IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022

VeMo: Enable Transparent Vehicular Mobility
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Abstract—Understanding and predicting real-time vehicle mobility patterns on highways are essential to address traffic congestion and
respond to the emergency. However, almost all existing works (e.g., based on cellphones, onboard devices, or traffic cameras) suffer from
high costs, low penetration rates, or only aggregate results. To address these drawbacks, we utilize Electric Toll Collection systems (ETC)
as a large-scale sensor network and design a system called VeMo to transparently model and predict vehicle mobility at the individual
level with a full penetration rate. Our novelty is how we address uncertainty issues (i.e., unknown routes and speeds) due to sparse
implicit ETC data based on a key data-driven insight, i.e., individual driving behaviors are strongly correlated with crowds of drivers under
certain spatiotemporal contexts and can be predicted by combining both personal habits and context information. We evaluate VeMo with
(i) alarge-scale ETC system with tracking devices at 773 highway entrances and exits capturing more than 2 million vehicles every day;
(ii) a fleet consisting of 114 thousand vehicles with GPS data as ground truth. Compared with state-of-the-art benchmark mobility models,
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the experimental results show that VeMo outperforms them by 10 percent on average.

Index Terms—Vehicular mobility modeling, real-time locations, stationary sensors, toll systems, destination, route, speed

1 INTRODUCTION

NDERSTANDING and modeling individual vehicular mobil-
Uity on highways have various applications, e.g., conges-
tion prediction [1], route planning [2] and ramp metering [3].
However, modeling and predicting individual vehicle loca-
tions in fine spatial-temporal granularity are extremely chal-
lenging due to a large number of vehicles and limited
infrastructures on highways compared to cities [4], [5].

The existing approaches for vehicle location prediction
can be basically categorized into two groups: (i) mobile infra-
structure based solutions such as cellphones (e.g., Online
Map Services [6]) and onboard devices (e.g.,, OBD devi-
ces [7]), and (ii) static infrastructure based solutions: traffic
cameras [8], loop sensors [9], and RFID [10]. For mobile infra-
structure based solutions, they typically have privacy issues
since they require real-time GPS locations of vehicles [11];
for static infrastructure based solutions, they typically intro-
duce low spatial coverage or high costs for a complete high-
way system coverage [12]. Further, both of them may suffer
low penetration rates, e.g.,, some commuters do not use
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navigation apps when traveling some familiar routes [13];
traffic cameras are not pervasive on highways in some
countries [14].

In this paper, to address these drawbacks, we utilize a
highway Electric Toll Collection (ETC) system as a sensor
network for vehicular mobility modeling and prediction.
Compared to the existing approaches, our ETC based solu-
tion has the following advantages: (i) it requires no addi-
tional infrastructure since it relies on data already gathered
in real time over highway networks for toll collections; (ii) it
poses no additional privacy threats because it does not col-
lect vehicle-specific GPS data; (iii) it does not suffer from
low penetration rates since all vehicles have to be charged
by an ETC system when using highway systems. Even
some highways are installed with induction loops, they can-
not achieve individual-level modeling compared to the ETC
system, since they cannot distinguish individual vehicles.

However, since an ETC system is deployed for toll collec-
tions instead of mobility modeling, it brings new challenges.
(i) An ETC system only logs when and where a vehicle enters
and leaves a highway system for billing purposes and it
leads to extremely sparse location records for each vehicle,
i.e., only two data points per trip, which makes it challenging
to predict destinations without intermediate locations. (ii) In
a complicated highway network, given an entrance and exit,
there are many potential routes as shown by our later analy-
ses, and ETC data do not log any information regarding
which route was taken during a particular origin and desti-
nation pair. Based on our data, we found that the shortest
routes are not the first choices for many vehicles due to con-
gestion. Without any historical routes or speeds, it is difficult
to train a model as conventional machine learning tasks.
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(iii) Further, driving speeds vary by personal habits and dif-
ferent spatiotemporal contexts, and ETC data do not directly
log real-time driving speeds. Straightforward solutions (e.g.,
assuming real-time speeds vary near the speed limit) usually
do not perform well because of various driving behaviors
under different contexts.

To address these challenges, we perform a systemic
investigation of a large-scale ETC system. We design a
model called VeMo to model and predict individual vehicu-
lar mobility based on sparse observations on real-time ori-
gins as well as historical origins and destinations. To
achieve this, we divide the ultimate objectives into three
subproblems including destination prediction, route predic-
tion, and speed prediction. In each of the subproblems, we
investigate three key kinds of features that are strongly cor-
related to vehicular mobility including personal features,
crowd features, and context features. The key insight we
found is: even with complicated highway networks and
real-time context, individual travel behaviors are strongly
correlated with crowds under certain spatiotemporal con-
texts and can be predicted by combining both personal hab-
its and context information. Combining the results of the
three subproblems, we model the vehicular mobility pat-
terns on highways. We summarize the key contributions as
follows.

e To our knowledge, we conduct the first systematic
investigation of vehicular mobility modeling and pre-
diction based on large-scale ETC and GPS data. Our
investigation is based on ETC data from 7.8 million
vehicles and GPS data from 114 thousand vehicles. A
number of useful features are explored that reveal the
general vehicular mobility patterns.

e We analyze both ETC and GPS data providing in-
depth discussions on vehicular mobility patterns.
Based on our analyses, we design a mobility predic-
tion system called VeMo with three key compo-
nents to predict destinations, routes, and speeds for
individual vehicles based on both historical and
real-time ETC data. Technically, we extract unob-
served routes and speeds through joint optimiza-
tion. By studying mobility features at both the
individual and crowd level, we fuse them based on
a Mondrian Forests model to address the uncertain
mobility issue.

e Weimplement and evaluate the VeMo in the Guang-
dong Province, China with (i) an ETC system cover-
ing 1,439 highway entrances and exits, and it
captures around 2 million vehicles per day; (ii) a vehi-
cle fleet and its GPS data including 114 thousand
vehicles for evaluation only, where 20 percent of
vehicles have the trajectories on highways. Com-
pared with state-of-the-art solutions, VeMo provides
a 10 percent accuracy gain on average.

e Based on our system, we design a real-world applica-
tion to detect ongoing anomaly events on highways.
It achieves automatically anomaly event detection
and event location inference at the same time without
extra human resources. The result shows we detect
85.7 percent of the anomaly events and locate them
within 300 meters of the event locations.
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2 MOTIVATION

2.1 Use Cases

VeMo aims to predict the real-time locations of individual
vehicles, which enables various applications that cannot be
achieved by previous solutions. As a collaboration with the
highway administrators, we give two exemplary applica-
tions that matter a lot to highway management.

e Highway anomaly event detection: One important work
of highway administrators is to detect the anomaly
event for emergency responses, such as traffic acci-
dents and road maintenance. However, it is quite
expensive to arrange regular road check manually or
cannot detect anomalies in time. By predicting the
real-time location of a vehicle, we can know when the
vehicle is expected to leave the highway in a regular
situation. If most vehicles do not leave the highways
as expected, there are potential ongoing anomaly
events on highways. Based on which vehicles are
affected, we could further infer the most likely location
of the anomaly source, which could guide the highway
administrators for fast emergency responses. Com-
pared to other approaches, our approach utilizes exist-
ing infrastructures without introducing much extra
cost. We will describe the detailed implementation in
Section 6.

e  Hazmat cargo tank tracking: Improving driving safety
on highways is always an important topic for high-
way administration companies. There are more than
6 million accidents on highways in the United States
during 2015 [15]. A special case is when the vehicles
are hazmat highway cargo tanks, which may result
in even worse accidents. By predicting the locations
of these special vehicles, highway administration
companies can better understand the potential risk,
which is not achievable by group-based prediction.

Uniqueness of ETC Based Systems. To implement those

applications, previous work based on smartphones or traffic
cameras either requires extra installed infrastructures or
suffers from low penetration rates of vehicles. On highways,
the key strength of the ETC system is it detects all the
vehicles (i.e., a high penetration rate). Compared to GPS-
based approaches, our approach utilized regular billing
data for mobility modeling, which minimizes the extra
expose of users’ privacy.

2.2 Challenges

It is not trivial to predict the real-time locations of vehicles
because of the uncertainties caused by various traffic condi-
tions and driving behaviors. To show these challenges, we
study one-month data (both ETC transactions and trajecto-
ries of sample vehicles) in the Guangdong province of
China and identify several challenges regarding three key
factors including destinations, routes, and speeds. The
detailed data description is presented in Sections 3 and 5.

2.2.1 Destination Uncertainty

To predict the real-time locations of vehicles, it is important
to understand the destinations and routes. However, it is

not trivial to Fredict routes and destinations. To characterize
7:32:55 UTC from IEEE Xplore. Restrictions apply.
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Fig. 1. Challenges: (a) destination entropy; (b) number of routes; (c)
speed STD.

the inherent predictability across vehicles, we present the
destination entropy of each vehicle in Fig. 1(a). The figure
reveals two peaks as the entropy equals 0 and 1, which indi-
cates the next location of a vehicle could be found on average
in any 2° = 1 and 2' = 2 locations, respectively. Especially,
we find most vehicles travel on highways only once in one
month with the entropy=0; vehicles often commute between
locations with the entropy=1. Some works [16] were con-
ducted to predict the destinations of vehicles whose entropy
is greater than or equal to one since those vehicles generally
have regular commute patterns or extensive historical data.
However, it is not clear how to predict the destinations of
vehicles with only a few historical transactions.

2.2.2 Unobserved Routes and Speeds

Previous studies have been done to model the route choices
and driving speeds [2], [17]. Through studying the historical
routes and speeds in the trip recorded by GPS-based devi-
ces, some sophisticated models are proposed to predict
vehicular mobility in the near future. However, in our set-
ting, one of the key characteristics of the ETC system is that
it can only obtain very sparse information (i.e., the time and
location when entering and exiting highways). This leads to
the problem that we cannot obtain detailed routes and
speeds to learn the route and speed model, which is not
solved in the previous work.

Moreover, routes and speeds also vary depending on user
behaviors and contexts. For a given origin and destination, peo-
ple can choose different routes if the road network is not trivial
(i.e., only one route from the origin to the destination). Fig. 1(b)
illustrates the number of routes between the origin-
jdestination pairs. We found that only 17 percent of station
pairs have only one route based on GPS trajectories obtained
from 114 thousand vehicles. It is impractical to assume only the
shortest routes are used by vehicles. (Note that these trajectories
are only used in the motivation and evaluation rather than the
model design.) As for speeds, people empirically expect that
the driving speeds of vehicles are around certain speeds (e.g.,
speed limit or average speed) with less variance. However, in
our study, we found the real-time speed is more complicated
than the empirical intuition. To illustrate the characteristics of
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Fig. 2. ETC systems in Guangdong Province.

real-time speed, we study the real-time speed standard devia-
tion (STD) across vehicles by replacing the mean value in the
standard formula of standard deviation with the speed limit
(S(Limit)), the historical average speed(S(Historical)), the
current trip average speed(S(Trip)), respectively. Fig. 3 dem-
onstrates both S(Historical) and S(Trip) have a Gaussian-like
distribution with the mean STD near 20 km/h. It leads to a
330-meter offset in one-minute driving if only the average
speed is utilized to obtain the real-time location. It also reveals
the fact that it is difficult for people to drive at the speed limit
(e.g., can only drive at 60 km/h compared to the speed limit
of 120 km/h) because of the heavy traffic.

3 ETC SysTeEm AND DATA DESCRIPTION

3.1 Notations
Given ETC data on the vehicle’s trip levels,

e An edge e is a highway segment between two adja-
cent toll stations, i.e., the finest spatial unit for ETC-
based modeling.

e Aroute ris a set of adjacent edges, which connect the
origin toll station and the destination toll station of a
particular trip.

o A K-edge trip is a trip of a particular vehicle with K
edges in its route between the origin and the destina-
tion. Specifically, a single-edge trip has only one edge.

3.2 Infrastructure Overview
Fig. 2 shows the road structure and the locations of toll sta-
tions in the Guangdong province, which has 69 highways
and 773 ETC toll stations with 1,439 highway entrances and
exits covering an area of 179, 800km?. The circles represent
toll stations and the larger the icon, the heavier the daily
traffic volume. It shows the traffic mainly concentrates on
the central area and the road structure in that area is also
complex as shown in the Guangzhou-Foshan Road Net-
work. Each toll station detects all vehicles when they enter
the highway, and then logs the records as transactions after
they leave the highway. The toll station identifies a vehicle
by ETC RFID devices (for regular charging) or cameras (for
the purpose of detecting escaping charges).

As shown in Table 1, each generated transaction contains
information including entering and exit station, entering and

exiting time, vehicle id, vehicle type (i.e., car, bus, truck), and
plore. Restrictions apply.



2640
320k 60k
& o ’f"\ Z o !
8 o 1 S (25% stations,
£ 240k f . B 40k 75% transactions)
g / N g
£ 160k ’ Z
s ! X £ -~
% 80ky 4 > %
£ .‘0¢J £
k% 12 18 24 %% 200 200 600 800
(a) Time (Hour) (b) Toll Stations
%20 100
g
=1 95
gh S
S 90
£10 =
= o 85
s ©
= Ml ¢
BN 0 Illllln.........k»,*,,,v,
0 5 10 15 20 25 30 35 40 75035 10 15 20 25 30
(¢) Route Length (Edge) (d) Distance (km)
-2 = .
2‘10 . 2‘10 1
F R E10° -
£107 ] .o
£ b £10° .o
-
107 - 107 ese
10° 10! 10 10° 10° 10"

(e) Duration(minute) (f) Frequency

Fig. 3. Statistic descriptions: (a) volume over time; (b) vol- ume over sta-
tions; (c) route length (#edges); (d) nearest station; (e) duration; (f) near-
est station.

TABLE 1

ETC Transaction Description
Field Value
Entering/Exit Toll Station Humen Station
Entering/Exit Time 2016-07-01 13:00:01
Vehicle Id F37551D4GU
Vehicle Type Car/Bus/Truck
Weight 1500 kg

Number of Daily Transactions: 4 millions
Number of Daily Vehicles: 2 millions

weight. Such a transaction was generated when a vehicle
enters and exits the highway network with both ETC cards
or cash. On average, there are more than 4 million transac-
tions generated every day from 2 million vehicles.

3.3 Statistic Description

Fig. 3(a) plots the average traffic volume in a day. It shows
there are two peak hours (i.e., 10 am and 6 pm), which
potentially make prediction challenging due to uncertainty
(e.g., route choice, traffic jam, etc) introduced by high traffic
volume. Fig. 3(b) depicts the daily transaction volume of all
the toll stations, where 25 percent of the stations contribute
75 percent of the transactions. It suggests the major number
of vehicles enter the highway from a limited number of sta-
tions, indicating prediction related to unpopular stations
may suffer from a lack of historical and real-time data.

Fig. 3(c) describes the route length of the trip in terms of
the number of edges. Since we do not know the actual route of
trips, the statistic result is based on the shortest route assump-
tion. We find only 18 percent of the trips are between the adja-
cent stations with only one edge. Fig. 3(d) shows the distance

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022
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between a station to its nearest station. It shows 78 percent of
the nearest stations are within 1 km of each other, which
reveals the very dense spatial distribution of stations.

We further investigate how a vehicle moves on high-
ways. Fig. 3(e) plots the duration of vehicles on highways.
We found most vehicles only spend 7 to 10 minutes on a
single trip. This is caused by the heavy volumes of inner-
city mobility. Fig. 3(f) shows the frequency of vehicles
using highways in one month. It shows most vehicles only
use highways once a month, which implies the functional-
ity of the local roads still dominates regular mobility. It is
dramatically different from the mobility patterns in other
countries such as the U.S. that people heavily rely on high-
ways on daily commuting.

4 VEMo DESIGN

4.1 Framework
Fig. 4 shows the framework of our system, which consists of
two parts: offline learning and online prediction.

In offline learning, all the data come from three data
sources including the road map, historical ETC transactions,
and context data. In the feature extraction, we divide all the
features into three categories, which are individual features,
crowd features, and context features. By fitting these fea-
tures into the learner, we train three predictors for destina-
tions, routes, and speeds. By combining these predictors
together, we predict the real-time locations of vehicles. In
the next three subsections, we introduce three predictors for
destinations, routes, and speeds from a feature perspective
respectively, and then unify them together with a prediction
model based on Mondrian Forest.

4.2 Destination Predictor

Destination prediction has been intensively studied in the
past few years [18], [19]. The existing approaches for the vehi-
cle destination prediction mainly rely on transition probabili-
ties between different locations through learning historical
trajectories using various Markov chain based models [20],
[21]. One of the key prerequisites is that there should be
enough historical data of individuals to learn the transition
probabilities. However, in our context, most vehicles only
have limited historical data (as we discussed in Section 2),
which makes it hard to directly apply the Markov chain based
models. To address this issue, we explore more individual
features, crowd features, and context features.

Individual Features. We list several individual features:

e  Historical Destinations: As shown in Fig. 1(a), the mobil-
ity patterns of most individuals in terms of

Authorized licensed use limited to: Florida State University. Downloaded on July 29,2023 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.
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Fig. 5. Destination predictor features: (a) destination vari- ance; (b)
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destinations are relatively stable. Therefore, historical
destinations may largely represent their future
destinations.

e Time Factor: Considering the commuting pattern in
Fig. 1(a) with the entropy equals to 1, by introducing
the entering time, the uncertainty of destinations is
reduced. We use half-hour time windows to split
one day into 48-time slots.

o  Vehicle Type:It has three values: cars, buses, and trucks.
Intuitively, the trucks most probably go to areas with
high cargo demand (e.g., industry parks) and buses
often go to areas with a dense population (e.g., com-
mercial districts or transportation hubs). Fig. 5(a)
shows the proportion of different vehicle types in dif-
ferent types of areas. We select three exemplary areas
and calculate the proportion of different types of
vehicles whose destinations are in the area. We found
only a few trucks go to the commercial areas; cars and
buses contribute major volume in the commercial and
transportation hub areas, respectively.

Crowd Features. The individual vehicle’s historical data
can be very sparse (as we suggested in Section 2). we try to
use the crowd destinations to provide complementary infor-
mation. Fig. 5(b) shows the possible destinations from the
same origins by half of all the vehicles. We found almost
50 percent of vehicles go to at most 10 destinations. It indi-
cates lots of vehicles from the same origins share similar
destinations, which can be used to infer the destination of a
vehicle without any historical destination data.

Context Features. We further consider other context fea-
tures, i.e., the day of the week, weekday/weekend, holi-
days, that may have impacts on the destination choices. We
choose the 10 most popular destinations for each origin and
compare the rank of these destinations on a regular day
with that in other days using the measurement of Normal-
ized Discounted Cumulative Gain NDCG [22]. The lower
the NDCG, the lower similarity of the destination choices.
Fig. 5(c) shows that the measurement between weekdays,
weekends, and holidays. The holiday has very different des-
tination choices compared to other days. In the early morn-
ing and the late afternoon of weekends, the NDCG is also
lower than that of weekdays. It suggests these factors have
an impact on the choice of destinations.
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4.3 Historical Route and Speed Learning

As we discuss in Section 2, the reason that previous works
are not feasible in our setting is that the historical routes
and speeds of individual vehicles cannot be observed by the
ETC system. In order to learn the mobility of individual
vehicles, we propose a joint learning approach to obtain the
historical routes and speeds of vehicles simultaneously,
which are utilized as training data to model the route
choices and real-time speeds in Sections 4.4 and 4.5.

Several studies [17], [23] have been done to investigate
the relationship between the travel routes and real-time
speeds, which found the route of vehicles can be inferred
with only speeds information. This finding indicates the
strong correlation between the routes and speeds, which
inspires us to learn the routes and speeds simultaneously.

To achieve this, we first present a few preliminaries.

e Time: we divide a day of 24 hours into K time slots
(t) (i.e., each time slot is equal to 10 minutes).

e Location: we split the highway road networks into A/
equal length road segments(s) (i.e., 1 km).

e Speed: we discretize the speed into H discrete inte-
ger speed(v) by the smallest unit of 1 km/h (e.g., if
the speed limit is 120 km/h, then we have 121 differ-
ent values between 0 and 120 km/h).

In this way, the states of vehicles in each trip on highways
can be presented as a sequence of states (¢, s, v) between the
origin and the destination. As an example of the trip 7 in Fig. 6,
the vehicle enters the highway from the road segment s, at the
time ¢, and exits the highway from the road segment s,, at the
time ¢,,. It is worth mentioning that, in other trips, vehicles
can be at the same location as the same time as the trip 1.

Then our objective is to infer the most likely state sequence
of each trip. The solution is motivated by the key observation
that at the same time multiple vehicles are traveling on the
same road segments and their real-time speeds can be consid-
ered as samples of the speed distribution. The following
insights reveal the characteristics of the distribution.

e Speeds distribution on the road segment: By analyzing the
sample GPS trajectories, we observe that speeds of
vehicles on the same road segment follow a normal dis-
tribution, which is also validated in other contexts [24].

e  Speed STD distribution: Moreover, as shown in Fig. 3,
we also observe strong normality of the speed.

Since both insights show the normality, to quantify them,
we utilize the Kolmogorov-Smirnov test to test the normal-
ity. Specifically, the states of different trips within the same
time and location are grouped as samples to test the normal-
ity of speed on the road segments. For the speed STD

Authorized licensed use limited to: Florida State University. Downloaded on July 29,2023 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.
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distribution insight, it is measured as suggested in Section 2.
Then all the STDs are considered as samples to test the
normality.

Given the normality test of both the speed distribution in
each road segment and speed STD distribution of all the
vehicles, our problem can be transformed into an optimiza-
tion problem to find the best state sequence combination for
the maximization of the number of the acceptance of nor-
mality tests. Suppose we have N trips with J vehicles, we
formulate the problem as following;:

N J
maximize Z 14 (Rnorm(sc)) + Z 14 (Snorm(sc)),
, - -

1)

where sc is the combination of the state sequences of differ-
ent trips, Rnorm is a test function to check the normality of
the speed distributions, Snorm is a test function to check
the normality of the speed STD distribution. 1 is an indica-
tor function of the test acceptance.

A straightforward approach to solve the optimization
problem is to search for all the possible state sequence com-
binations. For each trip, the possible state sequence is K x
M x H. Then the total search space is O(N**M*H) which is
time-consuming to search. To reduce the search space, we
introduce several simple but effective heuristics to guide
the search.

e State sequences constrained by routes: Shown in
Fig. 2, there is a limited number of routes between
origins and destinations, which naturally reduces
the search space of possible location sequences.

e Spatial smoothness: Constrained by the structure of
the road network and the speed limit, the next loca-
tion of the vehicle can be the reachable road seg-
ments under the speed limit. (e.g., suppose the
speed limit is 120 km/h, the next location in 5
minutes can only be the road segments within a
range of 5 minutesx 120 km/h = 10 km.)

Given these heuristics, we perform a standard search algo-
rithm (e.g., DFS) to find the best combination of the state
sequence. Then the historical routes can be obtained b
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concatenating the locations in each trip and speeds can be
directly obtained from the state sequence.

4.4 Route Predictor
Similar to the destination prediction, we study the features
from three perspectives: individual features, crowd fea-
tures, and context features.

Individual Features. We utilize the following features for
the route prediction at the individual level.

e  Historical Routes: Based on a previous study, people are
more reluctant to change their regular routes if they
have more experience with these routes [2], which
indicates historical routes are most likely to be their
future routes given the same origin and destination.

e Driving Experience: Empirically, experienced people
are good at finding the best routes [2]. We quantify
the experience by two factors: (i) the frequency of
driving on highways, which can be obtained from
historical ETC transactions; (ii) the saved travel time
compared to the average travel time, which can also
be computed from historical data.

e  Time Factor: Empirically, people generally have their
own estimations about the route traffic at a different
time, e.g., taking a detour during the rush hour to
avoid the traffic. It affects their future route choices.

Crowd Features. For those people who have no or only
limited historical data, we incorporate the route choices of
crowds to infer their route choice. Specifically, we use the
probability of historical crowds’ routes between particular
origin/destination at a certain time.

Context Features. People’s route choices are affected by
the real-time context [25], i.e., the day of the week and real-
time traffic speed, which can be estimated with ETC trans-
actions in the recent past.

4.5 Speed Predictor
Our key idea of speed prediction is to learn the relation
between individual driving speed and other features (e.g.,
crowd speed) in order to predict the real-time speed given
all these features. We introduce our features on the individ-
ual, crowd, and context level.

Individual Features. Since the driving speed is essentially
based on people’s behaviors, we define a set of individual
vehicle’s features.

e  Historical Driving Speed: As shown in Fig. 1(c), the
driving speed is relatively stable for a particular per-
son. We use their average speeds of historical trips
to reflect their general driving speed.

o  Vehicle Type: This feature reflects the vehicle’s type
(i.e., cars, buses, trucks). Intuitively, the driving
speed of cars should be higher than trucks and
buses. Fig. 7(a) also validates this intuition.

e Time Factor: Fig. 7(a) shows that the driving speed
varies at different times of a day, which is mainly
due to the different traffic conditions.

Crowd Features. People may behave differently under dif-
ferent traffic conditions. Instead of studying the detailed
behavior patterns of individuals, which may have many fac-
tors to discuss, we directly investigate the correlation
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between the individual speed and the crowd speed. Fig. 7(c)
shows the Pearson correlation of the individual speed and
crowd traffic speed. More than 80 percent of vehicles have at
least a 0.89 correlation coefficient with the crowd traffic
speed. Motivated by the strong correlation, the crowd traffic
speed is an important feature to estimate the individual driv-
ing speeds on specific edges. Therefore, we extract the fea-
tures of the vehicle speed samples, which are incorporated to
estimate the crowd traffic speed. Instead of using the average
crowd traffic speed (which may cause an estimation bias),
we consider the statistic values of the crowd traffic speed dis-
tribution, including minimum, lower fourth, median, upper
fourth, and maximum of the samples. We rely on the crowd
features to learn how the driver would react under different
situations, in order to predict the real-time speed.

Context Features. Besides the vehicle-related features,
we also consider other factors that may have impacts on
the driving speed, including weather and weekday/week-
end. As shown in Fig. 7(b), the speed is decreased by 10
percent at most on a rainy day and increased by 5 percent
on weekend. This is reasonable because people tend to
drive slower when raining and fewer people use high-
ways to work on the weekend, which makes the highways
less congested.

4.6 Learning With Mondrian Forest

Mondrian forests [26] is an online random forest model
using Mondrian processes to construct ensembles of deci-
sion trees. Compared to offline or online random forest [26],
it provides the ability to process online data and online
updates faster and more accurately. Compared with other
algorithms, the Mondrian forests model has the following
advantages:

e It is more robust to heterogeneous features. In our
data input, we have both numerical variables (i.e.,
speed) and categorical values (i.e., vehicle type,
weather, weekday/weekend). These variables can
be input into the model directly without conversion
or normalization.

e It provides self-check on the importance of the fea-
tures during the training stage. For example, such as
weather conditions and holidays, these variables
would only have high importance under certain con-
ditions with a low frequency.

e Compared to other neural-based models (e.g., deep
neural network), the results are more explainable
because of the internally used decision tree [27].

For different tasks, we fit all the extracted features into
Mondrian forests and learn three predictors to work collab-
oratively on the real-time location prediction, which is illus-
trated in Section 4.7. More importantly, our system is
flexible with other machine learning methods. The more
important contribution is the analysis process and to find
effective features.

4.7 Put Them All Together

In the previous sections, we have conducted an analysis of
the three key tasks: destination prediction, route infer-
ence, and speed estimation. Based on multiple extracted

features, we learn three Ipreclictors d-predictor, r-predictor,
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s-predictor for each of the tasks, perceptively. The proce-
dure of real-time location prediction is described in Algo-
rithm 1. As a vehicle enters the system when it is detected
in the entrance of the highway, we first predict its destina-
tion with d-predictor. Based on the entrance and the pre-
dicted destination, we infer its potential route with r-
predictor. Finally, we continuously predict its speed given
the real-time context inputs and the pre-trained s-predictor
before it leaves the highway. The speed is then trans-
formed as the distance in every equal time interval and
mapped into the real-time location.

Algorithm 1. Real-Time Location Prediction

Input: d-predictor: the destination predictor,
r-predictor: the route predictor,
s-predictor: the speed predictor,
entrance: the entering toll station,
interval: the updating time interval
to: the entering time.

Output: real-time locations

. destination < d-predictor given entrance
: route «— r-predictor given destination

: distance =0

while distance < route.length do

speed «— s-predictor at t;

distance += speed X interval

location «+— match distance to route

end

PN T RN

4.8 Feedback Updating

We further improve our system with online updating mech-
anisms. Three types of real-time feedback can be directly
observed in our system, including Wrong destination, Early
Arrival, and Late Arrival.

o  Wrong Destination: A vehicle leaves the highways
from a toll station other than the predicted one, i.e.,
d-predictor is wrong.

e Early Arrival: A vehicle leaves the highways earlier
than predicted. It could be a wrong prediction in
either the route, the speed, or both.

e Late Arrival: A vehicle arrives at the exit station later
than expected. Similarly, it could be a wrong predic-
tion in either the route, the speed, or both.

Instead of remaining the system unchangeable, we
make use of these three types of feedback to provide online
updating ability for the system’s self-awareness. In partic-
ular, from wrong destinations, we directly utilize the
online training mechanism of the Mondrian forests by
inputting the data to update the d-predictor. For early
arrival and late arrival, it is more complex since it involves
both r-predictor and s-predictor. In general, there are three
possible cases: only r-predictor, only s-predictor, or both r-
predictor and s-predictor. We take a brute-force strategy by
taking the new data into three cases. In each case, we re-
conduct the location prediction process and calculate the
arrival time error compared to the actual arrival time. The
case with minimal error is selected as our updating
mechanism.
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5 EVALUATION

5.1 Evaluation Methodology

Ground Truth. We introduce another dataset with detailed
GPS trajectories to obtain the ground truth of vehicle loca-
tions in Guangdong. It provides real-time locations of 114
thousand vehicles including 75 percent cars, 13 percent
buses, and 12 percent trucks. These vehicles upload their
real-time locations every 10 to 30 seconds. The detailed data
format is presented in Table 2.

For each vehicle, we first apply a map matching algo-
rithm [28] to map trajectories onto the road network. Then
only the trajectories on highways are remained to obtain
entering toll stations, exit toll stations, routes, and real-time
locations, which occupy 20 percent of the vehicles in our
dataset.

Evaluation Metrics. For each component, we define the
evaluation metrics as follows:

e Destination and Route prediction

H#prediction orreet

accuracy = x 100%, (2)

F#predictiony

where #prediction e is the number of corrected
prediction and #prediction, is the total number.
e Speed Prediction

‘ Speedpredict - Speedactunl |
Sp eedactual

; 3

accuracy =1 —

where speed,cqict is the predicted speed and
speedgeryar is the ground truth.

e Real-Time Location Prediction: we quantify the loca-
tion accuracy by measuring the percentage of pre-
dicted locations within the accuracy threshold (i.e.,
100 meters) of the ground truth considering the GPS
errors every 15 seconds (i.e., the average uploading
time interval of data in ground truth) [29]. The accu-
racy formula is defined as

H#predictioncorrect

accuracy = x 100%. 4)

#predictiong

Baselines for Intermediate Results. For the individual pre-
diction components, i.e. predictions for destinations,
routes, and speeds, since we utilize a unified algorithm for
all of them, we evaluate them from the perspective of a
learning model by comparing it with the other learning
models. The selected learning models are presented as fol-
lows, and each of them is representative of a group of meth-
ods with similar bases:

e  Empirical Estimation (Emp): The baseline represents
the prediction based on naive empirical knowledge.
For the destination and route prediction, we consider
the most frequently visited destinations and routes.
For speed prediction, we utilize their historical aver-
age speed.

e  Bayesian Network (Bayes) [27]: Bayesian network is a
typical graph-based algorithm, which is representa-
tive of the probability-based models.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022

TABLE 2
Ground Truth Format
Field Value Field Value
Id POSF51B4GU Type Car/Bus/Truck
Longitude 113.402904 Latitude 23.167894
Time 2016-06-01 00:00:34

e  Neural Network (Neural) [27]: Neural network repre-
sents the models that focus on learning the linear or
non-linear combination between features and targets.

Baselines for End-to-End Results. For the overall perfor-

mance of the real-time locations, we choose the baselines
based on two principles: (i) static infrastructure based meth-
ods; (ii) mobile sensor based methods.

e  STrack is an approach to detect vehicular locations by
cameras on the roads. Wherever a vehicle is captured
by a camera, we assume its location is known to the
system. Considering cameras may not accurately
detect all the vehicles because of shadows, rain, or
detection faults, our baseline is considered as an upper
bound. Because these cameras are generally set to
detect motoring offenses without open location infor-
mation, we assume a given percentage of edges have
been installed with cameras. For the location estima-
tion of vehicles between cameras, we assume they are
uniformly distributed on the roads between cameras.

e CTrack [30]: This baseline aims to track vehicles
based on cellular networks by periodical communi-
cations between onboard cellphones and cell tow-
ers. Based on the locations of cell towers, we infer
the locations of the cellphones (thus vehicles). The
cell tower locations we use are located in Shenzhen
City, where the ETC system is spread with 79 toll
stations. We implement CTrack by assuming each
vehicle has an onboard cellphone to interact with
cell towers and follow the trajectory mapping
algorithm [30].

Impacts of Factors. We evaluate several factors to show the

impacts on the performance of VeMo,

o  Weather: Weather condition is a factor that affects the
driving behavior such as driving speed. We evaluate
the accuracy in both regular day and extreme weather
day (e.g., heavy rain).

o  Accuracy threshold: Given different accuracy thresh-
old to declare the accuracy, the performance may be
varied. We choose several threshold values to show
the accuracy.

e Time factors: The performance may vary at different
times. We evaluate it on weekdays, weekends, and
holidays.

e  Spatial factors: Different areas have different densities
of toll stations and different volumes of traffic. We
evaluate VeMo in different areas in Guangdong, i.e.,
both the downtown areas and suburban areas.

e  Vehicle Types: Different types of vehicles may have
different challenges of prediction. We evaluate it by
applying VeMo on different types of vehicles, i.e.,
car, bus, truck.
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Fig. 8. Comparison to baselines: (a) destination prediction; (b) Route
prediction; (c) Speed prediction; (d) location pre- diction.)

5.2 Evaluation Results
5.2.1 Real-Time Edge-Cloud Design

Since most of the applications built on our system require
real-time responses, it is necessary to have real-time cloud
components. Even it is feasible to conduct prediction in a
powerful server, however, it is challenging to update the
model in the cloud in real time. Our solution is to combine
both the cloud (i.e., center servers) and the edges (i.e., com-
puter systems in the toll stations).

Cloud. All the data is stored in the cloud system for secu-
rity issues. As the new data collected in the edges, the data is
transmitted to the cloud through Ethernet. All the trained
models are also stored in the cloud to distribute to the edges.

Edge. Given the truth that a vehicle only appears in a few
toll stations, we could pre-distribute the trained individual
models to top frequent edges according to historical
records. Considering the online updating feature of our
model, we update the model directly in the edge devices
and transmit it back to the cloud. Generally, a vehicle leav-
ing the toll station would not get back to the highways
immediately. There is enough time to transmit the model to
the cloud.

5.2.2 Compatrison to Baselines

We evaluate both individual predictors and overall location
predictor. For each of the individual components, we evalu-
ate it by comparing it to the three baselines, respectively.
Then three predictors work collaboratively to predict the
locations of vehicles.

(i) Destination Prediction. Fig. 8(a) plots the destination
prediction result, where VeMo has better performance than
other three models with an average gain of 11 percent. Bayes
performs better than Neural, which means the probability
relationship is better to model the destination prediction
problems. Moreover, Emp achieves 60 percent accuracy dur-
ing the day time, which suggests the destination choices are
relatively stable.

(ii) Route Prediction. Fig. 8(b) presents the result of route
prediction. Compared to the other baselines, VeMo
achieves an average performance gain of 6 percent. It sug-
gests the performance does not vary much in terms of
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Fig. 9. Impact factors: (a) % of infrastructure; (b) accuracy threshold; (c)
weather impact; (d) time impact; (e) spatial impact; (f) type impact.

different learning models. Emp has a similar performance
in the morning but poor performance during the daytime,
which means the route choices are flexible when there is
heavy traffic.

(iii) Speed Prediction. Fig. 8(c) shows the result of speed
prediction. VeMo has an average performance gain of 17
percent. During the day time, the accuracy is higher,
because the heavy traffic constrains the speed variation.
Emp shows poorer performance during the daytime because
the empirical knowledge cannot obtain the real-time traffic
information. Moreover, Neural is better than Bayes, which
suggests the advantage of linear combination based method
on the speed prediction tasks.

(iv) Location Prediction. We combine individual predictors
together to evaluate the real-time locations of vehicles. Since
the route has dominating impacts on the locations of
vehicles, to show more sophisticated evaluations, we test
the accuracy of both (i) the vehicles (VeMo-a) and (ii) those
vehicles with correctly predicted routes (VeMo-r). Then we
compare them with STrack and CTrack. Fig. 8(d) plots the
evaluation results. Considering the vehicles with correctly
predicted routes, VeMo (shown as VeMo-r) has the average
accuracy about 82 percent. The reason that VeMo has simi-
lar accuracy as CTrack is that the baseline experiment is con-
ducted inner city, which has a dense cell tower distribution.
Even including all the vehicles (shown as VeMo-a), VeMo
achieves an average accuracy of 70 percent, which is still
at the same level of STrack, which means VeMo can be an
alternative solution of STrack without introducing extra
infrastructures.

We also evaluate the impacts of coverage percentage of
STrack, and show the result in Fig. 9(a). After the coverage
percentage increases to 50 percent, STrack achieves better
performance. Since it is expensive to provide such high
infrastructure coverage, VeMo outperforms STrack in terms
of feasibility.
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TABLE 3
Individual Component Efficiency

Relative Improvement Emp Bayes Neural
Destination —56% +9% +23%
Route —-39% +8% +19%
Speed —53% +14% +11%
5.2.3 Impacts of Factors

Five factors are evaluated including accuracy threshold,
weather, time factors, spatial factors and vehicle types. The
metrics are the same as the Equation (4).

(i) Impacts of Threshold. We choose accuracy threshold
including 25, 50, 100 meters to show how the accuracy
changes in Fig. 9(b). The lower the line, the better the accu-
racy. We found higher thresholds lead to higher accuracy.
The 100-meter threshold has higher accuracy while 25-meter
and 100-meter thresholds have obvious lower accuracy.

(ii) Impacts of Weather. We select one day with heavy rain
and compare it to a regular day in Fig. 9(c). We surpris-
ingly found the rain even increase the prediction accuracy.
Since people tend to drive slowly in the heavy rain, the
individual speed is reduced and there is a smaller range of
speed variance on the way, which benefits the prediction
accuracy.

(iii) Impacts of Time Factors. Fig. 9(d) shows the perfor-
mance of VeMo in weekday, weekend and holiday. The
accuracy in weekday and weekend is similar. Moreover, the
performance of the holiday is different than other days,
especially during the morning. This is because the destina-
tion choices are less predictable on the holidays when peo-
ple generally do not follow regular mobility patterns.

(iv) Impacts of Spatial Factors. We investigate the perfor-
mance of VeMo in both downtown areas and suburb areas
and show the result in Fig. 9(e). In the early morning, two
areas have similar accuracy. During the daytime starting at
8 am, the performance in the downtown areas decreases.
This is because the road structure is more complex in those
areas, which makes the route prediction less accurate.

(v) Impacts of Vehicle Types. Fig. 9(f) shows the perfor-
mance of different types of vehicles. Trucks have the low-
est accuracy because they have longer travel distances and
irregular mobility patterns (e.g., one truck may travel
between different areas for cargo services as long as there
are demands of cargo transportation). Buses have higher
accuracy because they have the most regular mobility pat-
terns compared to trucks and cars. Cars’ accuracy decreases
during the daytime because they generally travel inner cities,
which is impacted by both traffic conditions and road
structures.

5.3 Overhead
5.3.1 Overall Efficiency

We implement VeMo on a server with Intel Xeon E5-1660
3.00GHz CPU and 32 GB RAM in 16 threads. After loading
all the data, the training process takes 450 seconds. The
speed prediction is 500 times per thread every second on
average, which can satisfy the real-time need of 4 million
daily transactions.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 7, JULY 2022

5.3.2 Sub-Components Efficiency

We compare the efficiency of the individual components
with three baselines. The result is summarized in Table 3,
where each cell is the relative improvement (i.e., prediction
speed) compared with each baseline. For the destination
prediction, Emp has the best efficiency. The reason is that
Emp is based on the most frequent history, which can be
implemented with nearly constant time by a HashTable
data structure. Compared with Bayes and Neural, our
method performs with 9 and 23 percent faster speed, respec-
tively. A similar result is found in the route prediction. As
for the speed prediction, Emp is also the fastest because Emp
is implemented by the historical average. Compared with
Bayes and Neural, our method outperforms them by 14 and
11 percent, respectively. Overall, our method has a lower
prediction speed than Emp but provides much better accu-
racy. Compared with Bayes and Neural, our method outper-
forms them both in accuracy and efficiency.

6 APPLICATION

6.1 Overview

Based on VeMo's output, we design a novel application to
detect highway anomaly events. Traditionally, there are two
approaches to detect highway anomalies for emergency
responses: (i) administrators dispatch vehicles to manually
check each road segment [31]; (ii) nearby drivers report anom-
alies by chance (e.g., call 911). However, it is always desirable
to have a system automatically report the event without rely-
ing on human participation that is not predictable. To this
end, we aim to detect the highway anomaly events automati-
cally based on our infrastructure (i.e., the ETC system) and
mobility model (i.e., VeMo). Specifically, we answer two
questions: (i) whether there is an anomaly event on highways;
(i) if so, where the anomaly event happens. Our key idea is
that (i) the anomaly event would increase the travel time that
leads to travel delay of many vehicles; (ii) different vehicles
would be impacted given different locations of the anomaly
event. We obtained the highway anomaly events from the
online traffic alarm reports of Shenzhen Transportation
Administration. In total, we collected 21 highway anomaly
events in January 2016, including 20 accidents and 1 road
maintenance event.

6.2 Anomaly Event Detection

One of the key impacts of the anomaly event on highways is
the travel delay. For example, a vehicle passing through
anomaly areas would have a longer travel time to its exit
station compared to regular traffic conditions. If many
vehicles encounter the same issue, we may conclude that
there is a potential anomaly event on highways. This gives
us an opportunity that by analyzing vehicular travel time
on highways (i.e., travel time between entering and exiting
stations), we could know if there is an ongoing anomaly
event happening. Further, each vehicle exiting highways
brings the latest updates about the anomaly event whether
it is still lasting.

To show the travel time difference under regular condi-
tions and anomaly conditions, we select a traffic accident as
an exemplary scenario. Fig. 10(a) shows the location of the
accidents at 6:50 am caused by the crash between a car and
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Fig. 10. Application scenario: (a) event location; (b) travel time; (c) anomaly location inference.

a bus. We analyze the travel time between station A and sta-
tion B to demonstrate the impact of the accident in Fig. 10
(b). We found the travel time dramatically increases from 7
am. At the worst time near 7:30 am, the travel time increases
to 1 hour. We also plot the travel time of the same time
period in the previous two days and the next two days. We
found the travel time is stable near 10 minutes. In summary,
Fig. 10(b) shows a significantly different travel time obser-
vation when accidents happen.

Based on the observation, we design a simple and effec-
tive rule to detect the anomaly event. Empirically, we imple-
ment it with a sliding window of 6 (i.e., 15 minutes). When
each vehicle exit an ETC station, we compare the average
travel time with the historical average travel time of the
same time window. If the travel time is « (i.e., 2) times than
the historical average, we claim there is an anomaly event
happening on highways. Note that  and « are tunable in
different contexts. Considering the alarm reports may not
cover all the anomaly events, we utilize recall as our perfor-
mance metric. In our experiment, we successfully detect 18
anomaly events, which counts for recall of 85.7 percent.

6.3 Anomaly Location Inference

After detecting an anomaly event, we next infer where the
anomaly event actually happens. For each vehicle on high-
ways, our system VeMo outputs its real-time locations,
which can be presented as a spatiotemporal sequence (i.e.,
< 1o, 80 >,..., < tn, S, >)). We demonstrate the basic idea
in Fig. 10(c). Suppose there is an anomaly event happening
on the location s; between time ¢; and ¢;. If vehicle A did not
pass s; before ¢;, then its travel time would be impacted. In
contrast, vehicle B was not impacted. Given the observations
from ETC stations, we could obtain which vehicles’ travel
time is impacted. Then our goal is to find the location s; that
maximizes the probability of our observations. Mathemati-
cally, we aim to optimize the objective function

N
argmin | Z I(vi]s,t) — Obser|, ©)

seSteT i
where S is the set of locations, T is the time slots, IV is the
number of observed vehicles, v; is the i, vehicle, Obser is
the number of observed impacted vehicles, I(v;|s,t) is the
indicator function representing whether v; is impacted
defined in Eq. (6).

‘ 1 if v; passes s before VeMo(v;,t)
I(vils,t) = {0 otherwise ’ ©)

where VeMo(v;, ) is the output of VeMo that represents the
location of v; at time ¢.

The solution is straightforward that we apply a breadth-
first search algorithm to iterate all the possible s and ¢ to
select the ones with minimized Eq. (5). To improve the com-
puting efficiency, we prune the search space by two strate-
gies: (i) considering impacted the highways between all the
possible stations, we consider the common road segment of
them, which prunes the space of S; (ii) given the anomaly
event first detected time, we only consider the time period
of 15 minutes before, which prunes the space of 7. In our
experiment, considering the accurate time missing in the
alarm reports, we only evaluate the location inference accu-
racy as the absolute distance between the inference and the
actual location. The final result shows an average error of
286.5 meters, which demonstrates the effectiveness of our
inference result. Combining it with the real-time anomaly
event detection, the traffic administration could dispatch
staff to the anomaly location from the nearest entering sta-
tions as early as possible.

6.4 Comparison With Group-Level Approaches
There are also other works detecting anomaly events by two
approaches: (i) GPS-based approaches [32], [33]; (ii) group-
level travel time based approaches [34], [35]. For GPS-based
approaches, if a number of vehicles get stuck on the same
road, there may be an anomaly event. However, they require
a large number of participants with real-time GPS collection
to provide enough spatial coverage, which does not apply to
our scenario. For travel time based approaches, they can
detect the happening of anomaly events if a number of vehi-
cles’ travel time are longer than regular time. However, they
cannot provide fine-grained anomaly location inference
while only coarse-grained road-level locations. In contrast,
our method does not require GPS collection, which makes it
easy to deploy. By modeling the mobility of each individual
vehicle, we can infer where anomaly events actually happen,
which can help the authority quickly reach these locations
from the nearest entrances.

7 DISCUSSIONS

Lessons Learned. We list several lessons we learned in our
study as follows.

e vehicle’s mobility pattern in terms of destinations
can be identified as three major groups, single-time
travel vehicles, commuting vehicles and multi-desti-
nation vehicles;
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e the overall distributions of both speed STDs cross
vehicles and speeds on the road segment follow
strong normality, which can be considered as con-
strains to infer the routes and speeds simultaneously;

e individual highway speeds vary based on driving
behaviors but are highly correlated with generic traf-
fic speeds. The overall derivation of individual
speeds follows a Gaussian-like distribution;

e anomaly events are detectable by the travel time of
vehicles given the stable historical travel time in reg-
ular situations. The event locations can be inferred
by the real-time locations of vehicles considering
which vehicles are impacted.

Why ETC Data Only? In this work, we focus on ETC data
only because ETC systems provide a full penetration rate
transparently based on data already collected. Moreover,
the ETC based toll system is universal and exists almost
everywhere even in developing countries where satellite
images or mobile infrastructure is not well penetrated. If
combined with other datasets even with small scale, e.g.,
GPS data from highway service vehicles or traffic camera
data, we may be able to further improve our accuracy.

Data Collection and Privacy Protection.The ETC data used
in our work have been anonymized, which is under the con-
sent agreement of users. In the agreement, the users are
notified that their data will be collected and used for analy-
ses to improve highway management. The GPS data we uti-
lized have been anonymized and collected by an insurance
company as a part of usage-based insurances for discounts
that their data would be used for research purposes under
users’ agreement. Further, the GPS data only cover the
period on highways, which do not expose users” informa-
tion such as home or work locations. All the data are col-
lected by an opt-out policy that users can ask to opt out
from the research-purpose data collection.

Generalization. Our approach is based on the highway
system context. According to the survey [36], [37], 48 major
countries and regions have toll roads which are managed
by similar ETC systems or manual toll collection, where we
envision our approach can be adapted in all these similar
systems. For the discovered insights, it reflects how humans
drive in general, which depends on the inherent driving
behaviors instead of a specific dataset. Further, all the fea-
tures we use in our approach can be found in other similar
contexts. For other contexts such as local vehicles, our sys-
tem can be potentially adapted to other infrastructures. For
example, if a local region is deployed with surveillance cam-
eras, vehicles could be detected by cameras, which can be an
analogy to our toll stations.

Limitations and Open Problems.

e Our system work in a controlled environment, i.e., a
highway system with both entering and existing
records. Therefore the same technique may not be
applied to local streets without toll booths to track
every vehicle enter or leave a street. In this case,
additional data, e.g., partial GPS, can be combined
with our solution for prediction. However, we
believe our solution can be generalized to stationary
sensors that can capture the vehicle’s passing such
as cameras.
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TABLE 4
Vehicular Mobility Survey
Aggregate Individual
Mobile  [44], [45], [46], [47] [48], [49], [501, [511, [52], [53]
Static [35], [38], [54], [55] Partial Penetration  Full Penetration

[301, [39], [56] Our work

e Even ETC systems only capture the vehicle twice, it
still has the privacy issue of exposing locations.
However, compared with GPS based solutions, it is a
better/low-cost privacy-reserved approach since
ETC data have already been collected as a manda-
tory process for billing; whereas other approaches
need new devices or dedicate data collection process
with potential continuous location collection.

e Our solution can help detect the anomaly events
when there are a certain number of vehicles have
abnormal travel time. But in this work, we focused
on the fundamental location prediction and did not
try to explicitly handle the anomalies, which would
be a good direction for our future work.

e  Our solution relies on the historical data of vehicles to
learn their driving behaviors. In the ETC system, we
found there is only 9 percent of the new vehicles with-
out any historical data after 10-day data accumula-
tion, which is a very small number of vehicles. For
those without historical data, we can only infer their
behaviors according to majority behaviors (i.e., crowd
features). It is still an interesting open problem.

8 RELATED WORK

We divide most related works into two major parts (shown
in the Table 4): mobile sensing based approaches and sta-
tionary sensing based approaches.

Static Infrastructure. Static infrastructures, e.g., traffic cam-
eras [38], cell towers [30], WiFi access point [39], are widely
used for vehicle mobility modeling. Some communication
related works are also studies based on the static infrastruc-
ture [40], [41], [42], [43]. Compared with existing work, our
approach makes use of the existing infrastructures to predict
vehicle mobility without extra cost. All the vehicles entering
the highways are detected, which does not require the instal-
lation of interaction apps. The requirement of only single
real-time observations, e.g., entrance to a highway, largely
increases the feasibility of our approach in the real world.
Some approaches such as cell phone networks may have the
potential to infer traffic conditions at low cost. But normally
the cellphone data are not available for highway administra-
tors. They can only use the data collected by themselves. Fur-
ther, the cell phone network cannot be narrowed down to
vehicular mobility since the driver and passage cannot be
distinguished from the cell phone data only, which may
introduce extra bias.

Mobile Infrastructure. Mobile infrastructures, i.e., smart-
phones and onboard devices, are extensively studied to
understand vehicular mobility. [39], [49], [57] use smart-
phones to track vehicles in real time. The inference on mobil-
ity is studied in detail by smartphone data [50]. [51]
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estimates the urban traffic using vehicular fleets with
onboard devices. [58] implements regular vehicle tracking
through commercial vehicles with onboard devices. Other
works [59], [60], [61] such as crowdsourcing information col-
lection and energy issues can also benefit from the mobile
infrastructures. However, these approaches are either lim-
ited by low penetration rates of apps [13] or focus on the
aggregated level [51], and typically raise privacy issues of
exposing vehicle GPS data [49].

Vehicular mobility on the highways is also studied in the
transportation community (i.e., the destination and speed
prediction [62], [63], [64], [65]). However, previous works
mainly focused on the aggregated traffic characteristics,
such as origin-destination matrix or traffic speed on the road
segments. Different from these works, our system aims at the
mobility model of individual vehicles, which requires a
microscope analysis of the vehicle mobility pattern.

9 CONCLUSION

In this work, we focus on vehicular mobility modeling on
large-scale highway systems. In particular, we motivate and
design a novel system called VeMo with three components
for the destination, route, and speed inference. Combining
them together, we infer the real-time locations of vehicles
on highways. More importantly, we implement and evalu-
ate VeMo based on the large-scale data in the Guangdong
highway network in China, utilizing a large-scale ETC sys-
tem with 773 stations and a large-scale vehicle fleet with
GPS data as ground truth. We advance state-of-the-art vehi-
cle mobility modeling approaches by some key lessons we
learned. Based on the modeling result, we implement a
real-world application to detect ongoing anomaly events on
highways. In the future, we look forward to investigating
personal driving behaviors and design coexistence strate-
gies in the scenario of heterogeneous vehicles including reg-
ular and autonomous vehicles.
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