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A detection algorithm has been created to
identify mussel mounds from point
clouds.

The classifier distinguishes mounds from
non-mounds sites with an accuracy of
95 %.

The algorithm gives the distribution,
height, radius, volume and distance of
mounds.

The mounds volume corresponds to an ad-
dition to the average marsh elevation of
7 mm.

The algorithm can be used to promote
marsh conservation and enhancement
projects.
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GRAPHICAL ABSTRACT

Estimating mussel mound distributi nd geometric properties in

coastal salt marshes by using Lidar point clouds

> In southeastern US salt marshes, Atlantic ribbed
mussel (Geukensia demissa) form aggregations,
called mounds

> The small dimension of the mounds and the
presence of vegetation make it dificult to
quantify mound distribution on the marsh

> Adetection algorithm has been created to
identify mussel mounds from point clouds

 The dlassifier distinguishes mounds from non.
mounds sites with an accuracy of 95%

» The algorithm gives the distribution, height,
radius, volume and distance of mounds

Take home messages:

» Remote sensing techniques can be successfully used to detect mussel mounds in coastal
wetands

» The mounds volume corresponds to an addition to the average marsh elevation of ~7 mm
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ABSTRACT

The Atlantic ribbed mussel (Geukensia demissa) is common in southeastern US salt marshes, where they form dense ag-
gregations (mounds), that occur in the highest densities and sizes on the marsh platform close to the tidal creeks' heads.
Within these marshes, mussels help build marsh elevation via their biodeposition of organic and inorganic material,
stimulate the growth of the dominant foundation species cordgrass (Spartina alterniflora), and create hotspots of inver-
tebrate biodiversity, nutrient cycling, and drought resilience. Given their powerful role, there is rising interest in
assessing natural variation in the distribution of mussel mounds and using such information to guide marsh conserva-
tion and restoration strategies. However, gathering such information is challenging, because the small dimension
(~1 m) of the mounds and the presence of overlying vegetation make it difficult to quantify mound distribution on
the marsh. Therefore, this study presents a new procedure to compute the distribution, height, radius, volume, and dis-
tance of mounds in marsh environments using remote sensing. A high-resolution UAV-Lidar point cloud has been col-
lected over a highly vegetated salt marsh in Georgia, USA, using a custom-built laser scanner system. An original
detection algorithm, based on a Random Forest classifier, has been implemented to identify the mounds from the
point cloud. The algorithm has been trained and tested on surveyed mounds and provides their location and geometric
properties. Results indicate that the classifier can distinguish mussel mounds from non-mussel mound locations with
an accuracy of 95 %. The classifier identified ~8000 mounds, which occupy 10 % of the study domain, and a volume
(shells + feces/pseudofeces) of 680 m>. The method is highly useful in efforts to monitor mussel mounds over time and
scale up to assess mounds across sites, providing invaluable data for future studies related to the geomorphic evolution
of marshes to sea level rise and siting marsh conservation and enhancement projects.
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1. Introduction

Consistent coastal wetland loss has been documented in the past several
decades (Li et al., 2018), including progressive transformations of salt
marshes into tidal flats and open ocean areas. Examples of these transfor-
mations are the loss of ~10,230 km? of the coastal zone in Louisiana,
USA between 1930 and 1990 (Boesch and Turner, 1984), the 70 % reduc-
tion of the salt marshes in the Venice Lagoon, Italy in the last 200 years
(Brambati et al., 2003), and the ~81 % loss of coastal land in the Boston
area (MA, USA) since 1777 (Kravchenko, 2009). Among the primary causes
of marsh loss, sea-level rise (SLR, Reed, 1995) promotes the lateral expan-
sion of the tidal network by increasing the tidal prism and, in turn, increas-
ing sediment export from salt marsh systems (Pinton et al., 2022). SLR can
also result in longer periods of tidal inundation, leading to marsh drowning,
and consequently, their loss (Morris et al., 2002). The forecasted global
coastal wetland response to SLR indicates a marsh loss rate of ~20-60 %
during this century (Nicholls et al., 2007). Anthropogenic impacts, such
as oil spills, land reclamation, and sediment reduction due to urbanization
aggravate this trend (Warren et al., 2002; Brambati et al., 2003; Nicholls
et al., 2007; Peteet et al., 2018).

Various efforts have been made to reverse or reduce this trend through
gray and green (i.e., nature-based) infrastructures. Gray infrastructure rep-
resents traditional engineering, which uses hard constructions such as sea-
walls, breakwaters, dikes, or groins, to protect coastlines. Due to the high
costs to maintain the long-term efficiency of man-made restoration ap-
proaches (Stagg and Mendelssohn, 2011), nature-based solutions have
gained popularity. Green infrastructure uses natural materials, such as
plants, reefs, sand, and ecosystem engineers to protect and enhance the re-
silience of coastal regions while maintaining natural shoreline processes.
Many of these solutions strive to bolster and use bivalves, such as mussels
and oysters, to enhance ecosystem services and resilience (Coen et al.,
2007; Angelini et al., 2016; Gray et al., 2021).

Bivalves are ecosystem engineers that modify their environment via abi-
otic and biotic processes. They can mitigate soil erosion (Bertness, 1984;
Angelini et al., 2015; Derksen-Hooijberg et al., 2018a; Crotty and
Angelini, 2020) and enhance marsh resilience to environmental stress
and disturbance (Nardin et al., 2021). They also remove nutrient-rich par-
ticulate from the water column via filter feeding and subsequently eject
feces and pseudofeces (Bertness, 1984). Along the southeast Atlantic coast
(USA), the Atlantic ribbed mussel, Geukensia demissa (Dillwyn), forms
dense patches (hereafter, ‘mussel mounds’ or just ‘mounds’) distributed
across higher elevation marsh platforms and especially around the heads
of tidal creeks (see Fig. S.1 Supplementary Materials, Section S1)
(Kuenzler, 1961; Crotty and Angelini, 2020). A portion of the sediments ex-
pelled from mussels contributes to the lateral and vertical growth of the
mounds. The remaining portion is redistributed across marsh platforms
over time, contributing to both accretion and land formation of the marsh
(Smith and Frey, 1985; Crotty et al., 2023).

Mussels are commonly found in a mutualistic association with a salt
marsh cordgrass, Spartina alterniflora (Bertness, 1984; Angelini et al.,
2016). Mussels enhance cordgrass resistance to drought stress by increasing
the water volume stored in the soil by 60 % and stimulate cordgrass growth
by about 190 % (Angelini et al., 2016). Cordgrass, in turn, protects mussels
from predation and thermal stress (Pennings and Bertness, 2001). Through
this mutualism, both species enhance organic production, promote inor-
ganic sediment trapping, and increase sediment stability (Pennings and
Bertness, 2001). As a result of the growing literature showing the value
and potential use of mussels in salt marsh resilience to drought and in driv-
ing patterns in sediment deposition, invertebrate diversity, and primary
production, there is growing interest in more intentionally integrating mus-
sels into salt marsh restoration or creation efforts (that currently focus on
transplanting only cordgrass) as well as in identifying marshes for conserva-
tion (i.e., those that may be particularly resilient to sea level rise due to their
relatively high densities of mussel mounds) and for marsh enhancement
(i.e., potentially increasing mussel mound density to elevate the marsh's
ability to resist droughts for keep pace with sea level rise). However, the
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development of a low-cost and accurate method to survey mussel mounds'
geometry and distribution is needed to support the planning of such proac-
tive marsh management measures.

Overall, traditional survey methods for mussel mounds are based on in
situ observation, measurement, and data recording to estimate the distribu-
tion, abundance, and size of the mounds in a particular study area
(Kuenzler, 1961; Julien, 2018; Moody and Kreeger, 2020). Measurements
involve the use of instruments, such as measuring tapes, rulers, or GPS ro-
vers to measure the geometry (i.e., diameter, height) of the mounds. An-
other method is to use a quadrat or transect survey, which involves
placing a frame or line in the area of interest and counting the number of
mounds within the quadrat or along the transect (Crotty et al., 2020).
This method is useful to estimate the distribution and density of mounds
in a particular study area. Cameras can also be used to document the size
and shape of the mounds and to observe any associated flora or fauna.
These approaches provide accurate data, but they damage the marsh by
trampling, are time-consuming (both for collecting and processing the
dataset), costly, and limited to easily accessible and relatively small study
areas. One way to speed up the survey is to engage multiple operators in
data collection. However, this approach can result in greater damage to
the marsh. Therefore, there is a need for reliable remote sensing techniques
that do not suffer these limitations.

Various remote sensing approaches have been used to characterize the
habitat and demographics of mussel mounds. For instance, (Brockmann
and Stelzer, 2008) and (Adolph et al., 2018) used aerial and satellite im-
ages, to monitor mussel beds (i.e., blue mussels, Mytilus edulis) in coastal
areas. Additionally, (Julien, 2018) used a combination of airborne Light De-
tection and Ranging (Lidar) point clouds and field surveys to characterize
mussels' habitat in coastal areas. However, this approach only gives a prob-
ability of occurrence of mussel mounds and does not provide their spatial
distribution. The main aim of this paper is to develop a non-intrusive, flex-
ible, and reliable method to map mussel mounds in the field, and get their
geometrical characteristics (i.e., height, radius, and volume). This quantifi-
cation is necessary since the spatial distribution and temporal evolution of
mussel mounds are linked to changes in sedimentation rates and water
quality. In particular, recent work showed how mussel mounds favor sedi-
ment trapping, marsh aggradation (Crotty et al., 2023), and coastal resil-
ience (Angelini et al., 2016).

Unmanned Aerial Vehicles (UAVs) are becoming a standard technology
used for various purposes, like high-resolution mapping (Meng et al.,
2017), and shoreline surveys (Farris et al., 2019). When coupled with
Lidar techniques, UAVs proved to be a valuable resource to describe the to-
pography of highly vegetated areas like Spartina alterniflora salt marshes
(Schmid et al., 2011; Schalles et al., 2013; Ali-Sisto and Packalen, 2017;
Pinton et al., 2020b, 2020a, 2021).

Since mounds accrete vertically and enhance vegetation growth, they
display a ground elevation, vegetation density, and vegetation height dif-
ferent from that of the surrounding marsh and are thus conducive for
UAV-Lidar point cloud detection. To our knowledge, this approach has
not been previously used to identify mussel mounds in estuarine environ-
ments.

2. Material, methods, and calculation

In this study, we implemented an original mound detection algorithm
based on a Random Forest classifier. The model was trained and tested
using the spatial location, and the geometric properties (i.e., height, radius,
volume, and distance) of mussel mounds we collected on a highly vegetated
Spartina alterniflora salt marsh located in Georgia, USA (Fig. 1).

The proposed model allows the detection of mussel mound distribution
by using a combination of remote sensing and direct survey approaches.
Since the classification algorithm require the spatial location (i.e., XY coor-
dinates) of a limited number of mussel mounds (~ 40) to be trained, the col-
lection of these points can be performed causing minimum damage to the
marsh surface and vegetation. The points can be either identified by using
satellite, airborne, or UAV imagery data, nullifying any damage to the
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Fig. 1. (A-B) The geographic location of the study domain. The study area is a salt marsh in Georgia, USA, within the Georgia Coastal Ecosystem Long Term Ecological Re-
search (GCE-LTER) domain. The Old Tea Kettle Creek, an 8-km-long tidal channel, flanks the marsh at its northeastern boundary. Six major tidal creeks cross the marsh.
(C) Spatial distribution of the points surveyed in the study domain. The orange dots are the points collected in 2020 along a tidal creek. The cyan and magenta dots are

the points collected in 2021 at the highest point and the base of the mussel mounds.

marsh system by making it a fully remote sensing approach. For these rea-
sons, and because of the flexibility and velocity of remote sensing ap-
proaches, the proposed model can be transferred to other locations, and
be used to perform multiple surveys on the same area, to study and track
the evolution of the mussel mound distribution.

Our procedure to identify the location and the geometric properties of
the mussel mounds in a salt marsh is described in the following sections
and summarized in Fig. 2.

2.1. Study area

The study site is a ~0.1 km? portion of an estuarine salt marsh system,
located in Georgia, USA, within the Georgia Coastal Ecosystem Long Term
Ecological Research (GCE-LTER) domain. The marsh is flanked at its
north-eastern boundary by Old Teakettle Creek, which is an 8-km-long
tidal channel crossed by six creeks of various sizes and cross-sectional ge-
ometries that run almost perpendicular to the Old Teakettle (Fig. 1). Sedi-
ments and organic material are primarily delivered to the marsh platform
by these fringing tidal creeks. The local tide has a semi-diurnal oscillation
with a Mean High Water level of 1.073 m Above the Mean Sea Level

(AMSL, NOAA tide gauge “Daymark #156, Head of Mud Creek, GA”
#8674975). However, the water level can reach 1.5-2.0 m AMSL during
spring tides, submerging the salt marsh with a water layer of ~1 m. Spar-
tina alterniflora is the dominant macrophyte in this area (Hladik et al.,
2013; Schalles et al., 2013). Its height and density depend on marsh topog-
raphy and nutrient availability, both varying with distance from tidal
creeks (Wiegert et al., 1983). For instance, short and medium Spartina
alterniflora occupies the high marsh platform and have an average stem
height of 0.20-0.60 m. Tall Spartina alterniflora, instead, fills the lower
marsh and the creek banks with heights up to 2 m (Wiegert et al., 1983).

2.2. Datasets

2.2.1. UAV-Lidar detection and pre-processing

We collected a UAV-Lidar point cloud of the study domain, which area
is ~0.1 km?, in July 2019, during low tide, when the marsh was dry. Data
were collected using a custom-built Lidar system, based on a Velodyne VLP-
16 Puck Lite laser scanner mounted on a DJI Matrice 600 UAV. The flight
was operated at a 40 m altitude with a 50 m flight line spacing. The wave-
length of the Velodyne laser scanner was 903 nm. The density of the
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Fig. 2. Flow chart describing the procedure used in this study to identify the
location and the geometric properties of the mussel mounds in a salt marsh.

resulting point clouds was ~ 130 points m 2 on average. Additional infor-
mation is reported in the Supplementary Material, Section S2.1.

We applied two filters to the point cloud to remove the points lower
than 0 m AMSL and higher than 2.50 m AMSL. The points below 0 m
AMSL describe the surface of the Old Tea Kettle Creek. The points
above 2.50 m AMSL describe birds and the upper part of the power
line crossing the marsh. The lower part of the utility poles was removed
manually.

2.2.2. Mussel mounds field surveys

A hundred and sixty-two plots were laid out and surveyed over the
study area, at low tide, between August 2020 (43 plots) and April 2021
(119 plots), 13 and 21 months after the drone flight, respectively. Both
datasets were collected after the drone survey to populate datasets used
for a different research study (Crotty et al., 2023). Even if data collection
was performed after the drone survey, this does not affect the results of
our survey because: (i) the ground elevation (Z coordinate) is not used by
our identification algorithm; (ii) the marginal error in the X and Y coordi-
nate of the GPS-RTK point is smaller than the average dimension of a mus-
sel mound (i.e., ~50 cm, according to the literature).

The points surveyed in 2020 were placed along a tidal creek in the study
area (orange square in Fig. 1B), on the marsh platform devoid of mussels
(“creek plots”, orange dots in Fig. 1C). The plots collected in 2021 were
placed at three different survey locations in the study area, between the
central and lower part of the marsh (yellow squares in Fig. 1B). The three
survey locations are on the marsh platform around the head of three differ-
ent tidal creeks. Eighty of the points surveyed in 2021 were collected on the
mussel mounds (“mound plots”), and the other 39 were on the mash plat-
form devoid of mussels (“platform plot”). Forty-two of the mound plots
were collected at the highest point of the mound (“mound top”, cyan dots
in Fig. 1C). The mound top is visually identified during the survey and gen-
erally corresponds to the center of the mound. The remaining 38 plots were
collected at the mound base (magenta dots in Fig. 1C). Only 11 pairs of
points, consisting of a top and a base plot, were surveyed on the same
mound. The parameter surveyed at each plot was the geographic position
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of the plot center. The geographic survey was performed using an RTK-
GPS (Trimble R6 GNSS + 2 cm vertical and + 1 cm horizontal accuracy).
Fig. 1C contains a summary of the number of plots surveyed per each survey
location.

2.3. Mussel mound recognition algorithm

We developed an algorithm that identifies the geographic position of
the mussel mounds by using the predictors calculated from the collected
UAV-Lidar point cloud.

The algorithm was based on the following steps, which are described in-
depth in the sections below:

STEP 1. We calculated the spatial distribution of the ground elevation,
slope, and curvature on the marsh at different spatial resolutions.
Each spatial distribution constituted a distinct raster dataset.

STEP 2. Each ground elevation raster was filtered to remove noise and
then used to determine the location of the local maxima. Each local
maximum indicated a possible candidate for the central location of a
mussel mound.

STEP 3. We considered the cells inside a circular 2.5-meter radius neigh-
borhood around the maximum, and we average ground elevation,
slope, and curvature at fixed radius intervals. This gave us the radial dis-
tribution of those quantities, that were used as predictors in STEP 4. We
then computed the skewness of the radial distribution, and we defined
the edge and base of the mound candidate, from which we computed
the average slope in the radial direction.

STEP 4. We applied the procedure described in STEP 3 to the surveyed
mounds to compute the predictors, which were used to train and test a
Random Forest classifier. The tested classifier was then applied to the
mound candidates obtained at STEP 2, to identify which of them were
mussel mounds.

2.3.1. Ground elevation, slope, and curvature maps (STEP 1)

Here we identified possible candidates for the central location of a mus-
sel mound. We first determined the spatial distribution of ground elevation,
slope, and curvature in the marsh system, from the collected UAV-Lidar
point cloud (STEP 1) by using the ArcGIS suite (ESRI. ArcGIS Desktop: Re-
lease 10.7).

Elevation maps were obtained by applying the “LAS dataset to raster”
ArcGIS tool to the UAV-Lidar dataset. The tool generated a regular cell
array that encompassed the UAV-Lidar dataset. We chose two different spa-
tial resolutions (i.e., cell size) for the rasters, corresponding to 5 and 10 cm.
For each resolution, we computed the minimum and average elevation of
the points of the cloud which were contained in each cell (hereafter called
“MinE” and “AveE”, respectively), obtaining a total of four elevation ras-
ters. We used these rasters based on the considerations outlined in
Section S2.2 of the Supplementary Material. The tool used a void-fill
method based on linear triangulation to assign a value to the cells that
did not contain any point.

Slope and curvature maps were obtained by applying the corresponding
ArcGIS tools (i.e., “Slope” and “Curvature”, see Supplementary Material,
Section S2.3) to each of the four elevation rasters.

2.3.2. Local maxima/candidate mounds identification (STEP 2)

We identified the cells containing a local ground elevation maximum,
for each of the MinE and AveE elevation rasters. This was done by applying
three consecutive filters to each raster. The first one was a gaussian smooth-
ing filter and was used to remove salt and pepper noise (Das et al., 2015),
and to enhance the shape of the mussel mounds, by flattening the surround-
ing marsh platform. The filter was based on a7 cell x 7 cell gaussian kernel
with a standard deviation of 17. This value was obtained from a sensitivity
analysis. The second one was a local maxima detection filter, which identi-
fied the cells that were mussel mound candidates. A cell was a candidate if
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its elevation was higher than the elevation of the eight surrounding cells.
For each candidate, we then calculated an estimate of the mound height
as the difference between the elevation of the candidate itself and the min-
imum elevation in a 21 cell x 21 cell stencil centered on the candidate. A
third filter removed the candidate mound from the list if its height was
not comprised between 2 and 35 cm (see Supplementary Material,
Section S2.4).

2.3.3. Classification predictors from Lidar point cloud (STEP 3)

Here we list the classification predictors of our machine-learning algo-
rithm. The predictors were calculated for the mussel mound candidates ob-
tained in STEP 2, and for the surveyed mussel mounds.

The predictors were obtained from the spatial distribution of the
ground elevation, slope, and curvature in the 2.5-meter radius area sur-
rounding the centers of the surveyed and calculated mussel mounds.
These distributions were calculated by averaging the values of the
cells which center was contained in the annuluses (also known as circu-
lar crowns) centered in the local maxima cell identified in STEP 2
(Fig. 3A). The thickness of each annulus was chosen equal to the spatial
resolution (5 or 10 cm) of the considered raster. This allowed us to ob-
tain a relatively smooth profile of the mound (Fig. 3B). We then identi-
fied the mound edge and base as the locations, starting from the center
of the mound, where the slope drops below 60 % and 30 % of 5, respec-
tively (red dot and blue square in Fig. 3B). We defined s, as the field
mound slope sy averaged over all the surveyed mounds. The slope sy
was computed from the elevation of the surveyed mound and platform
plots. 53 and sy are shown for reference in Fig. 3B.

For each mound candidate, we then identified the following predictors:
(i) the elevation of the mound edge and base (z, and 2, respectively), from
the elevation radial distribution; (ii) the elevation of the mound center, z;
(iii) the height of the mussel mounds (Hy), by subtracting 2, from z.; (iv)
the radius of the mussel mound (Ry, in Fig. 3B), as the distance between
the center and the base of the mound; (v) the average slope of the mound
side (s, in Fig. 3B), as the ratio between the height of the mound side
(Hs = 2. — 2p) and the planimetric distance between the mound edge
and base (Rs in Fig. 3B). (vi) the skewnesses (G,) of the elevation, slope,
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and curvature distributions (corresponding to the subscripts p = 2,3, c,
respectively), which were calculated as:

L~ o
o ﬁ;@—P)3 "
T e-p)”

where p is the mean value of the considered variable, p is its value in the a
annulus and N is the total number of annuluses.

The predictors, except for the skewness, are visually reported in Fig. 3B.
All the predictors are listed in Table 1.

2.4. Random Forest classifier (STEP 4)

To determine the spatial distribution of the mussel mounds, we used a
Random Forest classifier. A Random Forest consists of many individual de-
cision trees operating as an ensemble. Given a dataset of elements to clas-
sify, each tree gives a class prediction to each element by using some
predictors. For each element, the class with the higher number of votes be-
comes the prediction of the Random Forest model. In our case, the dataset
consisted of the candidate mounds identified in STEP 2 (i.e., Section 2.3.2),
the predictors were the ones described in STEP 3 (i.e., Section 2.3.3), and
the classes were two: mound and not-mound. The classification procedure
was repeated for each of the MinE and AveE rasters we identified in STEP
1 (Section 2.3.1).

We trained and tested the Random Forest classifier using a dataset of
150 locations on the marsh system. Among these locations, 42 were sur-
veyed on the highest point of the mussel mounds, 39 were the surveyed
marsh platform areas adjacent to them, where no mounds are present, 38
were surveyed close to a creek, where no mounds are present, and 31
were points located on the marsh levees and edges, which are not located
on mussel mounds. Our cross-validation and test datasets contained 120
and 30 entries, which correspond to 80 % and 20 % of the dataset, respec-
tively. We used the first database to perform a k-fold cross-validation, with
k equal to 4 (i.e., each fold contains 30 entries). We then used the test
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Fig. 3. (A) Planar description of the method used to determine the distribution of the average elevation, slope, and curvature in the neighborhood of the cells containing the
candidate mounds (central orange cell). Consecutive rings (red circles) form an annulus (green band) containing the cells whose centers (blue dots) are used to determine the
average of the considered parameter. (B) Visual description of the predictors (in red) obtained from the elevation layers based on the UAV-Lidar point cloud, for all the
candidate mounds. The red and blue markers identify the edge, and base of the mussel mounds, and are computed from the distribution of the average elevation in the
area surrounding the marsh center (light brown line). The green marker identifies the center of the mussel mound.
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Table 1

List of the predictors used by the Random Forest classifier. U.M. stands for unit of measurement.
Description Name U.M.
Skewness of the average elevation G, -
Skewness of the average slope G; -
Skewness of the average curvature G, -
Slope of the mussel mound side st -
Mussel mound edge elevation Ze m
Mussel mound base elevation 2p m
Mussel mound center elevation Zc m
Mussel mound height Hy m
Mussel mound radius Ry m

dataset to evaluate the performances of the cross-validated classifier. We fi-
nally used the tested Random Forest to classify the candidate mounds iden-
tified in STEP 2, using the predictors obtained in STEP 3. The model results
were the position of the mussel mounds in the study area. Once the model
was tested, we trained it again, using the entire dataset (150 entries), and
we used this newly trained model to identify the mussel mounds in the
study domain.

2.4.1. Accuracy analysis

To determine which combination of predictors maximizes the correct
identification of the mussel mounds, we performed an accuracy analysis.
For this analysis, we used the validation and test datasets as the ground-
truth dataset. We performed a distinct accuracy analysis for the MinE and
AveE rasters.

For each point, the ground-truth class was compared to the class
assigned by the Random Forest classifier, and a confusion matrix was gen-
erated to determine the model accuracy. Confusion matrixes are used in
machine learning and data analysis to understand which portion of the clas-
sified data is correctly classified, from a comparison with the reference
(i.e., ground-truth) data (Story and Congalton, 1986). Reference and classi-
fied data occupy the column and rows of the matrix. The number of rows
and columns corresponds to the number of the classes (in our case two:
“mussel mound” and “no mussel mound”). The diagonal of the matrix indi-
cates the correctly classified data per class, and so the agreement between
reference and classified datasets. The remaining cells indicate the
misclassified data. An additional row and column contain the total number
of classified and reference data per class, respectively. Using these values,
we calculated the following accuracy metrics of the classifier. The “overall
accuracy” (OA), he “producer's accuracy” (PA), the “user's accuracy” (UA)
and the kappa (x) value (see Supplementary Material, Section S2.5). The
latter ranges from —1 to + 1. The value O represents the agreement ob-
tained from a random classifier, while +1 and —1 represent perfect agree-
ment and disagreement between the results obtained from the two
classifiers, respectively (Cohen, 1960). We interpreted the x value as fol-
lows: <0.00 indicates no agreement; <0.20 indicates none to a slight
agreement, <0.40 indicates fair agreement, <0.60 indicates moderate
agreement, < 0.80 indicates substantial agreement; <1.00 indicates al-
most perfect agreement (Cohen, 1960). We extended this interpretation
to OA, PA, and UA.

The accuracy analysis was performed by using the predictors we calcu-
lated in STEP 3. In the following, we report the results for the classification
performed by using the predictors singularly, all together, and for the com-
binations that give the best results.

2.5. Geometric properties of mussel mounds

We developed a MATLAB algorithm to calculate the volume and
the surface of the mussel mounds. The algorithm was applied to both
the surveyed mussel mounds and the ones obtained from the Random
Forest classifier. The algorithm took as input a raster dataset and the
location of a classified mound and identified its volume and area as
follows: (i) in a 21 cells x 21 cells stencil centered on the center of

the mound, the algorithm defined as mounds the cells that had an ele-
vation greater or equal than the mound base and a distance from the
center of the mound smaller than or equal to its radius Ry. (ii) A
dilation-erosion filter (see Supplementary Material, Section S3) was
applied to remove isolated cells that did not belong to the mound.
(iii) The mound planar area was calculated by summing the areas of
the mound cells. (iv) The height of the mound cells was defined as
the difference between the elevation of the mound cell and the
mound base. (v) The volume of each mound cell was computed by
multiplying its height by its area. By summing these volumes, the
algorithm computed the mound volume.

3. Results
3.1. Accuracy analysis results

3.1.1. Cross-validation phase

In this section, we describe the results of the cross-validation we per-
formed for the Random Forest classifier applied to the MinE and AveE ras-
ters.

The results reported in Table 2 indicate that both for the MinE and AveE
rasters, the classifier accuracy (i.e., the capability to correctly classify the
mound candidates) increased when more predictors were used in the clas-
sification procedure. However, also the single predictors (first nine rows)
show good values of the accuracy metrics. When the classifier used one pre-
dictor and the AveE rasters, OA ranged between 0.62 and 0.83, PA ranged
between 0.37 and 0.69, UA ranged between 0.54 and 0.85, and x ranged
between 0.11 and 0.63. When the classifier used one predictor and the
MinE rasters instead, OA ranged between 0.56 and 0.80, PA ranged be-
tween 0.41 and 0.63, UA ranged between 0.67 and 0.84, and « ranged be-
tween 0.16 and 0.56.

In particular, the value of x indicates that there is a slight to moderate
agreement between the classified and the reference data both for the
AveE and the MinE rasters.

The best value of the accuracy metrics was observed when the classifier
used as a single predictor the elevation of the mound center (2., seventh
row). For this predictor, the value of the accuracy metrics indicated that
there was a substantial agreement (x<0.80) between the classified and
the reference data for the AveE rasters, and a moderate agreement
(x<0.60) for the MinE rasters.

For the MinE rasters, we obtained the best values of all the accuracy
metrics by using the three skewness G,, G;, and G, (tenth row) in the RF.
Using these predictors, we obtained an OA of 0.92, a PA of 0.86, a UA of
0.88, and a x of 0.80 (substantial agreement). For the AveE rasters instead,
we obtained the best values of all the accuracy metrics by using all the pre-
dictors (coupling G, Gs, G, SL, Ze, 2, 2c, Hu, and Ry, last row) in the RF.
Using these predictors, we obtained an OA of 0.94, a PA of 0.91, a UA of
0.92, and a x of 0.87 (almost perfect agreement). These values correspond
to the highest observed for the cross-validation.

These results indicate that when more than a predictor was used in the
Random Forest procedure, the predictors based on the AveE rasters produce
more accurate results than the ones based on the MinE rasters.
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Table 2
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The table contains the results of the cross-validation performed for the Random Forest classifier. The table contains the results obtained by using the predictors obtained at
STEP 3 (Section 2.3.3) singularly, all together, and for the combinations that give the best results. The results are reported for both the AveE and MinE rasters. The underlined
value is the best among those obtained using the AveE and MinE rasters. The bold values are the maximum observed for the considered combination of predictors used.

Classification predictors Overall Accuracy (OA) Producer's Accuracy (PA) User's Accuracy (UA) Kappa (x)

AveE MinE AveE MinE AveE MinE AveE MinE
Skewness elevation (G,) 0.74 0.70 0.58 0.52 0.84 0.79 0.49 0.39
Skewness slope (Gs) 0.66 0.67 0.46 0.47 0.65 0.73 0.27 0.32
Skewness curvature (G,) 0.57 0.62 0.37 0.45 0.54 0.71 0.11 0.26
Slope mound side (s;) 0.62 0.56 0.42 0.41 0.59 0.59 0.20 0.16
Elevation edge (z.) 0.75 0.78 0.57 0.61 0.75 0.75 0.45 0.51
Elevation base (z,) 0.78 0.72 0.62 0.52 0.83 @ 0.53 0.42
Elevation center (z.) 0.83 0.80 0.69 0.63 0.85 0.84 0.63 0.56
Mound height (Hy) 0.73 0.65 0.56 0.47 0.82 0.67 0.46 0.28
Mound radius (Ry) 0.79 0.73 0.65 0.57 0.75 0.68 0.53 0.41
G,,G;, G, 0.93 0.92 0.89 0.86 0.89 0.88 0.83 0.80
5L, Ze, Zp» Zes Hut, Rut 0.82 0.82 0.65 0.69 0.88 0.78 0.60 0.58
G, Gs, Ge, St Ze» 2> 2 Hu, Ry 0.94 0.90 0.91 0.84 0.92 0.86 0.87 0.76

3.1.2. Test phase

The results obtained for the test phase of the accuracy analysis (Table 3)
indicate that the predictors based on the AveE rasters produce similar or
more accurate results than the ones based on the MinE rasters. For this rea-
son, we report only the results related to the AveE rasters.

The results reported in Table 3 show that the classification accuracy in-
creased when more predictors are used in the classification procedure.
However, excellent results of the user's accuracy (UA) were obtained also
when the classifier used only one predictor (first nine rows). In this case,
the results indicate that 60 to 100 % of the mound candidates were cor-
rectly classified. The values observed for the OA (first column) and the
PA (second column) range between 0.27 and 0.80, indicating fair to sub-
stantial agreement between the classified and reference data. The best per-
formances were observed for the elevation of the mound center (z., seventh
row), which present OA equal to 0.80, a PA equal to 0.45, and a UA equal to
1.00. Finally, the value of x (last column) confirms the adequate classifica-
tion skills obtained by using this predictor. In fact, 2, has the highest value
of x, which is equal to 0.51.

We obtained the best classification skills by using the three skewnesses
G;, G;, and G, (fourteenth row), which gives an OA of 0.97, a PA of 0.83,
and a UA of 1.00. These values indicate that >80 % of the mound candi-
dates are correctly classified. The quality of the results is underlined by
the large value reached by x (0.89). The statistical parameters we obtained
by coupling s, 2, 2, 2c, Hy, and Ry (penultimate row) are lower than
those obtained by using the three skewnesses. Finally, the results we ob-
tained by using all the calculated predictors in the classification procedure
(last row) are similar to those observed by using the three skewnesses. For
this reason, we decided to use all the predictors in the classification process.

Table 3

3.2. Mussel mound distribution in the marsh system

The map in Fig. 4A shows the mussel mounds distribution (blue dots)
we obtained in our marsh system by using our classification algorithm on
the AvekE rasters. Fig. 4B, C, and D show the three locations where we sur-
veyed the mussel mounds (cyan circles). A comparison between the loca-
tion of the cyan circles and blue dots indicates that 95 % of the surveyed
mounds were identified by the classifier. Among these, only a few mussel
mounds were identified in the highly vegetated creek levees and marsh
edges (Fig. 4A).

The map in Fig. 4A also shows that mussel mounds are preferentially lo-
cated close to the creek heads, where the hydroperiod is longer and nutrient
availability is higher (Wiegert et al., 1983). The map also shows that
mounds density declines approaching the marsh edge and the lower
marsh, where nutrient delivery is lower, and predation intensifies. More-
over, we note that mussel mounds are almost absent between survey loca-
tions B and C, and in the southeastern portion of location B. The
particularly low elevation of these areas may cause excessive saltwater stag-
nation in them, which hinders mussel settlement and growth (Leonard
et al., 1998; Alfaro, 2005). In addition, approximately 200,000 mussels
were transplanted from location C into this location from location B by
Crotty et al. (2023).

To summarize, our classification algorithm successfully identified 8010
mussel mounds on the marsh platform, resulting in a density of approxi-
mately 0.08 mounds per square meter. To estimate the corresponding mus-
sel density, we conducted a visual inspection of 39 mounds within the study
area, which contained an average of around 134 mussels each, with a range
of 8 to 304 individuals per mound. These findings are consistent with

The table contains the results of the test performed for the Random Forest classifier. The table contains the results obtained by using the predictors obtained at STEP 3
(Section 2.3.3) singularly, all together, and for the combinations that give the best results. The results are reported for both the AveE and MinE rasters. The underlined value
is the best among those obtained using the AveE and MinE rasters. The bold values are the maximum observed for the considered combination of predictors used.

Classification predictors Overall Accuracy (OA) Producer’s Accuracy (PA) User's Accuracy (UA) Kappa (x)

AveE MinE AveE MinE AveE MinE AveE MinE
Skewness elevation (G;) 0.67 0.60 0.31 0.29 0.80 1.00 0.27 0.27
Skewness slope (G;) 0.70 0.73 0.36 0.36 1.00 0.80 0.37 0.35
Skewness curvature (G,) 0.67 0.47 0.27 0.18 0.60 0.60 0.19 0.02
Slope mound side (s;) 0.77 0.70 0.42 0.25 1.00 0.40 0.46 0.13
Elevation edge (z.) 0.77 0.73 0.42 0.38 1.00 1.00 0.46 0.41
Elevation base (z5) 0.70 0.67 0.36 0.31 1.00 0.80 0.37 0.27
Elevation center (z) 0.80 0.70 0.45 0.36 1.00 1.00 0.51 0.37
Mound height (Hy) 0.77 0.83 0.42 0.50 1.00 1.00 0.46 0.57
Mound radius (Ry) 0.73 0.80 0.36 0.44 0.80 0.80 0.35 0.45
G,,Gs, G, 0.97 0.93 0.83 0.71 1.00 1.00 0.89 0.79
SL, Ze, Zp» Zes Hut, Rut 0.90 0.83 0.63 0.50 1.00 1.00 0.71 0.57
Gz, Gs, Ge, S, Zes Zbs Ze, Hu, Rut 0.93 0.95 0.71 0.83 1.00 1.00 0.82 0.89
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Fig. 4. Spatial distribution of the mussel mounds (blue dots) identified in the marsh system (A) by applying our classification algorithm to the AveE rasters, and at the three
survey locations (insets B, C, D) we considered in our marsh system. The numbered yellow dots in (A) indicate the location of the six creek heads. The cyan circles in the insets

indicate the mussel mounds we surveyed at the three locations.

previous research conducted in similar wetlands (Kuenzler, 1961; Smith
and Frey, 1985; Angelini et al., 2016; Derksen-Hooijberg et al., 2018a).
Therefore, we can conclude that our study area has an estimated mussel
density of around 10.7 individuals per square meter, which aligns with
the results of prior studies that have conducted comprehensive surveys of
mussel density and coverage in marshes within this region (Angelini
et al., 2016; Crotty and Angelini, 2020; Crotty et al., 2020).

3.3. Distribution of mussel mound characteristics

In this study, we divided mussel mounds into three groups: small,
medium, and large. Small mussel mounds have Hp <0.05 m and
Ry <0.30 m. Medium mussel mounds have Hy;<0.15 m and
Ry =0.60 m. Large mussel mounds have Hy; =0.15 m and Ry =0.60 m.

The maps in Fig. 5A and C show the spatial distribution of the height
(Hypp) and the radius (Ry;) for the mussel mounds we identified in the
study domain.

From these maps, we note that small mussel mounds (Hy <0.05 m -
Ry =0.30 m) more commonly occur on the marsh platform close to the
marsh edge, the middle part of the marsh platform, where elevation is
lower, and the southern part of the domain. In these areas, the low
water fluxes, nutrient loads, and oxygen inputs may limit the transport
and survival of mussel larvae, their deposition, and for those that settle,
their growth (Leonard et al., 1998; Alfaro, 2005). Because of their large
distance from the creek heads, nutrient and oxygen inputs are low close
to the marsh edge and in the middle part of the platform. At the southern
part of the domain, instead, the small cross-section and small length of
the adjacent tidal creeks likely limit water fluxes and thus nutrient
and oxygen exchanges.

Fig. 5A and C also show that the large mounds (Hy=0.15 m -
Ry =0.60 m), occupy the northern part of the domain. Here mussel mounds
occupy the heads of the two biggest tidal creeks in the salt marsh system
(i.e., the first two from the northern boundary), where nutrient loads are
high (Kuenzler, 1961; Stiven and Gardner, 1992; Angelini et al., 2016).
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Fig. 5. Spatial (maps on the left figures), partial (blue bins on the right figures), and cumulative (continuous blue line on the right figures) of: (A-B) the height, (C-D) the
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threshold between small and medium-size mounds. The orange dots indicate the percentage of mussel mounds at the threshold between medium-size and large mounds.
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Among these large mounds, the ones with Ry =1.00 m, represent agglom-
erations of different mussel mounds and are the closest to the creek heads.

Finally, the maps in Fig. 5A and C show that medium-sized mussel
mounds (Hy <0.15 m - Ry <0.60 m) are spread all over the salt marsh sys-
tem. They coexist with the small mussel mounds, except at the marsh edge,
where medium-sized mounds are absent. They also coexist with large mus-
sel mounds at the creek heads.

Fig. 5B and D show the probability (blue bars) and cumulative (contin-
uous blue line) distributions of Hy; and Ry, for the mussel mounds we iden-
tified in the study domain. The distributions are defined by using 71 and 45
classes, at intervals of 2.5 cm and 5 cm, respectively. Both the parameters
show a positively skewed (i.e., skewed to the right) distribution. For each
distribution, the vertical dashed line indicates its mean value, which is
equal to ~12 cm for the mound height, and 59 cm for the mound radius.
Both of them are in the range of literature values (Smith and Frey, 1985).
In Fig. 5B and D, the green and orange dots on the cumulative distributions
indicate the upper thresholds for small, medium, and large mounds. Con-
sidering the mound height, small, medium, and large mounds are ~5 %,
~65 %, and ~ 35 % of the classified mounds, respectively. Considering
the mound radius, they are ~10 %, ~45 %, and ~45 % of the classified
mounds, respectively.

The map in Fig. 5E shows the spatial distribution of the volume (V) of
the mussel mounds we identified in the study domain. As we observed for
the height and the radius, while the small (Vy; <0.05 m®) and medium
(Vu =0.15 m®) mounds preferentially occupy the marsh edge, and the
ponded marsh, the large mounds (Vy; =0.15 m®) grow close to the creek
heads.

As reported in Fig. 5F, the volume presents a positively skewed distribu-
tion, where most of the mounds have a small-medium volume. Both the prob-
ability and cumulative distributions were obtained by dividing the volume
dataset into 50 classes, which range is 0.008 m>. The green dot in Fig. 5F
shows that large mounds are ~15 % of the total. The orange dot indicates
that the small mounds are ~45 % of the total mounds. Consequently, me-
dium mounds are ~40 % of the total. Finally, the average mound volume
is equal to ~0.085 m>, due to the high number of small mounds.

Overall, the results in this section show that the distribution of mussel
mound height, radius, and volume, strongly depends on their distance
from the creek heads, which is the main marsh access point for nutrients
and oxygen (Kuenzler, 1961; Stiven and Gardner, 1992; Angelini et al.,
2016).

Fig. 6A and B show the distribution of the average mussel mound height
and radius at progressive distances (5 m resolution) from the head of the six
creeks in our salt marsh (yellow dots in Fig. 4). The values are computed
using the spatial distributions obtained from the Random Forest classifier.
The results reported in Fig. 6 confirm that tall and large mussel mounds de-
velop close to the creek heads, except for the second creek (i.e., the second
from the northern boundary of the study area). For this creek, both mussel
mound height and radius increase until they reach a maximum of ~50 m
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15¢
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from the creek head, and then decrease. Finally, because high and large
mussel mounds grow close to the creek placed at the western boundary of
the study area, both mound height and radius increase >50 m from creek
heads 1 and 5.

The map in Fig. 7A shows the spatial distribution of the distances be-
tween the mussel mounds detected in the study domain. The distances
were calculated by using the TIN (Triangular Irregular Network) generation
tool (i.e., “Create TIN”) in ArcGIS. The TIN satisfies the Delaunay triangle
criterion, which ensures that no vertex (i.e., the location of the classified
mussel mounds) lies inside any of the circumcircles of the triangles in the
network. The Delaunay criterion maximizes the minimum angle of all the
triangles in the TIN, to avoid long and thin triangles. Fig. 7A indicates
that the distance between mounds is lower close to the creek heads,
where values range between 0.75 m and 2.50 m, and increase to values
higher than 8 m at the marsh edges. Fig. 7B underlines that the minimum
distance between mounds is ~0.75 m and that the average distance is
3.20 m. Note that distances follow a distribution with a long tile toward
high values.

3.4. Mussel mound geometrical properties

In this section, we discuss the relationships between the geometric prop-
erties of the mussel mounds we identified in our study area. Fig. 8A shows
the good linear relationship (Table 4, first row) between the height and the
radius of mussel mounds (R? ~ 0.53). However, because of its high slope
(i.e., 4.684), this relationship indicates that mussel mounds grow more lat-
erally than vertically. Fig. 8B shows a strong correlation between the vol-
ume and the radius of the mussel mounds (R2 ~ 0.80). The relationship
is non-linear (Table 4, third row). Fig. 8C shows a good relationship be-
tween the volume and the height of the mussel mounds (R? ~ 0.62). As
we observed for the radius, the relationship is not linear (Table 4, third
row), and is not well defined for a mound radius larger than ~0.30 m.
These results indicate that, over a certain threshold height, the volume of
the mussel mounds increases because of their lateral expansion, as reported
in Fig. 8D, which shows the relationship between the volume and the mus-
sel mound height and radius (Table 4, last row).

4. Discussion

Here, we developed a new algorithm that estimates the spatial distribu-
tion and the dimension (i.e., height, radius, and volume) of the mussel
mounds in a densely vegetated salt marsh, by using a Random Forest clas-
sifier. The results indicate that the distribution and properties of the mussel
mounds strongly depend on their distance from the tidal creeks and the
marsh edge. This suggests that the properties of the tidal network, and in
particular, the distribution and the dimensions (both longitudinal and
cross-sectional) of the creeks, influence the settling and growth of mussel
mounds in a salt-marsh system.
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Fig. 6. The distribution of the average mussel mound height (A) and radius (B) at progressive distances (x-axis) from the head of the six creeks in our study area. The values
are computed from the spatial distributions obtained from the Random Forest classifier. The creek head locations used for the computation are the yellow dots in Fig. 4.
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4.1. Mussel mounds distribution

Our algorithm estimates that ~8000 mussel mounds populate our salt
marsh. This value corresponds to a density of ~10.7 mussels m ™2, which
is in the lower range of the values observed in other salt marshes in
Georgia (Kuenzler, 1961; Jordan and Valiela, 1982; Smith and Frey,
1985; Kneib and Weeks, 1990).

The low mussel density may be related to the flooding time (the hydro-
period) of our study area. Our domain is flooded for ~4.5 h day ™! (see
Supplementary Material, Section S4), which is lower than the values associ-
ated with marshes with higher mussel densities (Kuenzler, 1961; Smith and
Frey, 1985; Kneib and Weeks, 1990). A low hydroperiod hinders mussels
settling, growth, and survival, because, as filter feeders, they preferentially
occupy areas with high flows where food and oxygen availability are large
(Leonard et al., 1998; Alfaro, 2005). In addition, the density could be

Table 4

Relationship between mound height (Hy), radius (Ry), and volume (V) we observed for the mounds we detected in our study area, and the value of the R2
x y z Relationship R?
Hy Ry - y = 4.684x 0.53
Ry Vi - y = 0.029 — 0.145x + 0.352x> 0.80
Hy Vu - y = 0.008 — 0.059x + 4.87x% 0.62
Hy Ry Vi z = 0.023 — 0.303x — 0.043y + 1.290xy + 0.002y*> — 0.109xy> + 0.081y*> 0.84
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slightly underestimated due to the lower penetration of Lidar pulses in the
tall Spartina alterniflora that covers them. Considering that ~ 15 % of mus-
sels populating a marsh system are contained in areas with tall Spartina
alterniflora (Kuenzler, 1961), we estimate that mussel density in our study
domain is equal to ~ 3.3 mussels m 2.

Our results indicate that mussel mounds occupy a surface of ~9820 m?,
which is ~14 % of the low vegetated salt marsh area (i.e., 0.07 km?) and
~10 % of the entire domain (i.e., 0.1 km?). To calculate the low vegetated
area, we subtracted the Digital Elevation Model from the Digital Surface
Model obtained from the UAV-Lidar point cloud collected in the domain,
and we sum the surface of the cells in which the difference was lower
than 0.65 m. The percentage of marsh surface coverage obtained by our al-
gorithm (i.e., ~10 %) is higher than those observed in other studies per-
formed close to our marsh system (i.e., 1-7 %; Kuenzler, 1961; Crotty and
Angelini, 2020). Crotty et al. (2023) observed that mussel mounds increase
the vertical accretion of the salt marsh and that this increase is proportional
to the area they occupy in the platform. Therefore, our results suggest that
this marsh has a higher potential to keep up with the sea level rise than the
ones considered in the studies cited above. In addition, vegetation growth,
survival, and recovery are enhanced above mussel mounds (Angelini et al.,
2016; Derksen-Hooijberg et al., 2018b). Therefore, our results indicate that,
compared to other systems, our marsh has a higher resilience to climatic ex-
tremes, such as drought, and consequently a lower probability of degrada-
tion in the short and long term.

The mounds identified in our marsh have a total volume of ~680 m®,
which corresponds to an average addition of ~7 mm to the marsh eleva-
tion. Recently, numerical and field analyses have been performed by our
team (Crotty et al., 2023), to quantify the contribution of mussels to
salt marsh accretion in the same location. Results indicate that mussel
mounds increase marsh aggradation by about 4 mm year ~ !, which cor-
responds to a volume of 400 m®year ~'. Considering that the volume of
our mounds is ~680 m®, the results from Crotty et al. (2023) suggest
that their growth can occur in about 1.7 years. This result confirms the
important contribution of ecosystem engineers to marsh aggradation
and resilience to sea-level rise, highlighted in this paper, and underlines
the importance of investigating the efficacy of restoration projects using
mussel mounds.

The height of the mussel mounds is not negligible compared to the
water depth on the marsh platform (i.e., ~15 cm vs. 40-80 cm along the
southeast of the US). Therefore, mussel mounds markedly influence the hy-
drodynamics of the marsh platform. The presence of mussel mounds, and
the increase in vegetation density and height above them (Angelini et al.,
2016), enhances marsh roughness and consequently reduces the average
velocities over the marsh system. Lower velocities facilitate mussel larvae
settlement and sediment deposition, promoting mound growth and marsh
aggradation. Moreover, high mounds and denser vegetation patches divert
water fluxes to less vegetated regions of the marsh (Pinton et al., 2020a),
enhancing the transport of larvae, nutrients, sediments, and oxygen in
these areas, consequently favoring the growth of new mounds. In the long
term, this may increase the number of mussel mounds in the marsh, conse-
quently improving the capability of the marsh system to keep up with the
rising sea level.

The results in Fig. 7 indicate that the distance between adjacent mussel
mounds has a lower limit, which corresponds to ~0.75 m. This suggests
that mussel mounds have an influence area, where the growth of new
mounds is discouraged. These results consequently suggest that only a lim-
ited number of mounds can grow in a salt marsh, so mounds density could
have a higher limit. The existence of a maximum density of mussel mounds
in the marsh system indicates the presence of a maximum contribution of
mussel mounds on the vertical accretion of the marsh since Crotty et al.
(2023) indicate that mussel mounds increase the vertical accretion propor-
tionally to the area they occupy in the platform. The distribution in Fig. 7B
underlines the presence of a mode distance between mussel mounds, which
corresponds to ~2.00 m. By monitoring the mussel mounds over time, we
would be able to understand whether the system has reached a max mound
density or if that can further increase.
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4.2. Mussel mound geometrical properties

The presence of the threshold height for the mussel mounds reported in
Section 3.4, is commonly observed in bivalve aggregations (Ridge et al.,
2015; Crotty and Angelini, 2020; Bost et al., 2021). Crotty and Angelini
(2020) identified an optimal elevation, or “ceiling”, as the maximum eleva-
tion reached by the mussel mounds in the marsh system. We then analyzed
the distribution of the mussel mound height and elevation, with respect to
the surrounding marsh platform elevation, along two transects located in
the creek head area in from of the two northern creeks in the study domain
(cyan lines in Fig. 9). The results indicate that, for the two transects, an el-
evation ceiling is visible and ranges between 0.70 and 0.80 m AMSL (green
lines and triangles in Fig. 9), and the mussel mound height decreases (red
lines and squares in Fig. 9) when the elevation of the adjacent platform in-
creases (blue lines and dots in Fig. 9), as observed in Crotty and Angelini
(2020).

4.3. Applications of the mussel mounds identification model

Information about mussel mounds distribution and geometry can be
used by numerical modelers, biologists, and scientists, to evaluate the im-
pact of these ecosystem engineers on coastal areas, as well as by local stake-
holders, to regulate mussels harvesting, and take proactive decisions to
enhance coastal protection.

Our algorithm can be used, in conjunction with results from numerical
models and field sampling, to evaluate which hydrodynamic (i.e., water
fluxes magnitude), morphology/topography (i.e., elevation distribution,
sediment transport, and tidal network characteristics), and biological vari-
ables (i.e., vegetation cover, nutrients availability, as well as abundance
and typology of predators) mostly influence mussel formation and growth.
For instance, our results can be used to calibrate a population dynamics
model for mussel mound evolution. The model could be coupled with a nu-
merical hydrodynamic and morphodynamic model, to predict the evolu-
tion of a marsh system accounting for the effect of dynamically evolving
mussel mounds.

When mussels feed, they preferentially remove suspended sediments
(Moody and Kreeger, 2020), bacteria (Wright et al., 1982), and nutrients
(Jordan and Valiela, 1982), from the water column, improving water qual-
ity and clarity and playing a key role in the nutrient cycle (Kreeger et al.,
2011). In addition, previous studies found that mussels filter up to ~2
times the particulate nitrogen exported by the salt marsh because of tidal
exchange (Jordan and Valiela, 1982). Therefore, mussels mitigate eutrophi-
cation (Kemp et al., 2005), increase marsh productivity (Angelini et al.,
2015), and increase the abundance and diversity of commercial fisheries
(Julien, 2018) and invertebrates (Angelini et al., 2015). For all these rea-
sons, projects that restore nutrient balance are being studied (Will et al.,
2012; Galimany et al., 2017). In this perspective, recent studies identified
temperature and seston variability as the main drivers of mussels filtration
services in coastal salt marshes (Moody and Kreeger, 2020). However, since
the magnitude of filtration depends on mussel biomass, the estimate of
mussel filtration services requires the knowledge of their abundance and
spatial distribution, as well as their feeding time and nutrient availability
(Moody and Kreeger, 2020). Our classifier can be used to define the loca-
tion of mussel mounds in these models. Coupled numerical hydrodynamic
and particle tracking models (Mandlburger et al., 2015) can be used to eval-
uate the contribution (filtration services) of mussel mounds in coastal and
estuarine water quality. This approach can be used to track the dispersion
of nitrogen over time and space, and to analyze the effect of seasonality,
the mutual interaction (competition) between mussels, and the presence
of downstream effects (Gray et al., 2021) on nitrogen filtration.

Finally, the mussel harvesting industry can benefit from our method. An
interactive map based on our identification method can be used by local
managers to set harvesting boundaries (Julien, 2018). Harvesters can be in-
formed of the location, the dimension, and the conditions of the mussel
mounds in a certain area, to avoid overharvesting. This is important
considering that commercial harvesting of ribbed mussels has increased
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Fig. 9. Location of the two transects (cyan lines in the map on the left) where we calculated the average: (blue lines and dots) elevation of the marsh platform; (red lines and
squares) height of the mussel mounds; (green lines and triangles) elevation of the mussel mound “ceiling” elevation.

substantially over the past years on the East coast (Julien, 2018). Due to the
importance of mussel mounds on marsh resilience and restoration, the
method proposed in this study can be used to identify marsh conservation
priorities, detect areas where enhancing mussels may boost marsh resil-
ience, and also support the design of marsh restoration projects that may at-
tempt to mimic the marsh distribution patterns (e.g. mound densities,
heights, distances between mounds) observed in natural marsh system in
efforts to exploit the benefits of the mutualism.

4.4. Method advantages and limitations

Using the proposed method, the location and the geometric properties
of the mussel mounds can be easily identified in the marsh platform, espe-
cially in the areas occupied by small and medium Spartina alterniflora. How-
ever, the identification of mussel mounds in highly vegetated areas, such as
creek levees and marsh edges (Fig. 4A), is limited because (i) tall, dense
vegetation occupying these features limited Lidar pulse penetration, ren-
dering ground elevation changes difficult to identify (Cohen, 1960; Kemp
et al., 2005); (ii) while vegetation is taller when growing among mussels
on the marsh platform (Angelini et al., 2016), its height is more uniform
on creek levees and the marsh edge, providing less, if any, indication of
mussel presence. This limitation could be bypassed by operating low-
altitude flights (Wang et al., 2017). This procedure allows the collection
of high-density point clouds and increases the probability for laser pulses
to penetrate the dense vegetation layer and reach the ground (Wang
et al., 2017) and then the mussel mounds. However, during our surveys,
we note that a very limited number of mussel mounds occupy the creek le-
vees and the marsh edge in our study domain. This observation is consistent
with prior observational work summarizing mussel distributions across
these marshes (Kuenzler, 1961; Lin, 1989; Crotty and Angelini, 2020),
and suggests the limited impact of this limitation on our results.

Field surveys require extensive trampling and then perturb the marsh
ecosystem, which often takes several months to recover. Although the use
of UAVs can reduce the damage caused to the marsh, the proposed method
is still somewhat invasive. This is because it requires actively walking on
the marsh to accomplish certain tasks such as locating a land station to cal-
ibrate the GNSS sensor on the drone, finding additional targets for correct
georeferencing of the collected point cloud, and surveying mussel mounds
to calibrate the classifier. The first limitation can be bypassed by position-
ing the land station at the marsh edge. The second limitation can be solved
by operating an accurate calibration of the GNSS sensor on the drone. For
the third limitation, reaching the mussel mounds during high tide using a
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boat or kayak is a possible solution. However, at high tide, it is difficult to
collect the radius, volume, and surface, of a mound, due to the high water
turbidity.

The proposed method successfully detects mussel mounds, but it is lim-
ited to small areas due to the short battery life of the UAVs, which is about
30 min. To overcome this limitation, alternative aircraft such as helicopters,
ultralight aircraft, and small planes can be used. However, it is important to
consider that these methods have some drawbacks. Firstly, they are less
flexible compared to UAVs as they require adequate landing and take-off
areas. Additionally, they can be dangerous for people as they require pilots
onboard. Lastly, they are generally more expensive than UAVs due to the
high cost of aircraft, pilots, fuel, and landing and take-off areas. Therefore,
a cost-benefit analysis should be performed at the beginning of each project
to determine which remote sensing technology is the most suitable for
the job.

5. Conclusions

In this study, we present a method to determine the spatial distribution
and the geometry (i.e., height, radius, surface, and volume) of mussel
mounds in a coastal salt marsh, by coupling a remote-sensing technique
(i.e., high-resolution UAV-Lidar) with a machine-learning classifier
(i.e., Random Forest). The classifier uses as predictors the skewness of the
elevation, slope, and curvature distributions in the area adjacent to the
mussel mounds, the lateral slope and the radius of the mussel mounds,
and the elevation of the mound edge, base, and center, which are calculated
from the UAV-Lidar point cloud. The sensitivity analysis we performed
underlines that the algorithm can distinguish mussel mounds from non-
mussel mound locations with an accuracy (UA) of ~95 %. The analysis in-
dicates an excellent agreement between the ground-truth data we surveyed
in the study domain and the classified mounds. In addition, the algorithm is
scale-invariant because, as proposed in common object identification algo-
rithms (Lowe, 2004), it uses multi-scale rasters, which resolution depends
on the dimension of the mussel mounds.

The classifier identified >8000 mussel mounds, which occupy ~10 %
of the study domain. Our results indicate that mussels preferentially occupy
the creek head areas, where they form dense colonies of large and tall mus-
sel mounds, they decrease in density and dimension far from the creek
heads and generally avoid the creek levee and the marsh edge. This is be-
cause nutrients and oxygen concentrations are large at the creek head,
and low close to the marsh edge and in the middle part of the platform.
In addition, our results underline that mussel mounds density and
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dimensions are larger in the northern part of the domain because the large
cross-section and length of the adjacent tidal creeks produce high nutrients
and oxygen exchanges. Also, our results indicate that the volume of the
mounds in our marsh is ~680 m>, which corresponds to an addition to
the average marsh elevation of ~7 mm. A parallel study we performed in
this area underlines that mussel mounds increase sediment deposition by
~400 m®year ™ !. This suggests that mound growth can occur in up to
1.7 years and underlines the importance to investigate the efficacy of resto-
ration projects using mussel mounds. Finally, our results indicate that the
minimum distance between mussel mounds is ~0.75 m, suggesting that
mussel mounds have an influence area, where the growth of new mounds
is discouraged.

With this study, we introduce a new remote sensing technology for sur-
veying mussel mounds in coastal salt marshes. Our method has the poten-
tial to complement and even replace traditional methods based on field
surveys. By utilizing remote sensing technology, we can obtain spatial dis-
tribution data and monitor the evolutionary trends of mussel mounds
with high accuracy, short time, and low cost. The knowledge gained
through our method can help formulate management and conservation
strategies for salt marsh ecosystems.

Finally, we want to stress that other datasets, such as point clouds ob-
tained from satellites, aircraft, terrestrial laser scanners, and structure
from motion can be used with our classifier if the spatial resolution of
these datasets is comparable with the dimension of the smallest mussel
mound to identify. A comparison between the results obtained using all
these datasets is the subject of future research. Finally, because of the flex-
ibility of UAVs, and the capability of our method to be used with other point
clouds, as long as their resolution is greater or similar to the resolution of
the one used in this study, we believe that our method can be easily applied
to large-scale areas to identify mussel mounds distribution and geometric
properties, providing invaluable data for future studies related to the geo-
morphic evolution of marshes to sea level rise and siting marsh conserva-
tion and enhancement projects.
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