x,0)∈im(α1)

wx +
∑

im(α1)\Ax

|wx − wy|

+
∑

(y,0)∈im(α2) s.t. (x,y)∈im(α1)

wy.
(8)

Now we discuss the third term in (5). Define

Z(0,y) := {(0, z) ∈ im(α2 ◦ α1) | ∃y ∈ y s.t. (y, z) ∈ im(α2) \Az}.
Similarly, the set

({0} × z) ∩ im(α2 ◦ α1) = (({0} × z) ∩ im(α2)) ∪ Z(0,y).

This implies

(9)
∑

(0,z)∈im(α2◦α1)

wz =
∑

(0,z)∈im(α2)

wz +
∑

(0,z)∈Z(0,y)

wz.



EXTREMAL EVENT GRAPHS 45

By definition, for each (0, z) ∈ Z(0,y), there exists y ∈ y such that (y, z) ∈ im(α2) \ Az and
(0, y) ∈ im(α1). Applying the triangle inequality from the L1-norm to the last term of Equation
(9), we get

∑

(0,z)∈im(α2◦α1)

wz ≤
∑

(0,z)∈im(α2)

wz +
∑

(y,z)∈im(α2)\Az

|wz − wy|

+
∑

(0,y)∈im(α1) s.t. (y,z)∈im(α2)

wy.
(10)

We derive two additional sets of relationships that will be used in the final estimate. We first
note that since im(α1) ∩ (x× y) = Ax ∪ ((im(α1) ∩ (x× y)) \Ax) and this union is disjoint,

(11)
∑

(x,y)∈Ax

|wx − wy|+
∑

(x,y)∈im(α1)\Ax

|wx − wy| =
∑

(x,y)∈im(α1)

|wx − wy|.

Analogously, since im(α2)∩ (y×z) = Az∪ ((im(α2)∩ (y×z))\Az) and this union is disjoint. Thus,

(12)
∑

(y,z)∈Az

|wy − wz|+
∑

(y,z)∈im(α2)\Az

|wy − wz| =
∑

(y,z)∈im(α2)

|wy − wz|.

The second set of relationships are inequalities. First, notice if (y, z) ∈ im(α2) \Az, then y must
align with an empty node in the alignment α1. Hence,

{(0, y) | (y, z) ∈ im(α2) \Az} ⊂ {(0, y) ∈ im(α1)}.

This implies

(13)
∑

(0,y) s.t. (y,z)∈im(α2)\Az

wy ≤
∑

(0,y)∈im(α1)

wy.

Finally, we note that {(y,0) ∈ im(α2) | (x, y) ∈ im(α1)} ⊂ im(α2) ∩ (y× {0}). Therefore,

(14)
∑

(y,0)∈im(α2) s.t. (x,y)∈im(α1)

wy ≤
∑

(y,0)∈im(α2)

wy

Now we can put all these relations together to prove the backbone distance satisfies the triangle
inequality.
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dB(x, z) ≤
∑

(x,z)∈im(α2◦α1)

|wx − wz|+
∑

(x,0)∈im(α2◦α1)

wx +
∑

(0,z)∈im(α2◦α1)

wz

by Equation (5)

≤
∑

(x,y)∈Ax

|wx − wy|+
∑

(y,z)∈Az

|wy − wz|+
∑

(x,0)∈im(α2◦α1)

wx

+
∑

(0,z)∈im(α2◦α1)

wz by Equation (6)

≤
∑

(x,y)∈Ax

|wx − wy|+
∑

(x,y)∈im(α1)\Ax

|wx − wy|

+
∑

(x,0)∈im(α1)

wx +
∑

(y,0)∈im(α2) s.t. (x,y)∈im(α1)

wy

+
∑

(y,z)∈Az

|wy − wz|+
∑

(y,z)∈im(α2)\Az

|wz − wy|

+
∑

(0,y)∈im(α1) s.t. (y,z)∈im(α2)

wy +
∑

(0,z)∈im(α2)

wz

by Equations (8) and (10)

≤
∑

(x,y)∈im(α1)

|wx − wy|+
∑

(x,0)∈im(α1)

wx +
∑

(0,y)∈im(α1)

wy

+
∑

(y,z)∈im(α2)

|wy − wz|+
∑

(y,0)∈im(α2)

wy +
∑

(0,z)∈im(α2)

wz

by Equations (11), (13), (12), and (14)

= dB(x,y) + dB(y, z).

Hence, dB(x, z) ≤ dB(x,y) + dB(y, z).
�

We can now prove the backbone distance is a metric.

Proposition 8.7 (Backbone Distance is a Metric). The backbone distance (Definition 4.8) is a
metric.

Proof. Let x, y be backbones. Recall that for each x ∈ x, we can write x = (sx, wx); likewise for
y ∈ y. Let α : [k]→ x̃× ỹ be an optimal alignment. We verify all properties of a metric.

Non-Negativity. Since all node weights are non-negative, dB(x,y) ≥ 0.
Symmetry. By construction, dB is symmetric; see (1).
Definiteness. If x = y, then the optimal alignment aligns each node with itself, and there are no

insertions. Hence, all node weights match and dB(x,y) = 0.
On the other hand, assume dB(x,y) = 0. This implies

0 =
∑

(x,y)∈im(α)

|wx − wy|+
∑

(x,0)∈im(α)

wx +
∑

(0,y)∈im(α)

wy.

Since all weights are non-negative, the latter two summands (corresponding to nodes aligned with
insertions) sum to zero. Since there are no null alignments (Definition 4.4 Property (1)), every
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node in x is aligned with a node in y. We have

0 =
∑

(x,y)∈im(α)

|wx − wy|

and so wx = wy for all nontrivial pairs (x, y). Additionally, if (x, y) ∈ im(α), we know that sx = sy.
Since this is true for all nodes, we must have x = y.

Triangle Inequality. By Lemma 8.6, the triangle inequality holds.
Therefore, the backbone distance is a metric.

�

8.4. Backbone Infinity Distance is A Metric. We show the backbone infinity distance is a
metric. We start by proving that the triangle inequality holds.

Lemma 8.8 (Backbone Infinity Distance Satisfies Triangle Inequality). Let x,y, z be backbones.
Then,

dB∞
(x, z) ≤ dB∞

(x,y) + dB∞
(y, z)

Proof. Let α1 : [k] → x̃ × ỹ, α2 : [m] → ỹ × z̃ be optimal alignments. Consider the composition
alignment α2 ◦ α1 from Construction 8.4. Define A as in Construction 8.4,

Ax := {(x, y) ∈ im(α1) | ∃z ∈ z s.t. (y, z) ∈ im(α2)},
and

Az := {(y, z) ∈ im(α2) | ∃x ∈ x s.t. (x, y) ∈ im(α1)}.
Let

C1 := max
(x,z)∈im(α2◦α1)

{|wx − wz|}, C2 = max
(x,0)∈im(α2◦α1)

{wx}, C3 = max
(0,z)∈im(α2◦α1)

{wz}.

Because dB∞
(x, z) is computed from an optimal alignment between x and z, then

dB∞
(x, z) ≤ max{C1, C2, C3}.

Suppose max{C1, C2, C3} = C1. Let (x, z) ∈ im(α2 ◦ α1) such that |wx − wz| = C1. Observe
since (x, z) ∈ im(α2 ◦ α1) then there exists y ∈ y such that (x, y) ∈ im(α1) and (y, z) ∈ im(α2).
This observation and the triangle inequality from the L1-norm implies

|wx − wz| ≤ |wx − wy|+ |wy − wz|
≤ dB∞

(x,y) + dB∞
(y, z).

Hence, in the case max{C1, C2, C3} = C1, we have dB∞
(x, z) ≤ dB∞

(x,y) + dB∞
(y, z).

Next, suppose max{C1, C2, C3} = C2. Let (x,0) ∈ im(α2 ◦ α1) such that wx = C2. Define

X(y,0) := {(x,0) ∈ im(α2 ◦ α1) | ∃y ∈ y s.t. (x, y) ∈ im(α1) \Ax}.
Observe, if (x, y) ∈ im(α1) \ Ax, then for all z ∈ z, (y, z) /∈ im(α2). Hence, (y,0) ∈ im(α2). This
implies the set

(x× {0}) ∩ im(α2 ◦ α1) = ((x× {0}) ∩ im(α1)) ∪X(y,0)

and this union is disjoint. Either (x,0) ∈ (x × {0}) ∩ im(α1) or (x,0) ∈ X(y,0). If (x,0) ∈
(x× {0}) ∩ im(α1), then

C2 = wx ≤ dB∞
(x,y) ≤ dB∞

(x,y) + dB∞
(y, z).

Now suppose (x,0) ∈ X(y,0). By definition ofX(y,0), there exists y ∈ y such that (x, y) ∈ im(α1)\Ax

and, at the same time, (y,0) ∈ im(α2). Noting this observation and applying the triangle inequality
from the L1-norm gives

wx ≤ |wx − wy|+ wy

≤ dB∞
(x,y) + dB∞

(y, z).
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We can conclude that in the case max{C1, C2, C3} = C2 that dB∞
(x, z) ≤ dB∞

(x,y) + dB∞
(y, z).

Lastly, suppose max{C1, C2, C3} = C3. Let (0, z) ∈ im(α2 ◦ α1) such that wz = C3. Define

Z(0,y) := {(0, z) ∈ im(α2 ◦ α1) | ∃y ∈ y s.t. (y, z) ∈ im(α2) \Az}.
Similarly, the set

({0} × z) ∩ im(α2 ◦ α1) = (({0} × z) ∩ im(α2)) ∪ Z(0,y)

and this union is disjoint. Either (0, z) ∈ ({0} × z) ∩ im(α2) or (0, z) ∈ Z(0,y). If (0, z) ∈
({0} × z) ∩ im(α2), then

C3 = wz ≤ dB(y, z) ≤ dB(x,y) + dB(y, z).

Now suppose (0, z) ∈ Z(0,y). By definition of Z(0,y), there exists y ∈ y such that (y, z) ∈ im(α2)\Az

and (0, y) ∈ im(α1). Noting this observation and applying the triangle inequality from the L1-norm,
we get

wz ≤ |wz − wy|+ wy

≤ dB∞
(y, z) + dB∞

(x,y).

We can conclude in the case max{C1, C2, C3} = C3 that dB∞
(x, z) ≤ dB∞

(x,y) + dB∞
(y, z).

Therefore, the backbone infinity distance satisfies the triangle inequality. �

Proposition 8.9 (Backbone Infinity Distance is a Metric). Let x,y, z be backbones. The backbone
infinity distance (Definition 5.1) satisfies all properties of a metric.

Proof. Recall that for each x ∈ x, we can write x = (sx, wx); likewise for y ∈ y. Let α : [k]→ x̃× ỹ
be an optimal alignment. We verify all properties of a metric.

Non-Negativity. Since all node weights are non-negative, dB∞
(x,y) ≥ 0.

Symmetry. By construction, dB∞
is symmetric; see Definition 5.1.

Definiteness. If x = y, then the optimal alignment aligns each node with itself, and there are no
insertions. Hence, all node weights match and dB∞

(x,y) = 0.
On the other hand, assume dB∞

(x,y) = 0. This implies

0 = inf
α

max |ωx(αx(i))− ωy(αy(i))|.

Therefore, |ωx(αx(i))− ωy(αy(i))| ≤ 0 for all i ∈ [n]. Furthermore, |ωx(αx(i))− ωy(αy(i))| ≥ 0 for
all i ∈ [n]. Thus, |ωx(αx(i))−ωy(αy(i))| = 0 for all i ∈ [n]. Hence, each aligned pair of nodes must
have the same node weight. By Definition 4.4, we never align two empty nodes. This implies each
node in x is aligned with a node in y. Furthermore, each aligned pair must have the same label by
Definition 4.4. We can conclude x = y.

Triangle Inequality. By Lemma 8.8, the triangle inequality holds.
Therefore, the backbone infinity distance is a metric. �

8.5. Lemmas Used For Proving Lemma 8.12 that Direct Alignment is Optimal and
Unique when Functions are Extremely Close.

Lemma 8.10 (Extremal Pairs With Node Life Differences Greater Than ε). Let f, f ′ : C → R be
nicely tame functions such that f ′ is extremely close to f . Let ε := ‖f − f ′‖∞. Let (t, f(t)) be a
local minimum of f and (t′, f ′(t′)) be a local minimum of f ′. Suppose p := (f(t), ζf (t)) ∈ D(f) \∆
and q := (f ′(t′), ζf ′(t′)) ∈ D(f ′) ∩�ε(p). Then,

(1) 1
2persf ′(t′) > ε.

(2) |12persf ′(t′)− 1
2persf (s)| > ε for all (f(s), ζf (s)) ∈ D(f) \�ε(p).

Proof. Suppose p := (f(t), ζf (t)) ∈ D(f) \∆ and q := (f ′(t′), ζf ′(t′)) ∈ D(f ′) ∩�ε(p).
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(1) We first show 1
2persf ′(t′) > ε. Consider �4ε(p). Since f ′ is extremely close to f , ε < δf/2.

Hence, 4ε < 2δf . Recall 2δf is at most the smallest distance between any two points in
D(f), provided that at least one point is not on the diagonal. Therefore, �4ε(p) does not
intersect the diagonal. Consider a square of radius 4ε where the right bottom corner is the
point (f(t) + 4ε, f(t) + 4ε), that is, �4ε((f(t), f(t) + 8ε)). Since q ∈ D(f ′) ∩ �ε(p), the
difference of the y- and x- coordinates of q (which is the persistence of q) is bounded below
by the difference of y- and x- coordinates of the point (f(t) + ε, f(t) + 7ε), see Figure 16a.
Hence,

1

2
persf ′(t′) >

1

2
((f(t) + 7ε)− (f(t) + ε)) = 3ε > ε.

(2) Let (f(s), ζf (s)) ∈ D(f) \ �ε(p). Since f ′ is extremely close to f , ε < δf/2 and hence
2ε < δf . Since δf is at most half the smallest distance between two points in D(f) where at
least one point is not on the diagonal, the squares of radius 2ε centered at different points
in D(f) \∆ are all disjoint. This implies

‖(f(t), ζf (t))− (f(s), ζf (s))‖∞ > 2ε.

Furthermore, by the direct alignment, we know q ∈ �ε(p). This implies q /∈ �2ε((f(s), ζf (s))).
Consider the point ((f(s)− 2ε), ζf (s)). From planar geometry (See Figure 16b),

|persf ′(t′)− persf (s)| > |(ζf (s)− f(s))− (ζf (s)− (f(s)− 2ε))| = 2ε.

Therefore, 1
2 |persf ′(t′)− persf (s)| > ε.

�

∞

}4ε

f(t)

6ε

f(t) + ε

f(t) + 8ε

( f(t) + 4ε, f(t) + 4ε)

f(t) + 7ε

}

ε

(a) Case 1

∞

}2ε

f(s)

ζf(s)

f(s) − 2ε

(b) Case 2

Figure 16. Geometric Arguments for Lemma 8.10. In Figure 16a, 1
2persf ′(t′) >

1
2((f(t) + 7ε) − (f(t) + ε) = 3ε > ε. In Figure 16b, 1

2 |persf ′(t′) − persf (s)| >
1
2 |(ζf (s)− f(s))− (ζf (s)− (f(s)− 2ε))| = ε.

Next, we need the following technical lemma that is used to prove the uniqueness and optimality
of the direct alignment for extremely close and nicely tame functions.
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Lemma 8.11 (Bijections Within Boxes). Let f, f ′ : C → R be nicely tame functions such that f ′ is
extremely close to f . Let α be the direct alignment defined in Construction 5.8 between x := B(f)
and x′ := B(f ′). Suppose η is a different alignment between x and x′ such that cost(η) ≤ cost(α).
For each x′ ∈ x′, let xα ∈ x̃ be the unique element such that (xα, x

′) ∈ im(α). For each x′ ∈ x′,
define xη similarly. Suppose there exists x′ ∈ x′ such that

|wx′ − wxη | ≤ |wx′ − wxα |
and xη 6= xα. Then

(1) |wx′ − wxη | = |wx′ − wxα |.
(2) There exists z′ ∈ x′ for which |wz′ − wxη | > ε where ε := ‖f − f ′‖∞.

Proof. We prove Statement (1).
Let (t′, f ′(t′)) be the local extemum of f ′ associated with node x′, and let (t, f(t)) be the local

extremum of f associated with xα. Without loss of generality, we asume (t′, f ′(t′)) is a local
minimum. (Note that if (t′, f ′(t′)) is a local maximum, then we apply the same argument with −f ′

and −f). Since (xα, x
′) ∈ im(α), we know that (t, f(t)) is also a local minimum. We first prove,

by the way of contradiction, that neither xη nor xα is the empty node.
If xη is the empty node, then, by the assumption xη 6= xα, it follows that xα is not the empty

node. From Construction 5.8, we know that (f ′(t′), ζf ′(t′)) ∈ D(f ′) ∩�ε(f(t), ζf (t)).
Applying Lemma 8.10, we find

(15) wx′ > ε.

On the other hand, by assumption,

|wx′ − wxη | ≤ |wx′ − wxα | ≤ ε,

where the last inequality follows from Lemma 5.10. Finally, using (15) and that wxη = 0, we have

|wx′ − wxη | = wx′ > ε,

giving a contradiction. Therefore, we conclude that xη is not the empty node.
If xα is the empty node, then by the same argument as above, we arrive at contradiction.

Therefore, xα is also not the empty node.
Therefore, neither xη nor xα is an empty node. Let (sη, f(sη)) be the local extremum of f

associated with node xη. By Lemma 5.10, |wx′ − wxα | ≤ ε. Additionally, consider the point
p = (f(sη), ζf (sη)) ∈ D(f) and �ε(p). In Construction 5.8, we established a bijection between the
multiplicity of p, denoted µ(p), and the number of points contained in D(f ′)∩�ε(p). Additionally,
in Lemma 5.10, we showed for all points (f ′(x), ζf ′(x)) ∈ D(f ′) ∩ �ε(p), we have 1

2 |persf ′(x) −
persf (sη)| ≤ ε. Furthermore, by Lemma 8.10, 1

2 |persf ′(y) − persf (sη)| > ε for all (f ′(y), ζf ′(y)) ∈
D(f ′) \�ε(p). By assumption,

(16) |wx′ − wxη | ≤ |wx′ − wxα | ≤ ε.

Let (sα, f(sα)) be the local extremum of f associated with node xα. Since the only point of D(f)
contained in the square �ε(p) is the point p with multiplicity µ(p), we must have (f(sη), ζf (sη)) =
(f(sα), ζf (sα)) in order for (16) to hold. Therefore, the two extrema of f have the same node lives
and thus wxη = wxα . We can conclude

|wx′ − wxη | = |wx′ − wxα |,
as was to be shown to prove Statement (1).

Next we prove Statement (2). We note that the ε-extremal intervals discussed in this proof
are all constructed from f . We claim there exists a local extremum (s′, f ′(s′)) of f ′ such that
(f ′(s′), ζf ′(s′)) ∈ D(f ′)∩�ε(p) and is aligned via η with an extremum (s, f(s)) such that (f(s), ζf (s)) ∈
D(f) \�ε(p). By way of contradiction, suppose that is not the case. Hence, all persistence points
in D(f ′) ∩ �ε(p) are paired with persistence points in D(f) ∩ �ε(p). Since η 6= α, η restricted to
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D(f)∩�ε(p) is a bijection onto D(f ′)∩�ε(p) that is different from the bijection α. In other words,
if we denote γ := α|D(f)∩�ε(p) and γ′ := η|D(f)∩�ε(p), we have γ 6= γ′. By Construction 5.8 of α and
noting η 6= α, there exists an extremum (s′, f ′(s′)) that aligns via η with an extremum (s, f(s))
such that s′ does not belong to the interval of size ε around s; that is, s′ /∈ ϕε(s). Without loss of
generality, suppose s < s′. Since f ′ is extremely close to f , the number of extrema with persistence
points contained in (D(f)∪D(f ′))∩�ε(p) where the domain coordinates are greater than s is the
same for both f and f ′. Let

A := {(t, f(t)) | (f(t), ζf (t)) ∈ D(f) ∩�ε(p) and t > s}
be the set of extrema of f whose persistence points are contained in D(f) ∩ �ε(p) such that the
domain coordinates of these extrema are greater than s. Additionally, let

B := {(t, f ′(t)) | (f ′(t), ζf ′(t)) ∈ D(f ′) ∩�ε(p) and t > s′}
To preserve order in η, elements of A must be aligned with the elements of B. Since |A| > |B|,

by the pigeonhole principle, at least two extrema of f are aligned by η with the same extremum
of f ′. This contradicts the fact that η is a bijection. This contradiction shows that there exists a
z ∈ x′ for which |wz′ − wzη | > ε. By construction of the direct alignment, |wz′−wzη | ≤ ε. Therefore,
|wz′ − wzη | > |wz′ − wzη |.

�

Next, we prove the uniqueness and optimality of the direct alignment for extremely close and
nicely tame functions.

Lemma 8.12 (Direct Alignment Gives Optimal Backbone Alignment). Let f, f ′ : C → R be
nicely tame functions such that f ′ is extremely close to f . Then, the direct alignment defined in
Construction 5.8 is the unique optimal alignment that realizes dB(B(f), B(f ′)).

Proof. Let α be the direct alignment between x := B(f) and x′ := B(f ′). Recall in Definition 4.1
that each x ∈ x can be written as a tuple x = (sx, wx); likewise, we can write x′ ∈ x′ as x′ =
(sx′ , wx′). By way of contradiction, suppose η is a different alignment between x and x′ such that
cost(η) ≤ cost(α). Recall from the construction of the direct alignment (Construction 5.8) that
the length of the direct alignment is the number of nodes in x′. By Construction 5.8, for each
x′ ∈ x′, there exists a unique xα ∈ x̃ such that (xα, x

′) ∈ im(α). Hence, we can write

cost(α) =
∑

(x,x′)∈im(α)

|wx − wx′ | =
∑

x′∈x′

|wx′ − wxα |.

Since η is an alignment, it must align all nodes of x′. Hence, we have len η ≥ lenx′ = lenα. Let xη
denote the unique element of x̃ such that (xη, x

′) ∈ im(η). We now discuss the following logical
dichotomy: either

Case 1: for all x′ ∈ x′, |wx′ − wxη | > |wx′ − wxα |, or
Case 2: there exists at least one x′ ∈ x′ for which |wx′ − wxη | ≤ |wx′ − wxα |.

We first consider Case 1. Suppose, for all x′ ∈ x′, we have |wx′ − wxη | > |wx′ − wxα |. Since η
aligns all nodes of x′, we have the first inequality below

cost(η) ≥
∑

x′∈x′

|wx′ − wxη |

>
∑

x′∈x′

|wx′ − wxα |

= cost(α).

This is a contradiction with cost(η) ≤ cost(α).
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Now, we consider Case 2. Suppose there exists x′ ∈ x′ for which

(17) |wx′ − wxη | ≤ |wx′ − wxα |.
If xη = xα for all such x′ ∈ x′, then we get that either η is the same alignment as α or there must

exist y′ ∈ x′ for which (17) is not true and hence |wy′ − wyη | > |wy′ − wyα |. In particular, since for
all instances where |wx′ − wxη | ≤ |wx′ − wxα |, xη = xα, this implies |wx′ − wxη | = |wx′ − wxα |. For
all other y′ ∈ x′, we must have |wy′−wxη | > |wy′−wxα |. Therefore in this case, cost(η) > cost(α).
In either case, we have a contradiction with cost(η) ≤ cost(α).

Hence, there must exist some x′ ∈ x′ for which (17) holds and xη 6= xα.
In Lemma 8.11, we show that both of the following statements are true:

(a) |wx′ − wxη | = |wx′ − wxα |.
(b) There exists a z′ ∈ x′ for which |wz′ − wxη | > ε where ε := ‖f − f ′‖∞.

From (a) and (b), we find that for all x′ ∈ x′ for which |wx′ −wxη | ≤ |wx′ −wxα | and xη 6= xα, the
equality |wx′ − wxη | = |wx′ − wxα | must hold. Furthermore, there exists z′ ∈ x′ for which

|wz′ − wzη | > |wz′ − wzα |.
For all remaining y′ ∈ x′, we have

|wy′ − wyη | ≥ |wy′ − wyα |.
Putting this all together, we obtain

cost(η) ≥
∑

x′∈x′

|wx′ − wxη |

>
∑

x′∈x′

|wx′ − wxα |

= cost(α),

which again contradicts the assumption that cost(η) ≤ cost(α).
We conclude that any alignment that is different from the direct alignment has a higher cost.

Therefore, the direct alignment is the unique optimal alignment that realizes dB(x,x
′) = dB(B(f), B(f ′)).

�

8.6. Cases for Bound Differences in Edge Weights in Lemma 5.20.

(1) Ediff = 1
2 |pers(t)− pers(t′)|. Applying Lemma 5.16, we find

Ediff =
1

2
|pers(t)− pers(t′)| ≤ εi ≤ εi,j .

(2) Ediff = 1
2 |pers(s)− pers(s′)|. Applying Lemma 5.16, we find

Ediff =
1

2
|pers(s)− pers(s′)| ≤ εj ≤ εi,j .

(3) Ediff = |ε∗(t, s)− ε∗(t′, s′)|. Applying Lemma 5.19, we find

Ediff = |ε∗(t, s)− ε∗(t′, s′)| ≤ εi,j .

(4) Ediff = 1
2(pers(t)− pers(s′)). Then, pers(t) ≤ pers(s). Applying Lemma 5.16, we find

Ediff =
1

2
(pers(t)− pers(s′)) ≤ 1

2
(pers(s)− pers(s′)) ≤ εj ≤ εi,j .
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(5) Ediff = 1
2(pers(s

′)− pers(t)). Then, pers(s′) ≤ pers(t′). Applying Lemma 5.16, we find

Ediff =
1

2
(pers(s′)− pers(t)) ≤ 1

2
(pers(t′)− pers(t)) ≤ εi ≤ εi,j .

(6) Ediff = 1
2(pers(s)− pers(t′)). Then, pers(s) ≤ pers(t). Applying Lemma 5.16, we find

Ediff =
1

2
(pers(s)− pers(t′)) ≤ 1

2
(pers(t)− pers(t′)) ≤ εi ≤ εi,j .

(7) Ediff = 1
2(pers(t

′)− pers(s)).Then, pers(t′) ≤ pers(s′). Applying Lemma 5.16, we find

Ediff =
1

2
(pers(t′)− pers(s)) ≤ 1

2
(pers(s′)− pers(s)) ≤ εj ≤ εi,j .

(8) Ediff = ε∗(t, s)− 1
2pers(t

′). Then, ε∗(t, s) ≤ 1
2pers(t). Applying Lemma 5.16, we find

Ediff = ε∗(t, s)− 1

2
pers(t′) ≤ 1

2
(pers(t)− pers(t′)) ≤ εi ≤ εi,j .

(9) Ediff = 1
2pers(t

′)− ε∗(t, s). Then, 1
2pers(t

′) ≤ ε∗(t′, s′). Applying Lemma 5.19, we find

Ediff =
1

2
pers(t′)− ε∗(t, s) ≤ ε∗(t′, s′)− ε∗(t, s) ≤ εi,j .

(10) Ediff = ε∗(t, s)− 1
2pers(s

′). Then, ε∗(t, s) ≤ 1
2pers(s). Applying Lemma 5.16, we find

Ediff = ε∗(t, s)− 1

2
pers(s′) ≤ 1

2
(pers(s)− pers(s′)) ≤ εj ≤ εi,j .

(11) Ediff = 1
2pers(s

′)− ε∗(t, s). Then, 1
2pers(s

′) ≤ ε∗(t′, s′). Applying Lemma 5.19, we find

Ediff =
1

2
pers(s′)− ε∗(t, s) ≤ ε∗(t′, s′)− ε∗(t, s) ≤ εi,j .

(12) Ediff = ε∗(t′, s′)− 1
2pers(t). Then, ε

∗(t′, s′) ≤ 1
2pers(t

′). Applying Lemma 5.16, we find

Ediff = ε∗(t′, s′)− 1

2
pers(t) ≤ 1

2
(pers(t′)− pers(t)) ≤ εi ≤ εi,j .

(13) Ediff = 1
2pers(t)− ε∗(t′, s′). Then 1

2pers(t) ≤ ε∗(t, s). Applying Lemma 5.19, we find

Ediff =
1

2
pers(t)− ε∗(t′, s′) ≤ ε∗(t, s)− ε∗(t′, s′) ≤ εi,j .

(14) Ediff = ε∗(t′, s′)− 1
2pers(s). Then, ε

∗(t′, s′) ≤ 1
2pers(s

′). Applying Lemma 5.16, we find

Ediff = ε∗(t′, s′)− 1

2
pers(s) ≤ 1

2
(pers(s′)− pers(s)) ≤ εj ≤ εi,j .

(15) Ediff = 1
2pers(s)− ε∗(t′, s′). Then 1

2pers(s) ≤ ε∗(t, s). Applying Lemma 5.19, we find

Ediff =
1

2
pers(s)− ε∗(t′, s′) ≤ ε∗(t, s)− ε∗(t′, s′) ≤ εi,j .
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Distance Mean Median Standard Deviation

dED(DAG(D̂1),DAG(D̂2)) 123.13 122.68 22.12

dED(DAG(D̂1),DAG(D̂′
2)) 267.97 268.18 28.68

dED(DAG(D̂1),DAG(D̂3)) 143.44 142.20 30.37

dED(DAG(D̂1),DAG(D̂′
3)) 301.70 302.38 30.55

dED(DAG(D̂1),DAG(D̂4)) 282.00 279.72 56.59

dED(DAG(D̂1),DAG(D̂′
4)) 424.06 421.20 53.24

Table 1. Summary of Results from Parasite Data.

8.7. Applications. We provide tables summarizing the results of the computations described in
Section 6.2.

Distance Mean Median Standard Deviation

dED(DAG(D̂a),DAG(D̂b)) 493.40 490.88 71.38

dED(DAG(D̂a),DAG(D̂′
b)) 642.51 640.78 66.70

dED(DAG(D̂a),DAG(D̂c)) 436.17 432.42 59.62

dED(DAG(D̂a),DAG(D̂′
c)) 607.97 607.06 60.33

Table 2. Summary of Results from Mouse Data.

9. Supplementary Materials - Computations of Extremal Event DAGs and
Extremal Event Supergraphs

We describe how to compute the extremal event DAG and extremal event DAG distance. Since
experimental time series data often collects discrete time points as opposed to continuous functions,
we first take a detour to discuss ε-extremal intervals and their associated properties in the discrete
setting.

9.1. Discrete ε-Extremal Intervals.

Definition 9.1 (Collection of Time Series). A set D = {Dj}Kj=1 is a dataset composed of time

series Dj on the closed interval C := [a, b] where Dj = {(zi, hji )}Nj=1 with

Z := {z1 = a, z2, . . . , zN−1, zN = b},
is an ordered set with zj < zj+1 and the heights hij are the heights of the jth points at zj of time
series i.

For our purposes, we assume that Z denotes the progression of time. However, the following
results hold even when Z denotes some ordered quantity other than time, for example, distance.

Definition 9.2 (Discrete ε-Extremal Intervals). Let fi : [a, b] → R be the linear interpolation of
the time series Di. Let ε > 0, and suppose fi has a local extremum at t. Define the discrete

ε-extremal interval to be a relatively open interval dfiε (t) ⊂ [a, b] with endpoints in Z such that

(1) dDi
ε (t) ⊃ ϕfi

ε (t)
(2) dDi

ε (t) is the minimal such interval, meaning there does not exist an interval I with endpoints

in Z such that dDi
ε (t) ) I ⊃ ϕfi

ε (t).

We note that we omit the superscript Di from dDi
ε if the function is clear.

A few properties of ε-extremal intervals still hold in the discrete case. Namely, Propositions 1
and 2 of [5]. Proposition 1 implies that as long as ε does not exceed the node life of two local
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minima (tj , fi(tj)), (tk, fi(tk)) of Di, then dε(tj) ∩ dε(tk) = ∅. Proposition 2 implies that as long
as ε does not exceed the node of life of the extremum at tj , then any ε-perturbation of fi has a
local minimum contained in dε(tj). The ε-extremal interval property that is lost is minimality,
which is Proposition 3 of [5]. This proposition states that the ε-extremal intervals are the smallest
intervals to guarantee extrema of ε-perturbations of fi, given the node lives of extrema is less than
ε. Since discrete ε-extremal intervals contain the ones we would get from the linear interpolations,
we cannot guarantee minimality. A more thorough discussion of these properties in the discrete
case can be found in Section 4.2 of [5].

In regards to properties mentioned in this paper, Statement (1) of Lemma 8.2 states ε-extremal
intervals grow as ε increases also holds in the discrete setting. This is because the computation
of the discrete ε-extremal intervals is the same as the continuous case except that the intervals
are widened so that the endpoints are contained in the domain of the time series. This added
computation does not affect the monotonicity of growth in the ε-extremal intervals.

Lemma 9.3 (Monotonicity of dε(ti)). Let Dj be a time series with t1 < t2 < ... < tn the domain
coordinates of the local extrema. Then, for each i ∈ [n], the length len(dε(ti)) is increasing with
respect to ε.

Additionally, Statement (2) of Lemma 8.2 holds in the discrete case. We prove that here since
we apply it in Section 9.2.

Lemma 9.4 (Containment Property of Discrete ε-Extremal Intervals). Let Dj be a time series with
domain coordinates {ti}ni=1 for i ∈ [n] where t1 < t2 < ... < tn. Suppose Dj has a local minimum at
ti where i ≤ n− 1. Then, ε ≤ 1

2 |fj(ti)− fj(ti+1)| if and only if ti+1 /∈ dε(ti).

Proof. Let ti be the domain coordinate of a local minimum of Dj . For this proof we omit the
subscript j from Dj and its linear interpolation fj .

First assume ε ≤ 1
2 |f(ti)− f(ti+1)|. We show ti+1 /∈ dε(ti). Since ti is the domain coordinate of

a local minimum, f(ti) < f(ti+1). Thus,

ε ≤ 1

2
(f(ti+1)− f(ti))

f(ti) + ε ≤ f(ti+1)− ε.

This implies ti+1 /∈ (f − ε)−1(−∞, f(ti) + ε). Hence, ti+1 /∈ ϕε(ti). By Definition 9.2, the right
endpoint of dε(ti) is equal to ti+1, and the right half of this interval is open. Hence, ti+1 /∈ dε(ti).

Next we prove that ti+1 /∈ dε(ti) implies ε ≤ 1
2 |f(ti) − f(ti+1)|. We do this by proving the

contrapositive. Assume ε > 1
2 |f(ti)−f(ti+1)|. Since ti is the domain coordinate of a local minimum,

f(ti) < f(ti+1). Thus,

ε >
1

2
(f(ti+1)− f(ti))

f(ti) + ε > f(ti+1)− ε.

This implies ti+1 ∈ (f − ε)−1(−∞, f(ti) + ε). Furthermore, ti+1 must be in the same connected
component as ti in (f − ε)−1(−∞, f(ti) + ε) since ti+1 is adjacent to ti. Therefore, ti+1 ∈ ϕε(ti).
By Definition 9.2, dε(ti) ⊃ ϕε(ti). Therefore, ti+1 ∈ dε(ti). �

Applying a symmetric argument as in Lemma 9.4, we see that ε ≤ 1
2 |fj(ti)− fj(ti−1)| if and only

if ti−1 /∈ dε(ti) and i ≥ 2.
In discrete time series, the idea of incomparability is reduced to intersections between a finite

number of intervals. A linear interpolation of a time series giving rise to ε-extremal intervals ϕε

results in greater values of ε∗ than the discrete intervals dε. Therefore ε∗ determined by dε is a
conservative estimate of incomparability available from the time series information.

Lastly, we remark that local stability of the extremal event DAG distance extends to the discrete
case. To see this, note the node lives of extrema in discrete functions can be computed from the
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sublevel set persistence diagram obtained through linearly interpolating the values of the discrete
function. Therefore, Lemma 8.10, Lemma 8.12, Lemma 5.16, Corollary 5.17, Lemma 5.18 that are
all statements about node lives and differences in aligned node lives all extend to the discrete case.
Furthermore, the proof of Lemma 5.19 (that bounds the difference between ε-extremal intersection
values between aligned edge weights) relies on the nesting property of ε-extremal intervals. This
property still holds in the discrete case and so Lemma 5.19 also extends in the discrete case. The
proofs of Lemma 5.20 and Theorem 5.21 use the aforementioned lemmas. Therefore local stability
for extremal event DAGs holds for discrete time series.

9.2. Computing the Extremal Event DAG. In this section, we describe Algorithm 5, which
computes the extremal event DAG from a collection of time series over a closed interval. This
algorithm is based on two key insights. First, the edge weight between two local extrema from
the same function is the minimum of the node lives of the two local extrema (Statement (1) of
Theorem 3.3). Second, the edge weight between two local extrema from different functions is the
minimum of the two node lives and the infimum ε for when the two ε-extremal intervals intersect
(Statement (2) of Theorem 3.3). We first describe the computation of merge trees that are used to
compute the node lives of local extrema.

9.2.1. Merge Trees and Node Lives. The merge tree captures the connectivity of sublevel sets of a
function. The information we get from the merge tree of a function is very similar to information
we capture from the zeroth-dimensional persistence diagram from a sublevel set filtration of f .

Definition 9.5 (Merge Tree). Let f be a real-valued function. Let Γ(f) be the graph of f . We
declare x ∼ y if there exists an h ∈ R for which x, y ∈ f−1(h) and x, y are in the same connected
component of f−1(−∞, h]. The merge tree of f , denoted Mf , is defined to be the quotient space

Mf := Γ(f)/ ∼ .

Given a nicely tame function, f : C → R, we construct the structure of the merge tree, G =
(V,E), by [56]. This structure consists of a list of merge triplets where each triplet is a three-
tuple of real numbers (u, s, v) such that u represents the connected component containing itself for
a ∈ [f(u), f(s)) and v becomes the representative of the connected component at a height of f(s).

In relation to zeroth-dimensional persistence diagram from a sublevel set filtration, (f(u), f(s)),
is a birth-death pair and the two connected components represented by u and v merge into the
connected component represented by v at a height of f(s). If the merge triplet has identical
components denoted as (u, u, u), then u is the global minimum of its connected component in
G. The time complexity of computing the Merge Tree using Kruskal’s algorithm for a function
represented as a graph, G = (V,E) is O(m log n) where n = |V | and m = |E| [56]. In our setting,
the number of edges is bounded by n and so the time complexity is O(n log n).

We describe how we compute the node lives and node labels of the extremal event DAG, using
the triplets computed from the merge trees. Algorithm 1 (GetMinLives) takes input a merge
tree M for a time series D = {(zi, hi)}Ni=1. Algorithm 1 outputs the node lives of the local minima
of D. For each merge triplet with distinct components, (zi, zj , zk) in M , (hi, hj) is a point in the
zeroth-dimensional persistence diagram from the sublevel set filtration. By Definition 2.12, we get
that 1

2persD(zi) = (hj − hi)/2. If the merge triplet has all identical components, (zj , zj , zj), then
1
2persD(zj) = 1

2(max({hi}Ni=1) − min({hi}Ni=1)). Applying one of these two computations to all
merge triplets computes node lives for all local minima in D. To compute the node lives of the
local maxima, we apply the same process to −D, where we take the negative of all heights hi.

The algorithm GetNodeLives(D,Mmin,Mmax) applies GetMinLives twice for both D and
−D with merge trees Mmin and Mmax respectively. Suppose D has n local extrema. Each line
in Algorithm 1 takes constant time. Since the loop has at most n iterations, then the total time
complexity of Algorithm 1 is O(n). Hence, the time complexity of GetNodeLives is also O(n).
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Algorithm 1 GetMinLives(D, M)

Input: Array of merge tree triplets M and time series D = {(zi, hi)}Ni=1.
Output: Dictionary of node lives for each point in curve.

1: minlives ← Initialize dictionary keyed by locations of extrema
2: for (zi, zj , zk) ∈M do
3: if zj = zk then
4: minlives(zi) ← (max({hi}Ni=1)−min({hi}Ni=1))/2
5: else
6: minlives(zi) ← |hj − hi|/2
7: end if
8: end for
9: return minlives

9.2.2. Computing Edge Weights. We explain how to compute the edge weights of the extremal
event DAG. First consider the edge weight between two nodes in B(f), a single backbone. By
Statement (1) of Theorem 3.3, we know the edge weight is the minimum node life between the two
extrema. Computing the minimum between two values takes constant time.

Next, we describe how we compute the edge weight between two nodes from different backbones.
In order to do this, we must first compute the infimum ε for which two ε-extremal intervals intersect.
In the discrete setting, the growth of the ε-extremal intervals only change at a finite number of
ε. We refer to the ε values where discontinuous changes in length occur as jumps. Algorithm 2
(GetEpsJumpsRight) computes the ε jumps for the right endpoint of an ε-extremal interval. We
recall in the discrete setting, connected components are determined by the linear interpolation of
points in the image of f . In Lemma 9.6, we use ∼ to denote the equivalence relation given by
connected components i.e., for a time series Di = {(zj , hij)}Nj=1, and zj , zk ∈ Z, we declare zj ∼ zk
at ε > 0 if both zj , zk are contained in the same connected component of (fi− ε)−1(−∞, fi(x)+ ε)
where fi is the linear interpolation of Di and x ∈ Z.

Algorithm 2 GetEpsJumpsRight(D, zi)

Input: Time series D = {(zi, hi)}Ni=1 and domain point zi ∈ Z.
Output: Vector of real numbers indicating values for which the right endpoint of dε(zi) jumps.

1: Initialize epsilon array and jump height
2: if i 6= N then
3: epsilons← 〈|hi+1 − hi|/2〉
4: levelheight← hi+1

5: for j ← (i+ 2) . . . N do
6: if (extremum(zi) = min ∧ hj ≥ levelheight)
7:

∨
(extremum(zi) = max ∧ hj ≤ levelheight) then

8: epsilons append |hj − hi|/2
9: levelheight← hj

10: end if
11: end for
12: end if
13: return epsilons

Lemma 9.6 (Correctness of Algorithm 2). Let D = {(zi, hi)}Ni=1 be a time series. Let zi be the
domain coordinate of a local extremum of D. Let ri(ε) : R>0 → R denote the right endpoint of
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dε(zi). Then, GetEpsJumpsRight(D, zi) Algorithm 2 returns all ε values for which ri has a jump
discontinuity.

Proof. We note that if i = N , then ri(ε) = zi for all ε ≥ 0. Hence, there are no jumps. GetEp-
sJumpsRight returns the empty array, which is correct. For the rest of this proof, we assume
i 6= N . To prove correctness, we show that we have the following loop invariant. At the start of
each iteration of the for loop, the array epsilons consists of jumps of ri(ε) in sorted order. We
first remark that jump discontinuities of ri(ε) occur at the infimum ε for which a point zj ∈ Z is
contained in dε(zi) with j > i. This is because in the discrete setting, the ε-extremal intervals only
grow when a new point in Z is contained in dε(zi). In particular, we show the loop invariant that
zi+j ∈ dε′(zi), where ε′ is the maximum of the array named epsilons after the jth iteration.

Initialization: First, consider ε1 = |hi − hi+1|/2. By Lemma 9.4, zi+1 /∈ dε1(zi) and for all
ε > ε1, zi+1 ∈ dε(zi). Hence, ε1 is the infimum ε for which zi+1 ∈ dε(zi). This implies
that ε1 is a jump discontinuity of ri. From Lemma 9.3, we know that dε(zi) increases
monotonically. Hence no other point in Z is contained in dε(zi) at a smaller value of ε.
Therefore, ε1 is the smallest jump discontinuity of ri(ε) and so the loop invariant holds
before the first iteration.

Maintenance: Assume the loop invariant holds after the jth iteration. We show it also holds
after the j + 1st iteration. First assume zi is a local minimum. Then,

levelheight = max{hk | k ∈ [i+ 1, i+ j]}.
Denote z∗ := zi+(j+1). We want to find the infimum ε > 0 for which z∗ ∈ dε(zi).

Suppose h∗ < levelheight. We claim that z∗ ∈ dε′(zi) where ε′ := max{epsilons}. This
means that no new ε value needs to be added to the epsilons vector in Algorithm 3. Let

z′ := argmax{hk | k ∈ [i+ 1, i+ j]}.
Thus h′ = levelheight. Since h∗ < levelheight = h′ and ε′ = (h′ − hi)/2, then

h∗ − hi < h′ − hi = 2ε′

h∗ − ε′ < hi + ε′

This implies that z∗ ∈ (f − ε′)−1(−∞, f(zi) + ε′) (recall f is the linear interpolation of
D). Observe, zi+j ∈ dε′(zi) by the assumption that the loop invariant holds at the jth

iteration. Since z∗ is adjacent to zi+j , z∗ must be in the same connected component of
(f − ε′)−1(−∞, f(zi) + ε′) as zi, i.e., z∗ ∼ zi. Therefore, z∗ ∈ dε′(zi) and the loop invariant
holds.

Next suppose h∗ ≥ levelheight. Let ε′ be as before. Applying a similar computation as
above we find that z∗ /∈ (f − ε′)−1(−∞, f(zi) + ε′). Observe that at ε∗ := (h∗ − hi)/2 we
have

f(z∗)− ε∗ = f(zi) + ε∗.

This leads to the observation that z∗ ∈ (f−ε)−1(−∞, hi+ε) for any ε > ε∗ by Lemma 9.3.
Since ε∗ > ε′, zi+j ∈ (f − ε)−1(−∞, f(zi)+ ε) as well. Since zi ∼ zi+j by the loop invariant
and zi+j ∼ z∗ by adjacency, zi ∼ z∗ as desired for any ε > ε∗. These two observations tell
us that ε∗ is the infimum ε for which z∗ ∈ dε(zi). Therefore, ε∗ should indeed be added
to the epsilons array and is larger than all other values in the array. By assumption, the
epsilons array is sorted. Hence, the loop invariant holds.

In the case that (zi, hi) is a local maximum, we apply a symmetric argument by noting
that dε(zi) is the (expanded out) connected component of (f+ε)−1(f(zi)−ε,∞) containing
zi and a new value is added to the ε vector if hj ≤ levelheight.

End: Note that the for loop terminates since there are only a finite number of iterations.
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Since the number of jumps of ri(ε) is bounded by N − i, and epsilons consists of all infimum ε
for which a point in N and greater than zi is contained in dε(zi), then Algorithm 2 is correct. �

Next, we analyze the time complexity of Algorithm 2. Every line takes constant time. Since the
for loop (Line 5-Line 11) has at most N−1 iterations, then the total time complexity of Algorithm 2
is O(N).

Furthermore, we can apply the same algorithm but with going through points on the left of zi to
find all the points for which the left endpoint of dε(zi) changes. Note that there are N − 1 points
to the left and right of zi combined, and so finding all ε-jumps of dε(zi) takes O(N). We call this
combined function, GetEpsJumps (Algorithm 3).

Algorithm 3 GetEpsJumps(D, zi)

Input: Time series D = {(zi, hi)}Ni=1 and domain point zi ∈ Z.
Output: Vector of real numbers indicating values for which the left or right endpoint of dε(zi)
jumps.

1: Initialize epsilon array and jump height
2: epsilons← {GetEpsJumpsLeft(D, zi)}
3: epsilons append GetEpsJumpsRight(D, zi)
4: return epsilons

Lastly, to find the infimum ε for which two ε-extremal intervals intersect, we apply Algorithm 4.
Algorithm 4 takes input of two time series Dj , Dk, two domain coordinates of local extrema of
Dj , Dk, and merge trees of Dj ,−Dj , Dk,−Dk. Algorithm 3 (GetEpsJumps) is applied to both
functions and extrema. Then, Algorithm 4 goes through all jumps in order to find the smallest one
for which the two ε-extremal intervals intersect.

Algorithm 4 GetEpsIntersection(Dj , Dk, zj , zk, MDj
, M−Dj

, MDk
, M−Dk

)

Input: Time series Dj = {(zi, hji )}Ni=1, Dk = {(zi, hki )}Ni=1 and domain points of extrema in Dj

and Dk, denoted zj , zk ∈ Z. MDj
, M−Dj

, MDk
, M−Dk

are merge trees of Dj ,−Dj , Dk,−Dk

respectively.

Output: infε d
Dj
ε (zj) ∩ dDk

ε (zk) 6= ∅
1: Initialize epsilon array
2: epsilons← {GetEpsJumps(Dj , zj)}
3: epsilons append GetEpsJumps(Dk, zk)
4: sort epsilons
5: for ε ∈ epsilons do

6: d
Dj
ε (zj)← GetExtremalInterval(Dj , zj ,MDj

,M−Dj
, ε)

7: dDk
ε (zk)← GetExtremalInterval(Dk, zk,MDk

,M−Dk
, ε)

8: if d
Dj
ε (zj) ∩ dDk

ε (zk) 6= ∅ then
9: return ε

10: end if
11: end for

Next, we discuss the time complexity of Algorithm 4. The number of jumps is bounded by the
number of points in the domains of the two functions. Additionally, at each jump, we compute
GetExtremalInterval for the two extrema, where the computation of the discrete extremal in-
tervals are discussed in [5] and implemented in [2]. In particular, the time complexity for computing
GetExtremalInterval(D, zi,MD,M−D) is O(N). This is because computing the ε-extremal in-
terval requires evaluating f at points in Z near zi. In summary
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• Line 2 and Line 3 each take O(N).
• Line 4 takes O(N logN).
• Line 6 and Line 7 take O(N).
• All other lines take constant time.
• The number of iterations of the for loop in Line 5-Line 11 is bounded by 2N .

All together we compute the time complexity of GetEpsIntersection(Dj , Dk, zj , zk,MDj
,M−Dj

,MDk
,M−Dk

)
as

O(2N +N logN + 2N2) = O(N logN +N2).

9.2.3. Computing Extremal Event DAG. Algorithm 5 computes the extremal event DAG from a
collection of time series D = {Dj}Kj=1. Algorithm 5 uses previously defined algorithms and functions

from this section along with InitializeGraph. This algorithm is designed and implemented in [2].
InitializeGraph takes a collection of time series D as input and outputs (T,H, V,E) where V,E
are vertices and directed edges of the extremal event DAG of D, T is the domain coordinates of
the local extrema, and H is the heights of local extrema. This function checks through all points
in Z for extrema to record as vertices and then goes through all vertex pairs to check for edges.
Let N = |Z|. The number of vertices is bounded by NK and the number of edges is bounded by(
NK
2

)
. Hence, the time complexity of InitializeGraph is

O(NK +
(NK)(NK − 1)

2
) = O((NK)2).

Algorithm 5 GetExtremalEventDAG(D)
Input: A collection of time series D = {Dj}Kj=1.
Output: The extremal event DAG of D.

1: MDj
← merge tree for Dj

2: M−Dj
← merge tree for −Dj

3: NodeLivesj ← GetNodeLives(Dj ,MDj
,M−Dj

)
4: (T, V,E)← InitializeGraph(D) Initialize unweighted extremal event DAG.
5: Initialize function ωV : V → R with all values set to zero.
6: Initialize function ωE : E → R with all values set to zero.
7: for v ∈ V do
8: if (T (v), H(v)) ∈ Dj then
9: ωV (v)← NodeLivesj(v)

10: end if
11: end for
12:

13: for e = (u, v) ∈ E do
14: if (T (u), H(u)), (T (v), H(v)) ∈ Dj then
15: ωE(e)← min(NodeLivesj(u),NodeLivesj(v))
16: else if (T (u), H(u)) ∈ Dj , (T (v), H(v)) ∈ Dk then
17: ε← GetEpsIntersection(Dj , Dk, T (u), T (v),MDj

,M−Dj
,MDk

,M−Dk
)

18: ωE(e)← min(NodeLivesj(u),NodeLivesk(v), ε)
19: end if
20: end for
21: return (V,E, ωV , ωE)

The correctness of Algorithm 5 follows from the correctness of all our other previously defined
algorithms. Next we analyze the time complexity.

• Line 1 and Line 2 each take KO(N logN).
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• Line 3 takes KO(N).
• Initializing the extremal event DAG in Line 4 takes O((NK)2).
• Computing all the node weights in Line 7-Line 12 has a time complexity of O(NK).
• Each iteration in the for loop between Line 13 - Line 21 takes at most O(N logN + N2).
Since the number of vertices is bounded above by NK, then the number of edges is bounded

above by
(
NK
2

)
= (NK)(NK−1)

2 . Thus, the number of iterations of this for loop is bounded

by (NK)(NK−1)
2 .

In total, we get the time complexity to be

O

(
K(N logN) +KN + (NK)2 +NK +

(NK)(NK − 1)

2

(
(N logN) +N2

))

= O(N4K2).

9.3. Computing Optimal Backbone Alignments. To compute a distance between extremal
event DAGs, we align backbones in the extremal event DAGs in an optimal manner. Here, we
describe how the alignment is computed and prove that the alignment is optimal. Recall, that α
denotes an alignment between two backbones (Definition 4.4).

Definition 9.7 (Alignment Matrix). Let x = (x1, x2, . . . , xm), y = (y1, y2, . . . , yn) be backbones.
Note that each xi can be written as the pair xi = (sx,i, wx,i); likewise each yi can be written as the
pair yi = (sy,i, wy,i). The alignment matrix, denoted mat, is an (m+1)×(n+1) matrix recursively
defined as follows:

mat[i, j] =





0 i = j = 1∑i−1
k=1wx,k, i > 1, j = 1∑j−1
k=1wy,k, i = 1, j > 1

min





mat[i− 1, j] + wx,i−1

mat[i, j − 1] + wy,j−1

mat[i− 1, j − 1] + diff(xi−1, yj−1)





otherwise,

where diff : x× y→ R≥0 ∪ {∞} is defined by

diff ((sx, wx), (sy, wy)) =

{
|wx − wy|, if sx = sy

∞, otherwise
.

Next we note that the bottom right entry in the alignment matrix is the minimum cost of
aligning two backbones x and y. This follows from [64]. Recall the definition of the cost function
in Definition 4.6. We also prove it here.

Proposition 9.8 (Alignment Matrix Finds Minimum Cost). Let x = (x1, x2, . . . , xm) and y =
(y1, y2, . . . , yn) be backbones. Let mat be the (m+ 1)× (n+ 1) alignment matrix. Then, mat[m+
1, n+ 1] = cx,y(m,n).

Proof. For i ∈ [n], let xi = (sx,i, wx,i) and yi = (sy,i, wy,i).
We proceed by induction. For the base case, first observe that cx,y(1, 0) = wx,1 and cx,y(0, 1) =

wy,1. By construction, mat[2, 1] = wx,1 = cx,y(1, 0) and mat[1, 2] = wy,1 = cx,y(0, 1). Next con-
sider cx,y(1, 1). The possible alignments (see Definition 4.4) of x1 := x[1 : 1] and y1 := y[1 : 1]
are

(1) α1 : {1, 2} → x̃1 × ỹ1, where α1(1) = (x1,0) and α1(2) = (0, y1).
(2) α2 : {1, 2} → x̃1 × ỹ1, where α2(1) = (0, y1) and α2(2) = (x1,0).
(3) α3 : {1} → x̃1 × ỹ1, where α3(1) = (x1, y1) is a possible alignment.
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Observe cost(α1) = cost(α2) = wx,1+wy,1 and cost(α3) = diff(x1, y1) = |wx,1−wy,1|. Therefore,

cx,y(1, 1) = min

{
wx,1 + wy,1

diff(x1, y1)

By construction,

mat[2, 2] = min





mat[2, 1] + wy,1

mat[1, 2] + wx,1

mat[1, 1] + diff(x1, y1)

Substituting wx,1 for mat[2, 1] , wy,1 for mat[1, 2] and zero for mat[1, 1], we find cx,y(1, 1) =
mat[2, 2]. This shows the base case holds.

For the induction hypothesis we assume that mat[h, k] = cx,y(h − 1, k − 1) for all h ≤ i and
k ≤ j where i ≤ m and j ≤ n.

In the induction step, we show mat[i + 1, j] = cx,y(i, j − 1), mat[i, j + 1] = cx,y(i − 1, j), and
mat[i+ 1, j + 1] = cx,y(i, j). First consider cx,y(i, j − 1). Let α : [k]→ x̃[1 : i]× ỹ[1 : j − 1] be an
alignment of the first i nodes of x with the first j − 1 nodes of y with cost cx,y(i, j − 1). Consider
the last pair of nodes aligned via α(k). The cost of these two nodes is either (a) the cost of xi
aligned with an insertion, (b) the cost of yj−1 aligned with an insertion, or (c) the cost of xi aligned
with yj−1. Note, by Definition 4.4, we never have an insertion aligned with an insertion. Since the
cost is the minimum across these three possibilities, the cost is

cx,y(i, j − 1) = min





cx,y(i− 1, j − 1) + wx,i

cx,y(i, j − 2) + wy,j−1

cx,y(i− 1, j − 2) + diff(xi, yj−1)

Applying the induction hypothesis, we find

cx,y(i, j − 1) = min





mat[i, j] + wx,i

mat[i+ 1, j − 1] + wy,j−1

mat[i, j − 1] + diff(xi, yj−1)

By construction of mat (Definition 9.7), we see that cx,y(i, j − 1) = mat[i+ 1, j]. Using a similar
approach, we find mat[i, j + 1] = cx,y(i− 1, j), and mat[i+ 1, j + 1] = cx,y(i, j).

This concludes the induction argument. Thus, mat[i, j] = cx,y(i− 1, j− 1) for all i ≤ m+1 and
j ≤ n+ 1. In particular, mat[m+ 1, n+ 1] = cx,y(m,n). �

9.3.1. Finding Optimal Alignment from Alignment Matrix.

Definition 9.9 (Path). Let M be an m × n matrix with real valued entries. A path in M is an
injective function p : [k]→M such that p(i) and p(i+ 1) are adjacent values in a row, column, or
diagonal for all i ∈ {1, 2, . . . , k − 1}.
To find an optimal alignment from the alignment matrix we construct a path via backtracking.

Path via Backtracking. Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn) be backbones. Let
mat be the corresponding alignment matrix. We construct a path p in mat recursively as follows:

• p(1) = mat[m+ 1, n+ 1]
• If p(h) = mat[i, j] for h ≥ 1 and i, j > 1, then,

p(h+ 1) =





mat[i− 1, j] if mat[i, j] = mat[i− 1, j] + wx,i−1

mat[i, j − 1] if mat[i, j] = mat[i, j − 1] + wy,j−1

mat[i− 1, j − 1] if mat[i, j] = mat[i− 1, j − 1] + diff(xi−1, yj−1)

If multiple of the conditions hold, then define p(h+ 1) to be any one of them. We call p a
backtracking path.





64 R. BELTON AND B. CUMMINS AND B. T. FASY AND T. GEDEON

Proposition 9.10 (Backtracking Finds an Alignment). Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn)
be backbones. Let mat be the (m+1)×(n+1) alignment matrix. Let α : [k]→ x̃×ỹ be an alignment
found from backtracking. Then, α is an alignment.

Proof. We verify that α is well-defined, and α satisfies all four properties of being an alignment
(Definition 4.4). Let p′ : [k + 1]→mat be the path used to construct α.

First we show α is well-defined. Let h ∈ [k − 1] and consider α(h). Observe exactly one of
the three conditions (vertical move, horizontal move, diagonal move) that define α(h) holds by the
construction of p′, and α(h) ∈ x̃× ỹ. Hence, α is well-defined.

Observe by construction, α has no null alignments. Hence, Property (1) of Definition 4.4 holds.
Next we show the remaining properties.

Property (2) (Preserves Order of Backbones). We use the index function ιx and the coordinate
function αx from Definition 4.4. Suppose αx(i), αx(j) ∈ x where i < j. Suppose further that
p′(i) = mat[q, r] and p′(j) = mat[s, t], indicating that αx(i) = xq, αx(j) = xs. By construction of
p′ and the fact that i < j either (1) q = s and r < t or (2) q < s. We claim that only (2) holds in
our setting.

Assume for a contradiction that q = s and r < t. By construction of p′, this means that there are
only horizontal moves between p′(i) and p′(j). Hence, αx(i) or αx(j) or both must be the empty
node. This contradicts the assumption that both αx(i) and αx(j) are in x. Therefore q < s, and
in particular, q < s if and only if i < j.

Since αx(i) = xq and αx(j) = xs, we have the index function ιx(αx(i)) = q and ιx(αx(j)) = s
if and only if ιx(αx(i)) < ιx(αx(j)). Therefore ιx(αx(i)) < ιx(αx(j)) if and only if i < j, so that
α preserves the order of nodes in the backbone x. The same argument substituting y for x also
shows that α preserves the order of nodes in the backbone y.

Property (3) (No Misalignments). By design of mat, a misalignment has an infinite cost. Since
each entry in the alignment matrix is a minimum of three values where at least two values are finite,
then mat does not contain any infinite entries. This implies that when applying backtracking, we
never have a diagonal move corresponding to a misalignment.

Property (4) (Restriction to Matching). Let xi ∈ x. Recall in the definition of p′, we construct
a path using adjacent entries in the alignment matrix such that p′(0) = mat[1, 1] and p′(k) =
mat[1, 1]. By definition of p′, there exists a j ∈ [k + 1] such that p′(j) = mat[i + 1, h] where
h ∈ [n+ 1]. This implies that xi appears in im(αx) at least once. Similarly, for yi ∈ y, there exists
a j ∈ [k+1] such that p′(j) = mat[h, i+1] where h ∈ [m+1]. Hence yi appears in im(αy) at least
once. Furthermore, in backtracking, no same move (vertical, horizontal, or diagonal) between two
matrix entries is repeated twice. Hence, each xi ∈ x and each yi ∈ y appears in im(αx) and im(αy)
exactly once. Therefore we have a restriction to matching.

�

We now prove that an alignment found using this backtracking has a cost equal to mat[m +
1, n+ 1].

Proposition 9.11 (Backtracking Finds Alignment with Cost Computed from Alignment Matrix).
Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn) be backbones. Let mat be the (m + 1) × (n + 1)
alignment matrix. Let α : [k]→ x̃× ỹ be an alignment found from backtracking. Then, cost(α) =
mat[m+ 1, n+ 1].

Proof. Let p′ : [k+1]→mat be the path used to construct α. We show cost(α) = mat[m+1, n+1].
To do this, we prove cost(α[1 : h]) = p′(h+1) for all h ≤ k by induction. For the base case, consider
α[1 : 1] = α(1). There are three possibilities for α(1). Either:

(1) α(1) = (x1,0)
(2) α(1) = (0, y1)
(3) α(1) = (x1, y1).
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Recall that xi ∈ x can be expanded as xi = (sx,i, wx,i); likewise, for yi ∈ y, we can write yi =
(sy,i, wy,i). If (1), then cost(α(1)) = wx,1 = mat[2, 1] = p′(2). If (2), then cost(α(1)) = wy,1 =
mat[1, 2] = p′(2). If (3), then cost(α(1)) = diff(x1, y1) = mat[2, 2] = p′(2). In all three cases we
find cost(α(1)) = p′(2).

Next, we assume the induction hypothesis that cost(α[1 : h]) = p′(h+ 1) for some h < k.
Suppose p′(h+ 1) = mat[i, j]. There are three possibilities for α(h+ 1). Either

(1) α(h+ 1) = (xi,0)
(2) α(h+ 1) = (0, yj)
(3) α(h+ 1) = (xi, yj).

If (1), then

cost(α[1 : h+ 1]) = cost(α[1 : h]) + wx,i = p′(h+ 1) + wx,i = mat[i, j] + wx,i = p′(h+ 2).

If (2), then

cost(α[1 : h+ 1]) = cost(α[1 : h]) + wy,j = p′(h+ 1) + wy,j = mat[i, j] + wy,j = p′(h+ 2).

If (3), then

cost(α[1 : h+ 1]) = cost(α[1 : h]) + diff(xi, yj) = p′(h+ 1) + diff(xi, yj)

= mat[i, j] + diff(xi, yj) = p′(h+ 2).

All equalities follow from either the induction hypothesis or construction of p′

By induction, cost(α[1 : h]) = p′(h+ 1) for all h ≤ k. In particular,

cost(α[1 : k]) = cost(α) = p′(k + 1) = mat[m+ 1, n+ 1].

�

Observe that Proposition 9.8 and Proposition 9.11 give the following corollary.

Corollary 9.12 (Backtracking Finds Optimal Alignment). Let x = (x1, x2, . . . , xm) and y =
(y1, y2, . . . , yn) be backbones. Let mat be the (m+1)×(n+1) alignment matrix. Let α : [k]→ x̃× ỹ

be an alignment found from backtracking. Then cost(α) = cx,y(m,n).

9.3.2. Time Complexity of Computing Backbone and Extremal Event DAG Distance. Using the
dynamic program above, we can compute the backbone distance in O(mn) time where m and n
are the lengths of the two backbones. However, since backbone alignments are not always unique,
then computing all optimal backbone alignments can become costly.

When computing the extremal event DAG distance, we must compute the optimal backbone
alignments that minimize the difference in weights over all possible aligned edges. Since we could
have multiple optimal backbone alignments, then computing the extremal event DAG distance
in the worst case is expensive. However, we have found empirically for the applications below
that almost always there is a unique optimal alignment. This then results in a polynomial time
complexity for computing the extremal event DAG distance.
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