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Abstract— Many essential services for autonomous vehicles,
e.g., navigation on high-quality maps, are designed based on
the understanding of traffic conditions, e.g., travel time/speed
on road segments, traffic flow, etc. However, most existing traffic
condition models lack the consideration of the differentiation for
vehicles with different types (e.g., personal vehicles or trucks)
and thus they cannot satisfy some type-specific services, e.g.,
traffic-condition-based routing for autonomous vehicles with
different types. To address this challenge, we design a novel
vehicular mobility based sensing model called mDrive to predict
the travel speed on the road segments, which is targeted for
different types of vehicles by utilizing the camera data obtained
from the traffic cameras equipped in the road intersections
only, without any in-vehicle GPS devices. mDrive addresses
the type-aware traffic speed prediction problem with sparse
sensors based on three correlations: (1) the spatial correlation
of travel speed on the connected road segments; (2) the temporal
correlation of travel speed on the consecutive time slots; (3) the
type correlation of different vehicular types’ speed on the same
road segment. We implement mDrive on traffic camera data
from the Chinese city Suzhou and evaluate it by using the
detailed GPS data from personal vehicles, taxis, and trucks,
with road contextual data as ground truth. The experiment
show mDrive outperforms state-of-the-art methods by reducing
6.2% mean relative error on average for all types of vehicles.

I. INTRODUCTION

The traffic conditions on road segments are fundamental
to many mobility-on-demand applications for autonomous
vehicles, including navigation[1], lane change maneuver[2]
for personal autonomous vehicles, etc. Most autonomous
vehicles make decisions based on data collected from ve-
hicles’ sensors. For example, [3] provides real-time vehicle
and pedestrian tracking for autonomous vehicles based on
their equipped Lidars and cameras. However, due to the
limitation of sensors’ sensing ranges, vehicles may not
obtain the global information for the system-level decision
making. Autonomous vehicular applications based on V2X
communication may address this issue, such as [4] providing
global cruising control for vehicles based on the sharing
information through V2X communication. Therefore, global
traffic information is essential to autonomous vehicles.

The urban scale traffic condition prediction has been
widely studied and could be extended to the applications for
autonomous vehicles through V2X technology. In particular,
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many approaches have been designed based on stationary
sensors, such as electronic toll stations[5], loop detectors[6].
However, due to the lack of vehicle type information, most
of these works are type-agnostic, i.e., modeling the mobility
of vehicles without considering the distinct features of the
vehicular types. Traffic conditions on the same road segment
might be different for vehicles with different types, because
of different vehicular types’ mobility features, e.g., driving
behaviors (e.g., taxis vs. trucks), different sizes of vehicles
(e.g., light-duty personal vehicles vs. heavy-duty trucks), and
different traffic regulations on the road segments. To verify
this, we calculate the travel speed for all types of vehicles on
each road segment in a Chinese city, Suzhou, with one month
of vehicular GPS data as Ground Truth. Because it is hard
to find two vehicles with the exact same speed on a road
segment in the original granularity, we coarsen speed into
multiple levels and calculate how many roads that all vehicles
have the same speed level for every 15 minutes. We show
the result in Figure 1. We found there are less than 30% of
roads where all vehicles have the same speed level every 15
minutes. Thus, most type-agnostic traffic condition models
might have inaccurate results for some services because
they fail to consider the difference in vehicle types, e.g.,
navigation or anomaly detection, leading to extra costs for
vehicles of specific types.
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Fig. 1: % of road segments having Same Speed

There exist some works to apply the prediction model for
travel speed prediction based on the data of each vehicle type
individually. For example, some methods utilize the spatial
correlations among road networks to infer the missing sensor
data based on the Graph Convolution Network (GCN)[7][8].
However, these models are designed for one specific vehicle
type only and miss out on the correlation between different
vehicle types on the same road segment. For instance, for the
prediction of the speed of taxis on a road segment without
any taxi data, the existing work may use taxi data on other
road segments or historical data. However, we argue that the
speed of other vehicle types on the same road segment or
surrounding segments might be more helpful based on their
correlations. Hence, in this paper, we integrate data from
multiple vehicle types for travel speed prediction. We argue
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that although the mobility features of different vehicle types
are different, the speed of one vehicle type on a road segment
may be used for predicting the speed of another vehicle type.

In this paper, we design a traffic condition prediction
model called mDrive to predict the type-aware travel speed
on citywide road segments by utilizing the intelligent traffic
camera system in Suzhou. Figure 2 shows the heatmap of
the distribution of the intelligent traffic cameras in Suzhou
and an example of the captured image from a camera.
We found the distribution of traffic cameras is sparse and
each camera captures the real-time information of vehicles
in the intersections, such as plate numbers, vehicle types,
timestamps, locations, etc.
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Fig. 2: Heatmap of Cameras in Suzhou
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Given the data from traffic cameras, mDrive predicts
the future travel speed through the combination of Graph
Convolution Network (GCN) and Gated Recurrent Unit
(GRU) layers to address three correlations. The detail of the
workflow is shown in follows: Step 1: we utilize an Expecta-
tion—-Maximization (EM) model to estimate the average type-
specific travel speed on road segments with the observation
from camera data; Step 2: mDrive feeds the estimated travel
speed of partial road segments for a time slot into a GCN
module to learn the spatial correlation between adjacent
road segments and the type correlation between different
vehicle types; Step 3: given travel speed of a sequence of
time slots, mDrive utilizes the GRU module to learn the
temporal correlation between consecutive time slots. With
benefits from these three correlations, mDrive predicts the
future travel speed on road segments for each vehicle type
at the next time slot. The contributions of this paper are:

o To the best of our knowledge, we conduct the first
study to infer the type-aware travel speed in a city
based on data collected from the traffic camera system
as infrastructure to assist current or future autonomous
driving applications such as navigation, complementary
to applications based in-car sensors. Our work advances
the state-of-the-art traffic condition sensing methods in
two aspects: 1) our method provides the type-aware
travel speed prediction for different vehicular types;
2) our method utilizes the existing infrastructures and
captures the sparse traces of vehicles without GPS
devices, potentially alleviating the privacy issue.

o We design a novel traffic condition prediction model
called mDrive to predict the real-time type-aware travel
speed in a city for different vehicular types. mDrive
utilizes GCN module to infer the travel speed on road
segments of a city for each specific type based on a set

of correlations we carefully model. With the completed
inferred travel speed of previous time slots, mDrive
utilizes the GRU module to predict the future road
segment travel speed for multiple vehicular types. The
key novelty of mDrive is to take advantage of the com-
bination of GCN and GRU to learn three correlations,
i.e., spatial correlation, type correlation, and temporal
correlation.

« We implement mDrive based on the real-world data
obtained from a Chinese city, Suzhou, which captures
around 9.3 million daily camera records. We evaluate
mDrive with the ground truth obtained from 10 thousand
taxicabs, 3 thousand personal vehicles, and 3 thousand
trucks in Suzhou. Compared to the state-of-the-art meth-
ods, our mDrive outperforms them for all vehicular
types by reducing the mean relative error (MRE) by
6.2% on average.

II. RELATED WORK

Autonomous Vehicle Assistant System: Many works
on urban sensing have been conducted to provide various
vehicular services, e.g., autonomous vehicle assistant. To
improve driving safety and efficiency, many of these works
are designed based on in-vehicle sensors, e.g., [2] provides a
lane change maneuver in real-time dynamic traffic conditions
for autonomous vehicles based on the model predictive
control method. In contrast, some works utilize stationary
infrastructures and V2X technology, e.g., [9] presents an
architecture of the cybernetic transportation systems and an
automated global planner for autonomous vehicles to provide
door-to-door transportation services.

Traffic Condition for Autonomous Vehicles: Traffic
condition prediction is a classic topic in the transportation
domain, which has been widely studied. Some works for traf-
fic condition prediction are designed based on data from the
sensors in transportation infrastructure, e.g., [S] utilizes the
data from the electrical toll collections to estimate the travel
condition on the highway system. The work on this topic
could be extended to providing global traffic information for
autonomous vehicles, e.g., [10] designs a control policy to
make navigation decisions based on the traffic environment
information, such as positions, velocities, and lane numbers,
which is shared among autonomous vehicles through V2X
communication.

Summary: Even with great advance, none of these works
above provide traffic condition sensing for each specific type
of vehicles. Compared with the existing works, our work
mDrive leverages intelligent traffic cameras to predict the
travel speed of road segments for different vehicular types.
To our best knowledge, mDrive is the first work to estimate
the type-aware fine-grained travel speed for the different
types of vehicles only utilizing the data from the traffic
camera system.

III. DESIGN

We design mDrive to predict travel speed on road segments
based on the pervasive GCN models[7][8]. We choose the
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GCN model because GCN is well fitted to the topological
traffic data on the road network. In this section, we first
introduce the preliminary of mDrive and then present the
data flow of mDrive followed by the design of mDrive.

TABLE I: Data Description of Cameras in Suzhou

# of # of # of Road Daily Daily
Cameras Intersections | Segments | Volume Records
95 3467 6930 200 K 2M
Format
Vehicle ID | Date&Time | Lon [ Lat [ Vehicle Type

A. Preliminary

1) Data Description: We have access to the dataset col-
lected by the traffic camera system in Suzhou as shown in
Table I through our local collaborators. This system is used
for the surveillance of traffic violations for vehicles on the
road, such as drive through a stop signal. The system utilizes
high-speed cameras to capture the situation of intersections
with high frequency and applies sophisticated technology to
reduce the error of camera data. When a vehicle is passing an
intersection equipped with a camera, this vehicle is detected,
and then the corresponding record is captured, uploaded,
and recognized with high accuracy. The used data fields
of records are shown in Table I, including the vehicle ID,
date&time, longitude, latitude, and vehicle type. In particular,
the traffic camera could capture the snapshot of many objects
including vehicles, motorcycles, and pedestrians. For the
vehicle types, we only include three vehicle types, i.e., taxis,
trucks, and personal vehicles because we have the ground
truth of these types based on a sample of GPS data.
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Fig. 3: Scenario of Travel Speed Prediction

2) Problem Definition: To better illustrate the travel speed
prediction, we first give the formal definitions.

o Road Segments: A road network consists of the in-
tersections and the road segments connecting these
intersections, e.g., the graphs in Figure 3. The road
segment is the smallest unit for a road network, e.g.,
the edges AB,BD,AC,CD,BC in Figure 3. One pair of
intersections is connected by several consecutive road
segments.

Observation: An observation in this paper is defined as
a pair of two continuous records of the same vehicles
collected by the traffic cameras at two intersections.
When a vehicle passes two intersections equipped with
traffic cameras, one observation is generated.

Routes: A route is a sequence of connected road seg-
ments that link two intersections, e.g., route AB-BD in
Figure 3.

Figure 3 shows a scenario of our travel speed prediction.
In the scenario, cameras can only obtain the observations
set Oap,Oac,Ocp because only intersections A, C, D are
equipped with cameras, where Osp represents the observa-
tions collected in intersection A and D, and so on. Besides,
the collection of records from these equipped intersections
with cameras may lack the data of one specific vehicular
type during a time slot, e.g., the travel speed of vehicular
type 2 on the road segment CD is missing. Furthermore, if
the vehicle drives through A, B, and D, the observation of
AD only provides the aggregated travel time. Note that if the
vehicle drives through A, C, and D, then there will be two
observations AC and CD. Hence, we utilize an Expectation
Maximization (EM) based module on these aggregated data
to obtain speed for partial road segments, and then feed them
to the GCN module.

B. Design of mDrive

Travel
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of Time
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on Partial
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L Time Slots
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Fig. 4: Data Flow of mDrive

1) Data Flow: Input: As shown in Figure 4, we first
preprocess camera data to obtain observations and then input
them into the EM module to infer the travel time for partial
road segments for each time slot. Here each time slot is for
15 minutes as we partition one day into 96 time slots. Then
EM module estimates the travel time of each time slot for all
vehicle types on the road segments that are involved in the
selected route. For the estimated travel time for a time slot,
we calculate type-aware travel speed and feed them into our
GCN module. The output of the GCN module is the travel
speed on all road segments for the same time slot. Output:
Finally, we feed the travel speed of road segments for L
consecutive time slots into the GRU module to predict the
travel speed of road segments in time slot L+ 1.

2) EM based Travel Time Inference Model: The EM-
based model[5] estimates the travel time by three steps, i.e.,
initialization, E-step, and M-step. In the initialization, the
travel time of one observation in the historical camera data
is divided into travel time for each road segment on the
shortest route between two intersections of the observation.
This division is based on the proportion of road segment’s
lengths in the total length of the shortest route between
these two intersections. For each road segment involved in
the historical data, we obtain its travel time distribution. In
the E-step, the EM model utilizes a route inference method
to obtain the travel time spent on each road segment in
the selected route. It first samples travel time based on
the distribution for all possible road segments between two
intersections. Then, it selects the inferred route as the route
whose sum of travel time is closest to the travel time of the
new observation. Then we resample the travel time to road
segments in the route under the constraint that their sum is
equal to the travel time of the observation. We address this
sampling process by using a fast simulation algorithm[11] for
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the multinormal distribution. In the M-step, given a duration,
e.g., 15 minutes, we group the estimated travel time of the
same road segments obtained from the observations collected
within this duration and update the current distribution by the
parameter updating methods in [5].

We run the EM model iteratively to obtain the travel time
distribution, and then calculate the average speed on involved
road segments. With the EM module, we obtain travel speed
for a part of road segments. However, due to the complexity
of the road network in a city and sparse issues, many road
segments still lack travel speed data. To address this issue,
we use the GCN module for the completion of the inference
for travel speed.

Road Network Intersection Graph Edge Graph Adjacency Matrix
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Fig. 5: Example of Graph Construction

3) Architecture of Neural Network: We show an example
of the road network in Figure 5(a). In Figure 5(a), the gray
grid represents the road segment; the black grid represents
the intersection. This road network example is directly
represented by a directed graph G = (V,E) as shown in
Figure 5(b), where the vertex set V will be referred to as the
intersections of the road network, and the edge set E will
be referred to as the road segments of the road network. As
shown in the Figure 5(b), there are 5 edges (road segments)
in the graph, i.e., e,ea,...,es. However, our final objective
is to estimate travel speed for all the edges. To fit the graph
into the mDrive, we convert the road graph into an edge
graph G = (E,A), where E is the road segment set and A
is the adjacency matrix that indicates the connectivity of
road segments. Figure 5(c) shows an example of the edge
graph and the adjacency matrix. In this edge graph, e; and
e, are connected because it is feasible for a vehicle to travel
from e to e, through the intersection between them. In the
adjacency, a;; = 1 indicates e; and e; are connected, and vice
versa. Figure 6 shows the design of GCN and GRU modules.
(1) GCN Module: In each time slot, we use the edge
adjacency matrix A € R™", and the speed matrix H € R"™K
as inputs, where H; is the input speed matrix in time slot /; n
is the number of road segments; K is the number of vehicular
types. Each entry in the input matrix H; is the travel speed of
a road segment for one specific vehicle. In particular, if the
speed on one road segment is unknown, its corresponding
entry is empty in the matrix. In detail, we apply a variant
GCN version of ChebNet[12] to improve efficiency. For
the adjacency matrix, we obtain the Laplacian variant, i.e.,
D’%AAﬁ’% , Where A=A+] ; I is the identify matrix for A; D
is the degree matrix of A. Therefore, one GCN layer could be
defined as a function f(H;,A) = G(D’%Aﬁ’%HIW), where
o is the activation function, W is the weight matrix for GCN.
For a speed matrix, H; the GCN module input W; into 3 GCN
layers to obtain one matrix H;, which is the estimated speed

matrix for time slot i. Let /; be the indicator that the speed
of the i, road segment is labeled if /; = 1. The final matrix
H; follows a requirement that fzij = h;;j if I; = 1. For this
objective, we utilize a least square error function as the loss
function of mDrive, which

n k
LOSS(H],I:II) :ZIiZ'(hij_ilij)z (l)
When we provide the inputlmat/rices, we remove part of
known speed and use them as labels in the loss computing.
Note we use GPS data as separate ground truth data for
evaluation only. We train the GCN layers via the back-
propagation to learn the correlations among all types.
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Fig. 6: Architecture of Neural Network

(2) GRU Module: In the previous L time slots, mDrive
applies the GCN module to obtain the estimated speed matrix
mentioned above for each time slot. Given these previous
outputs from previous L time slots, mDrive utilizes one GCN
layer and one GRU layer (i.e., the TGCN cell in [8]) to study
the correlation of travel speed between consecutive time slots
on the same road segments for different types of vehicles.
In particular, the GRU layer receives the two inputs, i.e., the
output matrix from the current GCN layer and the output
matrix from the GRU layer from the previous time slot. The
output of the final GRU layer is a speed matrix Ay | € R™K.
The detail is shown in Figure 6, where each row in the output
matrix Ay is a vector containing K speed, which are the
travel speed of all the vehicular types on the road segment.
The parameters of mDrive are learned to minimize a loss
function based on the L1 loss.

IV. EVALUATION

In this section, we show the evaluation based on vehicular
GPS data from different vehicular types as Ground Truth in
Suzhou with different factors, including vehicular types, time
intervals of the day, and density of cameras. In particular,
we evaluate mDrive by some metrics with state-of-the-art
methods as baselines.

TABLE II: Vehicle Data in Suzhou

Vehicular Types | # of Vehicles Sampling Rate Daily Record
Personal Vehicle 3K Every 10 seconds 4 M
Taxicabs 4K Every 30 seconds 6M
Truck 2 K Every 15 seconds 5M

A. Evaluation Setting

1) Training Setting: We employ a cluster with 3 large
servers, each with 1 TB of memory, 80 cores, and 8 Nvidia
1080Ti GPUs to process data and implement mDrive. We
utilize one-month data of the intelligent traffic camera data
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(shown in Table I) from the Suzhou Industrial Park for the
experiment. During the training phase, we choose 70% of
road segments whose mobility features are obtained as the
input and 30% of these road segments as the target for
training. We coarsen the road speed into several levels with
every 10 km/h for each level as well as we did in Figurel.

2) Ground Truth: We utilize the vehicular dataset from
Suzhou with the same period of camera data for exper-
iments, including different vehicular types also shown in
Table II. Here the camera data is preprocessed by our local
collaborator and includes the spatial-temporal information of
vehicles captured by the cameras. We utilize a map-matching
algorithm on these GPS data to assign them to the road
segment for the calculation of the travel time on each road
segment. In particular, we utilize the location information
of traffic cameras in Suzhou to emulate the camera data for
those vehicles.

3) Metrics: We use Kolmogorov-Smirnov Goodness-of-
Fit test (K-S Test)[13] to evaluate the estimated travel time
distribution of EM module to the distribution obtained by
the ground truth. Here we test the null hypothesis, which
verifies if the travel time distribution of a road segment
follows a specified distribution and the metric is defined as
K-S= ilj * 100, where Ny is the number of road segments
that accep% the null hypothesis of a vehicular type, and N, is
the number of road segments that accept the null hypothesis
of the ground truth. In addition, we study the Mean Relative
Error (MRE) between our estimated travel mtimq and the
ground truth, which is defined as MRE = Ziz‘,,yl‘;{l_y“"
e; is the road segment i, y,, is the ground truth, and Ve, 18
the estimated travel time.

4) Baselines: To evaluate the performance of mDrive, we
compare mDrive with the following state-of-the-art methods.
History Average Speed method (HA), which is a straightfor-
ward method that uses the average historical travel speed
on road segments directly to predict speed on the next
time slot. Autoregressive Integrated Moving Average method
(ARIMA) [14], which is a classic time series analysis method
that is fitted to better understand time-series data to pre-
dict future traffic speed. Support Vector Regression method
(SVR) [6], which is based on the Support Vector Machine
(SVM) model for speed prediction. The kernel function used
in the baseline is the linear kernel.

, Where

B. Goodness-of-Fit Result for Travel Time from EM module

We study the Goodness-of-Fit of the inferred travel time
distribution by EM module and the ground truth for each ve-
hicular type, which is to count the number of road segments
that accept the null hypothesis. We show the performances of
three vehicular types in Suzhou in Figure 7. The x-axis is the
time of day and the y-axis is K-S defined in section IV-A.3.
The higher the curve is, the closer the estimated travel time of
the vehicular type to the ground truth. We found that personal
vehicles have the best performance in the three vehicular
types. In particular, during the daytime, the K-S value of
personal vehicles is very large, and in the evening rush
hour, it increases to about 90%. This is because, during the

daytime and the rush hours, more vehicles are captured by
traffic cameras, which increases the number of road segments
covered by the observations. Similarly, because there are
more taxis in the daytime compared to that of trucks, in the
comparison of the other two types, the K-S value of taxis is
better than that of trucks from 7 AM to 9 PM. With the travel
time inferred by the EM module, we could obtain the speed
matrix for GCN and GRU modules. Therefore, we evaluate
the goodness-of-fit for the EM module to see the accuracy.

10
] e A
E 6 -~ Personal Vehicles
40 ®-® Taxis
20 A--A Trucks
4 8 12 16 20
Hours of Day

Fig. 7: K-S Test

C. Prediction Result on Travel Speed

In this section, we evaluate the performance of mDrive
on the prediction of travel speed and compare it with three
state-of-the-art methods, i.e., HA, ARIMA, and SVR, all of
which provide the type-agnostic travel speed prediction.

1) Impact of Vehicular Types: We apply three baselines
on three types of vehicles’ data from Suzhou individually,
and then compare them with the result of mDrive for each
vehicular type. In Table III, we found the MRE of mDrive
on all vehicular types is better than that of three baselines.
mDrive reduces the MRE by around 1.5% on personal
vehicles, 7.5% on taxis, 9.6% on trucks, compared to the
average MRE of all baselines. This might be because the
numbers of taxis and trucks in the city are smaller than that of
personal vehicles. In this case, all three baselines only utilize
the records of taxis or trucks; whereas mDrive considers the
correlations among all three types, which may improve the
accuracy of the travel time prediction.

TABLE III: Performance of Methods in terms of MRE

Factor

Vehicular Types Time-interval of Day

Personal . Da Night | Late
Vehioles | Toxis | Trucks | pv | RS Nieht

HA 0.404 0.412 | 0.415 0.52 0.4 0.408
SVR 0.41 0.415 | 0.416 0.44 0.4 0.408
ARIMA 0.405 0.429 0.42 0.5 0.395 0.5
mDrive 0.4 0.385 | 0.377 0.4 0.42 | 0.408

2) Impact of Time: We compare the performances of
mDrive with three baselines on the data of all vehicles
within three time-intervals in one day, i.e., the daytime (6
am to 6 pm), the nighttime (6 pm to 10 pm), and late-
night (10 pm to 6 am) In Table III, we found the MRE
of mDrive on daytime and late-night is better than that of
three baselines. While at nighttime, mDrive is slightly worse
than baselines. However, in the overall performance, mDrive
still outperforms baselines by a 7.5% reduction on average.

3) Impact of Density: To evaluate the performance on
regions with different camera densities, we randomly choose
a portion of intersections in the Suzhou Industrial Park with
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percentages from 20% to 100% as active equipped intersec-
tions and utilize the corresponding data for evaluation. Then
we apply mDrive on these densities and show the results in
Figure 8. The metric used is the performance gain, which
is the increased MRE of mDrive on a particular density
compare to the MRE of mDrive on 100% density. Limited by
the smaller number of cameras, the performance of mDrive
on the 20% density increases the MRE by around 23% on
average. Therefore, the density of cameras in a region is a
very important factor in the performance of mDrive.

-l Personal Vehicles
0‘ Taxis
® @ Truck

%30 40350760 70 80 90100
Percentage of Cameras

Fig. 8: Impact of Density
V. DISCUSSION

Generalization for Autonomous Vehicles: This paper fo-
cuses on the type-aware travel speed prediction at road seg-
ment levels. However, our work could also be generalized to
predict other traffic information, e.g., travel flow. The global
traffic information could be extended to some topics for
self-driving, such as mixed autonomy[15] by providing the
global traffic condition information. Besides, the predicted
traffic information could be utilized for mobility-on-demand
services through V2X communication[16], e.g., intelligent
traffic signal system and freight-Specific dynamic travel, etc.
Privacy Protection: We took two steps for privacy protec-
tions, i.e., 1) De-identification: All video data from traffic
cameras is converted into text data, and all identifiable
information, e.g., plate numbers are anonymized with a serial
identifier by service providers. 2) Relative Locations: The
utilized location information in the collected data is the
location of cameras, instead of GPS coordinates of vehicles.
Ethics: All the data used in mDrive is legally collected
by the service providers for traffic monitoring purposed by
the Suzhou transportation department. In our analysis, we
did not focus on any specific driver but only calculate the
travel speed. Our work is to understand and improve traffic
conditions, which in turn benefits all drivers.

VI. CONCLUSION

We design a vehicle-type aware traffic condition prediction
model, mDrive, which predicts travel speed based on sparse
camera data. The key novelty of mDrive is to utilize three
correlations to obtain a high spatial-temporal coverage of
prediction for all types of vehicles. mDrive considers the
difference between different vehicular types, which may be
applied to future autonomous vehicles. The evaluation shows
the overall performance of mDrive is better than that of
the three baselines by reducing 6.2% MRE on average. We
expect that the design and evaluation of mDrive will provide
technical insights for various future autonomous applications,
e.g., high-resolution type-aware vehicle navigation, and traf-
fic context-aware cruising decision making.
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