Revising the EPA Dilution-Attenuation Soil Screening Model for PFAS

Mark L. Brusseau^{1,2,*} and Bo Guo²

¹Environmental Science Department and ²Hydrology and Atmospheric Sciences Department

The University of Arizona

Tucson, AZ 85721

Prepared for review in:

Journal of Hazardous Materials Letters

January, 2023

Revised: March 2023

^{*}Corresponding author, Brusseau@arizona.edu

Abstract

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Per and polyfluoroalkyl substances (PFAS) have been shown to be ubiquitous in the environment, and one issue of critical concern is the leaching of PFAS from soil to groundwater. The risk posed by contaminants present in soil is often assessed in terms of the anticipated impact to groundwater through the determination of soil screening levels (SSLs). The U.S. Environmental Protection Agency (EPA) established a soil screening model for determining SSLs. However, the model does not consider the unique retention properties of PFAS and, consequently, the SSLs established with the model may not represent the actual levels that are protective of groundwater quality. The objective of this work is to revise the standard EPA SSL model to reflect the unique properties and associated retention behavior of PFAS. Specifically, the distribution parameter used to convert porewater concentrations to soil concentrations is revised to account for adsorption at the air-water interface. Example calculations conducted for PFOS and PFOA illustrate the contrasting SSLs obtained with the revised and standard models. A comparison of distribution parameters calculated for a series of PFAS of different chain length shows that the significance of air-water interfacial adsorption can vary greatly as a function of the specific PFAS. Therefore, the difference between SSLs calculated with the revised versus standard models will vary as a function of the specific PFAS, with greater differences typically observed for longer-chain PFAS. It is anticipated that this revised model will be useful for developing improved SSLs that can be used to enhance site investigations and management for PFAS-impacted sites.

20

21

Keywords: PFAS; leaching; transport and fate; soil contamination

- 23 Synopsis: The widely used EPA SSL model is revised for PFAS applications to account for
- 24 adsorption at the air-water interface.

Introduction

Recent meta-analyses of field investigations have determined that the vadose zone is a primary reservoir of per and polyfluoroalkyl substances (PFAS) at many PFAS-impacted sites (1,2). A primary concern for these sites is the leaching of PFAS through the vadose zone to groundwater, and the subsequent impairment of groundwater quality and associated potential risks to human health. The risk posed by contaminants present in the vadose zone is often assessed in terms of the anticipated impact to groundwater. An initial assessment of this risk is typically conducted by comparing measured soil concentrations to soil screening levels (SSLs) that are established to be protective of groundwater quality. It is important to note that SSLs are not cleanup standards.

The U.S. Environmental Protection Agency (EPA) established a soil screening guidance in 1996 as a means to develop SSLs (3,4). The SSL is defined as the concentration of contaminant in soil that is determined to be protective of human exposure via a specified exposure pathway. For example, the methodology for calculating SSLs for the migration-to-groundwater pathway was developed to identify concentrations in soil that have the potential to contaminate groundwater. SSLs are risk-based concentrations derived from equations combining exposure information with EPA toxicity data. The exposure information refers to the exposure pathway selected for assessment (such as migration to groundwater) and to the soil concentrations present at the site. The toxicity data refers to the standard used to set the target concentration for the relevant medium, such as a maximum contaminant level used to establish the target groundwater concentration for the migration-to-groundwater pathway.

The primary purpose of the EPA SSL approach is to conserve resources by identifying and targeting the sites that pose the greatest concern and therefore warrant further investigation. It is

designed for use during the early stages of site investigations, when there is typically limited information about subsurface properties and conditions. The SSL guidance was developed specifically for application at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) national priorities list (Superfund) sites. However, the EPA SSL guidance has been widely used for a diversity of sites and applications. It is the standard approach for developing SSLs for sites with soil contamination.

The magnitudes of leaching and mass discharge to groundwater are governed by the concentration of contaminant in soil porewater and the infiltration/recharge rate. The porewater concentration in turn is mediated by multiple processes that affect the retention, attenuation, and leaching of the contaminant in the vadose zone. The EPA SSL guidance is based on a simple dilution-attenuation (DAF) mass-balance model. As for any screening model, the EPA DAF model is based on a suite of simplifying assumptions. These include the assumption that retention of the contaminant occurs solely by sorption to the soil solids and partitioning into the soil atmosphere, and that sorption is linear, instantaneous (under equilibrium conditions), and associated only with the organic-carbon component of the soil. The SSL guidance was established for application to standard Superfund contaminants such as metals, chlorinated-solvent compounds, and hydrocarbon-fuel constituents. Hence, the model does not consider the unique retention properties of PFAS and, consequently, the SSLs established with the method may not represent the actual levels that are protective of groundwater quality.

Field investigations, mathematical modeling, and bench-scale transport studies have demonstrated that PFAS retention and transport in the vadose zone is typically more complex than other types of contaminants such as chlorinated-solvent compounds and hydrocarbon-fuel constituents. Specifically, as surfactants, PFAS adsorb at air-water interfaces in soils, which can

provide a source of significant retention in some cases (5-19). The magnitude of retention by airwater interfacial adsorption depends upon several factors, including PFAS structure and concentration, soil properties, solution chemistry, and the presence of co-solutes (5,6,9,11-13,17-18,20-27). Sorption by the solid phase (soil particles) is another process of significance for PFAS. Due to their molecular properties, PFAS sorption is often more complex compared to other contaminants in that multiple soil constituents and associated mechanisms may be involved (28-33). As a result of air-water interfacial adsorption and multi-mechanism sorption, the retention of PFAS in the vadose zone can be significantly greater compared to traditional organic contaminants. Therefore, efforts to characterize the distribution or transport of PFAS in the vadose zone, including the determination of representative SSLs, should consider the unique properties of PFAS.

The objective of this work is to revise the standard EPA SSL guidance to reflect the unique properties and associated retention behavior of PFAS. The development of the standard EPA DAF model is first presented, along with the accompanying assumptions. This model is then revised by incorporating a term for air-water interfacial adsorption into the distribution parameter used to convert porewater concentrations to soil concentrations. Example calculations are conducted to illustrate the contrasting results obtained with the revised and standard models. The additional input parameters required for the revised model are discussed.

METHODS

The Standard EPA DAF SSL Model

The present work is focused on SSLs developed specifically for the migration-to-groundwater pathway. The conceptual basis of this specific approach is discussed in Section 1 in

the Supplemental Information (SI) file. The basic procedure to determine SSLs starts with the identification of a relevant target concentration for groundwater (i.e., saturated-zone porewater) that is determined to be protective of groundwater quality. This target concentration is then multiplied by the DAF to obtain the corresponding target leachate or porewater concentration in the vadose zone. This step accounts for relevant dilution and attenuation of contaminant concentrations during migration through the vadose zone to the receptor well. This porewater concentration is then multiplied by a distribution term to calculate the corresponding soil concentration. This latter step is conducted for two reasons. First, soil porewater concentrations are rarely directly measured at field sites, whereas soil concentrations are the standard for vadose-zone characterization and are routinely measured. Second, most contaminants of concern are present in additional phases in a soil sample beyond the aqueous phase (porewater), such as sorbed by the solids, and thus total concentrations in the soil are typically greater than porewater concentrations. It is observed that the procedure involves a set of backward-moving calculations starting with the target groundwater concentration and progressing to the SSL.

There are two key parameters of the DAF model, the DAF term and the distribution term. The DAF comprises the product of two components, the dilution factor (DF) and the attenuation factor (AF), i.e., DAF = DF × AF. The EPA soil screening guidance addresses only one of these dilution-attenuation processes, specifically contaminant dilution in groundwater. The DF is determined by a simple mixing-zone equation derived from a water-balance relationship that compares the rates of infiltration/recharge and groundwater flow. Detailed discussion of this term is presented in the original EPA documents (3,4). The default value set by the EPA is 20. It is critical to note that the standard EPA SSL model does not account for attenuation during transport in the vadose zone or groundwater. Hence, the AF is set by default to 1, and the default DAF is

20. It is also important to recognize that the default assumption of AF = 1 is the most conservative approach possible in terms of accounting for the impacts of attenuation processes on leaching in the vadose zone. Namely, this approach assumes that there is no attenuation and, therefore, that leaching rates of the contaminant are equivalent to those of a nonreactive (conservative) solute.

The distribution term is developed from a standard mass balance of contaminant distribution in a soil volume sample. The complete development is given in the SI file (Section 2 in SI), along with underlying assumptions (Section 3 in SI). The EPA DAF SSL model is given as (3,4):

$$SSL = C_{soil} = C_{gw}DAF[K_d + (\theta_w + \theta_a H)\frac{1}{\rho_b}]$$
 [1]

where C_{gw} is the target groundwater concentration deemed to be protective of groundwater quality, $C_{pw} = C_{gw} DAF$, K_d (L³/M) is the sorption coefficient, H (-) is Henry's law constant, ρ_b is porousmedium bulk density (M/L³), θ_a is volumetric air content (L³/L³), and θ_w is volumetric water
content (L³/L³). Note that the soil concentration determined from this calculation is the SSL.

The standard EPA DAF model accounts for contaminant specificity through the magnitudes of K_d and H in the distribution term. The larger the term in brackets in equation (1), the larger the SSL will be for a given target groundwater concentration. AF values may also vary as a function of the contaminant, with for example larger resultant DAF values producing larger SSLs. However, with the default setting of AF = 1, the DAF is independent of the contaminant and solely a function of hydraulic (dilution) factors.

Development of the Revised DAF SSL Model

The standard DAF model is revised to account for adsorption of PFAS at the air-water interface. It is critical to note that this revision is directed to only the distribution term, which

converts the calculated target porewater concentration to a corresponding soil concentration. Hence, the revision accounts for the additional mass present in a soil sample that is adsorbed at the air-water interface, the representation of which is critical to produce an accurate porewater-to-soil conversion for PFAS. The revision does not account for the potential impact of air-water interfacial adsorption on retention and associated attenuation during transport through the vadose zone. As noted above, the default assumption for the standard DAF model is that there is no attenuation in the vadose zone. Therefore, this revision does not impact the AF or DAF.

Brusseau and colleagues have developed comprehensive retention models for the distribution of PFAS in the vadose zone (6,16,34). The complete nondimensional distribution term, R_d^{comp} , is given as (16):

151
$$R_d^{comp} = \left(1 + K_{d*} \frac{\rho_b}{\theta_w} + H \frac{\theta_a}{\theta_w} + K_n \frac{\theta_n}{\theta_w} + K_{aw*} \frac{a_{aw}}{\theta_w} + K_{nw*} \frac{a_{nw}}{\theta_w} + K_{an*} \frac{a_{an}}{\theta_w} + K_{c*} X_c\right) [2]$$

where a_{an} is the specific air-NAPL interfacial area (L²/L³), a_{aw} is the specific air-water interfacial area (L²/L³), a_{nw} is the specific NAPL-water interfacial area (L²/L³), K_{an*} is the nonlinear air-NAPL interfacial adsorption coefficient (L³/L²), K_{aw*} is the nonlinear air-water interfacial adsorption coefficient (L³/L²), K_{c*} is the nonlinear distribution coefficient for sorption by colloids (L³/M), K_{d*} is the nonlinear solid-phase adsorption coefficient (L³/M), K_n is the NAPL-water partition coefficient (-), K_{nw*} is the nonlinear NAPL-water interfacial adsorption coefficient (L³/L²), X_c is the concentration of colloidal material in porewater (M/L³) and θ_n is volumetric NAPL content (L³/L³).

Equation (2) accounts for retention by all possible phases and domains within a soil sample volume. This term would be used to convert porewater concentrations to soil concentrations by accounting for the presence of PFAS in all relevant retention domains. Equation (2) can be modified on a site-specific basis by employing only those terms that are relevant for that site. In

the present work, it will be assumed that adsorption at the air-water interface is the only additional source of retention beyond that of solid-phase sorption and partitioning to soil atmosphere. The modified distribution term for this case is given by:

$$R_d^{Rev} = \left(1 + K_d \frac{\rho_b}{\theta_w} + H \frac{\theta_a}{\theta_w} + K_{aw} \frac{a_{aw}}{\theta_w}\right)$$
 [3]

where the K_d and K_{aw} have been simplified by assuming linear adsorption. Methods to account for nonlinear adsorption are discussed by Brusseau and Guo (16). The revised SSL model in terms of the nondimensional distribution factor format of Brusseau and Guo (16) is given by:

$$SSL = C_{gw}DAF \frac{\theta_w}{\rho_b} R_d^{Rev}$$
 [4]

172 The revised DAF SSL model presented in the original EPA format is given by:

$$SSL^{Rev} = C_{gw}DAF[K_d + (K_{aw}a_{aw} + \theta_w + \theta_a H)\frac{1}{\rho b}]$$
 [5]

Comparison of equations (1) and (5) reveals that the revised model differs from the original model by the presence of the $K_{aw}a_{aw}$ term in the brackets, which accounts for contaminant that is adsorbed at the air-water interface.

RESULTS AND DISCUSSION

Illustrative Calculations of SSLs

An illustrative application is presented to compare the differences in SSLs determined with the revised and standard models due to the impact of air-water interfacial adsorption. A vadose zone soil collected from a site in Tucson, AZ, is used as the representative porous medium. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are selected as the representative PFAS. Values for the sorption coefficient, air-water interfacial adsorption coefficient, and air-water interfacial area were obtained from prior studies (see references in Table

1). The input parameters used for the calculations are presented in Table 1, along with the SSLs determined with the two models.

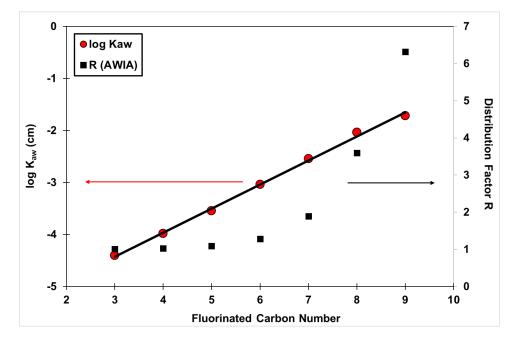
A SSL of 4.3 μg/kg is calculated for PFOS using the standard model. In comparison, a SSL of 75.6 μg/kg is obtained with the revised model. The revised SSL is more than an order of magnitude higher due to the impact of air-water interfacial adsorption. This difference could have a significant impact on identification of sites or areas of sites of greatest concern. It is important to recall that the revised SSL is based solely on correcting the distribution term used to convert porewater concentration to soil concentration to account for the additional retention accrued to air-water interfacial adsorption. Potential impacts of retention processes on PFAS leaching and attenuation are not considered.

Table 1. Example Parameters and Calculated SSLs for PFOS and PFOA

Parameter	PFOS		PFOA	
	Standard Model	Revised Model	Standard Model	Revised Model
Dilution Factor (DF)	20	20	20	20
Attenuation Factor (AF)	1	1	1	1
Dilution-Attenuation Factor (DAF)	20	20	20	20
Bulk density (ρ _b , g/cm ³)	1.5	1.5	1.5	1.5
Water content $(\theta_w, -)$	0.2	0.2	0.2	0.2
Air content $(\theta_a, -)$	0.2	0.2	0.2	0.2
Porosity (n, -)	0.4	0.4	0.4	0.4
Sorption coefficient (K _d , cm ³ /g) ^a	2	2	1	1
Henry's Law constant (H, -)	0	0	0	0
Air-water interfacial adsorption coefficient (K _{aw} , cm) ^b	NA	0.12	NA	0.008
Air-water interfacial area (a _{aw} , cm ⁻¹) ^c	NA	446	NA	446
Distribution term (R _d , -)	16	283.6	8.5	26.3
Target groundwater concentration $(C_{gw}, \mu g/L)^d$	0.1	0.1	0.1	0.1
Soil Screening Level (SSL, μg/kg)	4.3	75.6	2.3	7.0

^aMeasured values from (12)

^bMeasured values from (22,24,25)


^cMeasured value from (8)

^dThe target groundwater concentration employed is an arbitrary value used for illustration only

The impact of contaminant properties on the SSL in the standard model was represented through the values used for K_d and H in the distribution term. The air-water interfacial adsorption coefficient employed in the revised model is also a function of the contaminant. Air-water interfacial adsorption is a strong function of the molecular structure of the individual PFAS (20-26). This is illustrated by comparing the SSLs determined for PFOA using all of the same parameters as used for PFOS, with the exception of the sorption and air-water interfacial adsorption coefficients (Table 1). The SSL determined for PFOA with the revised model is 7 μ g/kg, compared to 75.6 μ g/kg for PFOS. In addition, it is observed that the SSL calculated for PFOA with the revised model is only a factor of three larger than the SSL calculated with the standard model. Conversely, the two values differ by more than an order of magnitude for PFOS. These results are due to the differential impact of air-water interfacial adsorption, wherein PFOS has significantly greater interfacial activity compared to PFOA (as shown by their respective K_{aw} values in Table 1).

The impact of chain length on the magnitude of air-water interfacial adsorption for a series of PFAS is illustrated in Figure 1. The K_{aw} is observed to increase log-linearly with increasing fluorinated-carbon chain length. More generally, K_{aw} is a log-linear function of the molar volume (20,21,25). As a result, the significance of air-water interfacial adsorption can vary greatly as a function of the specific PFAS. This means that the magnitude of the distribution term in equations 4 and 5 will vary as well. For example, as illustrated in Figure 1, the distribution factors for PFCAs with <7 fluorinated carbons are close to 1 because of their comparatively small K_{aw} values. Concomitantly, SSLs determined with the revised model for these PFAS will be similar to the values determined with the standard model due to the minimal impact of air-water interfacial adsorption. Therefore, the difference between SSLs calculated with the revised versus standard

models will vary as a function of the specific PFAS, with greater differences typically observed for longer-chain PFAS.

Figure 1. Correlation of air—water interfacial adsorption coefficient (K_{aw}) and distribution factor R (accounting solely for air—water interfacial adsorption) determined from transport experiments versus fluorinated carbon number for C4-C10 perfluorocarboxylic acids (PFCAs). Figure from Lyu et al. (17).

Input-Parameter Requirements

The revised model requires two additional input parameters, namely the air-water interfacial adsorption coefficient and the air-water interfacial area. Measurement and estimation of K_{aw} values, their dependency upon properties of the PFAS and aqueous chemistry, their nonlinearity as a function of concentration, and other issues have been discussed in several works (20-26). Methods have been developed to estimate values for specific PFAS when measured values are not available. One such approach is based on quantitative structure-property relationship (QSPR) models (20,21,25). The presence of PFAS mixtures or other constituents such as hydrocarbon surfactants and co-contaminants may impact the air-water interfacial adsorption of

PFAS in some cases, thereby affecting magnitudes of the K_{aw} . Initial research indicates however, that these impacts are relevant primarily for higher aqueous concentrations, in the ~mg/L range (21,23,34,35), and therefore they may not be significant for the lower concentrations present at many PFAS-impacted sites.

The measurement and estimation of a_{aw} values and their dependency upon soil properties have also been discussed (6,27). Multiple methods are available to estimate interfacial areas as a function of soil properties such as grain size and solid surface area and measurement of soil-water characteristic curves. The different methods were compared in recent studies, and it was shown that air-water interfacial areas measured with or estimated based on aqueous interfacial tracer tests produced the most representative interfacial areas for air-water interfacial adsorption of PFAS under transport conditions (27). Water saturation in the vadose zone can change temporally due to infiltration events, which will cause changes in the magnitudes of air-water interfacial area. These changes can affect PFAS leaching rates and temporarily impact the distribution of PFAS amongst the different phases in soil. However, the application of the distribution term in the revised model is based on the long-term distributions of water and interfacial area in the soil. In this case, the vadose zone is treated as being under quasi steady-state conditions, and water saturations and air-water interfacial areas representative of long-term status are selected for use in the SSL calculation.

The SSL calculations presented in Table 1 employed measured values for K_d . The EPA SSL guidance includes provisions for estimating K_d when measured values are not available. The estimation method uses the $K_d = f_{oc}K_{oc}$ approach, where K_{oc} is the organic-carbon normalized sorption coefficient and f_{oc} is the fraction of organic carbon. This approach is based on the assumption that sorption is controlled by soil organic carbon. As noted previously, numerous studies have demonstrated that sorption of PFAS by soils can be influenced by interactions with

additional components of the soil, such as metal oxides and clay minerals, and involve multiple mechanisms. Thus, the simple $f_{oc}K_{oc}$ approach is in some cases unlikely to be representative for many PFAS.

The EPA guidance discusses the case when the $f_{oc}K_{oc}$ approach is invalid due to sorption by inorganic soil constituents. They present a distributed-sorption K_d model for this case: $K_d = (K_{oc} f_{oc}) + (K_{io} f_{io})$ where K_{io} is the inorganic-normalized sorption coefficient and f_{io} is the fraction of inorganic constituents. Such distributed-sorption K_d models have been presented recently for PFAS (30,32,33). These models are one option available for estimating K_d values for cases where the assumption that sorption of PFAS is solely by soil organic carbon is anticipated to be invalid.

CONCLUSIONS

There is currently great interest in determining SSLs for PFAS-impacted sites to protect groundwater quality (e.g., 36-38). This issue is of great significance given the ubiquitous presence of PFAS in soils across the globe. The standard EPA DAF model, which is the most widely used method to establish SSLs, does not account for the unique properties of PFAS and how they may impact retention and distribution in soil. This includes representing adsorption at air-water interfaces, which can be a significant source of retention for many PFAS. The current model is revised by incorporating a term for air-water interfacial adsorption into the distribution parameter used to convert porewater concentrations to soil concentrations. Illustrative examples showed that the SSLs determined for PFAS with the revised model may be significantly different from those determined with the standard model. A comparison of distribution parameters calculated for a series of PFAS of different chain length showed that the significance of air-water interfacial adsorption can vary greatly as a function of the specific PFAS. Therefore, the difference between

SSLs calculated with the revised versus standard models will vary as a function of the specific PFAS, with greater differences typically observed for longer-chain PFAS.

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

It is critical to recognize that the model revision addresses only the distribution term that serves to convert soil porewater concentrations to soil concentrations. The potential impact of airwater interfacial adsorption, multi-mechanism sorption, and transformation processes on PFAS leaching and attenuation in the vadose zone is not considered. This also means that potential factors that can cause nonideal transport behavior (which may often manifest as enhanced rates of leaching), such as heterogeneity and preferential flow, rate-limited mass-transfer processes, and the impact of PFAS mixtures and co-contaminants are not considered. This is reflected in the use of the standard EPA default assumption that there is no attenuation (AF = 1) in the vadose zone (or groundwater) for the SSL calculations presented in Table 1. This assumption is the most conservative approach possible in terms of accounting for the impacts of retention and transformation processes on leaching. Namely, this approach assumes that there is no attenuation during leaching and, therefore, that the leaching rates of the contaminant are equivalent to those of a nonreactive (conservative) solute. Hence, this approach can be considered to account for the potential impacts of nonideal transport behavior in the simplest manner possible by assuming there is no attenuation whatsoever. The influence of retention and transformation processes on PFAS leaching can be accounted for by setting the AF to some value greater than 1. Or alternatively, through the use of advanced mathematical models.

The revised model developed in the present work serves as a first step in determining more robust SSLs that represent PFAS-specific retention and distribution behavior. It is anticipated that this revised model will improve investigations and management for PFAS-impacted sites. The limitations of the original EPA SSL model and by association the revised model are well

recognized. The original model was designed for use during the early stages of site investigations, when there is typically limited information about subsurface properties and conditions (3,4). This provision requires that the model be relatively simple and require a minimum of site-specific information, while also being easily updatable when new information becomes available. The model achieves these goals and has become an indispensable tool for site characterization and management. However, there are certainly limitations to the effectiveness of the model. The EPA guidance explicitly discusses options for when the model-associated assumptions are likely to be invalid, noting specifically the option of using more sophisticated transport and fate models. Such models are currently being developed specifically for PFAS. For example, an analytical-solution based screening model has been published that accounts for several PFAS-specific transport and fate processes (37). In addition, advanced numerical models have been developed to simulate PFAS transport in the vadose zone (8,10,14,15,19). These models can accurately represent more complex systems and conditions, but have greatly increased input-parameter requirements. We believe that there is value in employing multiple modeling approaches, and that the simplest DAF models serve an important role in site characterization that is complementary to the more advanced models.

328

329

330

331

332

333

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

ACKOWLEDGEMENTS

This research was supported by the Superfund Research Program of the NIEHS (P42 ES4940), the Hydrologic Sciences Program of the NSF (2023351), and the Environmental Security Technology Certification Program (Project ER21–5041). We thank the reviewers for their constructive comments.

335 **REFERENCES**

- 336 1) Anderson, R.H., Adamson, D.T., and Stroo, H. F. 2019. Partitioning of poly- and perfluoroalkyl substances from soil to groundwater within aqueous film-forming foam source zones. J. Contam. Hydrol. 220, 59–65.
- 339 2) Brusseau, M.L., Anderson, R.H., Guo, B., 2020. PFAS concentrations in soils: Background 340 levels versus contaminated sites. Sci. Total. Environ. 740 article140017.Brusseau, M.L. 2018. 341 Assessing the potential contributions of additional retention processes to PFAS retardation in
- the subsurface. Science Total Environ., 613-614, 176-185.
- 343 3) EPA 1996. Soil Screening Guidance: User's Guide. Publication 9355.4-23.
- 344 4) EPA 1996. Soil Screening Guidance: Technical Background Document. EPA/540/R95/128.
- 5) Lyu, Y., Brusseau, M.L., Chen, W., Yan, N., Fu, X., and Lin, X. 2018. Adsorption of PFOA at the air-water interface during transport in unsaturated porous media. Environ. Sci. Technol., 52, 7745-7753.
- 348 6) Brusseau, M.L., Yan, N., Van Glubt, S., Wang, Y., Chen, W., Lyu, Y., Dungan, B., Carroll, K.C., and Holguin, F.O. 2019. Comprehensive retention model for PFAS transport in subsurface systems. Water Research, 148, 41-50.
- 351 7) Brusseau, M.L. 2020. Simulating PFAS transport influenced by rate-limited multi-process retention. Water Research, 168, article 115179.
- 353 8) Guo, B., Zeng, J., and M.L. Brusseau. 2020. A mathematical model for the release, transport, and retention of PFAS in the vadose zone. Water Resour. Res., 57, article e2019WR026667.
- 9) Brusseau, M.L., 2018. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Sci. Total Environ. 613–614, 176–185.
- 357 10) Silva, J.A., Simunek, J., and McCray, J.E., 2020. A modified HYDRUS model for simulating PFAS transport in the vadose zone. Water, 12, article 2758.
- 359 11) Yan, N., Ji, Y., Zhang, B., Zheng, X., Brusseau, M. L., 2020. Transport of GenX in saturated and unsaturated porous media. Environ. Sci. Technol. 54 (19), 11876-11885.
- 361 12) Brusseau, M.L., Guo, B., Huang, D., Yan, N. and Lyu, Y., 2021. Ideal versus nonideal transport of PFAS in unsaturated porous media. *Water Research*, 202, p.117405.
- 13) Li, Z., Lyu, X., Gao, B., Xu, H., Wu, J., Sun, Y., 2021. Effects of ionic strength and cation
 type on the transport of perfluorooctanoic acid (PFOA) in unsaturated sand porous media. J.
 Hazard. Mater. 403, article 123688.
- 366 14) Zeng, J., Brusseau, M.L. and Guo, B., 2021. Model validation and analyses of parameter 367 sensitivity and uncertainty for modeling long-term retention and leaching of PFAS in the vadose zone. *Journal of Hydrology*, p.127172.
- 369 15) Zeng, J. and Guo, B., 2021. Multidimensional simulation of PFAS transport and leaching in
 370 the vadose zone: Impact of surfactant-induced flow and subsurface heterogeneities. *Advances* 371 in Water Resources, 155, p.104015.
- 372 16) Brusseau, M.L. and Guo, B., 2022. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces. Chemosphere, 302, article 134938.
- 17) Lyu, Y., Wang, B., Du, X., Guo, B., and Brusseau, M.L., 2022. Air-water interfacial adsorption
 of C4-C10 perfluorocarboxylic acids during transport in unsaturated porous media. Sci. Total
 Environ., 831, 154905.
- 378 18) Schaefer, C.E., Lavorgna, G.M., Lippincott, D.R., Nguyen, D., Christie, E., Shea, S., O'Hare, S., Lemes, M.C.S., Higgins, C.P., Field, J., 2022. A field study to assess the role of air-water

- interfacial sorption on PFAS leaching in an AFFF source area. J. Contam. Hydrol., 248, article 104001
- Wallis, I., Hutson, J., Davis, G., Kookana, R., Rayner, J., and Prommer, H., 2022. Model-based
 identification of vadose zone controls on PFAS mobility under semi-arid climate conditions.
 Water Research, 225, aricle119096.
- 385 20) Brusseau, M.L., 2019. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: using QSPR to predict interfacial adsorption coefficients. Water Res. 152, 148–158.
- 388 21) Brusseau, M.L. and Van Glubt, S., 2019. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces. Water Research, 161, 17-26.
- 22) Costanza, J., Arshadi, M., Abriola, L. M., & Pennell, K. D., 2019. Accumulation of PFOA and PFOS at the air—water interface. Environ. Sci. Technol. Letters, 6(8), 487–491.
- 392 23) Schaefer, C.E., Culina, V., Nguyen, D., Field, J., 2019. Uptake of poly and perfluoroalkyl substances at the air–water interface. Environ. Sci. Technol. 53, 12442–12448.
- 394 24) Silva, J.A., Martin, W.A., Johnson, J.L., and McCray, J.E., 2019. Evaluating air-water and NAPL-water interfacial adsorption and retention of perfluorocarboxylic acids within the vadose zone. J. Contam. Hydrol., 223, 103472.
- 397 25) Brusseau, M.L. and Van Glubt, S., 2021. The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions. Chemosphere 281, 130829.
- 399 26) Brusseau, M.L., 2021. Examining the robustness and concentration dependency of PFAS air-400 water and NAPL-water interfacial adsorption coefficients. Water Res. 190, 116778.
- 401 27) Brusseau, M.L. and Guo, B., 2021. Air-water interfacial areas relevant for transport of per and poly-fluoroalkyl substances. Water research, p.117785.
- 403 28) Li, Y., Oliver, D.P., and Kookana, R.S., 2018. A critical analysis of published data to discern 404 the role of soil and sediment properties in determining sorption of per and polyfluoroalkyl 405 substances (PFASs). Sci. Total Environ. 628–629, 110–120.
- 406 29) Brusseau, M.L., N. Khan, Y. Wang, N. Yan, S. Van Glubt, and K.C. Carroll. 2019. Nonideal 407 transport and extended elution tailing of PFOS in soil. Environ. Sci. Technol., 53, 408 10654–10664.
- 30) Knight, E.R., Janik, L.J., Navarro, D.A., Kookana, R.S., and McLaughlin, M.J. 2019.
 Predicting partitioning of radiolabelled 14C-PFOA in a range of soils using diffuse reflectance infrared spectroscopy. Sci. Total Environ., 686, 505-513.
- 412 31) Nguyen, T.M.H., Bräunig, J., Thompson, K., Thompson, J., Kabiri, S., Navarro, D.A., 413 Kookana, R.S., Grimison, C., Barnes, C.M., Higgins, C.P. and McLaughlin, M.J., 2020. 414 Influences of chemical properties, soil properties, and solution pH on soil–water partitioning
- coefficients of per-and polyfluoroalkyl substances (PFASs). Environ. Sci. Technol., 54, 15883-15892.
- 32) Fabregat-Palau, J., Vidal, M., and Rigol, A., 2021. Modelling the sorption behaviour of perfluoroalkyl carboxylates and perfluoroalkane sulfonates in soils. Sci. Total Environ. 801, 149343
- 420 33) Wang, Y., N. Khan, D. Huang, K.C. Carroll, and Brusseau M.L., 2021. Transport of PFOS in aquifer sediment: transport behavior and a distributed-sorption model. Sci. Total Environ. 779 article 146444.
- 34) Silva, J.A., Martin, W.A., McCray, J.E., 2021. Air-water interfacial adsorption coefficients for PFAS when present as a multi-component mixture. J. Contam. Hydrol. 236, 103731.

- 425 35) Huang, D., Saleem, H., Guo, B., and Brusseau, M.L., 2022. The Impact of multiple-component 426 PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated 427 porous media. Sci. Total Environ., 806, article 150595.
- 428 36) Anderson, R.H., 2021. The Case for direct measures of soil-to-groundwater contaminant mass discharge at AFFF-impacted sites. Environ. Sci. Technol. 55, 6580–6583.
- 37) Guo, B., Zeng, J., Brusseau, M.L. and Zhang, Y., 2021. A screening model for quantifying PFAS leaching in the vadose zone and mass discharge to groundwater. *Advances in Water Resources*. p.104102.
- 433 38) Pepper, I.L., Kelley, C., and Brusseau, M.L., 2023. Is PFAS from land applied municipal biosolids a significant source of human exposure via groundwater? Sci. Total Environ. 864, 161154.