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Abstract— Many essential services for autonomous vehicles,
e.g., navigation on high-quality maps, are designed based on
the understanding of traffic conditions, e.g., travel time/speed
on road segments, traffic flow, etc. However, most existing traffic
condition models lack the consideration of the differentiation for
vehicles with different types (e.g., personal vehicles or trucks)
and thus they cannot satisfy some type-specific services, e.g.,
traffic-condition-based routing for autonomous vehicles with
different types. To address this challenge, we design a novel
vehicular mobility based sensing model called mDrive to predict
the travel speed on the road segments, which is targeted for
different types of vehicles by utilizing the camera data obtained
from the traffic cameras equipped in the road intersections
only, without any in-vehicle GPS devices. mDrive addresses
the type-aware traffic speed prediction problem with sparse
sensors based on three correlations: (1) the spatial correlation
of travel speed on the connected road segments; (2) the temporal
correlation of travel speed on the consecutive time slots; (3) the
type correlation of different vehicular types’ speed on the same
road segment. We implement mDrive on traffic camera data
from the Chinese city Suzhou and evaluate it by using the
detailed GPS data from personal vehicles, taxis, and trucks,
with road contextual data as ground truth. The experiment
show mDrive outperforms state-of-the-art methods by reducing
6.2% mean relative error on average for all types of vehicles.

I. INTRODUCTION

The traffic conditions on road segments are fundamental

to many mobility-on-demand applications for autonomous

vehicles, including navigation[1], lane change maneuver[2]

for personal autonomous vehicles, etc. Most autonomous

vehicles make decisions based on data collected from ve-

hicles’ sensors. For example, [3] provides real-time vehicle

and pedestrian tracking for autonomous vehicles based on

their equipped Lidars and cameras. However, due to the

limitation of sensors’ sensing ranges, vehicles may not

obtain the global information for the system-level decision

making. Autonomous vehicular applications based on V2X

communication may address this issue, such as [4] providing

global cruising control for vehicles based on the sharing

information through V2X communication. Therefore, global

traffic information is essential to autonomous vehicles.

The urban scale traffic condition prediction has been

widely studied and could be extended to the applications for

autonomous vehicles through V2X technology. In particular,
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many approaches have been designed based on stationary

sensors, such as electronic toll stations[5], loop detectors[6].

However, due to the lack of vehicle type information, most

of these works are type-agnostic, i.e., modeling the mobility

of vehicles without considering the distinct features of the

vehicular types. Traffic conditions on the same road segment

might be different for vehicles with different types, because

of different vehicular types’ mobility features, e.g., driving

behaviors (e.g., taxis vs. trucks), different sizes of vehicles

(e.g., light-duty personal vehicles vs. heavy-duty trucks), and

different traffic regulations on the road segments. To verify

this, we calculate the travel speed for all types of vehicles on

each road segment in a Chinese city, Suzhou, with one month

of vehicular GPS data as Ground Truth. Because it is hard

to find two vehicles with the exact same speed on a road

segment in the original granularity, we coarsen speed into

multiple levels and calculate how many roads that all vehicles

have the same speed level for every 15 minutes. We show

the result in Figure 1. We found there are less than 30% of

roads where all vehicles have the same speed level every 15

minutes. Thus, most type-agnostic traffic condition models

might have inaccurate results for some services because

they fail to consider the difference in vehicle types, e.g.,

navigation or anomaly detection, leading to extra costs for

vehicles of specific types.

Fig. 1: % of road segments having Same Speed

There exist some works to apply the prediction model for

travel speed prediction based on the data of each vehicle type

individually. For example, some methods utilize the spatial

correlations among road networks to infer the missing sensor

data based on the Graph Convolution Network (GCN)[7][8].

However, these models are designed for one specific vehicle

type only and miss out on the correlation between different

vehicle types on the same road segment. For instance, for the

prediction of the speed of taxis on a road segment without

any taxi data, the existing work may use taxi data on other

road segments or historical data. However, we argue that the

speed of other vehicle types on the same road segment or

surrounding segments might be more helpful based on their

correlations. Hence, in this paper, we integrate data from

multiple vehicle types for travel speed prediction. We argue
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that although the mobility features of different vehicle types

are different, the speed of one vehicle type on a road segment

may be used for predicting the speed of another vehicle type.

In this paper, we design a traffic condition prediction

model called mDrive to predict the type-aware travel speed

on citywide road segments by utilizing the intelligent traffic

camera system in Suzhou. Figure 2 shows the heatmap of

the distribution of the intelligent traffic cameras in Suzhou

and an example of the captured image from a camera.

We found the distribution of traffic cameras is sparse and

each camera captures the real-time information of vehicles

in the intersections, such as plate numbers, vehicle types,

timestamps, locations, etc.

11.7 KM

14.5 KM
Captured Image 

In Traffic Camera

Plate No, Vehicle Type, 
Timestamp, 
Location, etc

Fig. 2: Heatmap of Cameras in Suzhou
Given the data from traffic cameras, mDrive predicts

the future travel speed through the combination of Graph

Convolution Network (GCN) and Gated Recurrent Unit

(GRU) layers to address three correlations. The detail of the

workflow is shown in follows: Step 1: we utilize an Expecta-

tion–Maximization (EM) model to estimate the average type-

specific travel speed on road segments with the observation

from camera data; Step 2: mDrive feeds the estimated travel

speed of partial road segments for a time slot into a GCN

module to learn the spatial correlation between adjacent

road segments and the type correlation between different

vehicle types; Step 3: given travel speed of a sequence of

time slots, mDrive utilizes the GRU module to learn the

temporal correlation between consecutive time slots. With

benefits from these three correlations, mDrive predicts the

future travel speed on road segments for each vehicle type

at the next time slot. The contributions of this paper are:

• To the best of our knowledge, we conduct the first

study to infer the type-aware travel speed in a city

based on data collected from the traffic camera system

as infrastructure to assist current or future autonomous

driving applications such as navigation, complementary

to applications based in-car sensors. Our work advances

the state-of-the-art traffic condition sensing methods in

two aspects: 1) our method provides the type-aware

travel speed prediction for different vehicular types;

2) our method utilizes the existing infrastructures and

captures the sparse traces of vehicles without GPS

devices, potentially alleviating the privacy issue.

• We design a novel traffic condition prediction model

called mDrive to predict the real-time type-aware travel

speed in a city for different vehicular types. mDrive

utilizes GCN module to infer the travel speed on road

segments of a city for each specific type based on a set

of correlations we carefully model. With the completed

inferred travel speed of previous time slots, mDrive

utilizes the GRU module to predict the future road

segment travel speed for multiple vehicular types. The

key novelty of mDrive is to take advantage of the com-

bination of GCN and GRU to learn three correlations,

i.e., spatial correlation, type correlation, and temporal

correlation.

• We implement mDrive based on the real-world data

obtained from a Chinese city, Suzhou, which captures

around 9.3 million daily camera records. We evaluate

mDrive with the ground truth obtained from 10 thousand

taxicabs, 3 thousand personal vehicles, and 3 thousand

trucks in Suzhou. Compared to the state-of-the-art meth-

ods, our mDrive outperforms them for all vehicular

types by reducing the mean relative error (MRE) by

6.2% on average.

II. RELATED WORK

Autonomous Vehicle Assistant System: Many works

on urban sensing have been conducted to provide various

vehicular services, e.g., autonomous vehicle assistant. To

improve driving safety and efficiency, many of these works

are designed based on in-vehicle sensors, e.g., [2] provides a

lane change maneuver in real-time dynamic traffic conditions

for autonomous vehicles based on the model predictive

control method. In contrast, some works utilize stationary

infrastructures and V2X technology, e.g., [9] presents an

architecture of the cybernetic transportation systems and an

automated global planner for autonomous vehicles to provide

door-to-door transportation services.

Traffic Condition for Autonomous Vehicles: Traffic

condition prediction is a classic topic in the transportation

domain, which has been widely studied. Some works for traf-

fic condition prediction are designed based on data from the

sensors in transportation infrastructure, e.g., [5] utilizes the

data from the electrical toll collections to estimate the travel

condition on the highway system. The work on this topic

could be extended to providing global traffic information for

autonomous vehicles, e.g., [10] designs a control policy to

make navigation decisions based on the traffic environment

information, such as positions, velocities, and lane numbers,

which is shared among autonomous vehicles through V2X

communication.

Summary: Even with great advance, none of these works

above provide traffic condition sensing for each specific type

of vehicles. Compared with the existing works, our work
mDrive leverages intelligent traffic cameras to predict the

travel speed of road segments for different vehicular types.

To our best knowledge, mDrive is the first work to estimate

the type-aware fine-grained travel speed for the different

types of vehicles only utilizing the data from the traffic

camera system.

III. DESIGN

We design mDrive to predict travel speed on road segments

based on the pervasive GCN models[7][8]. We choose the
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GCN model because GCN is well fitted to the topological

traffic data on the road network. In this section, we first

introduce the preliminary of mDrive and then present the

data flow of mDrive followed by the design of mDrive.

TABLE I: Data Description of Cameras in Suzhou

# of
Cameras

# of
Intersections

# of Road
Segments

Daily
Volume

Daily
Records

95 3467 6930 200 K 2 M
Format

Vehicle ID Date&Time Lon Lat Vehicle Type

A. Preliminary

1) Data Description: We have access to the dataset col-

lected by the traffic camera system in Suzhou as shown in

Table I through our local collaborators. This system is used

for the surveillance of traffic violations for vehicles on the

road, such as drive through a stop signal. The system utilizes

high-speed cameras to capture the situation of intersections

with high frequency and applies sophisticated technology to

reduce the error of camera data. When a vehicle is passing an

intersection equipped with a camera, this vehicle is detected,

and then the corresponding record is captured, uploaded,

and recognized with high accuracy. The used data fields

of records are shown in Table I, including the vehicle ID,

date&time, longitude, latitude, and vehicle type. In particular,

the traffic camera could capture the snapshot of many objects

including vehicles, motorcycles, and pedestrians. For the

vehicle types, we only include three vehicle types, i.e., taxis,

trucks, and personal vehicles because we have the ground

truth of these types based on a sample of GPS data.

A

C

D?

? ?

A Intersection with Camera
Intersection without Camera

Road segment with known speedSac

? Road Segment with unknown speed

A

C

D

ab

bc

bdB B

B

Fig. 3: Scenario of Travel Speed Prediction
2) Problem Definition: To better illustrate the travel speed

prediction, we first give the formal definitions.

• Road Segments: A road network consists of the in-

tersections and the road segments connecting these

intersections, e.g., the graphs in Figure 3. The road

segment is the smallest unit for a road network, e.g.,

the edges AB,BD,AC,CD,BC in Figure 3. One pair of

intersections is connected by several consecutive road

segments.

• Observation: An observation in this paper is defined as

a pair of two continuous records of the same vehicles

collected by the traffic cameras at two intersections.

When a vehicle passes two intersections equipped with

traffic cameras, one observation is generated.

• Routes: A route is a sequence of connected road seg-

ments that link two intersections, e.g., route AB-BD in

Figure 3.

Figure 3 shows a scenario of our travel speed prediction.

In the scenario, cameras can only obtain the observations

set OAD,OAC,OCD because only intersections A, C, D are

equipped with cameras, where OAD represents the observa-

tions collected in intersection A and D, and so on. Besides,

the collection of records from these equipped intersections

with cameras may lack the data of one specific vehicular

type during a time slot, e.g., the travel speed of vehicular

type 2 on the road segment CD is missing. Furthermore, if

the vehicle drives through A, B, and D, the observation of

AD only provides the aggregated travel time. Note that if the

vehicle drives through A, C, and D, then there will be two

observations AC and CD. Hence, we utilize an Expectation

Maximization (EM) based module on these aggregated data

to obtain speed for partial road segments, and then feed them

to the GCN module.

B. Design of mDrive

EM 
Module

Travel Speed
on Partial 

Road Segments
Observation

Data

Camera
Data Predict

Travel Speed 
of 

L Time Slots

Travel
Speed

of Time 
L+1

GCN 
Module

GRU
Module

Fig. 4: Data Flow of mDrive

1) Data Flow: Input: As shown in Figure 4, we first

preprocess camera data to obtain observations and then input

them into the EM module to infer the travel time for partial

road segments for each time slot. Here each time slot is for

15 minutes as we partition one day into 96 time slots. Then

EM module estimates the travel time of each time slot for all

vehicle types on the road segments that are involved in the

selected route. For the estimated travel time for a time slot,

we calculate type-aware travel speed and feed them into our

GCN module. The output of the GCN module is the travel

speed on all road segments for the same time slot. Output:
Finally, we feed the travel speed of road segments for L
consecutive time slots into the GRU module to predict the

travel speed of road segments in time slot L+1.

2) EM based Travel Time Inference Model: The EM-

based model[5] estimates the travel time by three steps, i.e.,

initialization, E-step, and M-step. In the initialization, the

travel time of one observation in the historical camera data

is divided into travel time for each road segment on the

shortest route between two intersections of the observation.

This division is based on the proportion of road segment’s

lengths in the total length of the shortest route between

these two intersections. For each road segment involved in

the historical data, we obtain its travel time distribution. In

the E-step, the EM model utilizes a route inference method

to obtain the travel time spent on each road segment in

the selected route. It first samples travel time based on

the distribution for all possible road segments between two

intersections. Then, it selects the inferred route as the route

whose sum of travel time is closest to the travel time of the

new observation. Then we resample the travel time to road

segments in the route under the constraint that their sum is

equal to the travel time of the observation. We address this

sampling process by using a fast simulation algorithm[11] for
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the multinormal distribution. In the M-step, given a duration,

e.g., 15 minutes, we group the estimated travel time of the

same road segments obtained from the observations collected

within this duration and update the current distribution by the

parameter updating methods in [5].

We run the EM model iteratively to obtain the travel time

distribution, and then calculate the average speed on involved

road segments. With the EM module, we obtain travel speed

for a part of road segments. However, due to the complexity

of the road network in a city and sparse issues, many road

segments still lack travel speed data. To address this issue,

we use the GCN module for the completion of the inference

for travel speed.

e1 e2

e3 e5e4

(a) (b) (c)

e1 e2 e5

e3 e4

e1 e2 e3 e4 e5
e1 0 1 1 0 0
e2 0 0 0 0 1
e3 0 0 0 1 0
e4 0 0 0 0 0
e5 0 0 0 0 0

Adjacency MatrixRoad Network Intersection Graph Edge Graph

Fig. 5: Example of Graph Construction
3) Architecture of Neural Network: We show an example

of the road network in Figure 5(a). In Figure 5(a), the gray

grid represents the road segment; the black grid represents

the intersection. This road network example is directly

represented by a directed graph G = (V,E) as shown in

Figure 5(b), where the vertex set V will be referred to as the

intersections of the road network, and the edge set E will

be referred to as the road segments of the road network. As

shown in the Figure 5(b), there are 5 edges (road segments)

in the graph, i.e., e1,e2, . . . ,e5. However, our final objective

is to estimate travel speed for all the edges. To fit the graph

into the mDrive, we convert the road graph into an edge

graph G = (E,A), where E is the road segment set and A
is the adjacency matrix that indicates the connectivity of

road segments. Figure 5(c) shows an example of the edge

graph and the adjacency matrix. In this edge graph, e1 and

e2 are connected because it is feasible for a vehicle to travel

from e1 to e2 through the intersection between them. In the

adjacency, ai j = 1 indicates ei and e j are connected, and vice
versa. Figure 6 shows the design of GCN and GRU modules.

(1) GCN Module: In each time slot, we use the edge

adjacency matrix A ∈ Rn×n, and the speed matrix H ∈ Rn×K

as inputs, where Hl is the input speed matrix in time slot l; n
is the number of road segments; K is the number of vehicular

types. Each entry in the input matrix Hl is the travel speed of

a road segment for one specific vehicle. In particular, if the

speed on one road segment is unknown, its corresponding

entry is empty in the matrix. In detail, we apply a variant

GCN version of ChebNet[12] to improve efficiency. For

the adjacency matrix, we obtain the Laplacian variant, i.e.,

D̂− 1
2 ÂD̂− 1

2 , where Â= A+ I; I is the identify matrix for A; D̂
is the degree matrix of Â. Therefore, one GCN layer could be

defined as a function f (Hl ,A) = σ(D̂− 1
2 ÂD̂− 1

2 HlW ), where

σ is the activation function, W is the weight matrix for GCN.

For a speed matrix, Hl the GCN module input Wl into 3 GCN

layers to obtain one matrix Ĥl , which is the estimated speed

matrix for time slot i. Let Ii be the indicator that the speed

of the ith road segment is labeled if Ii = 1. The final matrix

Ĥl follows a requirement that ĥi j = hi j if Ii = 1. For this

objective, we utilize a least square error function as the loss

function of mDrive, which

Loss(Hl , Ĥl) =
n

∑
i

Ii

k

∑
j
·(hi j − ĥi j)

2 (1)

When we provide the input matrices, we remove part of

known speed and use them as labels in the loss computing.

Note we use GPS data as separate ground truth data for

evaluation only. We train the GCN layers via the back-

propagation to learn the correlations among all types.

H1

A

3 GCN

Time t1

(2) GRU

Output:ĤL+1

Label: HL+1

KL 
LossHL

Time tL

…

(1) GCN 

Speed 
Matrix 

H1

3 GCN

GCN

Speed 
Matrix 

HL
GCN

GRU

A

Type 1 Type k
e1 h11 h1k

en hn1 hnk

Type 

……

Type 1 Type k
e1 h11 h1k

en hn1 hnk

Type 

……

Fig. 6: Architecture of Neural Network
(2) GRU Module: In the previous L time slots, mDrive

applies the GCN module to obtain the estimated speed matrix

mentioned above for each time slot. Given these previous

outputs from previous L time slots, mDrive utilizes one GCN

layer and one GRU layer (i.e., the TGCN cell in [8]) to study

the correlation of travel speed between consecutive time slots

on the same road segments for different types of vehicles.

In particular, the GRU layer receives the two inputs, i.e., the

output matrix from the current GCN layer and the output

matrix from the GRU layer from the previous time slot. The

output of the final GRU layer is a speed matrix ĤL+1 ∈Rn×K .

The detail is shown in Figure 6, where each row in the output

matrix ĤL+1 is a vector containing K speed, which are the

travel speed of all the vehicular types on the road segment.

The parameters of mDrive are learned to minimize a loss

function based on the L1 loss.

IV. EVALUATION

In this section, we show the evaluation based on vehicular

GPS data from different vehicular types as Ground Truth in

Suzhou with different factors, including vehicular types, time

intervals of the day, and density of cameras. In particular,

we evaluate mDrive by some metrics with state-of-the-art

methods as baselines.

TABLE II: Vehicle Data in Suzhou
Vehicular Types # of Vehicles Sampling Rate Daily Record
Personal Vehicle 3 K Every 10 seconds 4 M

Taxicabs 4 K Every 30 seconds 6 M
Truck 2 K Every 15 seconds 5 M

A. Evaluation Setting

1) Training Setting: We employ a cluster with 3 large

servers, each with 1 TB of memory, 80 cores, and 8 Nvidia

1080Ti GPUs to process data and implement mDrive. We

utilize one-month data of the intelligent traffic camera data
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(shown in Table I) from the Suzhou Industrial Park for the

experiment. During the training phase, we choose 70% of

road segments whose mobility features are obtained as the

input and 30% of these road segments as the target for

training. We coarsen the road speed into several levels with

every 10 km/h for each level as well as we did in Figure1.
2) Ground Truth: We utilize the vehicular dataset from

Suzhou with the same period of camera data for exper-

iments, including different vehicular types also shown in

Table II. Here the camera data is preprocessed by our local

collaborator and includes the spatial-temporal information of

vehicles captured by the cameras. We utilize a map-matching

algorithm on these GPS data to assign them to the road

segment for the calculation of the travel time on each road

segment. In particular, we utilize the location information

of traffic cameras in Suzhou to emulate the camera data for

those vehicles.
3) Metrics: We use Kolmogorov-Smirnov Goodness-of-

Fit test (K-S Test)[13] to evaluate the estimated travel time

distribution of EM module to the distribution obtained by

the ground truth. Here we test the null hypothesis, which

verifies if the travel time distribution of a road segment

follows a specified distribution and the metric is defined as

K−S =
Nf
Ng

∗100, where Nf is the number of road segments

that accept the null hypothesis of a vehicular type, and Ng is

the number of road segments that accept the null hypothesis

of the ground truth. In addition, we study the Mean Relative

Error (MRE) between our estimated travel time and the

ground truth, which is defined as MRE =
∑m

i |yei |ŷei
∑m

i yei
, where

ei is the road segment i, yei is the ground truth, and ŷei is

the estimated travel time.
4) Baselines: To evaluate the performance of mDrive, we

compare mDrive with the following state-of-the-art methods.

History Average Speed method (HA), which is a straightfor-

ward method that uses the average historical travel speed

on road segments directly to predict speed on the next

time slot. Autoregressive Integrated Moving Average method

(ARIMA) [14], which is a classic time series analysis method

that is fitted to better understand time-series data to pre-

dict future traffic speed. Support Vector Regression method

(SVR) [6], which is based on the Support Vector Machine

(SVM) model for speed prediction. The kernel function used

in the baseline is the linear kernel.

B. Goodness-of-Fit Result for Travel Time from EM module

We study the Goodness-of-Fit of the inferred travel time

distribution by EM module and the ground truth for each ve-

hicular type, which is to count the number of road segments

that accept the null hypothesis. We show the performances of

three vehicular types in Suzhou in Figure 7. The x-axis is the

time of day and the y-axis is K-S defined in section IV-A.3.

The higher the curve is, the closer the estimated travel time of

the vehicular type to the ground truth. We found that personal

vehicles have the best performance in the three vehicular

types. In particular, during the daytime, the K-S value of

personal vehicles is very large, and in the evening rush

hour, it increases to about 90%. This is because, during the

daytime and the rush hours, more vehicles are captured by

traffic cameras, which increases the number of road segments

covered by the observations. Similarly, because there are

more taxis in the daytime compared to that of trucks, in the

comparison of the other two types, the K-S value of taxis is

better than that of trucks from 7 AM to 9 PM. With the travel

time inferred by the EM module, we could obtain the speed

matrix for GCN and GRU modules. Therefore, we evaluate

the goodness-of-fit for the EM module to see the accuracy.

Fig. 7: K-S Test

C. Prediction Result on Travel Speed

In this section, we evaluate the performance of mDrive

on the prediction of travel speed and compare it with three

state-of-the-art methods, i.e., HA, ARIMA, and SVR, all of

which provide the type-agnostic travel speed prediction.

1) Impact of Vehicular Types: We apply three baselines

on three types of vehicles’ data from Suzhou individually,

and then compare them with the result of mDrive for each

vehicular type. In Table III, we found the MRE of mDrive

on all vehicular types is better than that of three baselines.

mDrive reduces the MRE by around 1.5% on personal

vehicles, 7.5% on taxis, 9.6% on trucks, compared to the

average MRE of all baselines. This might be because the

numbers of taxis and trucks in the city are smaller than that of

personal vehicles. In this case, all three baselines only utilize

the records of taxis or trucks; whereas mDrive considers the

correlations among all three types, which may improve the

accuracy of the travel time prediction.

TABLE III: Performance of Methods in terms of MRE
Factor

Vehicular Types Time-interval of Day
Personal
Vehicles

Taxis Trucks
Day
Time

Night
Time

Late
Night

HA 0.404 0.412 0.415 0.52 0.4 0.408
SVR 0.41 0.415 0.416 0.44 0.4 0.408

ARIMA 0.405 0.429 0.42 0.5 0.395 0.5
mDrive 0.4 0.385 0.377 0.4 0.42 0.408

2) Impact of Time: We compare the performances of

mDrive with three baselines on the data of all vehicles

within three time-intervals in one day, i.e., the daytime (6

am to 6 pm), the nighttime (6 pm to 10 pm), and late-

night (10 pm to 6 am) In Table III, we found the MRE

of mDrive on daytime and late-night is better than that of

three baselines. While at nighttime, mDrive is slightly worse

than baselines. However, in the overall performance, mDrive

still outperforms baselines by a 7.5% reduction on average.

3) Impact of Density: To evaluate the performance on

regions with different camera densities, we randomly choose

a portion of intersections in the Suzhou Industrial Park with
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percentages from 20% to 100% as active equipped intersec-

tions and utilize the corresponding data for evaluation. Then

we apply mDrive on these densities and show the results in

Figure 8. The metric used is the performance gain, which

is the increased MRE of mDrive on a particular density

compare to the MRE of mDrive on 100% density. Limited by

the smaller number of cameras, the performance of mDrive

on the 20% density increases the MRE by around 23% on

average. Therefore, the density of cameras in a region is a

very important factor in the performance of mDrive.

Fig. 8: Impact of Density
V. DISCUSSION

Generalization for Autonomous Vehicles: This paper fo-

cuses on the type-aware travel speed prediction at road seg-

ment levels. However, our work could also be generalized to

predict other traffic information, e.g., travel flow. The global

traffic information could be extended to some topics for

self-driving, such as mixed autonomy[15] by providing the

global traffic condition information. Besides, the predicted

traffic information could be utilized for mobility-on-demand

services through V2X communication[16], e.g., intelligent

traffic signal system and freight-Specific dynamic travel, etc.
Privacy Protection: We took two steps for privacy protec-

tions, i.e., 1) De-identification: All video data from traffic

cameras is converted into text data, and all identifiable

information, e.g., plate numbers are anonymized with a serial

identifier by service providers. 2) Relative Locations: The

utilized location information in the collected data is the

location of cameras, instead of GPS coordinates of vehicles.
Ethics: All the data used in mDrive is legally collected

by the service providers for traffic monitoring purposed by

the Suzhou transportation department. In our analysis, we

did not focus on any specific driver but only calculate the

travel speed. Our work is to understand and improve traffic

conditions, which in turn benefits all drivers.

VI. CONCLUSION

We design a vehicle-type aware traffic condition prediction

model, mDrive, which predicts travel speed based on sparse

camera data. The key novelty of mDrive is to utilize three

correlations to obtain a high spatial-temporal coverage of

prediction for all types of vehicles. mDrive considers the

difference between different vehicular types, which may be

applied to future autonomous vehicles. The evaluation shows

the overall performance of mDrive is better than that of

the three baselines by reducing 6.2% MRE on average. We

expect that the design and evaluation of mDrive will provide

technical insights for various future autonomous applications,

e.g., high-resolution type-aware vehicle navigation, and traf-

fic context-aware cruising decision making.
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