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Charging processes are the key to promoting electric taxis and improving their operational efficiency due to

frequent charging activities and long charging time. Nevertheless, optimizing charging resource allocation in

real time is extremely challenging because of uneven charging demand/supply distributions, heuristic-based

charging behaviors of drivers, and city-scale of the fleets. The existing solutions have utilized real-time con-

textual information for charging recommendation, but they do not consider themuch-richer fleet information,

leading to the suboptimal individual-based charging recommendation. In this paper, we design a data-driven

fleet-oriented charging recommendation system for charging resource allocation called ForETaxi for elec-

tric taxis, which aims to minimize the overall charging overhead for the entire fleet, instead of individual

vehicles. ForETaxi considers not only current charging requests but also possible charging requests of other

nearby electric taxis in the near future by inferring their status in real time. More importantly, we imple-

ment ForETaxi with multiple types of sensor data from the Chinese Shenzhen city including GPS data, and

taxi transaction data from more than 13,000 electric taxis, combined with road network data and charging

station data. The data-driven evaluation results show that compared to the state-of-the-art individual-based

recommendation methods, our fleet-oriented ForETaxi outperforms them by 16% in the total charging time

reduction and 82% in the queuing time reduction.
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1 INTRODUCTION

With more and more advanced sensing and communication devices deployed on vehicles, ubiqui-

tous sensor data (e.g., GPS and transaction data) are available, which provide us great opportunities

to enhance their mobility and energy performance. As an important mode of urban mobility, taxis

are essential for people’s daily activities [45]. Taxis typically have high gas consumption and emis-

sions due to their long-time daily operation, e.g., 24-7, around-the-clock, which undoubtedly brings

great challenges to the sustainable development of cities [49]. Compared to the conventional gas

taxis, the electric taxis (ETs) show considerable advantages in terms of gas consumption and

emissions, e.g., zero tailpipe emissions, which motivate many city governments to implement full

ET networks, e.g., Beijing, Shenzhen, and New York City [27]. For example, all taxis in Shenzhen

have been replaced with electric vehicles and New York City also has the initiative to replace

one-third of its taxis with ETs by the end of 2021 [7].

Despite the obvious advantages of oil energy-saving and environmental protection, ETs have

not been adopted worldwide due to several reasons e.g., low cruising miles, high prices, and most

importantly, complicated charging problems. Among these issues, charging is the key concern that

hinders the ETs to achieve their full potential [16, 32, 39]. In particular, ET charging is extremely

challenging due to unbalanced charging demand and supply. (i) Demand: because of limited bat-

tery capacity, ETs have a low endurance mileage (also called cruising mileage) and need several

times charging in a day due to their long daily mileage, and each charging usually lasts for half

an hour to two hours. For example, based on our analysis, even though ETs in Shenzhen have a

maximum cruising mileage of 300km, the actual mileage is much lower due to traffic congestion,

environmental factors, and human factors [30]. On summer nights, the average daily mileage is

around 220km due to air conditioning and headlights. Given their operating nature, almost all

ETs charge during the non-rush hours and shift time, which leads to the high yet concentrated

charging demand [25]. (ii) Supply: because of high cost and security concerns, the number of

charging stations in urban downtown areas is limited, and fast charging points in each station are

also insufficient, which leads to the prolonged and unforeseeable waiting time at stations. [36]. A

combination of charging demand and supply issues makes the current charging strategy rather

heuristic, i.e., most ET drivers only choose the nearest charging stations they know to charge their

ETs during the non-rush hour or shift time, which makes the charging issue even worse.

To address the complicated charging issue, many researchers have focused on different aspects

of this topic due to its importance, e.g., individual charging recommendation [25], charging sta-

tion deployment [13], electric vehicle charging scheduling via park-and-charge [15], and charging

time planning [4]. However, most charging recommendation systems are focused on individual

vehicle recommendations and have not considered the uncertain waiting time and charging ser-

vice time due to lack of real-world data. More importantly, they did not consider this issue from a

fleet perspective, which results in the underutilized fleet information and fail to collectively infer

the current and future status of the ET fleet for a global charging optimization. Therefore, it mo-

tivates us to design a fleet-oriented charging recommendation system to achieve global charging

optimization for ET fleets with real-time charging resource allocation.
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However, charging recommendation is more challenging by considering the fleet information,

e.g., later possible charging requests by ETs and service time of ETs. Fortunately, as one of the

initial pilot cities to promote ETs, the real-world data collected from diverse sensors in Shenzhen

make it possible for us to conduct research on the data-driven fleet-oriented charging modeling

and resultant recommendation based on large-scale data. In this paper, we argue that the data-

driven fleet-oriented charging recommendation is a promising solution to solve the ETs charging

problem. This is because, in addition to the status of a particular ET, we also utilize the real-time

status of the entire ET fleet, which provides more comprehensive information to infer the various

status of ETs and charging stations, e.g., the queuing time at charging stations, charging service

time, and the potential future charging requests, which has not been fully considered by current

individual-based recommendations. Specifically, the key contributions of this paper are as follows:

• We conduct a comprehensive investigation to study the fleet-oriented charging modeling

and related recommendation with real-world sensor data of more than 13,000 ETs. Such a

large-scale study has the potential to advance our understanding on ET operating patterns

and resultant charging recommendations. It enables us to find real-world charging issues,

which are hard to be discovered by other simulation-based or small-scale studies.

• We design a fleet-oriented recommendation system called ForETaxi to minimize the overall

charging time of the entire fleet, instead of an individual ET based on historical and real-time

multi-source data. ForETaxi considers detailed fine-grained charging and recommendation

activities by inferring the battery status, queuing time, and service time of ETs, as well as

the charging demand and passenger demand in the near future. We only leverage existing

charging infrastructure to reduce the overall charging time for the ET fleet, which does not

involve high costs for building new charging stations.

• More importantly, we extensively implement and evaluate ForETaxi based on real-world sen-

sor data in Shenzhen including GPS records and transaction records from more than 13,000

ETs, as well as all ET-exclusive charging stations in 2018. The results show that compared

with individual-oriented recommendations, ForETaxi reduces 82% of the queuing time and

16% of total charging time, respectively.

2 RELATEDWORK

In this section, four categories of related works are reviewed including charging station deploy-

ment, electric vehicle charging, gas vehicle refueling, and resource allocation.

2.1 Charging Station Deployment

The objective of charging station deployment [9, 16, 18, 28] is to find the optimal locations to

deploy charging stations and optimally assign charging points to each station. With the rapid

promotion of electric vehicles, deploying more new charging stations becomes the most direct

approach to facilitate the charging of electric vehicles for reducing the queuing time, so there is

much electric vehicles related research in this direction. Li et al. [16] developed a charging station

deployment and charging point placement framework (i.e., its main contribution) to minimize the

overall charging time. Wahl et al. [28] designed a novel Deep Reinforcement Learning approach to

solve the charging station placement problem. Du et al. [9] studied the EV charging station plan-

ning problem for deploying charging infrastructure (locations of stations and numbers of chargers

per station) to maximize the satisfied charging demand. However, enough charging stations can-

not guarantee there is an available charging point in a specific station for an EV. In addition, the

cost for deploying new charging stations is very expensive, especially for some large cities like
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New York City, London, and Beijing, where the land resources are limited for large charging sta-

tions, so charging recommendation is an orthogonal effort of charging station deployment.

2.2 Electric Vehicle Charging

Electric Vehicle Charging became a popular research topic in recent years with the increasing pro-

motion of EVs [11, 25, 29, 34, 38]. The objective of charging recommendation is to recommend each

vehicle to a charging station for some benefits, e.g., shortest time spent, lowest money cost, but al-

most all of them focus on the individual recommendation. Different from scheduling, which refers

to when and whether to charge in a mandatory fashion [31, 35], charging recommendation is fo-

cused on recommending where and which charging station to charge [5]. Fan et al. [10] considered

both order dispatch and charging for electric self-driving taxi systems to maximize long-term cu-

mulative profit of ride-hailing platforms.Wang et al. [33] designed a system called Record to jointly

optimize repositioning and charging for shared EVs with dynamic deadlines. Schoenberg et al. [21]

studied the problem of reducing waiting times at charging stations with adaptive EV route plan-

ning. Zhou et al. [50] focused on design and optimization of solar-powered shared autonomous

EV systems for smart cities. Zhao et al. [47] performed joint order dispatch and repositioning to

maximize the urban EV sharing platform’s long-term cumulative profit. Tian et al. [25] designed a

charging recommendation model for individual ET only after a request, but they did not consider

potential charging requests and possible leave of ETs after a full charge, which will cause a subop-

timal recommendation and lead to a longer queuing time. The individual-based recommendation

is similar to the greedy algorithms, which may provide a single-step optimal charging station rec-

ommendation for each request. However, it cannot guarantee the global optimum for the entire

ET fleet. Since the taxi fleet is controlled by the same dispatching center, leveraging the abundant

fleet information may make a better decision and obtain an optimal recommendation.

2.3 Gas Vehicle Refueling

A charging process of ETs has a similar function with the refueling process of conventional gas

taxis [46, 48], i.e., providing power for vehicles, but there are two key differences. First, a charg-

ing duration of ETs typically lasts for half an hour to two hours, which is much longer than a

gasoline refueling duration of conventional taxis, which normally takes about 4–6 minutes [7, 46].

This long charging service time makes our modeling for ETs much more challenging than that

of gasoline taxis. Second, compared with the number of gas stations across the city, the number

of charging stations is much fewer. The limited charging infrastructure makes it difficult for ETs

to find available charging points, which potentially causes long queuing time (e.g., half an hour).

These two reasons make the charging issues different from the gas refueling problem.

2.4 Resource Allocation

There are many recent papers on resource allocation in different scenarios, e.g., mobile edge net-

work, communication network, smart industry, IoT network, and so on. Chen et al. [6] jointly op-

timized the unloading decision of all users and calculated the resource allocation to minimize the

total energy consumption and themaximum delay of users. Tan et al. [24] aimed to optimize the un-

loading decision of the tasks among all users and the allocation of computing and communication

resources to minimize overall energy consumption and costs of computing and maximum delay.

Yang et al. [43] considered the sum power minimization problem via jointly optimizing user asso-

ciation, power control, computation capacity allocation, and location planning in a mobile edge

computing network. Seid et al. [22] proposed a model-free deep reinforcement learning-based col-

laborative computation offloading and resource allocation scheme for emergency situations. Wu

et al. [41] aimed to maximize the secrecy rate of the wireless-powered relay network via a joint
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optimization of power allocation and time assignment. Wang et al. [40] proposed an integrated

scheduling algorithm with both future-aware and context-aware mechanisms for taxi allocation.

Afrin et al. [1] comprehensively surveyed the state of the art on resource allocation and service

provisioning inmulti-agent cloud robotics. Peng et al. [20] determined the resource allocation strat-

egy by the interaction among Digital Twins according to the credit-based incentives. However, few

existing works focus on charging resource allocation in large-scale EV networks.

2.5 Summary

Technically, the key advantage of our method is that we fully leverage the fleet information to

infer the status of all ETs (e.g., potential future demand) and all charging stations (e.g., charging

queuing and service time) from a fleet perspective based on multiple sensor datasets, in contrast

to existing works on recommendation from an individual level. Our objective is to minimize the

overall charging overhead without building new charging infrastructure.

3 DATA COLLECTION AND ANALYSIS

In this section, we first introduce the multi-source data used in this paper, and we then conduct

data analysis to uncover some insights of ET charging.

3.1 Taxi Infrastructure and Data Collection

In addition to the basic taximeters, all taxis in Shenzhen are equippedwith different sensing devices

(e.g., GPS and camera) and communication devices [37]. Dispatching centers with cloud storage

are built to monitor the operating status of all taxis and all GPS data are uploaded periodically to

dispatching centers through cell towers. Charging stations with fast charging points are deployed

to refuel the ET fleets for their daily operation.

In the ET infrastructure, various data have been collected for management purposes: (i) with

GPS devices, vehicle attributes, e.g., vehicle IDs, and dynamic attributes, e.g., current longitudes

and latitudes, time stamps, speeds, directions, and occupied flags are recorded; (ii) with taximeters,

ETs record the pickup and drop-off time stamps, operating distances, cruising distances, and fares;

(iii) with communication devices, both static and dynamic attributes are uploaded periodically to

dispatching centers via cell towers, and then the massive GPS dataset is stored in cloud servers

of dispatching centers for management; (iv) with charging devices in charging stations, ETs can

charge. Each station has a station ID, a name, longitude, and latitude of the station, and the number

of fast charging points in it. There are 117 fast charging stations scattered in Shenzhen in 2018.

3.2 Data Preprocessing

In this project, we are workingwith Shenzhen transportation committee, which operates and owns

all these ET and regular taxis in Shenzhen (but charging stations are operated individually). We

establish a secure and reliable transmission mechanism with a wired connection, which feeds

our server the filtered ET data wirelessly collected by the Shenzhen transportation committee by

using a cellular network. The filtering process replaces sensitive data, e.g., plate ID, with a serial

number for privacy protection. We utilize a 34 TBHadoop Distributed File System (HDFS) on

a cluster consisting of 11 nodes, each of which is equipped with 32 cores and 32 GB RAM. For daily

management and processing, we utilize the MapReduce-based Pig and Hive. Then we match each

GPS record on the Shenzhen road network, and we filter some records that are very far from all

road segments caused by GPS error (e.g., 20 meters from the nearest road segment). Due to the

long-term GPS data and transaction data, we have been dealing with several kinds of errant data,

e.g., duplicated data, missing data, and data with logical errors, and thus we have been conducting

a detailed data curation process.
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Fig. 1. Charging spatial distribution. Fig. 2. Temporal distribution.

3.3 Charging Activity Definition

A complete ET charging activity includes three stages: (i) seeking and traveling to a station,

which we call the traveling stage; (ii) queuing in a station for an available charging point to charge,

so it is called the queuing stage; and (iii) being served and charged at a charging point, and this

is denoted as the service stage. Likewise, the three time periods corresponding to the three stages

are defined as traveling timeTtravelinд , queuing timeTqueuinд , and service timeTservice . The total
charging time is defined as the sum of the three items.

We designed a two-step spatiotemporal constraint-based charging activity extraction algorithm

to infer the three times of ETs from their trajectories (i.e., GPS records), combined with the trans-

action data. For the first step, we extract the possible charging events from ETs’ GPS data based on

the fact that an ET will stay for a long time at the same point (i.e., same longitude and latitude) to

have a charge. For the second step, we check if the possible charging event is in a charging station,

which means the location of the possible charging events should be within a certain range of a

charging station location in the charging station data.

3.4 Charging Pattern Analysis

In this subsection, we analyze one-month real-world data to capture some insights into the charg-

ing patterns of ETs. From Figure 1, we found that about 70% of charging activities happen in 25%

of charging stations. It is understandable that most ETs always operate in the business area since

there is higher passenger demand. More importantly, drivers are more likely to cruise in the area

with more charging stations to avoid low-range anxiety.

Figure 2 shows the temporal distribution of charging activities. It is clear that most charging

activities happen at some time slots, e.g., early morning (2:00–6:00), midday (10:00–13:00), and

early evening (20:00:22:00). The intensive charging and frequent charging activities potentially

cause severe charging resource competition phenomena, which result in a longer queuing time in

charging stations.

Figure 3 shows cumulative distribution function (CDF) of charging service time. We found

that about 85% of charging activities consume half an hour to one and half hour, and over 97% of

charging activities last for half an hour to two hours. Based on the historical charging data, we

can understand the charging pattern for each particular ET and predict the charging service time.

Insights. Based on the above charging pattern analysis, we provide the following observations:

(i) there is an uneven spatial and temporal charging pattern. For the unbalanced spatial pattern,

58% of charging activities happen in 10% of charging stations. For the uneven temporal pattern,

there are four distinct charging peaks, resulting in overcrowded charging stations at these times

while underutilized charging stations during other periods; (ii) 97% of charging service time would
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Fig. 3. CDF of charging service time.

Fig. 4. Overview of the ForETaxi.

be half an hour to two hours for ETs, which results in potential operation time reduction than gas

taxis, so it is important for us to obtain an optimal charging station deployment strategy or design

an intelligent charging recommendation system to address these charging issues. However, it is

difficult to site abundant charging stations for ETs due to some real constraints, e.g., unavailable

land resources.

Hence, it is necessary for us to design a charging recommendation system,which informs drivers

where/which charging stations to charge for addressing the uneven charging demand problem and

improving the charging efficiency of the current charging network based on only existing charging

stations.

4 SYSTEMMODELING AND DESIGN

4.1 Overview of the ForETaxi

In this paper, we design a fleet-oriented charging recommendation system called ForETaxi to im-

prove the charging efficiency of ETs, which includes a three-layer data-driven architecture for

ET fleet modeling and charging recommendation, as shown in Figure 4. The bottom layer is the

multi-source data layer, which collects and stores data from the ET infrastructure and lays the

data foundation for charging modeling and recommendation. The second layer is the charging

activity modeling layer, which models the charging activities of ET fleets, including seeking and

traveling activities to charging stations, queuing activity at stations for available charging points,
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Fig. 5. An example of charging recommendation.

and service activity at stations. In the top layer, i.e., the charging recommendation layer, we use

the information obtained from the charging modeling layer to recommend ETs to corresponding

charging stations, and the overall objective is to minimize the total charging time of all ETs and

maximize the operating time of the fleet. After each recommendation decision, the status of charg-

ing stations will be updated in the data layer, which will be used bymodeling and recommendation

layers again in an iterative way.

In this next part, we describe the system modeling and recommendation design in detail, in-

cluding charging activity modeling and charging recommendation. We present a vehicle-specific

energy and time consumption model at road segment levels, and then calculate the three time

overheads, i.e., Ttravelinд , Tqueuinд , Tservice based on inferring the status of ETs. The models of

Ttravelinд , Tqueuinд , Tservice , as well as the parameters of the three models, are learned from our

large-scale data and field studies, so they should be more practical compared to existing models.

Suppose there is an ET fleet in a city, including net ETs, and all these taxis are managed by a dis-

patching center so taxis can coordinate with each other.Without loss of generality, we take one day

as a basis and then iterate the model to obtain a long-term and effective charging recommendation

for the fleet.

4.2 Tservice Inference

In this subsection, we first clarify why it is significant and meaningful to consider the Tservice
for charging recommendation by real charging scenarios. Then we analyze the historical data

to investigate the spatial and temporal charging patterns, i.e., (i) charging events distribution in

different charging stations, i.e., spatial distribution; (ii) charging events distribution in different

hours, i.e., temporal distribution; and (iii) the duration of charging service time for each charging

event. Finally, we obtain the energy and time consumption models to estimate the service time for

each charging event, which is then used for the Tqueuinд inference in Section 4.4.

4.2.1 Importance of Considering Tservice . We show the significance of Tservice by describing

some ET charging scenarios. We also show how we leverage existing charging infrastructure to re-

duce the overall charging time for ET fleets and why fleet-oriented recommendation can leverage

service time to achieve better performance than individual-based recommendations or recommen-

dationswithout considering the service time, which is also the difference between individual-based

recommendations and our fleet-oriented recommendation.

As shown in Figure 5, there are two charging stations, i.e., charging station 1 (CS1) and charging
station 2 (CS2), and there are two charging points in each station. The time labeled near each line

stands for the traveling time to a station.

Scenario 1: a = 10, b = 15, c = 12, and d = 15, and there is an available charging point in each

station. An individual-oriented recommendation system adopts the first come first served policy. If
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ET2 sends a request first, it will be recommended toCS1 by the individual-oriented system. At this

time, if ET1 requests a recommendation, the system will recommend it to CS2. The total traveling
time is 27 minutes without queuing time. But if we consider the status of all ETs in the fleet and

predict the request from ET1, we can recommend ET1 to CS1 and ET2 to CS2 to obtain a global

optimization with 25 minutes’ traveling overhead with zero queuing time. In this case, the fleet

information (e.g., the possible charging requests) has not been considered in individual-oriented

recommendation, and we can save about 8% (2 minutes) as for the totalTtravelinд +Tqueuinд if we
consider from a fleet perspective.

Scenario 2: a = 10, b = 15, c = 20, and d = 15, and all charging points are occupied. If only

considering to recommend the drivers to the stations with shortest traveling time, the ET1 will

be recommended to CS1 and the ET2 will be recommended to CS2. However, in fact, the two ETs

served atCS1 will leave in 20minutes but the two ETs atCS2 will leave after 30minutes. In this case,

we should recommend ET1 and ET2 to CS1 to reduce its queuing time and overall charging time.

Hence, if the charging status of each taxi has been estimated in advance, a better recommendation

may be obtained, this is why the service time is important for the charging recommendation, even

though the service time itself would not have significant differences by leveraging different rec-

ommendations. In this case, if we utilize the fleet information, i.e., the status of ETs being served

at stations, we can save 40% (10+20+0+0 compared to 10+15+10+15) of the Ttravelinд + Tqueuinд
during this recommendation process. Hence, such fleet information can be useful for reducing the

overall charging time, but it has not been considered by individual-oriented methods.

4.2.2 Calculation of Tservice . The duration an ET served at a charging point is decided by the

current State of Charge (i.e., SOC) of the ET and the charging rate of the charging point, i.e., fast

charging points or slow charging points. If the battery level is too low, drivers will spendmore time

on charging, and vice versa. Likewise, if the charging point has low charging rates, it will cost more

time for drivers to have their taxis fully charged. The current battery power of an ET is related to

the distance and time it has traveled since the last charge. Higher cruising mileage will consume

more energy. Similarly, a longer operating time will also lead to low battery capacity. For example,

if the traffic is heavy, the drivers will spend more time going to the same destination. Hence, in

this case, even though the traveling distance of the ET is not too long, the battery consumption is

high. Considering these factors, a linear model can be built to estimate the battery status of each

ET [13, 17, 42]. According to two field studies [3] in Shenzhen, the battery consumption rate of the

BYD e6 ETs is related to cruising speeds. The battery consumption model and the depletion rate

can be expressed as follows:

Ct2 = Ct1 −
n∑

l=1

dl · ul

= Ct1 −
n∑

l=1

vl · tl · ul (1)

ul =
⎧⎪⎪⎨⎪⎪⎩
2.03 v ≥ 80km/h
2.6 20 ≤ v < 80km/h
1.53 v < 20km/h

(2)

Where Ct2 is the current battery capacity; Ct1 is the original battery power at time t1; d1 is the
distance traveled on a road; ul is the battery consumption rate on road segment l , which denotes

the distance an ET can cover with 1% battery capacity and it is decided by the speed of the road

segment. Here we assume that the speed under 20km/h is caused by the traffic jam, so the bat-

tery consumption is relatively large. It is expected that the ETs will have charging requests when
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the SOC is lower than a threshold [17]. According to [2], the range anxiety of ET drivers will be

extremely strong when the battery power is lower than 13% and they are eager to charge, so we

assume ETs have potential charging demand when the battery power is around 13%, which is used

for charging requests prediction.

If all fast charging points have the same charging rate, similar to the energy consumption model

[23], a linear charging model can be built to estimate the service time at charging stations. Since it

needs two hours to fully charge an ET and the maximum battery capacity is 57 kWh, for simplicity,

the average charging rate is set to 0.8333% per min. The charging model can be described as the

following:

Tservice =
Cf ull −Csc

rch arg e
(3)

Where Cf ull is different from different ETs since they have various operational time and max-

imum battery capacities. It can be estimated by their maximum traveling distance, which can be

inferred from the transaction data. Csc is the current SOC and it is decided by the distance an ET

has traveled since the last charging activity and the traffic conditions.

4.3 Ttravelinд Inference

4.3.1 Start and End Points ofTtravelinд . According to [16, 25], drivers usually submit a charging

request after dropping off a passenger and it has also operated a certain distance since the last

charge, leading to a low battery level. Hence, the start point of the traveling stage is the time

when the last passenger gets off the ET before a charging event. We merge the transaction data

from the onboard vehicle equipment and charging activities from GPS data to obtain the start

points since the last drop-offs, and the charging events are adjacent and disjoint. Due to the limited

battery capacity, ETs can only operate a certain amount of miles after a full charge. The maximum

traveling distances are decided by their full battery capacity, which can be calculated by combining

the transaction data and charging events, so the operation distance of an ET after charging must be

shorter than the maximum traveling distance. The endpoint of the traveling stage is the time when

the ET arrives at a charging station and starts queuing for charging. The time interval between

the two points is the traveling time to a station, which is decided by the distance and the road

condition to a station at this time.

4.3.2 Calculation ofTtravelinд . In this subsection, we present a vehicle-specific time consump-

tion model at road segment levels in real time for more precise status modeling. Since the des-

tinations of passengers could be any place in the city and the drop-off locations can be any-

where, the routes to a charging station may not appear before, and it is necessary to estimate the

speed of each road and then infer the time from any place to a station. The existing research [49]

shows that the workdays typically have similar traffic conditions and patterns, while the weekends

have different patterns compared to workdays. We use historical trajectory data to predict the av-

erage speed on each road segment on workdays and weekends. We empirically select 5 minutes

as a time slot to update the estimation value because of the dynamic characteristic of the traffic

flows. We also compare performances with different slot lengths in Section 5.4.1.

A road network can be seen as a graph consisting of road segments and intersections. The road

segments are the edges of the graph. The intersections and endpoints of the road segments are the

vertices of the graph. The traveling speed of each road segment can be seen as the weight of the

edge. Notably, to a bidirectional road segment, the traffic conditions from different directions are

different. Suppose there are m intersections and n road segments in a city, and the road network

of the city can be represented by a directed graph (DG) G = (I,R), where I = I1
⋃

I2
⋃ · · ·⋃ Im ,

R = R1
⋃

R2
⋃ · · ·⋃Rn . We utilize all historical GPS data of all vehicles to estimate the travel speed

ACM Transactions on Sensor Networks, Vol. 19, No. 3, Article 63. Publication date: March 2023.



ForETaxi: Data-Driven Fleet-Oriented Charging Resource Allocation 63:11

at a fine-grained time slot since our GPS data includes the real-time vehicle speed. We denote the

average traveling speed at time t in workdays asvRi j (wo , t ), and weekends asvRi j (we , t ), where Ri j
denotes the road segment from intersection Ii to intersection Ij . Thus, two average speed matrixes

at time t can be obtained, representing the traveling speed of each road segment for workdays and

weekends.

After obtaining the average speed of each road segment, we estimate the traveling time between

any two locations L1,L2 using the following formula

T(L1,L2 ) (wo , t ) =
k∑

s=1

D
′
Rs
(wo , t )

vRs (wo , t )
, (4)

T(L1,L2 ) (we , t ) =
k∑

s=1

D
′
Rs
(we , t )

vRs (we , t )
, (5)

where k is the number of road segments between L1 and L2; D
′
Rs

is the length of road segment Rs ;
vRs is the average speed of corresponding road segment Rs . Thus, two speed matrices can be built

to estimate the traveling time on road segments on different days.

4.4 Tqueuinд Inference

If an electric taxi ETi starts seeking a charging station at time t1, the Tqueuinд is decided by the

number of ETs served in the station and the ETs arriving at the station before ETi arrives. It should
be noted that the number of ETs served and waited in a station should be the number when ETi
arrives at the station t2, because there may be some ETs that got fully charged and left when ETi
arrives at the station t2, and there may also be some ETs arriving at the station earlier than ETi .
That is why we need to estimate the charging service time of each ET. In this case, it may be not

optimal to recommend the ET to the charging station with the nearest distance or the shortest

time. In certain circumstances, when an ET heads to a station, there may be other ETs submitting

charging requests at the same time or near future, so they can coordinate with each other to avoid

long queuing times. In other cases, even though there are no available charging points when they

send requests, there may have some points available when they arrive at the station since some

ETs will be fully charged and ready to go at that moment, so it is also important to estimate the

charging status of ETs that are charging. If there are available points when an ET arrives at a

station, the queuing time is 0.

Based on the fleet information, we design the fleet-oriented optimal queuing algorithm, which

is shown as Algorithm 1, whereT i
leave

stands for the time when ith ET is fully charged and leaves,

leading to an unoccupied point.

4.5 Charging Request Prediction

A key component that needs to be predicted is the number of charging requests in the near fu-

ture. In this work, we fully utilize our large-scale long-term data to extract patterns for prediction.

Particularly, we consider different real-world factors to predict the charging requests accurately

(historical request, spatial features, temporal features, and contextual features like weather condi-

tions, etc.). Firstly, we divide the city into 100m*100m of grids for fine-grained prediction. We also

divide one day into 288 time slots, and each slot is 5 minutes. we collect meteorology data from the

website [26] and extract features for the net flow prediction. We identify three contextual features:

weather, temperature, and wind speed. Among these features, the weather feature is divided into

three categories: sunny (or cloudy), rainy, and snowy. The temperature feature has also three types

of values: cold (lower than 15◦C), mild (15–30 ◦C), and hot (over 30 ◦C). The wind speed is divided
into two categories according to the Beaufort number: light (≤3) and heavy (>3). Then we utilize
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ALGORITHM 1: Fleet-Oriented Queuing Time

Input:

s : a charging station;

ETr : an ET to be recommended;

Tarr ive : time arrive a station;

Np : the number of charging points;

Ns : the number of ETs served at the station;

Ne : the number of ETs arrive early than ETr .
Output:

Tqueuinд ;
1: Begin

2: If Np -Ns -Ne > 0

3: Tqueuinд = 0

4: End

5: Else

6: Foreach ETi in (Es
⋃

Ee )
7: Infer leaving time T i

leave

8: Tqueuinд =min{TNp−Ns−Ne

leave
−Tarr ive }

9: End

10: End

11: return Tqueuinд ;

a widely-adopted spatial-temporal prediction method [44] to predict the charging requests in the

near future, which has the capability to capture the spatial relation (e.g., using CNN) and temporal

relation (e.g., using LSTM) at the same time.

To now, we have designed a vehicle-specific energy and time consumption model at road seg-

ment levels to infer the traveling time, queuing time, and charging service time of a particular ET

based on the status of all relevant ETs in the fleet. In the next part, we will leverage these inferences

to make charging recommendations for the ET fleet.

4.6 Charging Recommendation

Fig. 6. Passenger demand.

Passenger demand has also been considered a con-

straint to recommend ETs to charging stations to re-

duce potential income loss of drivers. As shown in

Figure 2, we will recommend the number of ETs to

charging stations in inverse proportion to the number

of passengers, which means we will recommend more

ETs to charge when the passenger demand is low and

charging demand is high and recommend fewer ETs to

charge when the passenger demand is high and charg-

ing demand is low. Thus, the recommendation system

would have little impact on the mobility of the city and

potentially do not affect the income of ET drivers. We leverage all taxis’ transaction data (including

gas taxis) to infer the passenger demand, as shown in Figure 6.

From Figure 6, we found that the passenger demand has an increase or decrease trend for every

6 hours, e.g., the passenger demand has a decreasing trend from 0:00 to 6:00 am, so we potentially

recommendmore ETs to charge when the time is close to 6:00 am. Under normal circumstances, we

do not interfere with drivers’ requests. When the number of charging requests reaches a threshold,
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we do not consider potential charging requests and only deal with these submitting ones. The

recommendation number threshold is decided by the total number of available charging points and

the historical charging request distribution every 6 hours. For example, if the available charging

points are 100, we would not consider extra charging requests more than 100 ETs to charge. These

numbers are obtained from our real-world data.

Based on the charging time estimation and the passenger demand, the system will make real-

time decisions for ETs. The process of the fleet-oriented charging recommendation algorithm is

given in Algorithm 2, which we sum up one-day recommendation together. Charging activity

modeling in Sections 4.2, 4.3, and 4.4 is embedded in Algorithm 2. The insight of this algorithm

is that the service time is embedded in Algorithm 2 and the possible charging requests are also

considered for a recommendation, which is shown in lines 6 and 7 of Algorithm 2. Besides, the

passenger demand is also considered as a constraint when recommending, which is in line 9 of

Algorithm 2. These three components distinguish our method from existing works.

ALGORITHM 2: Charging Recommendation Process

Input:

An ET Fleet, Charging Stations, Number of Time Slots;

Output:

Corresponding Stations;

1: Begin

2: ∀s ∈ S
3: For m = 1 to nts do
4: For k = 1 to net do
5: Tt (s,k,m) inference from Section 4.3;

6: Algorithm 1 in Section 4.4;

7: Ts (s,k,m) inference from Section 4.2;

8: End

9: If
∑Nts

i=1 Neti ≤ Nthre

10: SumInSlot← ∑net
k=1

(Tt (s,k,m), Tq (s,k,m), Ts (s,k,m));
11: End

12: SumInDay← ∑nts
k=1

SumInSlot ;

13: Min(SumInDay);

14: End

15: return Corresponding Stations;

We aim to recommend a fleet with net ETs to charge, and we first split one day into nts time

slots. We then estimate the speed on each road segment and the number of ETs that need to charge

in the time slot. After a charging request submitted by a driver, we leverage Equations (4) or (5) to

estimate the traveling time of ET k to station s at time slotm Tt (s,k,m) based on historical data.

Likewise, we leverage Tq (s,k,m) to stand for the queuing time of ET k in station s at time slot

m and calculate it by using Algorithm 1, and we calculate the service time of ET k at station s at
time slotmTs (s,k,m) as shown in Section 4.2.2. Then we add all items together to obtain the total

charging overhead of one ET. Tt (s,k,m) is calculated by using Equations (4) and (5), which is the

total traveling time on each road segment to station s .Ts (s,k,m) is decided by the current battery

status if all charging points have the same charging rate. Current battery status can be estimated

based on Equations (1) and (2). After estimating the current battery status, we use Equation (3)

to estimate the service time at a station. It should be noted that the difference of service time in

different charging stations is decided by the road conditions, e.g., road length and speed on the
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road, which can induce different energy consumption, so the Ts (s,k,m) is related to the traveling

route and traveling time, namely, which station is to be recommended.

After we estimate the service time of each ET, we estimate their full charge time and then infer

the number of ETs served in the station when an ET arrives at the station. Hence, the Tq (s,k,m)
is decided by the ETs served at stations. In each time slot, we recommend all ETs with possible

requests to corresponding stations by minimizing the overall charging time. Once we perform a

recommendation, we add all recommendations in one day to obtain the optimal recommendation

results in this day, which can be formulated as Equations (6)–(8).

S∗ = argmin
s ∈S

nts∑

m=1

net∑

k=1

[
Tt (s,k,m) +Tq (s,k,m) +Ts (s,k,m)

]
(6)

s .t . :
Nts∑

i=1

Neti ≤ Nthre (7)

Nthre = f (Ntd ) (8)

where S is the set of charging stations; s is a station in the set; S∗ is the recommendation result;

Nthre is the threshold number to recommend, which is denoted by a function of passenger demand

Ntd ; Nts is the number of time slots in 6 hours; and Neti is the number of requests in each time slot.

The most challenging components of solving (6) include estimating theTtravelinд andTqueuinд ,
and then minimizing different possible combinations of charging times of ETs as Tservice can be

estimated when we know the status of the ET (e.g., location and battery level) when it sends

the request. To directly solve (6) would be complexity intractable due to a large number of possible

paths to charging stations, a large number of ETs in the fleet, and concurrent requests. Hence, we

first adopt pruning to reduce the feasible search space. The basic idea is that we limit the number

of charging stations that each ET can go to an appropriate range instead of the entire charging

network. The intuition is that the traveling time is highly correlated with the traveling distance,

so we can select several near charging stations to guarantee a short traveling time for the ET. The

specific number is decided by different real-world factors (e.g., the size of the fleet, the charging

network, and the city), and it is set as five in our work after carefully comparing different values.

There are three key factors that impact the Tqueuinд , i.e., the number of charging points in each

station Np , the number of ETs served at the station Ns , and the number of ETs that arrive earlier

than the ET to be recommended Ne . Np is static data and has been stored in our database. Ns

is dynamic data and will be updated and stored in our database periodically, so which will also

reduce the computational complexity. Ne is decided by other ETs that have charging requests now

or in a near future, so it will be decided when we try different combinations. The most challenging

part for recommendation is to coordinate the ETs for higher charging efficiency since it is a large-

scale nonconvex nonlinear optimization problem. To address this problem, in this work, we adopt

the simulated annealing algorithm [14, 19] to find the approximate global optimization in the

large search space. The reason is that the simulated annealing algorithm is effective when the

search space is discrete. Even though simulated annealing cannot always be guaranteed to find

the globally optimal solution, but it does usually produce a good solution. In our scenario, finding

an approximate global optimum is more important than finding a precise local optimum given a

limited time for the real-time requirement.

5 EVALUATION

In this section, we start by introducing the real-world datasets for evaluation. Then several metrics

are defined to compare our system with other state-of-art recommendation methods. Finally, we
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investigate the impacts of time slots, recommendation-following rate, and fleet sizes on the system

performance of ForETaxi.

5.1 Datasets

A real-world dataset introduced in Section 3 is leveraged to validate our ForETaxi. We utilize one

week of GPS records from more than 13,000 ETs and metadata of 117 charging stations in 2018.

More than 11.9 million transaction records are generated by ETs during this duration. The numbers

of road segments and intersections are 135,138 and 87,514, respectively, in Shenzhen city.

5.2 Metrics and Baselines

We define Percentage of Reduced Queuing Time, Percentage of Reduced Service Time, and Per-

centage of Reduced Charging Time as three key metrics to show the system efficiency. Assuming

the actual average queuing time is τ , φ is the average queuing time of a specific recommendation,

then the Percentage of Reduced Queuing Time equals to
φ−τ
τ

.

Three other individual-oriented charging recommendation strategies, i.e., thenearest distance-

based charging recommendation (NDBR) [16] and the shortest traveling time-based charg-

ing recommendation (STBR) [8] and the individual-oriented optimal recommendation

(IOOR) system [25], are compared with our fleet-oriented optimal recommendation system ForE-

Taxi. For the individual recommendation, they are local greedy algorithms, which means they

serve the driver who sends a charging request without considering other potential requests.

We first extract the speed of each vehicle in a short time slot and then conduct map matching

to estimate the average traveling speed on each road segment at different times. This speed will

be used for the traveling time estimation to feed to the algorithm. We also extract the charging

requests based on our data. The intuition is that drivers usually submit a charging request after

dropping off a passenger and it has also operated a certain distance since the last charge, leading to

a low battery level. Hence, the charging request will be sent when the last passenger gets off the ET

and the battery capacity also decreases to a low level. That is to say, we merge the transaction data

and charging activities extracted from GPS data by a two-step spatiotemporal constraint-based

extraction algorithm [36] to obtain the charging requests. We then further calculate the operation

distance of the ET since the last charging by merging the transaction data and the charging events.

Then the service time can be estimated with Equations (1)–(3). There are three key factors that

impact the charging queuing time, i.e., the number of charging points in each station Np , the

number of ETs served at the station Ns , and the number of ETs that arrive earlier than the ET to

be recommended Ne . Np is static data and has been stored in our database. Ns is dynamic data

and will be updated and stored in our database after each round of recommendations. With the

predicted number of charging requests in the near future, we will feed our static and dynamic

data into Algorithm 1 to infer the queuing time of the ET when it is recommended to different

charging stations. Then we store the queuing time in our database. With all possible combinations

of estimated traveling time, queuing time, and service time, we then feed them into Algorithm 2

to find the approximate global optimization in the large search space.

5.3 Comparison Results

5.3.1 Comparison of Traveling Time to Stations. In this subsection, we compare the performance

of different recommendation systems using the metric Percentage of Reduced Traveling Time. As

shown in Figures 7 and 8, the NDBR has the smallest Percentage of Reduced Traveling Time. The

other three recommendation systems achieve better performance, withmore reduction of traveling

time. The reasonmay be that even though the station is the nearest one to an ET, the traveling time

to the station may be long because of the traffic conditions, i.e., traffic congestion. STBR obtains
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Fig. 7. Traveling time in workdays. Fig. 8. Traveling time in weekends.

the optimal traveling time but the IOOR and ForETaxi also achieve good performance with just

several seconds longer. Both two figures show that the least Percentage of Reduced Traveling Time

is around 5:00 in the morning and the traveling time is long in the early morning. The reason may

be that drivers operate the ETs in the urban business areas and they will change shifts at suburban

areas where ET drivers live and charging stations are built. The distance from urban business areas

to suburban is very far, thus, although the traffic conditions are fair at this duration, the traveling

time is still long. Another change shift time is around 16:00, so the traveling time to the stations

is also longer in this duration.

Comparing Figure 7 with Figure 8, we found that the Percentage of Reduced Traveling Time is

different between workdays and weekends since there are different distances to charging stations,

traffic conditions, and various traveling patterns of citizens. ETs will spend more time on the way

to stations at rush hours on workdays than on weekends because there may be a heavy traffic jam

on workdays, i.e., 7:00 and 18:00. But the traveling time to stations around 20:00 on weekends is

longer than on workdays since more vehicles travel at this moment, leading to traffic jams.

5.3.2 Comparison of ChargingQueuing Time. Figures 9 and 10 shows the Percentage of Reduced

Queuing Time in different hours for workdays and weekends. The negative numbers denote that

the average queuing time using this method is longer than the ground truth. This is because too

many ETs operate in urban business areas. If using NDBR and STBR recommendations, there are

too many ETs that will be recommended to the same charging stations, leading to an increase

in the queuing time. During charging peak hours in one day, e.g., 3:00–6:00, 11:00–13:00, 16:00–

18:00, 21:00–23:00, it will waste more time for drivers to wait for an available charging point. The

charging peak durations are usually in break andmealtime and lower passenger demand is in these

durations, so it would not cause much income loss to drivers. In our recommendation system, we

also follow this intuition by recommending more ETs to charge when passengers’ demand is low

and few ETs to charge if passengers’ demand is high.

It can be seen from Figures 9 and 10, our method achieves the largest decrease in terms of

the queuing time. There are some differences between workdays and weekends. The passenger

demand in the early morning on weekends is high, so few ETs are recommended for charging at

this time slot, leading to a short queuing time. More ETs are recommended to charge between 7:00–

9:00 on weekends than on workdays since people will have more rest and do not need to work on

these days, so there is lower passenger demand. Likewise, few ETs will be recommended to charge

in the afternoon on weekends since more people will go out causing higher passenger demand, so

the queuing time is short on workdays compared to weekends. In general, we found Our ForETaxi

reduces 83% and 82% of queuing time compared to the ground truth and NDBR, respectively.
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Fig. 9. Queuing time in workdays. Fig. 10. Queuing time in weekends.

Fig. 11. Service time in workdays. Fig. 12. Service time in weekends.

5.3.3 Comparison of Charging Service Time. In this subsection, we compare the performances

of different recommendations using the metric Percentage of Reduced Queuing Time. From

Figures 11 and 12, we find that all recommendation systems have a smaller percentage decrease

of service time for the fleet since the SOC is similar when an ET submits a charging request. The

difference in the service time between various systems is decided by the road conditions and trav-

eling time to stations. As we describe in Section 4.2, different road speeds will lead to different

battery consumption rates. There is a big difference between workdays and weekends, but our

system can keep obtaining slightly better performance in terms of this metric.

5.3.4 Comparison of Overall Charging Time. In this subsection, we compare the overall charg-

ing time of different recommendation methods, which is also the objective of our charging recom-

mendation. From Figure 13, we found that all of the four methods can reduce the overall charging

time to some degree, and our ForETaxi achieves the best performance.

In this subsection, we compare the performance of different recommendations using the metric

average service time at stations. From Figures 11 and 12, we can see that all recommendation

systems have similar service time for ETs since the electric capacity is constant when an ET sends a

charging request, so the service time difference of various systems is decided by the road condition

and traveling time to stations. As we describe in Section 4.2, different road speeds will lead to

different battery consumption rates. There is a big difference between workdays and weekends,

but our IOOR can keep obtaining a little better performance as this metric.

From Figure 14, we found our system achieves better performance than the other three meth-

ods, especially NDBR and STBR. The queuing time of 90% charging activities would be less than

10 minutes by using our ForETaxi recommendation, while only 70% by using STBR and NDBR.
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Fig. 13. Charging time in each hour. Fig. 14. CDF of queuing time.

Fig. 15. Time reduction distribution. Fig. 16. Overall time reduction.

To have a better understanding of the overall charging time reduction, we also show the charg-

ing time reduction of different recommendation methods in Figures 15 and 16, and we found our

recommendation can achieve the largest charging time reduction. For example, ForETaxi reduces

29% of total charging time compared to the ground truth and reduces 16% of total charging time

compared to NDBR. In total, the average traveling time + average queuing time of our ForETaxi

is about 445s for one charging activity, while NDBR is 1207s and IOOR is 520s. Moreover, ForE-

Taxi saves 94s service time for drivers compared with IOOR. In fact, the IOOR has a good rec-

ommendation for the ETs if other vehicles’ status is not available. Our more advanced design for

ForETaxi is to further advance the ET charging recommendation with our fleet-oriented solution.

Compared with NDBR, STBR, especially for the ground truth, the IOOR and ForETaxi saved over

30 minutes for each charging. Our fleet-oriented recommendation can reduce 4.407 and 23.467

minutes compared to IOOR and the ground truth. In particular, for each ET, it charges about 3.5

times a day, so our ForETaxi can reduce about 200,518 minutes of charging time compared with

the optimal individual recommendation IOOR for the ET fleet per day based on our data. This

200,518 minutes reduction can make the ET fleet serve additional 11,460 passengers in one day,

which can potentially improve passengers’ satisfaction and enhance the mobility of the city. With

more and more taxis replaced by electric vehicles, we believe our recommendation has the po-

tential to achieve better performance compared with IOOR based on our evaluation, and our de-

sign should have higher benefits compared to the supplementary cost (e.g., communication and

complexity).
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Fig. 17. Impact of slot length. Fig. 18. Impact of following rates.

5.4 Impact of Factors

5.4.1 Impact of Slot Length. In the previous investigation of the paper, we empirically divide

24 hours into a total of 288 5-min slots. For a particular slot, we calculate the average speed of each

road in one day. In order to investigate the impact of slot lengths on performance, we split one day

into different slots, e.g., 2-min, 5-min, and 10-min for comparison.

Figure 17 shows the average queuing time in stations. We found that our ForETaxi achieves

better performance than IOOR, e.g., the average queuing time is about 40% less than IOOR, but

the queuing time is similar between different time slots since the queuing time is irrelevant to the

slot length.

5.4.2 Impact of Recommendation-Following Rate. In the previous setting, we assume all drivers

will follow our recommendations, but in reality, some of themwill not follow the recommendation.

In this subsection, we show the system robustness when some ET drivers do not follow our rec-

ommendations and show how they may affect the system as a whole. We consider the drivers who

obtain a much longer charging time than they usually have or expect will have a higher probabil-

ity to reject our recommendation instead of randomly selecting them. As shown in Figure 18, the

system performance of the four recommendation systems will increase with the recommendation-

following rate increase, but our ForETaxi achieves a higher gain of charging time reduction with

high participating rates. Especially, when more drivers follow our recommendation, the average

total charging time will be lower for the ET fleet.

Fig. 19. Performance with different number

of ETs.

5.4.3 Impact of Different Fleet Sizes. To further

verify the generalizability of our recommendation

method under different fleet sizes, we further study

the recommendation performance under the various

amount of data by using five-year data (from 2014–

2018) from Shenzhen, during this duration the num-

ber of ETs has increased from about 500 to over 13,000

and the number of charging stations has also in-

creased. More details about this dataset can be found

in [30]. For all the five-year data, we utilize the GPS

data of all taxis (including both gas taxis and ETs) to

estimate the travel time accurately since more GPS

data can lead to more fine-grained real-time travel

speed on each road segment.

As shown in Figure 19, we found the total charging

time has a decreasing trend with the increase of the
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number of ETs in the fleet. When there is a small-scale ET fleet (e.g., less than 1,000 ETs), the per-

formance of different methods is similar although our system is slightly better than other methods.

While the number of ETs is over 2,500, our system achieves much better performance compared to

other methods, and the charging time reduction reaches a peak when the number of ETs is around

10,000. One possible reason is that the queuing phenomenon is not severe when the ET fleet size

is not too large, so the original charging time of ETs is also small. When there are more ETs, the

competition between ETs for charging resources will become fierce, which leads to a much longer

charging queuing time, so it is more necessary to have a fleet-oriented charging recommendation

system to improve the overall charging efficiency. The reason why the maximum charging time

reduction happens when the number of ETs is around 10,000 is that the number of charging sta-

tions did not increase as fast as the increase of ETs, which leads to a much longer queuing time

for ETs. To summarize, our ForETaxi can achieve better performance than other methods under

different number of ETs, and the performance will be more significant when the fleet size is large

(e.g., the number of ETs is larger than 1,000).

5.5 Simulator Implementation

To make our method and system more accessible to other researchers, we design and share an ET

simulator that includes the ForETaxi and other existing methods in it. We utilize the real-world

data from Shenzhen for simulation. The simulator can show the system performance more visible

and dynamic, and it also has the potential to be used by other researchers for simulating their algo-

rithms because the parameters in the simulator are adjustable. Our simulator includes a backend

server and a frontend UI interface.

5.5.1 Backend Server. The backend server is built upon the flask framework, which is a light-

weight WSGI web application framework with the ability to scale up to complex applications. It

allows the developer to customize the tools, libraries, and layouts they want to use. The backend

flask server has three key functions: data processing, algorithm execution, and route generation.

Data Processing. In this step, the charging station information, ET information, and passen-

ger requests will be parsed into the server. The data of charging stations include their latitudes,

longitudes, and the number of available charging points. The data of ETs include their locations,

operation status, and charging information, and so on. Passenger demand will be generated ac-

cording to the historical distribution at that time. Based on these data, we can obtain the actual

queuing time and charging time of ETs in the charging station.

Algorithm Execution. After setting the number of ETs, we can run the simulator, which will

apply different algorithms to make recommendation decisions, e.g., NDBR and our fleet-oriented

ForETaxi. These algorithms will assign the charging stations for the ETs to charge. Our ForETaxi

will optimize the charging efficiency of the ET fleet by considering traveling time to stations, queu-

ing time, and service time at stations. The queuing time will also be shown on the simulator.

Route Generation. After deciding which charging stations the ETs need to go to, we also

generate the routes from the current locations of ETs to charging stations. we leverage the Google

Maps API to display the routes. The Google Maps provides a geographically enabled Web 2.0

service [12]. When an ET has no charging need, it will serve passengers. The routes for serving

passengers will also show on the simulator.

5.5.2 Front UI Interface. The UI interface is designed as web-based using the Google Map API

and flask. The Google Map API provides a map for the whole Shenzhen city with millions of streets

and the road network. We can also zoom in and zoom out the map to show different regions. An

example of our UI interface is shown in Figure 20. The blue charger icons on the map mean ET

charging stations deployed across the city. Each white circle icon means an ET in the fleet, and we
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Fig. 20. The interface of the ET simulator.

utilize different colors to show various statuses of ETs. For example, the white color means the ET

is cruising; the yellow color means the ET is serving passengers; and the green color means the

ET is charging. There is also a dynamic green bar behind the ET when it is charging. When the

ET is queuing for a charging point, there will be a red clock behind it. We also show the queuing

time of different algorithms using the bar charts for comparison. We also set a simulation speed

parameter for users’ convenience.

6 DISCUSSION

Lessons Learned. (i) Based on our data-driven analysis, we found there is an uneven spatial and

temporal charging pattern of the ET fleet, and it is possible for us to design a charging recommen-

dation system to address this issue and improve the charging efficiency of the fleet. (ii) We found

the fleet information (e.g., charging service time and potential future charging requests) is very

important for the recommendation system, but it is rarely considered by existing works. (iii) Our

simulator can potentially provide a platform for other researchers to understand the mobility can

charging patterns of ETs, as well as verify their charging recommendation systems.

ExistingMobile Apps.Although some charging station providers have their own apps to show

their charging station status, they cannot have access to other providers’ charging station infor-

mation due to the business competition, e.g., there are eight ET charging station providers in

Shenzhen. Such incomplete information is not enough for fleet-oriented charging recommenda-

tion, resulting in suboptimal solutions. Moreover, these apps can potentially worsen the current

charging situation, e.g., navigating more drivers to the same station without coordination and

causing a severely crowded phenomenon. Hence, it is meaningful for us to design a fleet-oriented

charging recommendation system by considering the city-scale station and vehicle information.

Impact of Private EVs and Multiple ET Fleets. In the Chinese city Shenzhen (i.e., the city

that the paper focused on), most ET charging stations deployed in the city are exclusively for ETs,

which cannot be used by electric private vehicles. As shown in Figure 21, this fast charging station

is exclusively for ETs, and we found no private electric vehicles charged in this station when we

did the field study there. Even though some charging stations may be shared by private EVs with

ETs, few private EVs prefer to utilize fast charging stations for the following two reasons. (i) EVs

used for commuting have no needs to leverage fast charging like commercial ETs, which rely on
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Fig. 21. A fast charging station exclusively for electric taxis.

Fig. 22. A public fast charging station.

the fast charging stations to keep the normal business activities, so private EV drivers prefer to

charge their cars at home in the evening when the electricity price is also lower than the daytime

price. (ii) A fast charging mode can accelerate the degradation of the battery, so private EV drivers

usually would not use fast charging stations except in emergency circumstances. We also verify

this during the field studies in Shenzhen. Figure 22 shows an example of the status of a public

fast charging station, and we found less than 10% of all charging points are utilized by private

electric vehicles. Based on this, we consider that other EVs have little influence on the charging

recommendation. Hence, in this paper, we envision that all fast charging stations are exclusive for

ETs, which is also adopted by some other related research [16, 25, 38].

In this paper, we are working with the city government and we try to improve the overall charg-

ing efficiency of all ETs in the city. Hence, the fleet here includes all ETs in the city instead of

taxis of a specific company. In addition, we can also consider some uncertainties (e.g., competition

of the vehicles from other companies) to assume that all vehicles from other companies will not

follow our recommendation, which is implicitly included in Figure 18, i.e., the impact of different

recommendation following rates.

Impact of Scales of ETs. Even though most cities in the world do not have ETs as many as

13,000 and Shenzhen is the only city that has such a large-scale and all ET fleet, we argue that our

method still works for other cities because our method relies on only the drivers’ mobility and

charging instead of city features, but the real-world performance will be impacted by the number

of ETs and available charging resources in the city. For example, when the ET fleet size is not too

large and there are relatively enough chargers in the city, the queuing phenomenon will not be

severe, so the original charging time of ETs will also be small and it is challenging to decrease it too

much. When there are more and more ETs, while the charging resources cannot keep pace with

its increase, the competition between ETs for charging resources will become fierce, which leads

to a much longer charging queuing time, so our fleet-oriented charging recommendation system

can significantly improve the overall charging efficiency. To summarize, our ForETaxi can achieve

better performance than other methods under a different number of ETs, and the performance will

be more significant when the charging resource competition is more fierce.
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Impact of Vehicle Model. In our work, all EVs are the same model, i.e., BYD e6, and they

have the same battery consumption model and charging model, so they share the same solution.

For different EV models, they have different battery capacities, consumption rates, and charging

rates, which will impact their charging service time as shown in Equations (1)–(3). The traveling

time will not be influenced as shown in Section 4.3, but the queuing time will be different if EVs

have different charging rates. As shown in Equation (6), our solution considers the charging time

(traveling time, queuing time, and service time) of individual EVs, so different EV models will

not impact our solution since we will input the traveling time, queuing time, and service time of

individual EV to our model for decision making. If there are different EV models, we only need

to specify their battery capacities, consumption rates, and charging rates in Equations (1)–(3) to

calculate the traveling time, queuing time, and service time of individual EVs to feed into our

optimization objective.

7 CONCLUSION

In this paper, we design a data-driven fleet-oriented charging recommendation system called ForE-

Taxi based on multi-source sensor data with real-time charging resource allocation, which aims to

obtain an optimal charging recommendation for the entire fleet, instead of individual vehicles.

ForETaxi considers different practical factors for recommendation including charging queuing

time, service time, possible future charging demand and passenger demand, and so on. Real-world

sensor data including GPS data, taxi transaction data from more than 13,000 ETs, road network

data, and all ET charging stations in Shenzhen are used to verify the performance of the ForETaxi.

Extensive results show that our ForETaxi outperforms other state-of-art methods by about 16% of

the total charging time reduction and 82% of the queuing time reduction.
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