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An Intermediate-Level Attack Framework
on the Basis of Linear Regression

Yiwen Guo , Qizhang Li , Wangmeng Zuo , Senior Member, IEEE,  and Hao Chen

Abstract—This article substantially extends our work published at E C C V  (Li et al., 2020), in which an intermediate-level attack was
proposed to improve the transferability of some baseline adversarial examples. Specifically, we advocate a framework in which a direct
linear mapping from the intermediate-level discrepancies (between adversarial features and benign features) to prediction loss of the
adversarial example is established. By delving deep into the core components of such a framework, we show that a variety of linear
regression models can all be considered in order to establish the mapping, the magnitude of the finally obtained intermediate-level
adversarial discrepancy is correlated with the transferability, and further boost of the performance can be achieved by performing
multiple runs of the baseline attack with random initialization. In addition, by leveraging these findings, we achieve new state-of-the-arts
on transfer-based ‘ 1  and ‘2  attacks. Our code is publicly available at https://github.com/qizhangli/ila-plus-plus-lr.

Index Terms—Deep neural networks, adversarial examples, adversarial transferability, generalization ability, robustness
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1 INTRODUCTION

HE community has witnessed a great surge of studies on
adversarial examples. It has been shown that, even in a

black-box setting where no information about the victim
machine learning model was available, an attacker is still
capable of generating adversarial examples with reasonably
high attack success rates. In general, adversarial attacks in
black-box settings are performed via zeroth-order optimiza-
tion [2], [3], [4], [5], [6], [7], or applying boundary search [8],
[9], [10], [11], or based on the transferability of adversarial
examples [1], [12], [13], [14], [15], [16], [17].

The transferability of adversarial examples has drawn
great interest from researchers, owing to its essential role in
generating a variety of black-box adversarial examples. The
phenomenon shows that adversarial examples generated on
one classification model (i.e., a source model) can success-
fully fool other classification models (i.e., the victim models)
which probably have different architectures and different
parameters. Much recent work has been published to shed
light on the transferability of adversarial examples and to
develop ways of improving it [1], [13], [14], [15], [16], [17].
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In this paper, we also take a step towards explaining and
exploiting the adversarial transferability.

We focus on adversarial examples crafted on the basis of
images, which are used for attacking image classification
systems or other related computer vision systems. We con-
sider the scenario in which the attacker being given a nor-
mal image classification source model f  : R n   C  !  R ,
which is a deep neural network (DNN) that maps any input
image x 2  R n  along with its ground-truth label y 2  C  to
evaluation loss, as a composition of a feature extractor g and
a classifier h that evaluates the prediction made based on
the extracted features, i.e., f  ¼  h  g [1], [14], [17]. In general, g
and h can be considered as two sub-nets of the original
DNN model, consisting of its lower and higher layers,
respectively. Note that g does not necessarily contains more
layers than that of h, and we make the depth of g a hyper-
parameter that can be tuned.

In this paper, we concern a problem setting (illustrated in
Fig. 1) in which some initial adversarial examples have already
been crafted following a baseline method (e.g., I-FGSM) on a
white-box source model, and we aim to enhance their transfer-
ability to unknown victim models. To achieve this, we advo-
cate a framework where a linear mapping (denoted by h0) is
adopted instead of the original nonlinear one, i.e., h, for evalu-
ating the middle-layer features extracted by g which is believed
to be largely shared among different DNN models. Results of
the baseline method are utilized to establish the linear map-
ping h0,
and the more transferable adversarial example is antic-
ipated by maximizing the output of f0 ¼  h0  g.

What’s New in Comparison to [1]. 1) By introducing the
framework based on linear regression, we show that various
models can be applied for obtaining the linear function h0,
including ridge regression, support vector regression [18],
and ElasticNet [19]. 2) We provide ample evidence of why
(and how) improved adversarial transferability are achieved
in such a framework. 3) We show how to further boost the
performance of adversarial transferability, in addition to the
results in [1]. 4) New state-of-the-arts are achieved.

0162-8828 © 2022 IEEE.  Personal use is permitted, but republication/redistribution requires I E E E  permission.
See htt_ps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 29,2023 at 07:36:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0709-4877
https://orcid.org/0000-0002-0709-4877
https://orcid.org/0000-0003-3977-345X
https://orcid.org/0000-0002-3330-783X
https://orcid.org/0000-0002-3330-783X
https://orcid.org/0000-0002-4072-0710
https://github.com/qizhangli/ila-plus-plus-lr
mailto:guoyiwen89@gmail.com
mailto:liqizhang95@gmail.com
mailto:cswmzuo@gmail.com
mailto:chen@ucdavis.edu


tþ1 t t

0

0 t p1

p

adv
u

D 0

t 0

D 0

3 L INEARIZATION AND T R A N S F E R A B I L I T Y

will first introduce the method and then give more discus-

The concerned problem se ting throughou this paper is

models. See Fig. 1. The transfe ability is exper mentally

a single source model.1

D

T
p

adv adv adv
0 0

FGSM with p ¼  1. Since both Huang et al.’s method and our

DNNs, we will call them intermediate-level attack (ILA)
and ILA++, respectively, in this paper.

3.2     Linear Regression for Obtaining h0

diate layer of a DNN to the prediction loss, such that how
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xadv ¼  PC ðxadv þ  a  sgnðrfðxadv; yÞÞÞ; (1)

Fig. 1. An overview of the problem setting in [1], [14], and this article, in
which a baseline attack was performed in advance.

2 R E L A T E D  W O R K

The transferability of adversarial examples has been inten-
sively studied, since it was first discovered [20]. Ensemble
learning [13], [21] and random augmentation [22] are two
popular strategies for improving the transferability. A series
of recent methods also exploit the architecture of advanced
DNNs. For instance, Zhou et al. [15] proposed TAP, in which
the discrepancy between benign DNN features and their
adversarial counterparts was maximized. Similarly, Inka-
which et al. [23] encouraged the intermediate-level representa-
tion of an adversarial example to be similar to that of a target
example. Wu et al. [24] showed that, for models with skip con-
nections, propagating less gradient through the main stream
of a DNN led to more transferable adversarial examples. Guo
et al. [17] advocated to perform backpropagation without car-
ing about ReLU during backward pass. Other effective meth-
ods include [25], [26], [27], [28].

The most relevant work to ours is introduced by Huang
et al. [29], since we both follow the problem setting in Fig. 1,
and we will introduce and discuss it carefully in Section 3.1.

in which a >  0 is the attack step size, xadv ¼  x, and PC ðÞ
projects its input onto the set of valid images (i.e., C) .  If in
total p steps of the I-FGSM update were performed, we
could collect p temporary results xadv; . . . ; xadv; . . . ; xadv

together with the final baseline result xadv. We also collected
the value of their corresponding prediction loss (i.e., the
cross-entropy loss evaluating their prediction correctness),
denoted by l0; . . . ; lt; . . . ; lp. The middle-layer features are
represented as hu       ¼  gðxadvÞ, for u ¼  0; . . . ; t; . . . ; p.

To achieve an adversarial example with improved transfer-
ability on the basis of I-FGSM [30], we proposed [1] to solve

max ðgðx þ  DxÞ  hadvÞT w; s:t: ðx þ  DxÞ 2  C : (2)
x

In [1], w ¼  ðHT H  þ  Im Þ1 HT r was obtained from a
closed-form solution of a ridge regression problem, in
which the t-th row of H  2  Rðpþ1Þm was ðhadv  hadvÞT and the t-
th entry of r 2  R p þ 1  was lt. We showed in that paper that an
approximation to w could be obtained using w  H T  r, in
order to gain higher computational efficiency (see
Appendix A for a brief introduction of the approximation).
That is, we can turn to solve

max ðgðx þ  DxÞ  hadvÞT H T  r; s:t: ðx þ  DxÞ 2  C : (3)
x

In a related paper, Huang et al. [14] also proposed to
operate on the middle-layer features of the source model for

It was originally proposed in our paper [1] that the transfer- gaining higher transferability, and their work inspired ours.
ability of an off-the-shelf multi-step attack (e.g., the iterative Specifically, they proposed to solve
fast gradient sign method, I-FGSM [30]) can be enhanced by
encouraging middle-layer features of the source model to max ðgðx þ  DxÞ  h Þ ðh  h Þ;
be adversarial, in the sense of maximizing ridge regression

x (4)

loss. The work takes an attempt towards connecting the s:t: ðx þ  DxÞ 2  C :
transferability and linear regression. In what follows, we

Apparently, their formulation in Eq. (4) can be regarded as a

sions and insights in an unified framework. special case of ours in Eq. (3), in a single-step setting of I-

that, some initial adversarial
t
examples have

t
already been method operate on the intermediate-level representations of

crafted using a baseline method like I-FGSM, and we aim to
develop a method to refine the adversarial examples and
enhance their transferability across a set of unseen victim

assessed by evaluating the attack
r
success rates on

i
a variety      Our ILA++ [1] established a direct mapping from the interme-

of victim models, using adversarial examples generated on      
much classification loss the intermediate-level discrepancies
shall lead to can be reasonably evaluated. It shows consider-
ably better performance in comparison with the baseline attack

3.1 Intermediate-Level Attacks and ILA (see Table 1 and other experimental results in [1]).
Suppose that I-FGSM [30] has already been performed on a           The effectiveness of ILA++ can be explained from differ-
source model as a baseline attack, as has been illustrated in ent perspectives. 1) ILA++ substitutes the original nonlinear
Fig. 1, the goal of our work is to enhance the transferability function h with a linear one, and it is likely that a more lin-
of the I-FGSM results. ear model leads to improved transferability of adversarial

Given a benign example x, the update rule of I-FGSM is: examples [17]. 2) the optimization problem of ILA++ aims
for the t-th step,                                                                                   at maximizing the projection on a directional guide H T  r

which is a linear combination of many intermediate-level

1. Regardless the success rate on the source model, which is gener- discrepancies (i.e., “perturbations” of features) obtained
ally near 100% from the iterative baseline attack. Such a directional guide,

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 29,2023 at 07:36:37 UTC from IEEE Xplore. Restrictions apply.



w

p
2 2

p
2 2

w

1 2

t 0

2728 I E E E  TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL. 45, NO. 3, MARCH 2023

TABLE 1
Comparison of ILA++ to ILA and the Baseline Attack, i.e., I-FGSM

Success rate of transfer-based attacks on ImageNet is reported, with ‘ 1  constraint in the untargeted setting. We use the symbol * to indicate when the source
model is used as the target. Average is obtained on models that are different from the source model.

i.e., H T  r, is basically a weighted sum of some baseline inter-
mediate-level discrepancies. It leads to higher prediction
loss and is thus more powerful.

We study whether other choices of w improve adversar-
ial transferability. Still, we focus on a framework in which
the refined adversarial examples are obtained via solving
Eq. (2) using off-the-shelf constrained optimization methods
(e.g., FGSM [41], I-FGSM [30], PGD [42]) and input gradient
of f0 ¼  h0  g, rather than input gradient of f  ¼  h  g. These
optimization methods are variants of gradient ascent and
they can be performed just like in their original settings,
except with a different objective function, i.e., Eq. (2).

We first compare linear regression models for obtaining
w and learning the relationship between intermediate-level
discrepancies and prediction loss. In particular, three
regression models are considered, including ridge regres-
sion (RR, also known as Tikhonov regularization) as intro-
duced in Section 3.1, ElasticNet [19], and support vector
regression (SVR) [18]:

R R  : min 
X

z t  þ  kwk2;
t¼0

ElasticNet : minw 
X

z t  þ  1kwk1  þ  2kwk2; (5)
t¼0

SV R  : min
2

kwk2       s:t: jzt  bj <  e;

in which zt ¼  wT ðhadv  hadvÞ  lt, and b is set to zero.
By solving different optimization problems in Eq. (5), we

can obtain different w for Eq. (2). Based on them, different

refined adversarial examples can eventually be obtained by
solving Eq. (2) then. Other sparse coding algorithms than
ElasticNet [19] are not considered, since a sparse w in fact
restricts possible directions of perturbations in the feature
space, and thus lead to worse attack success rates even on
the source model. We show more about this in Tables 6
and 7 by varying the hyper-parameter 1 in Eq. (5).

Setup. An experiment on ImageNet was setup to compare
the three options in Eq. (5). Similar to other experiments, we
used a pre-trained ResNet-50 [32] as the source model and
evaluated attack success rates of the generated adversarial
examples on a variety of victim models. In our framework,
a baseline attack I-FGSM was performed in advance, and
then the obtained baseline result was enhanced by solving
Eq. (2) using off-the-shelf methods (here, I-FGSM again), in
which w was obtained from any of the regression models.
The step size of I-FGSM is set to be 1=255 and =5 for ‘ 1  and ‘2

attacks, respectively. We run 100 iterations for I-FGSM and
we let p ¼  10 for attacks using temporary results from the
baseline attack. See Section 5 for details.

Results. Tables 2 and 3 summarize the attack success rates
using different linear regression models, in ‘ 1  and ‘2 set-
tings, respectively. It can be seen that all the three linear
regression methods led to improved attack transferability.
Tables 6 and 7 report the performance of I-FGSM+Elastic-
Net with 1 ranging from 0.05 to 1.0, and, in Tables 2 and 3, we
provide detailed results with 1 ¼  0:05. Apparently, smaller
1 leads to higher success rates using I-FGSM+Elas-ticNet, yet
we did not test with further smaller 1, since solution to the
ElasticNet optimization became inaccurate, as suggested by
the Python s k l e a r n  package. As 1 !  0,

TABLE 2
Comparison of Different Linear Regression Models in ‘ 1  Attack Settings

The success rate of transfer-based attacks on ImageNet is evaluated, with different ‘ 1  constraints in the untargeted setting. We use the symbol * to indicate when
the source model is used as the target. Average is calculated on the models different from the source model.
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TABLE 3
Comparison of Different Linear Regression Models in ‘2  Attack Settings

Method  ResNet- VGG-19 ResNet-152 Inception v3 DenseNet MobileNet v2 SENet ResNeXt WRN PNASNet MNASNet Average
50* [31] [32] [33] [34] [35] [36] [37] [38] [39] [40]

I-FGSM

I-FGSM+RR

I-FGSM
+ElasticNet

15 99.96%     78.64% 74.94%
10 99.94%     64.48% 58.60%
5 99.98%     36.96% 28.12%

15 99.92%     93.82% 91.32%
10 99.90%     84.42% 80.96%
5 99.90%     59.00% 51.76%

15 99.92%     87.42% 82.22%
10 99.88%     75.48% 66.82%
5 99.74%     46.84% 38.38%

50.02% 76.36%
33.64% 59.94%
14.68% 31.70%

75.16% 92.32%
56.72% 81.54%
27.42% 54.06%

61.58% 84.42%
42.96% 69.08%
20.70% 41.66%

75.20% 60.18%
60.92% 42.20%
34.94% 18.02%

91.74% 83.28%
82.08% 66.58%
55.52% 35.76%

85.08% 71.16%
71.44% 52.42%
44.72% 26.14%

71.16% 71.20%     51.20%
53.98% 53.76%     33.94%
25.40% 25.82%     12.92%

89.56%     89.28%     78.98%
77.92% 77.26%     59.28%
47.58% 47.82%     29.84%

79.46% 79.34%     63.68%
63.18% 63.60%     43.90%
34.52% 35.22%     20.78%

73.80%     68.27%
59.12%     52.06%
33.08%     26.16%

91.14%     87.66%
81.06%     74.78%
53.82%     46.26%

84.60%     77.90%
71.14%     62.00%
43.46%     35.24%

I-FGSM+SVR 15 99.92%     94.06% 91.22%
10 99.90%     84.98% 81.64%
5 99.90%     59.08% 53.16%

76.16% 92.38%
58.36% 82.28%
29.06% 55.08%

91.74% 83.48%
81.90% 66.74%
56.26% 36.70%

89.42% 89.44%     78.94%
78.40% 77.88%     59.94%
48.30% 48.80%     30.88%

91.24%     87.81%
80.96%     75.31%
55.16%     47.25%

The success rate of transfer-based attacks on ImageNet is evaluated, with different ‘2  constraints in the untargeted setting. We use the symbol * to indicate when
the source model is used as the target. Average is calculated on the models different from the source model.

ElasticNet boils down to ridge regression, and we shall
observe similar performance on I-FGSM+RR and I-FGSM
+ElasticNet when 1 approaches 0.  and C  were set to 1e10 and
1e  10, respectively, for obtaining the I-FGSM+RR and I-
FGSM+SVR results in Tables 2 and 3. Note that C  is
inversely proportional to the strength of the SVR regulariza-
tion, and  regularizes RR. How  and C  affect the perfor-
mance of I-FGSM+RR and I-FGSM+SVR will be discussed
in the following subsection.

3.3 Maximizing Feature Distortion
Solving the optimization problem in Eq. (2) indicates that: 1)
maximizing the middle-layer distortion (i.e., the magnitude of
the intermediate-level feature discrepancy gðx þ  DxÞ  hadv)
invoked by the adversarial example x þ  D , and 2) maximizing
the cosine similarity between gðx þ  DxÞ  hadv and a reason-
ably chosen directional guide (i.e., w=kwk). It is of yet unclear
whether both the two factors are essential for improving the
transferability. In this subsection and the following subsection,
we aim to shed more light on it. We will first show how the
magnitude of the intermediate-level discrepancy (i.e.,
kgðx þ  DxÞ  hadvk) affects transferability of the refined adver-
sarial examples and attack success rates.

We show in Fig. 3 the magnitude of intermediate-level dis-
crepancies obtained using the four methods (i.e., I-FGSM,
I-FGSM+RR, I-FGSM+ElasticNet, and I-FGSM+SVR), together

with the obtained average attack success rates. The error bar in
each subplot has been uniformly scaled to make the illustration
clearer, considering that both the magnitude and the attack suc-
cess rate vary drastically across victim models. As can be
observed, the magnitude of intermediate-level discrepancies is
positively correlated with the average success rate and the
transferability.

Some of the hyper-parameters in fact make considerable
impact on the intermediate-level distortions, e.g.,  in the
formulation of ridge regression, 1 and 2 in ElasticNet, and
C  in SVR. We have discussed 1 in Tables 6 and 7, and we
know the other regularization hyper-parameter (i.e., 2) in
ElasticNet plays the same role as  in ridge regression.
Therefore, here we mostly report the results of I-FGSM+RR
and I-FGSM+SVR by varying  and C ,  respec-tively. We can
observe in Fig. 4 that, when larger interme-diate-level
distortions were obtained (by tuning the hyper-parameters),
higher attack success rates were obtained, which also
shows the positive correlation between the transferability
of adversarial examples and the magnitude of the
intermediate-level discrepancies. Yet, Fig. 4 also shows
that sensitivity of the attack performance to the hyper-
parameters ( and C ) only exists in a limited region,
indicating that the power of w for achieving large distor-
tion and high transferability does not always change con-
sistently with  or C .

Fig. 2. Illustration of how the intermediate-level discrepancy is calculated
given an adversarial input x þ  Dx and its benign counterpart x. We will Fig. 3. On the left is the average success rate of the four methods, and on
discuss how 1) the magnitude of the intermediate-level discrepancy (i.e., the right the average ‘  magnitude of the intermediate-level discrepancies.
kgðx þ  DxÞ  hadvk) and 2) the directional guide for optimizing Dx would Apparently, they are positively correlated, and larger intermediate-level dis-
affect the obtained transferability. tortions lead to higher attack success rates on the victim models.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 29,2023 at 07:36:37 UTC from IEEE Xplore. Restrictions apply.



~

Dx

xgðx þ  D Þ  h 0

0

~

0

0

0 p1

t 0

2730 I E E E  TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL. 45, NO. 3, MARCH 2023

Tables 4 and 5 demonstrate that such “normalized” attacks
fail to achieve satisfactory results on the ImageNet victim
models. In the ‘ 1  settings, I-FGSM+RR shows an average
success rate of 29:17%, 22:63%, and 11:39%, under  ¼
16=255, 8=255, and 4=255, respectively. The obtained attack
success rates are generally no higher than the baseline I-
FGSM results under  ¼  16=255 and 8=255 and far lower
than those obtained when no normalization is enforced.
Similar observations can be made on the ‘2  attack settings.
We thus know from the experimental results that the magni-
tude of the intermediate-level discrepancies is an essential
factor.

3.4     Direction Matters as Well

Fig. 4. How the hyper-parameters of the linear regression methods affect
the average success rate and middle-layer distortion (i.e., the magnitude
of intermediate-level discrepancies). On the left subplots, we report the
success rates, and on the right subplots, we report the magnitudes.
¼  8=255.

We further test how these methods perform when the
intermediate-level feature distortion is not encouraged to be
enlarged in linear regression. We consider linear mappings
between the normalized intermediate-level discrepancies
and the prediction loss of the source model. With such a
mapping (denoted by w here), we can rewrite the optimi-
zation problem as:

adv     
! T

max
kgðx þ  DxÞ  hadvk2

w; s:t: ðx þ  DxÞ 2  C ; (6)

in which the magnitude of gðx þ  DxÞ  hadv is not encour-
aged to be maximized in obtaining the final refined adver-
sarial example.

For solving the optimization problem in Eq. (6), attacks
can similarly be performed, just like for solving Eq. (2).

In Section 3.3, we have demonstrated that the magnitude of
intermediate-level discrepancies matters in improving the
transferability of adversarial examples. In this subsection,
we will show that the choice of directional guide also affects
the final attack success rates.

We have shown several different options for obtaining
w. One can see that, by tuning C ,  I-FGSM+SVR outper-
forms I-FGSM+RR, as demonstrated in Table 2 and Fig. 4.
We can also observe that I-FGSM+RR finally did not lead to
larger intermediate-level discrepancies than I-FGSM+SVR,
implying that the choice of the directional guide (or say the
direction of the feature perturbation) also matters.

We further try using random and less adversarial vectors
as directional guides. We shall stick with the objective func-
tion in (2), except that now we are free to use any random
method for obtaining w. Several different ways can be
tested, to achieve the goal. First, we can use random pertur-
bations (rather than the baseline adversarial perturbations)
to get a set of inputs. That is, we can add D0; . . . ; Dp1, in
which Dt N ð0; SÞ, 80
 t
 p  1, to x and get p inputs x þ  D0; . . . ; x þ  Dp1. Given these
inputs, the intermediate-level discrepancies and prediction
loss on the source model can then be computed, and we
can further obtain a linear regression model using for
example RR, ElasticNet, and SVR. An alternative method
is to incorporate randomness
on the hidden layer. That is, we may first compute hadv ¼
gðxÞ and then add random perturbations D0 ; . . . ; D0 , in

which D0          N ð0; S0Þ, 80
 t

 p  1, to hadv and evaluate the prediction loss on the basis of
the perturbed features. The

TABLE 4
Evaluation of Normalized ‘ 1  Attacks

The attack success rate on ImageNet in the untargeted setting are reported. The symbol * is used to indicate when the source model is used as the target. It can be
obviously seen that the performance of these linear regression models degraded significantly in comparison with the results in Table 2.
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TABLE 5
Evaluation of Normalized ‘2  Attacks

Method  ResNet- VGG-19 ResNet-152 Inception v3 DenseNet MobileNet v2 SENet     ResNeXt     WRN     PNASNet MNASNet Average
50* [31] [32]

I-FGSM 15 99.96%      78.64% 74.94%
10 99.94%      64.48% 58.60%

[33] [34]

50.02% 76.36%
33.64% 59.94%

[35] [36]

75.20% 60.18%
60.92% 42.20%

[37] [38] [39]

71.16%      71.20%       51.20%
53.98%      53.76%       33.94%

[40]

73.80%      68.27%
59.12%      52.06%

5     99.98%      36.96% 28.12% 14.68% 31.70% 34.94% 18.02%      25.40%     25.82%      12.92% 33.08%      26.16%

I-FGSM+RR (normalized) 15 99.92%      72.46% 70.86%

10 99.90%      59.70% 57.20%

49.46% 73.32%

36.76% 60.46%

71.30% 51.44%

59.06% 37.92%

65.04%     66.22%      44.96%

51.22%     51.52%      33.30%

70.30%      63.54%

57.94%      50.51%

5     99.92%      39.52% 33.10% 19.70% 38.20% 39.08% 19.28%      30.08%      30.04%       15.92% 37.14%      30.21%

I-FGSM+ElasticNet

(normalized)

15 99.88%      51.54% 42.72%

10 99.84%      39.44% 31.16%

29.66% 47.20%

20.30% 35.42%

49.94% 30.50%

38.80% 20.96%

38.88%     39.46%      25.06%

28.82%     29.32%      17.68%

50.44%      40.54%

39.48%      30.14%

5     98.86%      22.96% 17.10% 10.92% 20.08% 23.82% 9.84% 15.18%     14.76% 8.26% 22.42%      16.53%

I-FGSM+SVR (normalized) 15 99.92%      70.08% 68.86%

10 99.90%      58.10% 55.12%

48.80% 70.86%

36.46% 58.60%

69.14% 49.80%

57.76% 35.96%

62.46%     63.62%      43.66%

49.74%     49.74%      32.10%

68.24%      61.55%

56.40%      49.00%

5     99.92%      38.70% 32.30% 19.76% 37.44% 38.36% 19.10%      29.80%     29.54%      15.44% 36.40%      29.68%

The attack success rates on ImageNet in the untargeted setting are reported. The symbol * is used to indicate when the source model is used as the target. It can be
obviously seen that the performance of these linear regression models degraded significantly in comparison with the results in Table 3.

linear regression model is then similarly obtained and
Eq. (2) is to be solved with such random w.

Tables 8 and 9 summarize the attack success rates using
the two sorts of random directions, respectively. It can be
seen that, since the random directions did not lead to high
prediction error even on the ResNet-50 source model, the
final attack success rates on the concerned victim models
are also unsatisfactory. We would like to further mention
that the magnitude of intermediate-level discrepancies are,
nevertheless, high. More specifically, for random directional
guides, average magnitude of the obtained intermediate-
level discrepancies can achieve 2077.92, yet the final average
success rate on the victim models is at most 21:25% under
¼  8=255, which is even worse than the I-FGSM baseline
(i.e., 27:46% with 1921.30). That is, given random (and thus
non-disruptive) directional guides, it is challenging to learn
adversarial examples that could achieve satisfactory attack
success rates on the source model even with more signifi-
cant intermediate-level perturbations. This can be ascribed
to the high dimensionality of the intermediate-level feature
space, and we therefore conclude that the direction matters
as well.

Comparing the two sorts of random directional guides,
we also conclude that random directions in the input space
lead to slightly more disruptive attacks in contrast to that
derived from random vectors in the feature space. We
believe this is unsurprising, as random vectors in the feature
space do not necessarily lie on the image manifold and can
be misleading for guiding intermediate-level attacks.

TABLE 6
Average Success Rate of I-FGSM+ElasticNet on Models

Excluding ResNet-50 in the Untargeted ‘ 1  Setting

4 T O  FU R T H E R  B O O S T  THE P E R F O R M A N C E

We conclude from Section 3 that: 1) more transferable
adversarial examples can be obtained by taking advantage
of some linear regression models learned from the tempo-
rary results xadv; . . . ; xadv; . . . ; xadv     of a multi-step baseline
attack, and 2) it is challenging to learn a disruptive adver-
sarial example given only random intermediate-level fea-
ture discrepancies and their corresponding prediction loss.
Nevertheless, for a p-step baseline attack, the method is
only capable of collecting p þ  1 samples to train a linear
regression model, let alone later results (with relatively
large t) of the baseline attack are all very similar and thus
less informative, as can be seen in Fig. 5. As such, one plau-
sible way of further improving performance in our frame-
work is to apply more than one baseline search and collect
more diverse directional guides, if computational complex-
ity of the baseline attack is not a primary concern. Once w is
obtained, the objective in Eq. (2) is still utilized to

Fig. 5. Visualization of the obtained adversarial perturbations using I-
FGSM. It can be seen that perturbations at later iterations are all very
similar.  ¼  8=255.

TABLE 7
Success Rate of I-FGSM+ElasticNet on the Source Model,

i.e., ResNet-50, in the Untargeted ‘ 1  Setting

Method 1 ¼  0:05 1 ¼  0:1 1 ¼  0:5 1 ¼  1:0 Method 1 ¼  0:05 1 ¼  0:1 1 ¼  0:5 1 ¼  1:0

16/255 80.76%
I-FGSM+ElasticNet 

4/255 21.05%

78.06% 69.69% 65.24%
46.45% 36.40% 31.97%
19.31% 14.04% 11.87%

16/255 99.90%
I-FGSM+ElasticNet 

4/255 99.90%

99.92% 99.78% 99.62%
99.90% 99.36% 98.16%
99.80% 97.48% 92.92%
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TABLE 8
Evaluation of Random Directional Guides in the Input Space

The attack success rates on ImageNet are reported, with ‘ 1  constraints in the untargeted setting. The symbol * is used to indicate when the source model is used as
the target. We see that random directional guides lead to poor transferability in comparison to the results in Table 2.

TABLE 9
Evaluation of Random Directional Guides Generated Directly in the Feature Space (Indicated as Randy)

The attack success rates on ImageNet are reported, with ‘ 1  constraints in the untargeted setting. The symbol * is used to indicate when the source model is used as
the target. We see that random directional guides lead to poor transferability.

TABLE 10
Further Performance Gain Can Be Achieved by Performing More than One Run of a Baseline Method

and Using a More Powerful Baseline Attack, e.g., LinBP

The attack success rates on ImageNet are reported, with ‘ 1  constraints in the untargeted setting. The symbol * is used to indicate when the source model is used as
the target.

encourage maximal intermediate-level distortion with these
directional guides.

Our first attempt is to perform several runs of the PGD
baseline attack [42], which adopts a random perturbation
(on the benign example) ahead of performing the standard
I-FGSM. Benefiting from the random perturbations, we can
expect different temporary results for different runs of the
baseline attack. An experiment was conducted to evaluate
the effectiveness of this simple idea. Specifically, we per-
formed 10 runs of PGD used RR, ElasticNet, and SVR to
established the linear mapping. We obtained an average
success rate of 66:14% on ImageNet with SVR under  ¼
8=255, outperforming the result in Table 2 significantly.

How the performance of our methods varies with the num-
ber of PGD runs is illustrated in Fig. 6. It can be seen that,
for RR and SVR, increasing the number of PGD runs
improves the average attack success rate. While for Elastic-
Net which is a sparse coding method, the result is unstable.
For ‘ 1  attacks with other  settings (i.e., 16=255 and 4=255)
and ‘2  attacks, similar observations can be made, i.e., the
best results is obtained with SVR, and RR achieved the sec-
ond best.

More powerful baseline attack also leads to more trans-
ferable adversarial examples after refinement in our frame-
work. Therefore, it is natural to try more advanced methods
than I-FGSM and PGD. We have tested with MI-FGSM [43],
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TABLE 11
Further Performance Gain Can Be Achieved by Performing More than One Run of a Baseline Method

and Using a More Powerful Baseline Attack, e.g., LinBP

Method  ResNet-     VGG-19
50* [31]

ResNet-152

[32]

Inception v3

[33]

DenseNet

[34]

MobileNet v2     SENet

[35] [36]

ResNeXt

[37]

WRN      PNASNet

[38] [39]

MNASNet Average

[40]

LinBP

LinBP (10) +RR

15 100.00%      96.98% 95.80%

10 100.00%      89.88% 84.00%

5 100.00%      61.36% 45.70%

15 100.00%     98.10% 96.62%
10 100.00%     93.76% 89.76%

79.96% 96.16%

56.16% 85.34%

21.50% 52.02%

88.28% 97.82%
68.66% 92.00%

94.98% 89.42%

84.72% 69.46%

52.32% 30.30%

97.40% 92.18%
92.32% 78.30%

93.96%      93.62% 82.16%

79.08%      79.76% 58.44%

39.26%      42.02% 22.26%

95.38%       95.58% 89.88%
86.70%       86.64% 71.44%

94.34% 91.74%

82.82% 76.97%

49.50% 41.62%

97.06%      94.83%
91.10%       85.07%

5     99.94% 72.08% 58.66% 31.52% 64.18% 66.38% 41.46% 52.44%       54.92% 33.02% 65.22%       53.99%

LinBP (10)

+ElasticNet

15 99.96% 94.12% 89.80%

10 99.96% 84.78% 74.92%

73.04% 92.12%

51.22% 78.84%

92.30% 80.12%

81.34% 59.84%

86.82%      87.12% 74.72%

70.28%      70.70% 50.94%

91.48% 86.16%

80.14% 70.30%

5     99.04% 54.26% 40.42% 21.00% 46.40% 50.96% 28.52% 36.04%      37.12% 20.78% 49.76% 38.53%

LinBP (10) +SVR      15 100.00%      98.04% 96.40%

10 100.00%      93.44% 89.02%

87.36% 97.52%

68.60% 91.34%

97.34% 91.92%

92.34% 77.48%

95.16%      95.50% 89.12%

85.92%      86.70% 70.52%

97.10%       94.55%

91.02% 84.64%

5     99.90% 71.28% 58.20% 31.74% 63.94% 66.70% 41.52% 52.32%      54.40% 32.86% 64.94% 53.79%

The attack success rates on ImageNet are reported, with ‘2 constraints in the untargeted setting. The symbol * is used to indicate when the source model is used as
the target.

TAP [15], and LinBP [17]. Together with random perturba-
tions beforehand, each of these methods can be performed
more than once for collecting diverse directional guides.
Results showed that LinBP is the best in this regard, assist-
ing RR in our framework to achieve an average attack suc-
cess rate of 94:83%, 72:16%, and 53:99% under  ¼  16=255,
8=255, and 4=255, respectively. For comparison, our ILA++
in its default setting achieves 88:57%, 63:38%, and 30:59%,
respectively (as reported in Table 1). Fig. 7, Table 10, and
Table 11 report more detailed results. Due to the space limit
of the paper, we omit results with MI-FGSM and TAP in
this paper, and it is worthy noting that different baseline
methods might favor different linear regression models, cf.
Fig. 6 (in which +SVR is the best) and Fig. 7 (in which +RR is
the best).

5 DETAILED E X P E R I M E N T A L  S E T T I N G S

In this section, we will introduce detailed experimental set-
tings for all the experiments in this paper.

5.1 General Settings
All the experiments were performed on the same set of
ImageNet [44] models, i.e., ResNet-50 [32], VGG-19 [31],
ResNet-152 [32], Inception v3 [33], DenseNet [34], Mobile-
Net v2 [35], SENet [36], ResNeXt [37], WRN [38], PNAS-
Net [39], and MNASNet [40]. These models are popularly
used and can achieve reasonably high prediction accuracy
on the ImageNet validation set: 76:15% (ResNet-50), 74:24%
(VGG-19), 78:31% (ResNet-152), 77:45% (Inception v3),

74:65% (DenseNet), 71:18% (MobileNet v2), 81:30% (SENet),
79:31% (ResNeXt), 78:84% (WRN), 82:74% (PNASNet), and
73:51% (MNASNet). To keep in line with the work in [1], we
chose ResNet-50 as the source model. Some victim models
have different pre-processing pipelines, and we followed
their official settings. For instance, for DenseNet, we resized
its input images to 256  256 and then cropped them to 224
224 at center.

We randomly sampled 5,000 test images that can be cor-
rectly classified by all the victim models from the ImageNet
validation set for evaluating attacks. Specifically, these
images were from 500 (randomly chosen) classes, and we
had 10 images per class.

For the constraint on perturbations and step size, we
tested  ¼  16=255; 8=255; 4=255 with a common step size of
1=255 for ‘ 1  attacks, and we tested  ¼  15:0; 10:0; 5:0 using =5
as the step size for ‘2  attacks. We run 100 iterations for I-
FGSM and LinBP. We let p ¼  10 for attacks using temporary
results from the baseline attack (in Section 3). Then, with 10
runs in Section 4, we have 10  10 ¼  100 samples for estab-
lishing a linear mapping. After updating the adversarial
examples at each attack iteration, they were clipped to the
range of [0.0, 1.0] to keep the validity of being images.

Since the concerned attacks utilize intermediate-level rep-
resentations, the choice of hidden layer should have an impact
on the performance of the attacks. Unless otherwise clarified,
we always chose the first block of the third meta-block of
ResNet-50. For LinBP, the last six building blocks in ResNet-
50 were modified to be more linear during backpropagation.

Fig. 6. How the number of PGD runs affects the average attack success Fig. 7. How the number of LinBP runs affects the average attack suc-
rate in our framework.  ¼  8=255. cess rate in our framework.  ¼  8=255.
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6 CONC LUSION

We have demonstrated that the transferability of adversarial
examples can be substantially improved by establishing a
linear mapping directly from some middle-layer features
(of a source DNN) to its prediction loss. Various linear
regression models can thus be chosen for achieving the
goal, and we have shown the effectiveness using RR, Elas-
ticNet, and SVR. We have carefully analyzed core compo-
nents of such a framework and shown that, given powerful
directional guides, the magnitude of intermediate-level fea-
ture discrepancies is correlated with the transferability.
Using random directional guides or normalizing feature
discrepancies as in Eq. (6) shall lead to poor attack perfor-
mance. Given all these facts, we have demonstrated that fur-
ther improved attack performance can be obtained via
collecting more diverse yet still powerful directional guides.
New state-of-the-arts have been achieved.
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