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Abstract—We are witnessing a rapid taxi electrification process
due to the ever-increasing concern about urban air quality and
energy security. A key difference between conventional gas taxis
and electric taxis is their energy replenishment mechanisms,
i.e., refueling or charging, which is reflected in two aspects:
(i) much longer charging processes vs. short refueling processes
and (ii) time-varying electricity prices vs. time-invariant gasoline
prices during a day. The complicated charging issues (e.g., long
charging time and dynamic charging pricing) potentially reduce
electric taxis’ daily operation time and profits, and also cause
overcrowded charging stations during some off-peak charging
pricing periods. Motivated by a set of findings obtained from
a data-driven investigation, in this paper, we design a fairness-
aware vehicle displacement system called FairMove to improve
the overall profit efficiency and profit fairness of electric taxi
fleets by considering both the passenger travel demand and taxi
charging demand. We first formulate the electric taxi displace-
ment problem as multi-agent deep reinforcement learning, and
then we propose a centralized multi-agent actor-critic approach
to tackle this problem. More importantly, we implement and
evaluate FairMove with real-world streaming data from the
Chinese city Shenzhen, including GPS data and transaction data
from more than 20,100 electric taxis, coupled with the data
of 123 charging stations, which constitute, to our knowledge,
the largest all-electric taxi network in the world. The extensive
experimental results show that our fairness-aware FairMove
effectively improves the profit efficiency and profit fairness of the
Shenzhen electric taxi fleet by 25.2% and 54.7%, respectively.

I. INTRODUCTION

Due to the ever-growing concern about air quality and
energy security, more and more countries and cities have
started their electric vehicle initiatives [1]. It is reported that
the worldwide sales of electric vehicles have been nearly
quadrupled since 2014, and half of the vehicle sales will be
electric vehicles by 2027 [2]. As one of the most common
mobility modes, taxis play an important role in people’s daily
life, and they are also in the front line of vehicle electrification
given their long daily travel distances [3], [4]. For example,
the number of electric taxis (e-taxi) in the Chinese city
Shenzhen has increased from 840 in 2015 to over 20,130 in
2020. For the e-taxi fleet, one of the most important tasks
for a fleet management team to improve fleet efficiency and
resultant fleet profit is Vehicle Displacement, i.e., to make
recommendations to individual vacant e-taxis (i.e., without
passengers) to proactively go from one area to another area
to balance two relationships: the future passenger demand and
supply; and the future e-taxi charging demand and supply.

Admittedly, a large number of works have been done to
improve the efficiency of taxi fleets [5]–[7]. However, a
majority of these works focused on conventional gas taxis.
For example, [6], [7] in the SIGSPATIAL Cup 2019 tried to
optimize the efficiency of taxi drivers searching for customers,
e.g., minimize the average searching time. Different from the
refueling process of gas taxis, which usually takes about 3-5
minutes, the charging process of e-taxis typically lasts for half
an hour to two hours even with fast chargers [8]. In addition,
the electricity price is varying in different hours of the day,
while the gasoline price is usually constant during the day.
These long charging time and dynamic charging pricing lead
to very different e-taxi drivers’ behaviors (where or when to
charge) and incentive (whether to follow a recommendation).
Even though the energy level can be naively considered as a
constraint of existing solutions to address the charging problem
(e.g., if the energy level of an e-taxi is lower than a threshold,
the e-taxi is set to be offline and removed from the system,
so it is similar to passenger searching), the key challenge is
to decide which charging station the e-taxi should go. The
charging scheduling decisions are related to many factors like
real-time traffic conditions, the status of charging stations and
charging prices, which should be considered for reducing the
charging idle time and charging costs (e.g., avoid overcrowded
charging stations). In [6], [7], they considered the taxis are
purely competitive, which potentially causes profit inequality
between taxis and system unsustainability. However, overall
fairness should be achieved in a cooperative fashion. Hence,
the existing solutions for vehicle relocation or passenger
searching [6], [7] are not suitable to the fairness-aware vehicle
displacement problem well. Recently, some works have been
done to understand and improve the charging efficiency of e-
taxis [1], [8], [9], but almost all of them mainly focus on
optimizing charging idle time reduction instead of optimizing
drivers’ profits due to a lack of detailed transaction data from
taxi fleets. The underlying assumption by the existing works
is that the optimizing charging idle time will prolong the e-
taxis’ operation time. However, we found that charging idle
time reduction does not necessarily indicate the prolonged time
for serving passengers to maximize profit because some drivers
may need to spend more time to seek passengers after charging
in some regions with shorter charging waiting time but lower
passenger demand (as shown in Section II-C).

In this paper, by working with an e-taxi agency in China,
we utilize its detailed proprietary transaction data along with



TABLE I
AN EXAMPLE OF SOME KEY FIELDS OF THE DATASETS.

E-Taxi GPS E-Taxi Transaction Charging Station Urban Partition Charging Pricing
vehicleID: YBD00000 vehicleID: YBD00000 stationID: 53 regionID: 1 low rate (CNY/kWh): 0.9
longitude: 114.08663 pickupTime: 2019-12-11 15:27:24 stationName: LGS0012 longitude1: 114.31559 flat rate (CNY/kWh): 1.2
latitude: 22.63244 dropoffTime: 2019-12-11 16:11:32 longitude: 114.07051 latitude1: 22.78559 high rate (CNY/kWh): 1.6
time: 2019-12-11 06:58:55 cost (CNY): 54 latitude: 22.65589 longitude2: 114.31123 –
speed (km/h): 27 distance (km): 16.2 # of charging points: 52 latitude2: 22.78220 –

GPS data to improve the e-taxi fleet’s profit efficiency by de-
signing a new vehicle displacement system called FairMove,
which balances two relationships: passenger demand vs. e-
taxi supply, and vehicle charging demand vs. charging station
supply. For the e-taxi agency, its goal for vehicle displacement
is to optimize the overall profit efficiency of the e-taxi fleet;
whereas for the drivers, their incentive to following vehicle
displacement is to enable profit fairness among them. As a
result, the key objective of our e-taxi displacement is fairness-
aware fleet-wide profit efficiency optimization.

However, the e-taxi displacement with this objective is
challenging due to possible conflicting relationships (e.g.,
balancing future passenger demand and supply vs. balancing
future e-taxi charging demand and supply), and many con-
founding factors (e.g., individual drivers charging behaviors
like spatiotemporal charging preference, time-variant charg-
ing pricing, and individual-level fairness). To address these
challenges, in this paper, we propose a deep reinforcement
learning (DRL)-based approach (i.e., Centralized Multi-Agent
Actor-Critic (CMA2C for short) to learn the sophisticated e-
taxi displacement policy. CMA2C has three key advantages
for the e-taxi displacement: (i) displacement decisions for e-
taxis are sequential and highly repetitive, thus generating an
abundance of training data for training CMA2C algorithms
(e.g., displacement actions and rewards); (ii) CMA2C can
approximate the Q-value function (e.g., Deep Q-Networks
(DQN)) [10] and learn complex decision-making policies by
deep neural networks, which has the capability to deal with
the e-taxi displacement problem with huge state space; (iii)
CMA2C maximizes the long-term reward of a sequence of
decisions for profit efficiency and profit fairness improvement.

In particular, the key contributions of this paper include:

• We conduct an extensive data-driven analysis based on
real-world multi-source data, from which we found some
novel insights: (i) Charging time reduction does not
necessarily indicate the prolonged time for serving pas-
sengers since some drivers may need to spend more time
to seek passengers after charging in some regions with
low passenger travel demand. (ii) The potential profits
for serving passengers after charging in different stations
may also be different, which is highly dynamic in both
spatial and temporal dimensions. (iii) Prolonged charging
time of e-taxis compared to the refueling processes of
gas taxis causes some real-world issues, e.g., intensive
charging peaks and long charging wait time in some time
slots induced by the time-varying charging pricing.

• Based on the data-driven insights, we design a new

fairness-aware displacement system called FairMove to
improve the overall profit efficiency and profit fairness
for e-taxi fleets by a CMA2C approach. FairMove
considers not only the operation behaviors of drivers
and demand & supply but also the complicated charging
processes (e.g., time-varying charging pricing, and inten-
sive charging peaks). In addition, the time for seeking
a passenger after charging and trip length are also con-
sidered for a more accurate revenue estimation. Finally,
both the operating revenues and charging costs are fed
to the FairMove system to make fair-profit oriented
decisions, which has the potential to make the system
more sustainable.

• More importantly, we implement and extensively eval-
uate our FairMove based on multi-source data from
the Chinese city Shenzhen, including GPS records and
transaction records from 20,130 e-taxis. The experimental
results show our FairMove effectively increases the
profit efficiency of the e-taxi fleet by 25.2%, improves the
profit fairness of e-taxi drivers by 54.7%, and reduces the
cruise time and idle time by 32.1% and 43.3% on average
at the same time.

II. DATA AND MOTIVATION

A. Data Description

All e-taxis in Shenzhen are the same vehicle model, i.e.,
BYD e6, whose battery capacity and maximum traveling
distance are 80 kWh and 400 km, respectively [11]. There
are five datasets used in our paper, i.e., the e-taxi GPS data,
the e-taxi transaction data, the charging station data, urban
partition data, and the time-variant electricity rates data. The
detailed information of the five datasets is shown as follows.

(i) GPS data includes vehicle IDs, real-time coordinates
(i.e., longitudes and latitudes), time stamps, directions, speeds,
and passenger indicator.

(ii) Transaction fare data includes vehicle IDs, the pickup
and drop-off times, the pickup and drop-off coordinates (i.e.,
longitudes and latitudes), operating distances, cruising dis-
tances, and fares.

(iii) Charging station data includes station IDs, station
names, coordinates (i.e., longitudes and latitudes), and the
number of fast charging points in each station. There are 123
charging stations deployed in Shenzhen for e-taxis only in
December 2019.

(iv) Urban Partition Data describes the urban partition for
the population census of the Chinese city Shenzhen, which is
provided by the Shenzhen government. There are 491 regions,



Fig. 1. Mobility decomposition of e-taxis.

and each region has a region ID and longitudes & latitudes of
its boundary.

(v) Charging Pricing Data. Many cities have time-
variant charging pricing (similar to the time-variant electricity
pricing), which breaks up 24 hours of a day into several

Fig. 2. Charging Prices of E-
Taxis in Shenzhen.

intervals and charges a differ-
ent price for each interval [12].
The rates in Shenzhen are di-
vided into three types, i.e., off-
peak prices (low rates), semi-
peak prices (medium rates, also
called flat rates), and peak prices
(high rates), and the correspond-
ing charging rates are 0.9, 1.2,
and 1.6 CNY/kWh, respectively.
The time-variant charging pricing
in Shenzhen is shown as Fig. 2. An example of some key
fields of the other four datasets is shown in Table I.

B. Mobility Decomposition of E-Taxis
We depict the mobility of e-taxis from three dimensions by

charging events, as shown in Fig. 1, where t0 to t5 represents
the activities of an e-taxi during two consecutive charging
events.

(i) At the time t0, an e-taxi finishes a charging event, and
then it will cruise to find passengers to serve. At t1, the e-taxi
picks the first passenger up and drops the passenger off at time
t2. We define the time for seeking a passenger as the cruise
time, and the time for serving a passenger (onboard) as the
service time. Specifically, we define the time duration t1− t0
as the first cruise time t(1)cruise, and the time duration t2 − t1
as the first service time t(1)serve. During the cruise time, the e-
taxi neither has passengers on board nor charges, so the profit
remains unchanged. During the service time, the e-taxi’s profit
will increase with passengers on board. The profit is typically
a function of time and distance.

(ii) After serving the first passenger, the e-taxi will continue
to cruise and serve the 2nd, 3rd, . . . ,mth passenger, and the e-
taxi’s profit keeps increasing during this period. After dropping
the mth passenger off, the energy level of this e-taxi decreases
to a threshold, so it will start to seek a charging station to
charge at time t3. We define time duration t3 − t0 as the
operation time Top, which equals to Tcruise + Tserve, where
Tcruise =

∑n
i=1 t

(i)
cruise and Tserve =

∑n
i=1 t

(i)
serve. The profit

of the e-taxi keeps increasing during Top for continuously
serving passengers.

(iii) Due to some real-world issues (e.g., inadequate charg-
ing resources and intensive charging peaks), the e-taxi may
need to wait for a while to get an available charging point.
Then at time t4, there is an available charging point, so the
driver will plug in the charger and charge the taxi. We define
time duration t4 − t3 as the idle time Tidle since the e-taxi
neither operates nor charges. The profit of the e-taxi remains
unchanged during the idle time.

(iv) After plugging in a charger, the e-taxi will start to
charge, and it finishes the charging event at time t5. We define
the time duration with a charger plugin t5 − t4 as the charge
time Tcharge. During this time period, the profit of the e-taxi
will decrease due to energy replenishment.

(v) We define the time duration between two sequential
charging events t5 − t0 as a working cycle Tcycle of an e-
taxi, which equals to Top + Tidle + Tcharge. Hence, during
a long time period (e.g., one week), there will be a set of
working cycles for each e-taxi. In this paper, we focus on the
long-term (e.g., weekly) profit fairness of e-taxis instead of
the short-term profit, which also has the potential to achieve
a higher overall profit efficiency for e-taxi fleets.

C. Motivation By Data-Driven Findings

Based on our multi-source real-world data and the above
definitions, we conduct in-depth data-driven analysis using
one-month e-taxi data to show the uniqueness and motivation
of our e-taxi displacement design. In particular, we provide
the following findings:

(i) We found the charging time of e-taxis is very long
compared to the refueling time of gas taxis. Specifically, the
charging time of 73.5% of charging events lasts for 45 minutes
to two hours, as shown in Fig. 3, which is much longer than
the refueling processes of conventional gas taxis (usually 3-5
minutes). Hence, the e-taxi displacement would be different
from the conventional gas taxi dispatching considering the
complicated charging issues, which results in that the existing
dispatching strategies for gas taxis may not be suitable for the
displacement of e-taxi fleets.

(ii) Due to the operation patterns and time-varying charging
pricing (caused by time-varying electricity pricing), there are
intensive charging peaks during some low charging pricing
durations (e.g., 2:00-6:00, 12:00-14:00, and 17:00-18:00 as



Fig. 3. Charging duration. Fig. 4. Charging temporal pattern.

shown in Fig. 4), which causes that some charging stations
to be overcrowded and potentially prolong the idle time
of e-taxis given the long charge time. Hence, compared to
the time-invariant gasoline prices, the time-varying charging
prices also make a difference between e-taxis and gas taxis,
which potentially makes the e-taxi displacement problem more
complicated compared to the gas taxi dispatching.

(iii) Idle time reduction does not necessarily indicate the
prolonged time for serving passengers since some e-taxis may
need to spend more time seeking passengers after charging in
some regions with low passenger travel demand. As shown in
Fig. 5, we found 40% of e-taxis can find their first passengers
after charging in 10 minutes, but there are still 10% of e-
taxis need to cruise over an hour to find their first passenger
after charging. In addition, the first cruise time t(1)cruise is also
different when charging in different stations. Fig. 6 shows the
first cruise time of e-taxis after charging in three different
charging stations. The three charging stations are located in
different areas of the city, and there are a different number
of charging points in each station. We found that the first
cruise time of the e-taxis has large differences after charging
in different stations. Hence, the charging station selection not
only impacts the idle time but also has influences on the first
cruise time t(1)cruise. However, this finding has not been revealed
and considered by existing works.

Fig. 5. First cruise time distribu-
tion.

Fig. 6. First cruise time of three
charging stations.

(iv) The potential revenue for serving passengers after
charging may also be different at different time slots and
stations, which is highly dynamic in both spatial and temporal
dimensions. Fig. 7 shows a visualization of the average per-
trip revenue in different regions during late night (00:00-
01:00), morning rush hour (08:00-09:00), and evening rush
hour (18:00-19:00). The dark red means higher average per-
trip revenue (i.e., more long trips) in these regions, and light
yellow means lower average per-trip revenue in these regions.

We found the average per-trip revenue has a large gap between
different regions across the city, ranging from several CNY to
over 100 CNY. For example, the per-trip revenue in the airport
region is always high, but it is very low in some suburban
areas. In addition, we found the average trip length in a region
may change during the day. We also quantify the average per-
trip revenue in the 491 regions, which can be seen from the
right upper corner of Fig. 7. We found that there are more
regions with low prices per trip during the late-night, but more
regions with high prices per trip during rush hours.

Certainly, the passenger travel demand and supply in dif-
ferent regions are also different, so the probability to pick
up a passenger is also different, which is usually considered
by existing works. However, existing works rarely consider
the revenue from a trip, which will also directly impact taxis’
revenue. Hence, in this paper, we consider not only the demand
and supply of e-taxis but also the potential revenue for serving
passengers for displacement, which lays a foundation for e-
taxi’ revenue fairness.

(v) Inequal profit efficiency of the e-taxi fleet, which could
be potentially improved by a centralized displacement sys-
tem. As shown in Fig. 8, we found 20% of e-taxis’ hourly
profit efficiency is lower than 36, and there are also 20%
of e-taxis’ hourly profit efficiency is higher than 51, which
means there is a huge profit gap between e-taxis, resulting

Fig. 8. Hourly profit efficiency.

in the profit of high-efficient
drivers will be 42% higher than
the low-efficient drivers. With
people pay more attention to fair-
ness and equity, such a large
profit gap potentially hurts some
drivers’ daily life and makes
them unsatisfactory. Hence, it is
necessary to have a centralized
fairness-aware displacement system to improve e-taxis’ profit
fairness in the fleet without damaging the overall profit effi-
ciency of the fleet.

In summary, based on our data-driven observations, we
found the e-taxi displacement problem is also different from
the existing charging scheduling/recommendation since (i) the
idle time reduction does not necessarily indicate more time
for serving passengers. (ii) The first cruise time of the e-taxis
has large differences after charging in different stations. (iii)
Not only the probability of picking up passengers impacts e-
taxis’ revenue but also the trip length has a huge impact on it,
which we could also consider improving the profit fairness for
the e-taxi fleet. (iv) It is necessary to design a fairness-aware
displacement system for e-taxi fleets to improve their profit
efficiency and fairness, but it may not be achieved by existing
solutions for conventional gas taxis.

III. FAIRMOVE DISPLACEMENT SYSTEM DESIGN

In this section, (i) we first show the key idea of the
FairMove design, (ii) followed by the problem statement.
(iii) We then formulate the e-taxi displacement problem as
collaborative multi-agent Markov decision process, which



Fig. 7. Average per-trip revenue (CNY) in different regions during different hours of a day.

consists of multiple agents cooperating to achieve one goal.
(iv) Then we propose a multi-agent DRL approach called
Centralized Multi-Agent Actor-Critic (i.e., CMA2C) to tackle
this problem, which effectively utilizes large-scale historical
data to train the DRL agents.

A. Key Idea of FairMove

The key idea of our FairMove is that we formulate the
taxi displacement problem as a large-scale sequential decision-
making problem since the displacement decisions for e-taxis
are sequential and highly repetitive, where each decision cor-
responds to scheduling an available (vacant) e-taxi to a region
or a charging station. There are multiple, possibly conflicting
objectives in our displacement system, e.g., improving the
profit efficiency of the e-taxi fleet and reducing the profit
unfairness between all e-taxis. In this work, we balance the
profit efficiency and profit fairness by a weighted parameter
to achieve the optimal displacement policy.

However, it is challenging to design an effective displace-
ment strategy for e-taxi fleets that can adapt to an environment
involving dynamic demand & supply and complicated charg-
ing behaviors as shown in the above data-driven investigation.
One major issue is that changes in a displacement decision
will impact future demand & supply, and it is challenging
for supervised learning approaches to capture and model
these real-time changes. Inspired by successful applications in
intellectual challenging decision-making problems (e.g., the
game of Go [13], worker scheduling [14]), in this paper,
we try to target the e-taxi displacement problem by deep
reinforcement learning (DRL) based methods, which combine
the advantages of Deep Neural Networks (DNNs) and Rein-
forcement Learning (RL) and has the capability of handling
high-dimension data and highly dynamic environment features.

B. Problem Statement

Definition 1. (Profit Efficiency) Profit efficiency denotes
the per unit time profit earned by an e-taxi during its on-duty
time in a period Γ (e.g., a week). The on-duty time of an
e-taxi includes a set of working cycles. Each working cycle
consists of three components, i.e., operation time Top, idle
time Tidle, and charging time Tcharge. The calculation method
of the Profit efficiency of each e-taxi can be represented as
Equation 1.

PE =
Revenue− Costs

z∑
k=1

T
(k)
cycle

=

m∑
i=1

R
(i)
trip −

n∑
j=1

C
(j)
charge

z∑
k=1

(
T

(k)
op + T

(k)
idle + T

(k)
charge

) (1)

where PE denotes the Profit Efficiency of an e-taxi in a period
Γ. Revenue and Costs denote the total revenue earned from
serving passengers and the operation costs during Γ by the
e-taxi, respectively. m, n, and z denotes the number of trips
served by the e-taxi, the number of charging events of the e-
taxi, and the number of working cycles of the e-taxi during
Γ. R(i)

trip is the revenue for serving ith trip, C(j)
charge is the

charging cost for jth charging event. T (k)
op , T (k)

idle, T
(k)
charge

are the operation time Top, idle time Tidle, and charge time
Tcharge of kth working cycle, respectively.

In this paper, since we define a working cycle as the time
between two charging events, so z = n in Equation 1,
and T

(k)
op is equivalent to T

(k)
cruise + T

(k)
serve. In addition, the

charging costs is a function of the time-varying charging
pricing and the charge time, so we describe the charge time
of jth charging event T (j)

charge as a three-dimensional vector

T
(j)
charge =

[
T

(j)
p , T

(j)
f , T

(j)
o

]
, where T

(j)
p , T (j)

f , and T
(j)
o

denote the time in peak, flat, and off-peak charging pricing
hours of the jth charging event, respectively. Similarly, we
also describe the time-varying charging pricing as a three-
dimensional vector λ = [λp, λf , λo], where λp, λf , λo denote
the charging prices during peak, flat, and off-peak hours, re-
spectively (as shown in Fig. 2). Hence, we convert Equation 1
into Equation 2 to calculate the profit efficiency of an e-taxi.

PE =

m∑
i=1

R
(i)
trip −

n∑
j=1

(
λ · T (j)

charge

)
n∑
j=1

(
T

(j)
cruise + T

(j)
serve + T

(j)
idle + T

(j)
charge

) (2)

Definition 2. (Profit Fairness) It is typically challenging
to define the fairness as different people may have different
perceptions of fairness [15]. In addition, the fairness definition
would also be different in different scenarios [16]. Hence, to
better understand e-taxi drivers’ perceptions to fairness and
define the profit fairness of e-taxis properly, our team has
conducted a set of interviews with Shenzhen e-taxi drivers
and asked them related questions. We found almost all e-taxi
drivers thought it is fair when their profits are proportional to
their working time. Motivated by this, in this paper, we define
the Profit Fairness PF of an e-taxi fleet as the variance of
profit efficiency of all e-taxis in the fleet, which is denoted as
Equation 3, so smaller PF means fairer for the e-taxi fleet.

PF =
1

N

N∑
k=1

(
PE(k) − PE

)2
(3)



where N is the number of e-taxis in the e-taxi fleet. PE(k) is
the profit efficiency of the kth e-taxi. PE is the average profit
efficiency of all e-taxis in the fleet.

In this paper, we tackle the displacement problem for a
large-scale available (i.e., vacant) e-taxi fleet under central-
ized management, considering both serving passengers and
charging. The objectives of our displacement are three-fold:
(1) Improving the overall profit efficiency PE of all e-taxis in
the fleet during a period of Γ. (2) Enhancing the profit fairness
of the e-taxi fleet PF over Γ. (3) Tradeoff between the profit
efficiency and profit fairness.

For the spatial partition, we utilize the urban partition data
described in Section II to represent the map, which splits the
Shenzhen city into 491 regions. Our partition is similar to
the grid-based methods (e.g., square-grid [1] and hexagonal-
grid [17]), but our partition is more practical as it considers the
geological structure of the city (e.g., a mountain or a lake will
be partitioned in a single region). For the temporal partition,
we split the duration of a day into T time slots. At each
time slot, there are a different number of passenger demands
sporadically appear in each region, and those passengers will
be served by the available e-taxis in the same region. The
role of the displacement system is to decide which region or
charging station each vacant e-taxi should go in each time slot
to maximize the future long-term profit efficiency and profit
fairness of the e-taxi fleet.

C. Problem Formulation

Fig. 9. A Markov decision process.

Formally, we model
the e-taxi displacement
problem as a multi-agent
Markov decision process
G for N agents, which
is defined by a five-tuple
G = (S,A,P,R, β),
where S is the set of
states; A is the joint action
space; P is transition
probability functions; R
is the reward function;
and β is a discount factor.
Markov decision process is typically used to model sequential
decision-making problems. In a Markov decision process,
an agent behaves in an environment to observe the state
from the environment and makes action decisions for the
environment to execute. Then, the environment feeds a reward
for the decisions back to the agent and turns to the next
state. The agent evolves along with this interaction with
the environment. An example of the process can be seen in
Fig. 9. The key of the Markov decision process is to produce
an optimal policy that governs the decision-making at each
step based on estimating the state-action value function of
the agent. This function tells us how good a decision made
at a particular location and time under given environment
contexts with respect to the long-term objectives.

The detailed definitions of the Markov decision process G
in our FairMove displacement system are shown as below.

Agent Set: We consider each available (i.e., vacant) e-
taxi as an agent, and e-taxis within the same spatial-temporal
partition are homogeneous, i.e., e-taxis in the same region or
charging station during the same time slot are considered as
homogeneous agents (where agents have the same states), and
the number of available agents Nt is changing over time.

State S: The state of an e-taxi k st(k) ∈ S consists of a
two-dimensional vector indicating its specific spatiotemporal
status from both the local view and global view. We discrete
one day into a set of T time slots. And we divide the city into
a set of R regions and C charging stations, (i.e., R ∪ C =
the whole city; R ∩ C = ∅). We define a local-view state
of an e-taxi, st,lo = [t, l] ∈ Slo, where t ∈ T is the time
index (i.e., which time slot), and l ∈ R ∪ C is the location
index (i.e., which region or charging station) where the e-
taxi is in. In this case, the finite local state space Slo is a
Cartesian product of the set of time slots and the set of regions
+ charging stations, i.e., Slo = T × (R ∪ C) and the number
of states is |Slo| = |T | × |(R ∪ C)|. The e-taxis in the same
partition (region or charging station) in a time slot have the
same state. We also define a global-view state st,go, which is
shared by all available e-taxis in the time slot t. The global-
view state includes three different spatiotemporal features: (i)
the number of available e-taxis in each region; (ii) the number
of unoccupied charging points in each charging station; and
(iii) the expected number of passengers in each region at the
next time slot, which is predicted with historical and real-time
data. The global-view state st,go will update in each time slot.
Finally, the state of each available e-taxi k during the time slot
t can be represented as st(k) = [st,lo(k), st,go(k)] ∈ S(k).
The joint state of all available e-taxis in the time slot t can be
denoted as st ∈ S = S(1)× S(2)× . . .S(Nt).

Action A: The action space of an e-taxi k, A(k) specifies
where it is able to arrive at the next time slot. There are three
types of actions in our e-taxi displacement setting. (i) The first
type of action is staying in the current region. (ii) The second
type of action is displacing the e-taxi to another adjacent
region in the direction of the potential nearest passenger. (iii)
The third type of action is charging in a charging station. For
the second type of action, each e-taxi can go to its adjacent
regions and e-taxis in different regions have a various number
of neighbor regions, so they have a different number of actions.
The e-taxis in the same region have the same action space.
For the third type of action, we consider the nearest five
charging stations for each e-taxi to reduce the action space.
The charging action is decided by the energy level of each
e-taxi, which is estimated by the initial energy level and
energy consumed for operating [16]. The energy consumption
rate would be different if the e-taxis are made of various
models with different characteristics, but the method is still
applicable if we use separate energy consumption calculation
formulas for them. At each time slot t, each available e-
taxi takes an action at(k) ∈ A(k), forming the joint action
at ∈ A = A(1)×A(2) · · ·×A(Nt), which induces a transition



in the environment according to the state transition function
P (st+1|st,at) : S ×A → S .

Reward R: Reward reflects the immediate sense of the
action in a specific state, but it is not equivalent to the goal.
However, reward usually determines the optimization goal
of the displacement system, which usually utilizes rewards
to guide the learning process. A typical measurement is to
estimate the difference of the accumulated reward between
with and without an action. We define three types of immediate
rewards in our e-taxi displacement scenario, i.e., positive
rewards for serving passengers, 0 reward for cruising, and
negative rewards for charging. Note that both the positive
rewards and negative rewards are nondeterministic as the
positive rewards are mainly decided by the trip length, and
the negative rewards are decided by the charging time tcharge
and time-variant charging prices. We consider the e-taxis will
always serve the nearest passengers, and the passengers in a
region will always be served by the vacant and available e-
taxis. We define the reward as 0 when the e-taxi is cruising
since there is no direct transaction. When the energy status
of an e-taxi decreases to a certain threshold η (e.g., 20%),
the e-taxi should go to charge. Even though the immediate
reward for charging is negative, e-taxis cannot operate and
serve passengers without energy, so running out of battery
will cause no reward in the future. Hence, the charging action
will also benefit the long-term positive reward for the e-taxi,
which means the impact of charging can be spread to its future
states. Considering both the profit efficiency and fairness, the
final reward of the e-taxi k can be represented by Equation 4.
PE(k, t) is the profit efficiency of e-taxi k in the time slot t
(i.e., in regard to state st(k) and action at(k)), PF (t) is the
profit fairness of all active e-taxis in the time slot t. Since the
PF Equation 3 indicates the unfairness of the system, so we
have the minus here to maximize the profit fairness.

r(st(k), at(k)) = α · PE(k, t) + (1− α)(−PF (t)) (4)

To balance the profit efficiency and profit fairness, a real-
valued parameter α ∈ [0, 1] is leveraged to control how much
we emphasize the profit efficiency and profit fairness of e-taxis
in the fleet. As a boundary case, with α = 1, we only explicitly
maximize the profit efficiency for the fleet, while ignoring the
level of unfairness among all e-taxis. With α = 0, we only
explicitly maximize the profit fairness for all e-taxis in the
fleet, while ignoring the overall profit efficiency. Therefore,
the Equation 4 can be converted to Equation 5.

r(k, t) = α ·

m∑
i=1

R
(i)
trip

(k, t) −
n∑
j=1

(
λ · T (j)

charge
(k, t)

)
n∑
j=1

(
T

(j)
cruise

(k, t) + T
(j)
serve(k, t) + T

(j)
idle

(k, t) + T
(j)
charge

(k, t)

)

+ (1 − α) ·

− 1

Nt

Nt∑
h=1

(
PE(h, t) − PE(t)

)2
(5)

where we use r(k, t) instead of r(st(k), at(k)) for short,
shown as below. Our reward function considers both self
profit efficiency and the fairness, so every e-taxi is not only
maximizing its own profit when they learn the policy but

also cooperating with each other to maximize the profit
fairness, when every e-taxi is trying to maximize their expected
discounted future rewards E

[∑∞
i=0 β

ir(k, t+ i)
]
.

State transition function P is defined as a mapping
S × A × S → [0, 1). p(st+1|st,at) denotes the probability
of transition to st+1 given a joint action at in the current state
st. Notice that although the action is deterministic, the number
of available e-taxis and passengers are different at different
regions during each time slot.

Discount factor β essentially determines how much the
reinforcement learning agents care about rewards in the distant
future relative to those in the immediate future. The value of β
is typically selected from [0, 1), so the final expected reward
in the infinite horizon will be convergent and bounded to a
finite number. If β = 0, the agent will be completely myopic
and only learn about actions that produce an immediate reward
without considering the future reward.

D. Centralized Multi-Agent Actor-Critic

In this section, we show how we solve the above formulated
multi-agent problem with deep reinforcement learning-based
method. There are typically two types of solutions: decen-
tralized methods and centralized methods [18]. However, the
decentralized methods are not well adapted to our problem for
the following two reasons. (i) The number of available e-taxis
keeps changing in different time slots, so it is challenging to
identify the number of neural networks to be constructed. (ii)
The travel demand is highly dynamic and the number of agents
is extremely large, resulting in modeling each e-taxi with a
separate neural network that has high computational costs.
Therefore, in this paper, we resort to centralized methods,
which utilize a single neural network to model the behaviors
that are shared by all e-taxis, in other words, the parameters
of the centralized neural network are shared by all e-taxis.

In this paper, we propose a centralized multi-agent actor-
critic (CMA2C) algorithm to solve the above-defined multi-
agent problem for large-scale e-taxi displacement, which is a
multi-agent policy gradient algorithm that iterates its policy
to adapt to the dynamically evolving action space. The basic
idea of the CMA2C is that there are two networks, a policy
network (i.e., Critic, which is utilized to output policy) and
a value network (i.e., Actor, which is leveraged to evaluate
the performance of the policy network). There are two key
tasks for training the CMA2C, i.e., (i) learning the parameters
of the policy network θp and (ii) learning the parameters of
the value network θv . Both the Critic and Actor functions are
parameterized with deep neural networks, and the parameters
of the critic θp and actor θv are updated iteratively.

The centralized value function is shared by all active e-
taxis with an expected update via observing the global state
information, which means available e-taxis cooperatively take
actions for a fairness-aware optimal strategy. The centralized
state-value function is learned by minimizing the following
loss function L (θv) as shown in Equation 6, which is derived
from the Bellman equation.



L (θv) =
(
(Vθv (st(k)))− Vtg(st+1(k); θ

′
v , π)

)2
(6)

Where θv denote the parameters of the value network,
and Vθv (st(k)) is the predicted value of the value network.
θ
′

v denote the parameters of the target value network, and
Vtg(st+1(k); θ

′

v , π) is the target value, which consists of the
immediate reward and discounted estimated value of next state,
as shown in Equation 7.

Vtg
(
st+1; θ

′
v, π

)
=
∑
at(k)

π (at(k)|st(k))
(
rt+1(k) + βV

θ
′
v
(st+1(k))

)
(7)

The parameters of the policy network θp are updated by
the gradient descent rule θp ← θp + λ1∇θpL(θp), where λ1
is the learning rate of the actor, and the gradient is given by
Equation 8.

∇θpL
(
θp
)
=
∑
t

∇θp log πθp
(st, at)

(
rt+1(k) + βV

θ
′
v

(
st+1(k)

)
− Vθv (st(k))

)
(8)

Since the value function has high variability, we define
the advantage function [19] to address it, which is given in
Equation 9.

A (st(k), at(k)) = Q (st(k), at(k))− Vθv (st(k)) (9)

Where Q (st(k), at(k)) is the Q value for action at in state
st. Vθv (st(k)) is the average value of that state, so this function
tells us the improvement compared to the average the action
taken at that state. A (st(k), at(k)) > 0 means the gradient is
pushed in that direction, and A (st(k), at(k)) < 0 means the
action does worse than the average value of that state.

Since
Q (st(k), at(k)) = rt+1(k) + βVθ′v

(st+1(k)) (10)

Combining Equation 9 with Equation 10, we obtain the
following Equation 11, which is equivalent to the Temporal-
Difference (TD) error [20], so we can use the TD error as an
estimation of the advantage function.

A (st(k), at(k)) = rt+1(k) + βVθ′v
(st+1(k))− Vθv (st(k)) (11)

The details of the CMA2C are shown in Algorithm 1.

IV. EVALUATION

A. Experimental Setup

Evaluation Data: To evaluate the effectiveness of our dis-
placement system, one-month real-world data collected from
the e-taxi fleet in the Chinese city Shenzhen during December
2019 is utilized in this part. During this period, all active
taxis are e-taxis, including 20,130 e-taxis, which institute the
largest full e-taxi fleet in the world. The one-month e-taxi
data include 2.48 billion GPS records and 23.2 million trip
records. In addition to e-taxi data, the evaluation dataset also
includes the metadata of 123 e-taxi charging stations with over
5,000 charging points. The detailed data formats have been
introduced in Section II.

Algorithm 1: CMA2C for E-Taxi Displacement

1 Initialize the value network by randomly selecting
parameter θv

2 for i =1 to the maximum iteration number do
3 Reset the environment and obtain the initial joint

states s0
4 for each time slot t ∈ [0, T ) do
5 for k=1 to Nt do
6 Sample action of each active e-taxi at(k)

given st(k) according to the action
probability;

7 Compute target value network Vtg by
Equation 7 and advantage function
A(st(k), at(k)) by Equation 11 for the
policy network, and store the transitions of
all active e-taxis (st(k), at(k), st+1(k)).

8 for j =1 to a certain iteration number M do
9 Sample a batch of st(k) and Vtg , and then

update parameter of the value network θv by
minimizing the value loss function L (θv)
over the batch in Equation 6.

10 Compute the advantage function
A(st(k), at(k)) by Equation 11 and update
the parameter of the policy network θp by
θp ← θp + λ1∇θpL(θp), where ∇θpL (θp) is
calculated according to Equation 8.

Baseline Setting: We compare our CMA2C-based
FairMove to the following baselines.
• GT is the Ground Truth, which is obtained from our

real-world data. Based on our data, we have historical
passenger distributions. We also inferred the charging
events of the e-taxis according to the method in [16], and
we calculated their cruise time, idle time, profit efficiency,
and profit fairness, etc.

• SD2 is the Shortest Distance based Displacement [21]. In
this setting, the e-taxis are always displaced to serve their
nearest passengers or charge in the nearest charging sta-
tions no matter what regions the passengers and charging
stations are, and it does not have a learning process for
a long-term reward. Even though it is a naive method,
it is very easy to implement in complicated real-world
scenarios. One potential drawback is that some charging
stations will be overcrowded in some time slots with this
displacement method.

• TQL is the standard Tabular Q-Learning [22], which is a
widely used method for single-agent scenario. It estimates
the expected total discounted rewards of state-action pairs
by learning a Q-function table with ε-greedy policy.

• DQN (Deep Q-Network) [23] is a popular method in
reinforcement learning and has been previously applied
to multi-agent settings. DQN learns the action-value
function Q∗ corresponding to the optimal policy by min-



imizing the loss: L (θ) = Es,a,r,s′
[
(Q∗(s, a|θ)− y)

2
]
,

where y = r + βmax
a′

Q̄∗(s′, a′). where Q̄ is a target Q
function whose parameters are periodically updated with
the most recent θ, which helps stabilize learning.

• TBA is the Trip Bandit Approach [6], which is also a
reinforcement learning-based method. It is proposed in
SIGSPATIAL Cup 2019. It adopts the REINFORCE rule
[24] to update the policy. In this setting, e-taxis only
know their own states and cannot communicate with each
other, so they are purely competitive, and e-taxis will
also be displaced to serve their nearest passengers before
orders expire. They will also be displaced to charge in
the nearest charging stations if they need to charge.

Parameter Setting: The batch size of all deep learning
networks is set to be 3500, and we utilize AdamOptimizer
with a learning rate of 0.001. We set 10 minutes as a time slot,
which is widely adopted by existing works [22], [25], so the
one day is divided into T = 144 time slots. For the discount
factor, we select β = 0.9 to guarantee the convergence. We set
the weighted factor α = 0.6 for the following experiments, and
we will show the reason in Section IV-B5. All the experiments
are repeated 10 times to ensure the robustness of the results.
Evaluation Metrics: Our FairMove aims to improve the
profit efficiency and profit fairness of an e-taxi fleet at the
same time. According to Equation 2, an implicit indicator of
improving e-taxis’ the profit efficiency is the reduction of their
total cruise time Tcruise, idle time Tidle, or charging duration
in electricity pricing peak hours. Hence, we utilize the follow-
ing metrics to measure the system performance, including (i)
Percentage Reduction of Cruise Time (PRCT), (ii) Percentage
Reduction of Idle Time (PRIT), (iii) Percentage Increase of
Profit Efficiency (PIPE), and (iv) Percentage Increase of Profit
Fairness (PIPF). In addition, we also show the impact of the
parameter α on the system performance.

PRCT (D) =

M∑
i=1

T
(i)
cruise (G)−

M∑
i=1

T
(i)
cruise (D)

M∑
i=1

T
(i)
cruise (G)

× 100% (12)

PRIT (D) =

Z∑
j=1

T
(j)
idle (G)−

Z∑
j=1

T
(j)
idle (D)

Z∑
j=1

T
(j)
idle (G)

× 100% (13)

where T
(i)
cruise(D) is the cruise time for ith trip under the

displacement strategy D, which could be SD2, TQL, DQN,
or FairMove (based on CMA2C); M is the total number of
trips served by the e-taxi fleet. T (i)

cruise(G) is the cruise time
for ith trip of the Ground Truth; T (j)

idle(D) is idle time of the
jth charging events under displacement strategy D; Z is the
total number of charging events of the e-taxi fleet; T (j)

idle(G) is
the idle time of the jth charging events of the Ground Truth;
N is the total number of e-taxis in the fleet; The Ground Truth

is obtained by merging the GPS data, transaction data, and the
charging station data.

PIPE (D) =

N∑
k=1

PEk (D)−
N∑
k=1

PEk (G)

N∑
k=1

PEk (G)

× 100% (14)

PIPF (D) =
PF (G)− PF (D)

PF (G)
× 100% (15)

where PEk(D) is the profit efficiency of the e-taxi k under
the displacement strategy D, which can be SD2, TQL, DQN,
or FairMove (based on CMA2C); PEk(G) is the profit
efficiency of the e-taxi k without any external displacement;
PF (G) is the profit fairness of the Ground Truth; PF (D) is
profit fairness of the displacement strategy D.

B. Displacement Performance

1) Cruise Time Comparison: Since a key impact factor of
profit efficiency of e-taxis is their cruise time, we compare
our FairMove to other state-of-the-art baselines considering
the cruise time reduction. Fig. 10 shows the each cruise time
distribution under different displacement methods. We found
all methods reduce the cruise time for seeking passengers
at different degrees compared to the ground truth due to
their centralized management mode. The median value of
the cruise time without other displacement is around 6.5
minutes, and it decreases to 5.4 minutes under our FairMove
displacement. In addition to the decrease of the median value
of the cruise time, its variance also becomes smaller with
FairMove displacement, which could be induced by our
fairness consideration. Fig. 11 shows the average PRCT for all
trips during different hours of a day. We found our FairMove
achieves the best performance compared to other methods.
Particularly, FairMove reduces over 40% of cruise time
for e-taxis during 5:00-7:00, when there are few passenger
demands and drivers need to cruise a longer time to find a
passenger without centralized displacement.

Fig. 10. Per-trip cruise time for seek-
ing passengers.

Fig. 11. Average PRCT distribution
in different hours.

In general, our FairMove achieves 32.1% of PRCT for
each trip compared to the ground truth on average, as shown in
Table II. The reason could be that deep reinforcement learning-
based FairMove not only considers the short-term immediate
benefits but also considers the long-term benefits. DQN also
has a good performance with 23.6% of PRCT, followed by
TBA and SD2 with 21.3% and 19.4% of PRCT compared to
the ground truth.



TABLE II
AVERAGE PERCENTAGE REDUCTION OF CRUISE TIME (PRCT).
Methods SD2 TQL DQN TBA FairMove
PRCT 19.4% 15.7% 23.6% 21.3% 32.1%

2) Idle Time Comparison: Since the idle time for charging
will also impact the profit efficiency of the e-taxis, we also
compare our FairMove to other state-of-the-art baselines
considering the idle time reduction. Fig. 12 shows the idle
time distribution for each charging event under different dis-
placement methods. We found that our FairMove achieves
the best performance, and 75% of the per-charge idle time
is less than 22 minutes. However, SD2 prolongs the idle
time since many e-taxis around charging stations will be
displaced to the same charging stations, which causes long
queuing in the overcrowded charging stations. Fig. 13 shows
the average PRIT of all charging events during 24 hours of a
day. We found our FairMove achieves the most PRIT during
the high charging demand hours, e.g., 4:00-5:00 and 17:00-
18:00, which potentially indicates our method can also benefit
the charging issues for e-taxis, especially for addressing the
intensive charging peaks.

Fig. 12. Per-charge idle time distri-
bution.

Fig. 13. Average PRIT distribution
in different hours.

In general, our FairMove achieves 43.3% of PRIT for
each charging event compared to the ground truth on average,
as shown in Table III. The reason would be that deep learning-
based FairMove will choose the stations with the considera-
tion of long-term benefits. DQN also has a good performance
with 21% of PRIT. However, SD2 has a negative PRIT, which
means it prolongs the idle time as many near e-taxis have
been displaced to the same charging stations, resulting in long
queuing in these stations. Although TBA may also cause some
charging stations overcrowded, it achieves 3.1% of PRIT due
to the long-term benefit consideration and potential cruise time
reduction with the reinforcement learning method.

TABLE III
AVERAGE PERCENTAGE REDUCTION OF IDLE TIME (PRIT).

Methods SD2 TQL DQN TBA FairMove
PRIT -23.1% 8.4% 21% 3.1% 43.3%

3) Profit Efficiency Comparison: Since one of the most
important objectives of the paper is to improve the profit
efficiency of the e-taxi fleet, we compare FairMove to
baselines considering their profit efficiency changes. Fig. 14
shows the hourly profit efficiency of each e-taxi under different
displacement methods. We found the hourly profit efficiency
varies from 0 to 120 without displacement, and the median
value is 45.2. The profit efficiency of SD2 has a slight decrease

due to the prolonged idle time. Both TQL and DQN increase
the hourly profit efficiency for e-taxis on average, but our
FairMove achieves the best performance, with the median
value of 53.1. In addition, the variance between the e-taxis
becomes smaller since we consider the fairness between them.

Fig. 14. Hourly profit efficiency. Fig. 15. Overall PIPE comparison.

In Fig. 15, we show the overall PIPE in one month of
different displacement methods. We found our FairMove
increases the profit efficiency for the e-taxi fleet by 25.2%,
followed by DQN with a 7.5% of increase. However, SD2
reduces the profit efficiency for the e-taxi fleet by 5% due to
the prolonged idle time.

Fig. 16. PIPF comparison.

4) Profit Fairness Com-
parison: Another key objec-
tive of the paper is to im-
prove the profit fairness for
the e-taxi fleets. From 16,
we found our FairMove
achieves the best perfor-
mance with 54.7% of PIPF.
The reason may be that we formulate the problem with
fairness as a part of the objective function, and solve it by
deep reinforcement learning methods, so it not only improves
the profit efficiency but also improves the profit fairness for
the e-taxi fleet. SD2 and TBA achieve similar improvement
of the profit fairness of the e-taxi fleet by 13%. Due to
the fairness consideration, TQL and DQN also improve the
fairness efficiency by 28.7% and 17.9%, respectively.

5) Performance Under Different Weighted Factor α: In
this subsection, we conduct a sensitivity analysis to study the
impacts of the reward weighted factor α for training of the
proposed multi-agent deep reinforcement learning method. As
mentioned, α measures the tradeoff between the overall profit
efficiency of the fleet and the fairness between individual e-
taxis. The higher the α, the more emphasis on the overall profit
efficiency. The lower the α, the more emphasis on fairness.
We compare the performance of the FairMove with different
weighted factor α (from 0 to 1 with a step of 0.2). The average
reward r of the proposed CMA2C is shown in Table IV, which
shows that setting the parameter α from 0.6 to 0.8 leads to
the best system performance. Since maximizing fairness alone
may harm the overall profit efficiency for the e-taxi fleet, this
finding is reasonable. This is also the reason why we select
α = 0.6 for the above comparisons.

TABLE IV
SYSTEM PERFORMANCE UNDER DIFFERENT WEIGHTED FACTOR α.

Weight Factor α 0 0.2 0.4 0.6 0.8 1
Average Reward r 6.95 7.05 7.16 7.44 7.39 7.15



V. DISCUSSIONS

Data-Driven Findings. Based on our data-driven investi-
gation, we obtain some new findings. (i) Idle time reduction
does not necessarily indicate the prolonged time for serving
passengers since some drivers may need to spend more time
to seek passengers after charging in some regions with low
passenger travel demand (Fig. 5 and Fig. 6), which is rarely
considered by existing charging recommendation works. (ii)
The potential revenue for serving passengers after charging
in different stations may be also different, which is highly
dynamic in both spatial and temporal dimensions (Fig. 7).

Generalization on Electric Ridesharing Fleets. Even
though the setting of this paper is for e-taxis, we believe
it has the potential to be generalized to electric ridesharing
fleets, e.g., Uber, Lyft, and DiDi. For the ridesharing fleets,
not only vehicles’ real-time information is uploaded, but also
the passengers’ request information will be recorded, so it is
easy to obtain passengers’ origins & destinations for more
accurate displacement decisions. In addition, ridesharing fleets
are already under a centralized management mode, so it is
feasible to apply our displacement system to them. In the
future, we will also verify the performance of our fairness-
aware displacement system on electric ridesharing fleets.

Fairness of Different Driver Groups. Since drivers may
have different performance, which is decided by many factors
like taxi driving years, accidents, and reputation, it is also
reasonable to divide all drivers into different groups by their
performance levels and quantify their fairness within the same
group. Even though we did not divide the drivers into different
groups, we found the government and taxi companies have
already comprehensively evaluated each driver’s performance
based on multiple factors and label it on the taxi [26], which
is normally represented by a five-star rating. Hence, we can
directly merge it into our displacement system for five groups
and achieve fairness in the same group.

VI. RELATED WORK

A. Traditional Gas Taxi Dispatching

In the last decade, with the wide development of mobile
sensors and advanced data processing technologies, a large
number of works have been done to improve the service
efficiency of taxi fleets based on real-world data, e.g., taxi GPS
data and transaction data. [6], [7] in the SIGSPATIAL Cup
2019 tried to optimize the efficiency of taxi drivers searching
for customers, and they considered all taxis as the competitive
relationship, which potentially causes inequality between taxis.
Although [6] adopted a reinforcement learning-based method
for vehicle displacement, it only utilized the traditional RE-
INFORCE rule [24] to update the policy, while we utilized
two networks (i.e., Critic and Actor) parameterized with deep
neural networks to learn the optimal policy, which has the
capability to approximate parameters for complicated tasks
in a highly dynamic environment. Our critic-actor structured
reinforcement learning considers the cooperation of agents to
achieve a fairness-aware solution, while agents in [24] are

purely competitive. Furthermore, our method is in a centralized
training and decentralized execution fashion, which makes it
more efficient for decision making. In addition, the charging
issues cannot be naively addressed by the solutions of [6],
[7] due to many practical issues, e.g., possible overcrowded
charging stations and time-variant charging pricing. Miao et
al. [27] presented a receding horizon control framework to
dispatch taxis, which applied predicted models and sensing
data to decide dispatch locations for vacant taxis consider-
ing different objectives, e.g., reducing the average total idle
distance and supply-demand ratio error. Yuan et al. [28]
presented a recommendation system to help taxi drivers to
pick up passengers quickly and maximize the profit of the
next trip. However, all these works failed to consider the
fairness between taxi drivers when they make dispatching
decisions. Even though [29] proposed a route assignment
mechanism for fair taxi route recommendations, it focused
on the conventional gas taxis, which has different operation
patterns and energy replenishment mechanisms with e-taxis.
In addition, the complicated charging process has not been
considered, which makes it challenging to be reapplied for
e-taxi displacement.

B. Electric Taxi Charging Scheduling
With the rapid taxi electrification process, more and more

research [4], [9], [16], [30], [31] focuses on e-taxi charging
issues. Among all these works, e-taxi charging scheduling is
one of the most popular topics. Dong et al. [9] developed a
real-time charging scheduling framework for e-taxi fleets to
reduce the queuing time of e-taxis. Yuan et al. [30] proposed
a charging scheduling framework for e-taxis to minimize the
traveling time to charging stations and waiting time at charging
stations with considering the dynamic passenger demand.
However, all these works only focused on the charging issues
of e-taxis without considering the potential revenue loss related
to charging. In addition, they neglected the fairness between
taxis, which may potentially cause drivers not to follow their
scheduling decisions and make the system unsustainable.

Recently, there are some works [16], [32] trying to seek
fairness-aware scheduling for e-taxis. Yang et al. [32] proposed
a charging coordination solution for e-taxis to reduce their
queuing time in charging stations. Wang et al. [16] designed
a fairness-aware Pareto efficient charging recommendation
system called FairCharge to minimize the total charging idle
time (traveling time + queuing time) in charging stations com-
bined with fairness constraints. However, all these works only
considered the charging processes of e-taxis while neglected
their overall revenue, which is a key concern of taxi drivers.

C. Uniqueness of Our Work
In summary: To our best knowledge, our FairMove is the

first displacement system for e-taxis to improve the overall
profit efficiency of taxi fleets with the fairness consideration.
FairMove considers not only the passenger demand but also
the complicated charging issues of e-taxis (e.g., unique charg-
ing behaviors and time-varying electricity pricing). Moreover,
FairMove also emphasizes the fairness between e-taxis.



VII. CONCLUSION

In this paper, we design the first data-driven fairness-aware
displacement system called FairMove based on multi-source
data, which aims to improve the overall profit efficiency and
profit fairness of the entire e-taxi fleet in a city. We first con-
duct a data-driven investigation, which shows the uniqueness
of the e-taxi displacement problem. We then formulate the e-
taxi displacement as a multi-agent deep reinforcement learning
and propose a centralized multi-agent actor-critic (CMA2C)
approach to tackle this problem. FairMove considers not
only dynamic passenger demand & supply in both temporal
and spatial dimensions but also considers the complicated
charging problems (e.g., time-variant electricity pricing) and
per-trip profit. We implement and evaluate our FairMove
based on a real-world dataset obtained from the large-scale
full e-taxi fleet including over 20,100 vehicles. The extensive
experimental results show that our fairness-aware FairMove
effectively improves the profit efficiency and profit fairness by
25.2% and 54.7%, respectively.
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