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We are witnessing a rapid growth of electrified vehicles due to the ever-increasing concerns on urban air

quality and energy security. Compared to other types of electric vehicles, electric buses have not yet been

prevailingly adopted worldwide due to their high owning and operating costs, long charging time, and the

uneven spatial distribution of charging facilities. Moreover, the highly dynamic environment factors such

as unpredictable traffic congestion, different passenger demands, and even the changing weather can sig-

nificantly affect electric bus charging efficiency and potentially hinder the further promotion of large-scale

electric bus fleets. To address these issues, in this article, we first analyze a real-world dataset including mas-

sive data from 16,359 electric buses, 1,400 bus lines, and 5,562 bus stops. Then, we investigate the electric bus

network to understand its operating and charging patterns, and further verify the necessity and feasibility of

a real-time charging scheduling. With such understanding, we design busCharging, a pricing-aware real-time

charging scheduling system based on Markov Decision Process to reduce the overall charging and operating

costs for city-scale electric bus fleets, taking the time-variant electricity pricing into account. To show the

effectiveness of busCharging, we implement it with the real-world data from Shenzhen, which includes GPS

data of electric buses, the metadata of all bus lines and bus stops, combined with data of 376 charging stations

for electric buses. The evaluation results show that busCharging dramatically reduces the charging cost by

23.7% and 12.8% of electricity usage simultaneously. Finally, we design a scheduling-based charging station

expansion strategy to verify our busCharging is also effective during the charging station expansion process.
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1 INTRODUCTION

With the growing concerns over air quality [16, 63, 65–68] and energy security [58, 59], more and
more countries, e.g., U.S. and China, have started to promote electric vehicles to improve energy
efficiency and reduce emissions [10]. It is reported that the worldwide sales of electric vehicles
have been nearly quadrupled since 2014, and half of the vehicle sales will be electric vehicles by
2027 [34].
As one of the most common transportation modes, transit buses play an important role in peo-

ple’s daily lives [56, 57, 60, 61]. Due to the long daily travel distance and high-frequency services,
electric buses (e-bus) have greater potentials to reduce the nitrogen oxides and carbon dioxide
emissions [10, 58, 59] compared to other types of electric vehicles, e.g., electric taxis (e-taxis) [6,
40, 45, 46] and electric private vehicles (e-pvs) [23].
Yet, to date, e-buses have not been extensively adopted worldwide because of the following dis-

tinctive characteristics: (i) lack of spacious charging infrastructures for large-scale e-bus fleets, e.g.,
large charging stations with enough parking spaces and sufficient charging stations [31]; (ii) high
purchase costs due to the relatively new technologies, e.g., a BYD e-bus will cost about $263,000
[31, 42] in 2017, which is 2.5 times of a diesel bus; (iii) relatively high operating costs caused by
the charging fees (i.e., electricity) compared to one-time costs of infrastructure construction and
ownership. For example, the yearly charging cost for one e-bus is about $18,000 [37] in Shenzhen,
resulting in the day-to-day charging costs being one of the key concerns that hinder the e-buses
to fully release their potential [10].
Many works have been done on reducing the charging costs for e-taxis and e-pvs [6, 24, 39],

and some other works [2, 8, 26, 35, 36, 49, 50] have built the theoretical models and simulations for
e-buses. However, few works have been conducted on the data-driven modeling and optimization
for real-world e-bus fleets charging. More importantly, approaches for e-taxis [6, 24, 39, 44, 47]
can hardly be directly applied to the e-buses because of the following fundamentally different
features: (i) The charging activities of e-taxis are directly related to the income of e-taxi drivers, so
their charging and routes will be incentive-based; whereas e-bus drivers are not. (ii) The charging
activities of e-taxis are mostly distributed and flexible. An e-taxi driver can decide when and where
to charge, while the e-bus network is based on centralized operating and charging management.
These two key differences lead to different charging incentives and optimization goals [23].
E-buses are centrally managed with fixed timetables, which makes it possible to design offline

charging schedules and operating strategies. However, such offline strategies are not always opti-
mal. The high dynamics of the real-world environments bring great challenges for optimal solu-
tions, making e-buses very different from the flexible e-taxis and e-pvs. Such dynamicsmay include
the unexpected break-downs of e-buses, unpredictable traffic congestion, time-variant electricity
rates, as well as the changing weather/temperature and the traffic-light conditions [37]. For ex-
ample, both too-hot or too-cold weather will require the e-buses to operate their air conditioners,
which drain their energy quickly. These dynamic factors will lead to both (i) the non-deterministic
departure and arrival time for each e-bus and (ii) unpredictable State of Charge (SOC) (i.e., the re-
maining battery level) of e-buses when they arrive at terminals. Note that the fixed timetables
only require e-buses to leave the terminal on time. As a result, the off-line charging schedule and
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operation strategies—i.e., all e-bus lines follow the predesigned and fixed operating and charging
patterns—may be far from the high operating and charging efficiency. For example, some e-buses
may wait too long in the charging stations for available charging points, while other charging
stations have a lot of unoccupied charging points.
To address these real-time issues, we develop busCharging, a data-driven real-time charging

scheduling system for large-scale e-bus fleets based on real-world data. The dataset is obtained
from the Chinese city Shenzhen, a pilot city that promotes e-buses in China. Shenzhen has elec-
trified 100% of its public transit buses and became the first and the only city with a full e-bus
network in the world. Moreover, Shenzhen also has the largest installation base of e-buses, e.g.,
16,359 e-buses [29], in December 2017. Based on Shenzhen’s e-bus data, we perform a set of data-
driven analyses to understand the behaviors of e-bus fleets and then design a data-driven real-time
scheduling strategy to reduce the overall charging cost of the fleets. Our key contributions are as
follows:

• To our best knowledge, we are the first to conduct the city-scale data-driven investigation
of the real-time scheduling for electric bus fleets. Our investigation has two key features
based on four-year real-world e-bus data, including (i) the largest e-bus fleet in the world
with more than 16,000 e-buses; (ii) the largest number of e-bus charging stations and charg-
ing points, e.g., 376 charging stations for e-buses. Such a large-scale data-driven investiga-
tion enables us to identify the real-world e-bus operating and charging issues, which are
challenging to reveal by using simulation studies.

• We design a data-driven real-time charging scheduling system called busCharging taking
factors of the e-bus daily and per-charge operating distances, charging spatial-temporal
and cost distribution, and charging station utilization rate into account. busCharging is
based on a thorough data-driven analysis, which reveals some novel insights including the
e-bus adoption process, e-bus demand/supply, charging network distribution, charging ac-
tivities distribution, charging cost, and so on. To our knowledge, this is the first time that
such detailed analyses were performed for a large-scale e-bus fleet to support data-driven
scheduling.

• Given these data-driven insights, busCharging is designed based on the Markov Decision
Process (MDP) by considering the status of the e-bus fleet and the contextual factors.
In particular, we consider both revenues and charging costs, along with timetables and
time-of-use electricity prices to schedule e-buses among different bus lines. Then, we uti-
lize an effective solution to solve this MDP problem, and we also theoretically investigate
the real-time features of our MDP-based scheduling by analyzing its time complexity. Fi-
nally, we elaborate on how our scheduling strategy guarantees timetables for the real-time
requirement.

• We implement and evaluate busCharging based on the real-world data in Shenzhen. The
results show busCharging reduces 23.7% of the overall charging cost and 12.8% of the elec-
tricity usage. We also design a scheduling-based charging station upgrading strategy to
verify our busCharging is also effective, even enlarging existing charging stations. Besides,
some lessons were learned and experiences were reported, which are helpful for other cities
to promote and optimize their e-bus fleets.

The rest of the article is organized as follows: Section 2 introduces our dataset and conducts
the detailed analyses. Section 3 presents the design and implementation of busCharging. Section 4
evaluates the performance of busCharging. The lessons learned and related works are summarized
in Sections 5 and 6. We conclude this article in Section 7.
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Table 1. Specifications of One Type e-bus in Shenzhen

Model Battery Length Charging Duration Maximum Speed Maximum Distance
BYD K9 324 kWh 12 m 3h 90 km/h 250 km

Fig. 1. Number of e-buses and diesel buses.

2 BUSCHARGING: DATASETS AND ANALYSES

In this section, we first describe our large-scale real-world dataset generated from the Shenzhen
e-bus fleet. Based on the dataset, we then comprehensively investigate the operating patterns,
charging patterns, and cost patterns of the Shenzhen e-bus fleet to motivate our electricity pricing-
aware real-time charging scheduling.

2.1 Data Description

Our busCharging is based on large-scale e-bus datasets obtained from Shenzhen, which is the
fourth-largest city in the Chinese mainland. The time span of these datasets is from the year 2014
to 2018, during which Shenzhen has experienced very rapid growth of e-buses, e.g., the percentage
of e-buses among all buses (i.e., e-buses + diesel buses) has increased from 7.8% to 100% as shown
in Figure 1. One of the most popular e-bus vehicle models in Shenzhen is BYD K9, whose specifi-
cations are shown in Table 1. The battery capacity and the maximum per-charge distance of BYD
K9 are 324 kWh and 250 km, respectively [7]. The four-year datasets include five different types
of data, and the details are shown as follows:

• GPS Data include 1.92 TB historical and real-time GPS records of all buses in Shenzhen
from July 2014 to May 2018. Each GPS record includes 19 fields describing the status of a
bus, e.g., the bus ID, the time-stamps, the bus line ID, the GPS coordinates (i.e., longitude
and latitude), the direction, the current speed, and the total mileage (i.e., odometer data).
The GPS data are collected by an onboard device with a cellular connection in real-time.

• Bus Stop Data include all bus stops’ information of 1,400 bus lines (including inbound and
outbound directions) with 5,562 unique bus stops. For each bus stop, there are seven key
fields including the route ID, the line direction, the stop name, the GPS location, and so on.

• BusTransactionData include all transaction records of passengers’ trip fares. The average
daily number of passengers taking buses using smartcards is about 2.4M, and 5M in total.
Each transaction has six key fields including the route ID, the line direction, the station ID,
the station name, and the GPS location.
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• Bus Charging Station Data include the station names, the station IDs, the GPS locations,
and the number of charging points in each station. There are 376 e-bus charging stations in
Shenzhen as of the end of 2017.

• Electricity Rate Data include the time-variant electricity pricing within 24 hours of Shen-
zhen. Shenzhen adopts the time-of-use rating, which breaks up 24 hours of a day into sev-
eral intervals and charges a different price for each interval [38]. The rates in Shenzhen are
divided into three types, i.e., off-peak prices (low rates), semi-peak prices (medium rates,
also called flat rates), and peak prices (high rates), and the corresponding electricity rates
are 0.049 $/kWh, 0.121 $/kWh, and 0.173 $/kWh, respectively. The time-variant electricity
pricing in Shenzhen is shown in Figure 2.

Based on these data, we perform an intensive data-driven analysis to understand the operating,
charging, and cost patterns of the Shenzhen e-bus fleet. The details are shown below.

Fig. 2. Time-variant industrial elec-

tricity prices in Shenzhen.

Fig. 3. The number of lines served

for each bus in Shenzhen.

2.2 Operating Patterns

A visualization of Shenzhen e-bus network in 2018 is shown as Figure 4, where the yellow and red
parts stand for the bus lines across Shenzhen. The yellow parts mean there aremore bus passengers
on these lines, and the red parts mean there are fewer passengers on these lines.
We found that the bus lines reach the most remote rural areas, although the highest density of

lines is in the downtown area. We also found that the bus in Shenzhen may serve different lines at
different times of a day, e.g., rush hour and non-rush hour. The number of lines served by each bus
can be seen from Figure 3. We found that about one-fifth of buses in Shenzhen serve for more than
one fixed line during different times, e.g., The Bus A served for line 1 can be borrowed to line 2 if
it is in peak hours of line 2. In addition, the lengths of different lines vary a lot, e.g., the shortest
line is only 1 km and the longest line is over 110 km, and the average and variance of the length
of all lines are 9.7 km and 6.3 km, respectively, which potentially indicates it is feasible for us to
schedule e-buses to serve other lines.
In Figure 5, we investigate the daily number of passengers on each bus line. We found that 21%

of bus lines have over 6,000 passengers per day, and the maximum number of passengers that a
single bus line carries up to 23,200; such huge amount of passengers on bus lines pose a huge
challenge for charging scheduling, since we need to satisfy passengers’ traveling demand. Hence,
guaranteeing the timetables of all bus lines is necessary when we change their charging plans. In
addition, we found when the passenger demand becomes higher, the departure interval between
two e-buses will be shorter from observing the operation data. Figure 6 shows the number of
e-buses and the number of passengers in Shenzhen during 24 hours of a day. We found that at
different times of a day, the number of passengers and e-buses is also proportional, which means

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 13. Publication date: November 2020.



13:6 G. Wang et al.

Fig. 4. Station and line distribution of the Shenzhen e-bus network.

Fig. 5. Passengers & buses (lines). Fig. 6. Passengers & buses (time).

Fig. 7. Distance between two

charges.

Fig. 8. Daily operating distance.

we can have some e-buses charge during off-rush hours and then serve other bus lines during rush
hours.
We further investigate the operating distances between two charges (i.e., per-charge distance)

and the daily operating distances of Shenzhen e-buses. The Cumulative Distribution Function
(CDF) of operating distances between two charges of all e-buses is shown in Figure 7. We found
that about 50% of e-buses operate no more than 97 km between two charges, even though their
maximum operating distance is around 250 km, which is caused by many real-world factors, e.g.,
the availability of charging points, the electricity rates, and the range anxiety.
Further, we show the CDF of the total daily operating distance of each e-bus in Figure 8. We

found that the daily operating distances of 68% of e-buses are less than 200 km, which is the
maximum practical distance that most e-buses would travel before a charge. In addition, 32% of
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Fig. 9. Spatial distribution of Shenzhen e-bus charging network.

Fig. 10. Daily total charging time. Fig. 11. Daily station utility rate.

e-buses travel more than 200 km per day, which means they need at least two charges per day.
Considering the per-charge distance of 50% of e-buses’ is nomore than 97 km, it could be concluded
that most e-buses need to charge at least twice per day.

2.3 Charging Patterns

We utilize long-term e-bus data and charging station data to fully understand the overall e-buses
charging patterns in Shenzhen. The spatial distribution of the e-bus charging stations is shown
in Figure 9, where the sizes of the circles indicate the number of charging points in each station,
whichmeans a larger circle stands for more charging points in this charging station.We found that
most large stations are located in suburban areas, which is because there are more available and
cheaper land resources in these areas than in downtown areas. We also investigate the distances
between two charging stations. As shown in the right upper corner of Figure 9, 91.6% of charging
stations have at least one neighbor charging station within 2 km, which indicates Shenzhen has a
well-connected e-bus charging station network.
We further investigate the daily charging time of each e-bus. As shown in Figure 10, we found

only 13% of e-buses spend less than 3 hours for charging each day, and the charging time of over
80% of e-buses is no more than 5 hours, which indicates that most e-buses spend 3–5 hours for at
least two charges each day.
To study the e-bus charging station effectiveness, we define the daily Charging Station Utiliza-

tion Rate UR at a station si in a day as follows:

UR (si ) =
CE (si )

CP (si )
, (1)

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 13. Publication date: November 2020.
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Fig. 12. Electric buses and charging stations in Shenzhen.

Fig. 13. Electricity usage. Fig. 14. Charging cost distribution.

where CE (si ) is the daily total number of charging events in the station si ; CP (si ) is the number
of charging points in station si .

Figure 11 shows the daily charging station utilization rate distribution of e-bus charging stations
in Shenzhen. We found that the utilization rates of 50% of charging stations are no more than 4.
However, there are also some charging stations with very high utilization rates, e.g., 12. These
unbalanced utilization rates lead to charging resources waste in some stations while very crowded
in some other stations. Besides, we have conducted a series of field studies in 2018 to investigate
the charging patterns of e-buses in Shenzhen. Figure 12 shows the e-buses and a charging station
we visited in Shenzhen.

2.4 Cost Patterns

Based on these charging station utilization rates, we further study charging start time and charging
distribution over time of day to understand the electricity usage and charging costs. As shown in
Figure 13, the highest electricity usage for e-bus charging occurs in the off-peak hours, accounting
for 63% of the total electricity usage. However, there is still 13.6% of electricity usage during peak
hours. Although the percentage of electricity usage in the peak hours and flat hours is much lower
than the usage in the off-peak hours, the usage in these two durations can cause more charging
costs than the peak-hour charging due to the time-of-use pricing strategy. Comparing Figure 14
to Figure 13, we found that the charging cost distribution is different from the electricity usage
distribution. In particular, we found the electricity cost gap between 8:00–20:00 and 20:00–8:00 in
Figure 14 is much smaller than the electricity usage gap between the same two periods in Figure 13.
This indicates that even though the bus fleet does not charge much from 8:00–20:00, the costs are
almost as high as 20:00–8:00, during which the e-buses charge substantially. As a result, it moti-

vates us to ask a question: Can we reduce the charging cost of large-scale e-bus fleets by

scheduling more e-buses to charge in off-peak hours?, i.e., further increasing the electricity
usage gap between 8:00–20:00 and 20:00–8:00, since a small ratio of usage decrease during peak
hours will result in a huge cost decrease.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 13. Publication date: November 2020.
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Fig. 15. Existing bus operating and charging patterns.

3 BUSCHARGING: SCHEDULING DESIGN

In this section, we first present our problem formulation by showing the existing operating and
charging scheduling of Shenzhen e-buses. Then, we present our busCharging scheduling idea. Next,
we introduce the detailed design of our busCharging in terms of the scheduling formulation, sched-
uling design, and scheduling complexity analyses. Finally, we describe the timetable guarantee of
our scheduling for the real-time guarantee.

3.1 Problem Formulation

3.1.1 Existing Operating and Charging Patterns. Figure 15 shows the operating patterns of buses
in Shenzhen. In Shenzhen, a bus line generally has two terminals, e.g., Terminal A and Terminal B
in Figure 15. Based on the timetable for this line, a Bus 1 travels from Terminal A to Terminal B
(or from B to A) through some intermediate bus stops and then goes back to the Terminal A (or
B). During the same time, multiple buses are serving for this line with the same or different di-
rections, e.g., Bus 2. For e-buses, they need to charge when their SOC decreases to a predefined
low threshold. Besides, different from other electric vehicle types (e.g., e-taxis and e-pvs), e-buses
generally make charging decisions (i.e., to charge or to continue to serve) only after they arrive at
bus terminals. This is caused by their operational feature, i.e., they normally cannot charge in the
middle of a trip with bus passengers onboard.
As a result, based on this feature, the charging stations in Shenzhen are usually deployed near

terminals or at terminals, which also addresses the parking issues, since e-buses need lots of space
for parking compared to taxis and private vehicles. Moreover, in Shenzhen, nearly half of the e-
buses in the fleets charge at their closest terminals (e.g., the terminals at which they just arrived),
which may potentially decrease the charging efficiency of the entire e-bus charging network due
to the unbalanced charging points placement (e.g., fewer charging points in the downtown and
more in the suburb, as shown in Figure 9), resulting in no charging points available when e-buses
arrive at their charging stations but many unoccupied charging points in some other charging
stations.

3.1.2 busCharging Operating and Charging Patterns. In this work, we focus on the real-time
charging scheduling problem for e-bus fleets, considering the overall operational cost and revenues
of all e-buses in the fleet, instead of individual vehicles, given its centralized management mode.
Compared to conventional diesel buses, e-buses are less flexible due to their limited operating
ranges and reliance on the charging infrastructures, which makes it challenging to schedule the e-
bus fleet to operate and charge compared to conventional diesel buses, especially for a large-scale
fleet. In addition, the lower flexibility of e-buses potentially makes it necessary to (i) purchase
extra e-buses for contingency plans to cover additional ranges on routes or (ii) redesign the lines
to accommodate e-buses. These two actions have been taken in Shenzhen. Moreover, the time-
variant electricity rates compared with the 24-hour stable diesel price also make the charging
issues of e-bus fleets more complicated if we consider the refueling costs.
In busCharging, we consider different real-world factors for e-buses, including time-variant elec-

tricity rates and scheduling between different lines/extra e-buses. Weather conditions, congestion,

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 13. Publication date: November 2020.



13:10 G. Wang et al.

time of day, and demographic features as contexts are also implicitly considered, since we leverage
both the historical and real-time GPS records to predict energy consumption to serve a particular
line with detailed route information. Based on previous research [43, 55, 64], both periodic conges-
tion and static demographic features remain stable for the same spatial-temporal combination, e.g.,
for the same road segment during the same time slot of different days. As a result, our historical
GPS records implicitly contain the period congestion and basic demographic features.
Our key idea for busCharging is that we schedule some e-buses to serve other bus lines that

share the same terminals with them when they arrive at their terminals based on some real-world
factors. These factors we considered include: (i) the real-time SOC of e-buses; (ii) the availability
of charging points in charging stations; (iii) the expected energy consumption of different lines,
which is related to both lengths and travel time related to traffic, which means e-buses have to be
able to arrive at the scheduled terminals based on their current SOC; (iv) the expected charging
cost at particular terminals for different time slots of a day, which is related to both charging point
availability (e.g., staying without charging if no point is available) and electricity prices; (v) our
final consideration for the scheduling is that we have to guarantee the timetables of all lines, which
we will clarify in Section 3.3.
Based on this key idea, we make streaming scheduling decisions after each e-bus arrives at a

terminal and drops off all passengers, since all e-buses arrive at terminals in an online fashion
[23]. In particular, busCharging has four potential scheduling modes for an e-bus when it is in a
terminal based on the four factors we discussed in the last paragraph: (i) stay at the terminal but
not charge; (ii) charge at the terminal immediately; (iii) keep serving the current line, i.e., go back
to the terminal it came from; (iv) serve another line, i.e., go to a terminal of a different line. To
make our scheduling easier to guarantee timetables of all bus lines, we should make the number
of buses to serve other lines as little as possible, so we set e-buses to prioritize serving for the
original lines over serving the new lines.

3.1.3 Scheduling Objective. The objective of our busCharging is to optimize the e-bus fleet by
reducing the overall operational cost and increasing the profits by collecting fares for serving
passengers, which can be formulated as follows:

Fs −Cc =
∑

t ∈24h

Neb∑

n=1

(
F tn − Rt ·Ct

n

)
, (2)

where Fs is the collected fare for serving passengers of the whole e-bus fleet; Cc is the charging
cost for operating the e-bus fleet; Neb is the number of e-buses in the fleet; F tn is the fare collected
by the nth e-bus during time t by serving passengers for a particular line; Rt is the electricity rate
at time t ; Ct

n stands for the electricity consumed (i.e., charged) by the nth e-bus during time t .
As Equation (2) shows, the overall optimization objective depends on three items, e.g., the real-
time electricity rates, the energy charged by each e-bus, and the fares collected by each e-bus.
Compared to the taxi and private vehicles, bus passenger demand is more stable and the fare is
flatter in Shenzhen [25], so the expected fare can be obtained from historical data given a time slot
and a bus line. As a result, we focus on deciding on scheduling e-buses to serve which lines and
when to charge for reducing the overall charging cost.
An intuitive idea to achieve this goal is to have enough buses and to schedule all the e-buses

to serve their original lines and to charge only during the off-peak hours, i.e., 23:00–7:00. How-
ever, given the limited number of buses in Shenzhen and a large number of lines, as indicated by
Figure 8, around 32% of e-buses cannot accomplish the daily operating task with one charge dur-
ing nights alone. Note that for practical consideration, we only focus on scheduling existing buses
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Fig. 16. Markov decision process for charging scheduling.

for improving the charging efficiency, instead of adding new buses in this article. We present the
detailed charging scheduling algorithm in the next Section 3.2.

3.2 Charging Scheduling

Since e-buses arrive at bus terminals in an online fashion, we schedule the charging task for e-
buses one by one. One of our major technical contributions in this article is that we formulate the
e-bus charging scheduling problem as an MDP problem to reduce the charging cost and effectively
solve this problem.
An MDP is a discrete-time state transition system that aims to find an optimal policy to max-

imize the expected utility. Formally, an MDP is defined as a 5-tuple (S, A, T, R, β) [32]. The MDP
framework of busCharging is shown as Figure 16.

• S is a set of states. For the charging scheduling scenario, we define four different states
according to the SOC of e-buses. As Figure 16 shows, the four states in busCharging are

(i) SOCf , which indicates an e-bus is at the Full SOC; (ii) SOC
f
c , which indicates the SOC

of an e-bus is lower than the Full SOC but higher than an SOC with which it can serve the
Current line, i.e., go back to the original terminal; (iii) SOCc

l
, which indicates the SOC of an

e-bus is lower than the required SOC to serve the Current line but higher than a mandatory
charging threshold, i.e., it may still have SOC to serve other lines sharing the same terminal
with it; (iv) SOCl , which indicates the SOC of an e-bus is lower than themandatory charging
threshold, i.e., it needs to charge and cannot serve any lines.

• A is a set of actions. In busCharging, there are four actions: (i) AS : Staying at this terminal
but not to charge; (ii) AO : going back to the Original terminal, i.e., serving the current line;
(iii) AN : serving a New line; (iv) AC : Charging at this terminal. For the charging scheduling,
the results of the former three actions follow the energy non-increasing principle, i.e., the
energy in the next state does not exceed the current state; whereas, for the state AC , i.e.,
charging, it increases the SOC of e-buses.

• T is a state transition matrix, which consists of the probability transition from one state to

another state by taking an action. For example, T(SOCf , AO , SOC
f
c ) = PAO

SOCf→SOC
f
c

= p01

means the probability of an e-bus transferring from the full battery capacity SOCf to SOC
f
c

by serving its own line (i.e., action AO ) is p01.
• R is a reward function. For each action, the scheduling strategy will generate a correspond-

ing reward. In the charging scheduling problem, if an e-bus stays at the terminal (i.e., AS ),
it will have no passengers (i.e., no revenue) and also have no energy consumption (i.e., no
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cost), so the current reward is 0. When e-buses serve for passengers (i.e., the action AO or
AN ), they will have passenger fares for their lines, so they will have a positive reward Vi ,
which is based on which line they serve. But if they take the action AC , there is a charg-
ing cost for electricity, so the reward is negative, which is denoted as the -Wj in Figure 16,
where 1 ≤ j ≤ 3. The different negative reward values depend on the real-time electricity
rates and the current SOC, as well as their full battery capacity.

• β is the discount factor, which captures the fact that an immediate reward might be worth
more than the same reward in the future. The value of β is generally selected from [0,1), so
the final expected utility will be convergent and bounded to a finite number. β is set to 0 if
and only if we do not consider the future reward.

Definition 2. a policy π is defined as a distribution over actions given states, which gives the
e-bus an action to execute at each state to maximize the expected utility:

π (a |s ) = P [A = a |S = s] , (3)

where a ∈ A(s) = {AS , AO , AN , AC } and s ∈ {SOCf , SOC
f
c , SOC

c
l
, SOCl }.

Definition 3. a utility of a state for a given policy is defined asU π (s ), which can be formulated
as:

U π (s ) = E
⎡
⎢
⎢
⎢
⎢
⎣

∞∑

t=0

β t · R (st ) |π , s0 = s
⎤
⎥
⎥
⎥
⎥
⎦

, (4)

where s0 is the initial state; st is the state of the e-bus after executing the policy π for t actions; β t

is the discount after t actions; and R (st ) is the immediate reward at each state.
The objective of the data-driven charging scheduling strategy is to derive an optimal policy π ∗

that achieves themaximumutilityU ∗ (s ) for all states, which is formulated as the Bellman Equation
[3] as Equation (5):

U ∗ (s ) = max
π

U π (s )

= max
a∈A(s )

⎡
⎢
⎢
⎢
⎢
⎣

Rsa + β ·
∑

s ′
Pass′ ·U ∗ (s ′)

⎤
⎥
⎥
⎥
⎥
⎦

, (5)

where Rsa is the immediate reward after taking the action a in the state s, which is also the op-
erational revenue or charging cost after taking different actions.

∑
s ′ P

a
ss′ ·U ∗ (s ′) is the expected

future utility. As Equation (5) shows, the immediate reward Rsa , the discount factor β , and the
transition probability Pass′ are required to obtain the best policy.
As shown in Equation (2), the objective of our busCharging is to minimize the overall charging

cost of the e-bus fleet and maximize fares collected for serving passengers. The fares would be
reduced if the e-buses do not keep the timetable, e.g., some passengers may take taxis. In this work,
we envision that the fares are maximized if the timetables of all lines are kept as much as possible,
which is ensured by our scheduling policy, which we will explain in Section 3.3. As a result, the
objective of Equation (2) is equivalent to the objective of Equation (5), which indicates we can
solve the e-bus charging scheduling problem by considering both charging cost and revenues of
collected fares. In the next section, we will theoretically investigate if this MDP-based scheduling
can satisfy the real-time requirement by studying its scheduling complexity.
Scheduling Complexity: There are two common approaches to solve the MDP optimization

problem, i.e., value iteration and policy iteration [9]. There are n unknowns needed to solve in
the equations when there are n states. If we leverage the value iteration, we need to use max

in the equations, which is nonlinear, resulting in complexity of O (m · n2) for each iteration for
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m actions. However, the policy iteration has the operation
∑

instead of the operation max in the
equations, which implies that the equations are linear. Thus, solving these n linear equations iswith
a complexity of O (n3). Since we have four states and four actions in our scheduling process, the
time complexity of the two approaches is similar for each iteration. However, the policy iteration
searches a finite policy space instead of an uncountably infinite value space, indicating the policy
iteration converges much faster than the value iteration. Now, we have shown that the policy
iteration satisfies the real-time requirement for scheduling. In the worst case, the policy iteration
for busCharging needs to search for all the policy space, which is limited by the number of our
states and the limited number of lines sharing the same terminals. Then the total time cost of
the policy iteration for busCharging is linear, which can be easily realized at the second level for a
normal PC, so the policy iteration–basedMDP is fast enough for the real-time charging scheduling
requirement. Therefore, we leverage the policy iteration to find the best charging scheduling policy
for e-buses.
The policy iteration algorithm for our e-bus charging scheduling is shown in Algorithm 1.

ALGORITHM 1: Policy iteration algorithm for e-bus charging scheduling

Input: The set of all states S = {SOCf , SOC
f
c , SOC

c
l
, SOCl }

The set of all actions A = {AS , AO , AN , AC }
State transition function Pass′
Reward function Rsa

Output: Optimal policy π ∗
1 Initialize: Pick an arbitrary policy π ′

2 repeat

3 π ← π ′

4 Policy evaluation: solve the linear system

5 U π (s ) = Rsa + β ·∑s ′ P
a
ss′ ·U (s ′);

6 Policy improvement: for each s ′ ∈ S
7 π ′ (s ) ← argmax

a∈A

(
Rsa + β ·∑s ′ P

a
ss′ ·U (s ′)

)

8 until π = π ′;
9 return π as π ∗

3.3 Timetable Guarantee

Since keeping the timetable is critical for the bus fleet operation, our algorithm considers the
timetable constraint and effectively guarantees timetables for e-bus lines when performing the
scheduling. Our scheduling can be regarded as a priority-based scheduling, and the priority is
decided by the utilities that different strategies can achieve, which means a higher utility strategy
has a higher priority. As follows, we show how our scheduling algorithm guarantees timetables
for bus lines with an example:

Fig. 17. Scheduling with timetable guarantee.
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As shown in Figure 17, the line L1 and line L2 share the same terminal T1, and there are many e-
buses serving for different lines, e.g., BL11 for L1 and BL21 for L2. There are three different scenarios
when busCharging makes scheduling:

• If the next e-bus BL11 for line L1 can have a better scheduling to serve another line, e.g., L2,
compared to the original line L1 and another e-bus BL12 or BL13 is available for L1, then we
schedule BL11 to serve another line (e.g., L2) and have BL12 or BL13 to take the place of BL11.
We utilize the charging deadline to break the tie if multiple e-buses were available, which
means our scheduling strategy will choose the bus with the highest SOC to replace BL11.
In this way, the timetable of L1 is guaranteed.Similarly, we utilize the energy consumption
to break the tie if multiple e-bus lines were available, which means our scheduling strategy
will choose the line with the lowest energy consumption to serve. Although the selected
line does not necessarily reduce electricity consumption, it can guarantee the reachability
and timetable of this line, and it will have positive effects on charging cost reduction due to
the time-variant charging pricing.

• If we cannot find the next bus BL12 and BL13 for L1 to guarantee the timetable of BL11, we
find all other lines that share the terminals with L1, i.e., L2 in this example, for an extra
backup bus for L1 (which do not affect their timetables). If there is an e-bus available from
BL21, BL22, and BL23, then the timetable of L1 can be guaranteed while we schedule BL11 for
other lines.

• If there are no available buses from all other lines (e.g., L2) to guarantee the departure
timetable of BL11, we keep bus BL11 on L1 to guarantee L1’s timetable. E-buses prioritize
serving the original lines over new lines when they can achieve the same performance by
serving different lines, which is also for guaranteeing the timetables of all bus lines. For
example, at the beginning of a day, all e-buses have enough energy to serve current lines
and other lines so they will keep their current lines. In this case, the timetable is always
kept.

The timetable guarantee is for satisfying the real-time requirement, which we used as the con-
straint of the MDP model. That is to say, all scheduling decisions should guarantee the timetable
for serving passengers. In particular, the timetable guarantee guides the state and action choices,
e.g., if serving the current line or serving another line that shares the same terminal with the
current line will be decided by the timetable and SOC of e-buses.

4 EVALUATION

In this section, we extensively evaluate the performance of our busCharging based on the massive
e-bus data from Shenzhen by four different metrics, i.e., the temporal distribution of charging
events, the spatial distribution of charging events, the joint spatiotemporal distribution of charging
events, and, the most important, electricity usage and charging cost. In addition, we also discuss
the impact of our scheduling on bus drivers.

4.1 Experimental Setup

Data Management: Due to the data-driven nature of our busCharging, we introduce how we
manage our multi-source data related to e-buses as follows: In this project, we are working with
Shenzhen Transportation Committee, and we utilize various data processing frameworks. The
streaming data from Shenzhen e-buses require significant efforts for efficient management, query-
ing, and processing.
We employ a high-performance cluster with Spark for data processing. The details are given

as follows: (i) 12 HP machines with 2 Tesla K80c each; (ii) 10 Dell machines with 4 Tesla K80c
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each; (iii) 4 Xeon E5-2650 with a half TB memory each; (iv) A series of 800 GB SSD and 15 TB
of spinning-disk spaces; (v) 2 PB additional disk space. Due to the large size of our bus data, we
performed a detailed cleaning process to filter out duplicate, error, and incomplete GPS/transaction
data. More importantly, the key challenge in bus transaction data processing, compared to bus GPS
data processing, is to protect the privacy of smartcard users and ensure the utility of the models
at the same time. We will briefly mention our privacy consideration in Section 5.

EvaluationData: In this evaluation part, as introduced in Section 2, we utilize one-week of GPS
records generated by 16,359 e-buses from January 13th–19th, 2018, in the Chinese city Shenzhen.
More than 69.6M GPS records are generated by the e-bus fleet during this period. In addition to
GPS data, the evaluation dataset includes the static data of 376 e-bus charging stations, 1,400 bus
lines, and 5,562 bus stops.
Parameter Setting: In our charging scheduling strategy busCharging, four parameters are

needed to decide, as follows:

• Four Different States: For SOCl , we decide it based on the real-world interaction with
Shenzhen e-bus drivers. Based on our field studies in Shenzhen, drivers of e-buses are very
conservative, and they normally stop serving passengers and go to find charging points if
the SOC declines to 30%. As a result, we set the SOCl to be 30%. Based on the expected real-
time traffic and current line serving, we can calculate the energy consumption for serving

the current line and other lines for each bus, which gives us the SOC
f
c and SOCc

l
, since we

have SOCl .
• Discount Factor β : We empirically choose the discount factor β as 0.9 to guarantee the

convergence of the algorithm similar to many previous works [1, 14, 17].
• Immediate Reward Rsa : For the immediate reward, the Vi (1 ≤ i ≤ 3) is the expected

revenue by serving different lines, which are calculated based on historical bus passenger
demand; Wj (1 ≤ j ≤ 3) is the expected charging cost, which is calculated based on the time
of scheduling and the real-time SOC of e-buses.

• Transition Probability Pa
ss ′ : For the state transition probability, if an e-bus takes action

AS , it will stay in the same state, so the probability is set to 1. Since there is also no electricity
consumption and operational profits, the reward is also set to 0 when taking action AS . If
there is only one possible transition, the probability is also 1, since the sum of the transition
probabilities is 1, so p01 is 1 in Figure 16. Other transition probabilities are calculated in real
time based on policies given in Section 3.2.

Baseline Setting: To show the effectiveness of our real-time charging scheduling for e-bus
fleets, we compare the performance of our busCharging with Ground Truth and another real-
time scheduling method called Earliest-deadline-first (EDF), which is a common method for elec-
tric vehicle charging scheduling [6, 23, 41]. In EDF, they schedule the e-buses with the earliest
timetable deadline to charge first. Further, we leverage four metrics to understand the performance
of busCharging. They are (i) the temporal distribution of charging events, (ii) the utilization rates
of charging stations, (iii) the occupation rates of charging stations, and (iv), most importantly, the
electricity usage and charging cost.

4.2 Temporal Distribution of Charging Events

Figure 18(a) and Figure 18(b) show the distribution of the charging start time of busCharging, EDF,
and Ground Truth in different electricity rates durations, i.e., different time slots of a day.We found
that more charging events happen in 23:00–7:00 under busCharging, resulting in fewer charging
events during the daytime. Especially during 18:00–21:00, the gap between busCharging and the

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 13. Publication date: November 2020.



13:16 G. Wang et al.

Fig. 18. Charging start time of e-buses.

Fig. 19. Comparison of the utilization rate.

Ground Truth is more obvious. This is because busCharging schedules some e-buses that have
been charged from 12:00–16:00 to serve other lines to replace some other e-buses, leaving these
e-buses to charge after 23:00 for a lower charging electricity rate. While, during 16:00–18:00, more
e-buses need to charge after the long-time operation, which results in the increase of charging
events under EDF. Overall, busCharging has more charging events during the late night to early
morning, i.e., off-peak hours, which potentially lead to lower charging costs.

4.3 Utilization of Charging Stations

We first leverage the Charging Station Utilization Rate that we defined in Section 2 to describe the
spatial distribution of e-bus charging events. As shown in Figure 19, there are fewer charging sta-
tions with too high or too low utilization rates under busCharging compared to the Ground Truth.
In particular, the number of charging stations with the utilization rates between 3–6 accounts for
73% under busCharging, which is 7% less than the Ground Truth. Since EDF does not change the
charging locations of e-buses, the utilization rate of EDF is the same as the Ground Truth, so we
do not show its performance. The more balanced utilization of the charging infrastructure can
effectively reduce the under-utilization and the overcrowded utilization phenomenon among all
e-bus charging stations.
The reason why busCharging balances the charges between stations is that the e-buses can be

scheduled to serve for different lines under busCharging, which increases the flexibility of schedul-
ing and potentially leads to better performance; for example, if an e-bus arrives at the terminal and
it needs to charge, but no charging points are available at this charging station, and its SOC is not
enough for serving the current line, i.e., go back to the original terminal. In this case, busCharging
schedules the e-bus to serve another shorter line with lower expected energy consumption, e.g.,
a shorter distance or a less-congested route. Hence, busCharging can potentially improve the
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Fig. 20. Hourly occupation rates.

charging efficiency of two charging stations at the same time, i.e., reducing the utilization rate of
one charging station and increasing the utilization rate of the other to balance their utilization
rates.
Even though the 7% of improvement in charge station utilization rate seems not to be significant

in terms of percentage, but the rebalanced 9,613 charging activities (137,332*7%) will potentially
improve the uneven charging infrastructure deployment situation caused by some real-world prob-
lems, e.g., unavailable land resources for charging stations at some places, so we believe this spatial
improvement can make a difference to improve the charging efficiency of the city-scale electric
bus fleet.

4.4 Charging Station Occupation Rate

In addition to the spatial distribution of charging events in the e-bus charging network, we also
define the hourly Charging Station Occupation Rate as a joint metric to describe the tempo-
ral and spatial distribution of charging events among all charging stations, which stands for the
average occupation time in one hour of all charging points in each station. The Charging Station
Occupation Rate in a station si is expressed as:

OR (si ) =

∑Ni

j=1CT
(
s ji
)

Ni
, (6)

where CT (s ji ) is the hourly occupation time of the jth charging point s ji in the station si ; Ni is the
total number charging points in station si .

Figure 20(a) and Figure 20(b) show the box-plots of the hourly occupation rates of all e-bus
charging stations in Shenzhen under current scheduling (i.e., ground truth) and our busCharging
scheduling. We found that the occupation rates of the e-bus charging network increase from 0:00–
6:00 under busCharging scheduling, which is the off-peak hours of electricity pricing. The occupa-
tion rates of the e-bus charging network decrease during 14:00–20:00 under busCharging, which
is in the peak and flat hours of Shenzhen electricity pricing, which indicates that our busCharging
can make more charges happen in low electricity pricing hours and has the potential to reduce
charging costs for the e-bus fleet.

4.5 Electricity Usage & Charging Cost

Figure 21(a) and Figure 21(b) show the electricity usage for refueling e-buses in different electricity
rates durations. We found busCharging has more electricity usage during the midnight to early
morning, especially during 23:00–23:59. This is because busCharging schedules some e-buses with
enough energy to serve for other lines before this duration and then charge during this period,
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Fig. 21. Electricity usage for e-bus charging.

Fig. 22. Charging cost for e-bus charging.

resulting in more electricity usage during this period. In addition, busCharging also reduces the
electricity usage during daytime peak hours, e.g., 14:00–16:00. EDF increases the electricity usage
from 16:00–18:00 due to the high charging demand in this duration. In total, our busCharging
reduces 12.8% (701 MWh) and 8.2% of electricity energy for the e-bus fleet in Shenzhen per day
compared with the Ground Truth and EDF.
Figure 22(a) and Figure 22(b) show the charging cost distribution. We found that the cost gap

between busCharging and Ground Truth/EDF is more significant than the charging start time gap
in Figure 18(a) during the daytime. This is because the electricity rates in the daytime are much
higher than the price of off-peak hours at late night. Even though busCharging causes a slightly
higher charging cost for the fleet during 23:00–2:00, it reduces 23.7% ($106,870) and 17.8% of the
overall charging cost per day for the e-bus fleet compared with the Ground Truth and EDF, which
indicates busCharging can potentially reduce 39M dollars for the Shenzhen e-bus fleet per year
based on the current Shenzhen e-bus budget.

4.6 Impacts on E-bus Drivers

Since bus drivers serve for bus companies instead of themselves, they will follow the scheduling
decisions made by our system. A practical issue is that some e-bus drivers need to sacrifice their
time to serve other bus lines, resulting in extra working hours, which may cause these drivers to
feel unfairly treated and make complaints. In this part, we quantify the impacts on drivers due to
extra work for serving other lines.
Figure 23 shows the number of influenced bus lines and the number of e-buses that are scheduled

to serve other lines during each day of the week. We found that the number of influenced lines
ranges from 195 (on Sunday) to 258 (on Thursday), which accounts for about 25% of the total
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Fig. 23. Number of influenced buses and lines.

number of operating bus lines each day. The number of buses that served other lines ranges from
1,350 (on Sunday) to 2,075 (on Saturday), which accounts for about 15% of the total number of
operating buses in the day. In this case, about 15% of e-bus drivers need to do extra work each day.
(i) One possible solution could be that the e-bus operators provide some economic compensa-

tion for those drivers who make extra efforts for better charging efficiency. The current average
wage of Shenzhen bus drivers is about $780 per month [12], which means about $3.25 per hour.
If operators compensate a two-hour salary to these drivers, the maximum extra cost would no
more than $13,500 per day. Compared to the $106,870 saving for e-bus charging, bus operators can
still save $93,370 per day by adopting our busCharging scheduling strategy. (ii) In addition, it is
expected that the shared autonomous electric vehicles will shape the human mobility of tomorrow
[4, 5]. Under this setting, no extra efforts for drivers to serve other bus lines, and all work will be
performed by the autonomous electric vehicles, so our busCharging scheduling strategy may be
more effective and attract more attention in the future.

4.7 Scheduling-based Charging Station Expansion

Since the E-bus promotion is a long-term process, the number of charging points for them will
increase with the maturity of the charging infrastructure. In this case, a key issue is how to assign
the new charging points to the existing charging stations/bus terminals. To further verify if our
busCharging is effective if more charging points are deployed, we provide a potential application of
our busCharging by designing a scheduling-based optimal charging station expansion mechanism,
which also has the potential to help us to assign charging points to each station.
It should be noted that we do not consider to deploy new charging stations in other locations,

since most existing charging points are deployed in bus terminals to reduce operation costs, so it
may potentially cause extremely high costs for operators if deploying charging stations in other
places. In addition, deploying new charging stations is another parallel topic of this work, so we
leave this for future work.
In this part, we focus on expanding the existing charging stations by adding more charg-

ing points, which can further reduce the charging operation costs and satisfy large-scale e-bus
fleets’ charging demand. In particular, we propose a busCharging-based charging station expan-
sion mechanism, which means we decide which deployment strategy is better if considering our
busCharging scheduling.
For simplification, we compare three widely used charging station expansion methods, i.e.,

(i) evenly distribute new charging points to existing stations (evenDis); (ii) distribute new charg-
ing points proportionally with the current distribution (propDis); (iii) distribute new charging
points proportionally with the charging demand in each station (propDem). After expanding
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Fig. 24. Charging cost with 10% more charging points.

Fig. 25. Charging cost with 30% more charging points.

charging stations by using each strategy, we then utilize our busCharging to conduct the charging
scheduling. We conduct experiments on adding 10% and 30% of new charging points to show the
performance of different approaches.
From Figure 24, we found that the propDis and propDem combined with our busCharging can

achieve good performance for reducing charging costs if we add 10% more charging points, even
though the propDem + busCharging can achieve the largest charging cost reduction, since more
charges will happen during off-peak hours under this strategy. More specifically, propDem +
busCharging with 10% more charging points can reduce the daily charging cost of the Shenzhen
e-bus fleet by $148,201.
Figure 25 shows the performance of different strategies with an extra 30% of charging points.We

foundwithmore charging points deployed, the charging cost will further reduce during peak & flat
hours, especially from 19:00–23:00. The reason is that more charging points can be utilized to serve
e-buses during 23:00–5:00 if more charging points are deployed proportionally with the charging
demand in each station. More specifically, propDem + busChargingwith 30%more charging points
can reduce the daily charging cost of the Shenzhen e-bus fleet by $199,051.
We have also compared the performance of the three-station expansion strategy without our

busCharging and with our busCharging. Since we found the performance with our busCharging
is much worse than that with our busCharging, we do not show their performance in Figure 24
and Figure 25. In summary, we found more charging points deployed in existing charging stations
combined with our busCharging charging scheduling can significantly reduce the charging cost of
the Shenzhen e-bus fleet, which means the current charging points may not be sufficient for the
Shenzhen e-bus fleet. We also found that distributing new charging points proportionally with the
charging demand in each station may be better compared to other strategies.
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Fig. 26. Charging station status in different times.

This finding indicates that our busCharging is not only efficient for current charging stations
but also effective during the charging station expansion process, which can also provide guidelines
for charging station expansion.

5 LESSONS LEARNED

Based on our results, we have been conducting a few rounds of field studies to verify the pat-
terns we found. In particular, we have been communicating with bus drivers, fleet managers, and
charging station operators to fully understand the potential impacts of our study and the implica-
tion of our scheduling. We summarize a few lessons we learned from the project and field studies
regarding the e-bus fleet in Shenzhen below.
Data Issues: Some unexpected lessons we learned are related to data issues. In our field studies,

we have been communicating with various interested parties for data collection, data quality, and
data management. We summarize a few key insights as follows: (i) Since the Shenzhen e-bus fleet
is operated by three companies, the data formats and access policies are very different. It takes us
a long time to prepare the bus GPS data to understand the current operating patterns. (ii) Further,
Shenzhen bus-fare data are managed separately by a smartcard company, and the fare data regard-
ing smartcards have personal information, e.g., cellphone numbers and addresses. The company
staff at the smartcard company has removed all this personal information from the smartcard data
to help us understand the bus passenger demand anonymously without privacy concerns.We have
reported many data issues to the fleet management team, and some of these problems have been
addressed after we informed them and other issues are also in process.
Additional Drivers Exclusively for Charging: The final unexpected lesson is the labor-

intensive charging operation in the night. Figure 26 shows a detailed charging station setting in
our field studies and their status at two different times of a day. We can see that all charging points
are occupied by e-buses at 23:05; whereas only one e-bus was charging at 17:06. This is because the
electricity rate between 23:00–7:00 is much lower than the rate at 17:00. However, given limited
charging points due to high costs, e.g., $ 80,000 for a charging point deployment, e-buses need to
be moved around before or after charging, but the regular bus drivers will be off-duty after 23:00
and before 7:00. Hence, the Shenzhen e-bus network hires additional drivers just for moving buses
from late night to early morning for e-bus charging. In particular, one of the three e-buses oper-
ating companies in Shenzhen has 750 additional drivers just for moving e-buses before or after
charging. By considering this labor cost factor, it may be more reasonable to charge more buses
during the daytime, since regular drivers can move the buses without cost for additional drivers.
However, based on our interactions with the fleet management team, hiring additional drivers is a
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Fig. 27. Charging point status during the charging process.

Table 2. Categories of Related Work

Scheduling Small-Scale City-Scale
Decentralized [28, 30, 35, 36] [6, 24, 39, 51, 52]
Centralized [18–20, 22, 23, 53] busCharging

short-term and temporary issue and they expected a more efficient charging scheduling strategy
like our busCharging to address this issue.
Charging Issues: Normally, e-buses will be fully charged during nights for satisfying the daily

operation. However, some e-buses still need to recharge during the day due to their long daily
operation time and distance, but the break time in the noon is not enough for a full charge, so
these e-buses will not be fully charged during day time. In addition, the charging speed from low
battery capacity to 80% is fast, so it is easy for e-buses to be recharged to a high energy capacity
at noon instead of being fully charged. For example, as shown in Figure 27, we found that the
remaining charging time of the e-bus is 52 minutes when the SOC is 56%, and the output current
and output voltage are 198.5 A and 554.7 V, respectively. At that time, the e-bus has been charged 35
minutes and 64.1 kWh.When the remaining time is 51 minutes, the SOC of the e-bus becomes 57%.
Implementation in Different Cities: The bus networks in different cities typically have dif-

ferent operating patterns due to geographic and demographic features, so it is extremely significant
to implement busCharging in different cities. Currently, we are trying to obtain e-bus data from
other cities for dual-city modeling. However, since only Shenzhen has such a large-scale e-bus
network, it is challenging to find such a similar-scale e-bus fleet for a parallel study currently. One
potential direction we are exploring is designing transfer learning models to transfer the knowl-
edge (e.g., operating patterns, charging patterns) from the Shenzhen e-bus network to bus fleets in
other cities for a “what if” investigation. For example, what if all traditional diesel buses in Beijing
or New York City were replaced with e-buses, how much will it cost, and how to schedule e-buses
in these cities to charge. It opens some very interesting research directions.

6 RELATEDWORK

There are two charging management modes for electric vehicles (EVs), i.e., decentralized and cen-
tralized ones [19, 23]. For existing research, some works have been done based on large-scale
real-world data, while others utilize a small real-world dataset [18, 19] or simulated data [13, 15,
54, 62]. Based on these two criteria, we divide the EV research into four different categories, as
shown in Table 2.

6.1 Decentralized Scheduling

Small-Scale Scheduling: The decentralized charging scheduling of EVs has been widely studied
by many researchers, but most of them are based on small-scale data or simulated data. Reference
[30] developed a reservation recommendation algorithm for EVs considering the shortest distance
and shortest waiting time. Reference [21] designed a distributed market mechanism to improve
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the economic and temporal efficiency of EV demand response. Mou et al. [28] tried to flatten the
load curve of low-voltage transformers, while satisfying each consumer’s requirement for their
EVs to be charged to the required level by the specified time. They first formulated this problem as
a convex optimization problem and then proposed a decentralized water-filling-based algorithm to
solve it. Gan et al. [11] proposed a decentralized algorithm to optimally schedule EV charging. The
algorithm exploited the elasticity of electric vehicle loads to fill the valleys in electric load profiles.
Wen et al. [48] proposed the application of the convex relaxation optimization method to solve the
EV charging selection problem and then developed a distributed optimization algorithm to solve
this problem in a decentralized manner. Reference [35] presented a distributed power schedule
framework based on the Game Theory to obtain an optimal schedule for online EVs. These works
are based on small-scale data and theoretical models, which are difficult to capture the dynamics
of real-world large-scale EVs operating and charging patterns.
City-scale Scheduling: Reference [24] developed a charging infrastructure deployment and

charging point placement framework to minimize the overall charging time of e-taxis. Reference
[39] designed a charging recommendation system for e-taxis to reduce their total charging time
for drivers. PickaChu [51] provided a charging point deployment mechanism that maximizes the
probability of picking up passengers for e-taxis and minimizes the deployment cost. Ma et al. [27]
established a framework for EV charging coordination that facilitates the tradeoff between total
generation cost and the local costs associated with overloading and battery degradation. A decen-
tralized approach is proposed to solve the resulting large-scale optimization problem involving
each PEV minimizing their charging cost with respect to a forecast price profile while taking into
account local grid and battery effects. All these works are based on a distributed charging nature.
However, in this work, we consider a centralized scheduling model for higher efficiency.

6.2 Centralized Scheduling

Small-scale Scheduling: There are also some existing works for the centralized scheduling of
EVs based on small-scale data or experimental simulations. Reference [19] proposed a population-
based heuristic approach to minimize the total charging costs, which is executed on a 20-bus test
system. Reference [18] introduced and analyzed the electric transit bus system in a research insti-
tute campus. Reference [22] proposed an effective charging rate control algorithm to optimize the
social welfare of EVs. REC [6] developed a real-time EV charging scheduling framework for e-taxi
fleets, which informs each e-taxi driver at runtime when and where to have a charge. Reference
[33] presented an off-board real-time SOC estimation technique for a centralized battery manage-
ment system. However, these small systems cannot fully reveal the complexity and advantage of
centralized scheduling for city-scale fleets.
City-scale Scheduling:Different from the existing work, our work addresses a practical charg-

ing issue for e-bus fleets by centralized scheduling in a setting of city-scale fleets. To our best
knowledge, busCharging is the first work of city-scale data-driven investigation on studying the
real-time charging scheduling for large-scale e-bus fleets. Such a data-driven investigation enables
us to identify the real-world e-bus operating and charging issues, which are challenging to reveal
using simulated data-based studies, small-scale data, or under a decentralized setting.

7 CONCLUSION

In this article, we conduct, to the best of our knowledge, the first study called busCharging for data-
driven, real-time charging scheduling for large-scale e-bus fleets based on a real-world dataset in
Shenzhen, which includes the data from 16,359 e-buses, 1,400 bus lines, and 376 charging stations.
In busCharging, we consider various real-world factors based on the long-term data including e-
bus daily and per-charge operating distances, charging spatial-temporal distributions, charging
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station utilization rates, and time-variant electricity rates, and so on. We formulate the electricity
pricing-aware charging scheduling problem into a Markov Decision Process, and then we effec-
tively solve it by the policy iteration for the real-time requirement. More importantly, we have
shown that with its effective scheduling, busCharging outperforms the ground truth by 23.7% and
outperforms the baseline method by 17.8% regarding the total charging cost. For the immediate
benefit, busCharging can reduce the operating cost for the Shenzhen e-bus network with its data-
driven real-time scheduling. For the long-term benefit, our results in busChargingmay be used for
other cities to promote e-buses for green public transportation.
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