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Polarized blazar X-rays imply particle 
acceleration in shocks

Most of the light from blazars, active galactic nuclei with jets of magnetized plasma 
that point nearly along the line of sight, is produced by high-energy particles, up to 
around 1 TeV. Although the jets are known to be ultimately powered by a supermassive 
black hole, how the particles are accelerated to such high energies has been an 
unanswered question. The process must be related to the magnetic field, which can be 
probed by observations of the polarization of light from the jets. Measurements of the 
radio to optical polarization—the only range available until now—probe extended 
regions of the jet containing particles that left the acceleration site days to years 
earlier1–3, and hence do not directly explore the acceleration mechanism, as could 
X-ray measurements. Here we report the detection of X-ray polarization from the 
blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree ΠX of 
around 10%, which is a factor of around 2 higher than the value at optical wavelengths, 
with a polarization angle parallel to the radio jet. This points to a shock front as the 
source of particle acceleration and also implies that the plasma becomes increasingly 
turbulent with distance from the shock.

In blazars whose lower-energy emission component peaks in the X-ray 
band, such as Mrk 501, synchrotron radiation is the dominant emission 
process from radio to X-rays. Radiation at longer wavelengths probably 
arises from larger regions in the jet, and hence multiwavelength stud-
ies probe spatial variations in the magnetic field structure and other 
physical properties in different locations4,5. A particularly important 
diagnostic is the degree of order of the magnetic field and its mean 
direction relative to the jet axis, which can be determined by measure-
ments of the linear polarization. For example, particle acceleration at 
a shock front should result in relatively high levels (tens of per cent) 
of X-ray linear polarization along a position angle that is parallel to 
the jet6. By contrast, more stochastic acceleration processes involv-
ing turbulence or plasma instabilities are expected to lead to weak 
polarization with random position angles. The optical, infrared and 
radio polarization probe the level of order and mean direction of the 
magnetic field in regions progressively farther from the site of particle 
acceleration. Simultaneous multiwavelength polarization from X-ray to  
radio, which is now achievable with the advent of the Imaging X-ray 
Polarimetry Explorer (IXPE7), can therefore provide a more complete 
picture of the emission region of a blazar jet than has previously been 
possible.

Variations in the flux of blazars at all wavebands, and in the linear 
polarization at radio to optical wavelengths, is largely stochastic in 
nature, which can be interpreted as the result of turbulence5,6,8,9. Mul-
tizone emission models, often involving a turbulent magnetic field, 
can reproduce a number of the observed characteristics of the variable 
linear polarization. In a turbulent region, roughly modelled as N cells, 
each with a uniform but randomly oriented field, we expect a mean 
degree of polarization of <Π> ≈ 75/√N, with the value of Π exhibiting 
variability on short timescales with a standard deviation of around 
0.5<Π> (ref. 5), as often observed10. For a turbulent field in the plasma 
crossing a shock front, particle acceleration should be most efficient in 
cells for which the magnetic field is nearly parallel to the shock normal; 

this bias leads to a higher value of Π and more pronounced variability 
at X-rays compared to lower frequencies5. The passage of turbulent 
cells through the emission region would also cause irregular variations, 
including some apparent rotations, in the polarization angle (ψ)8,11.

On the other hand, some of the observed radio and optical pat-
terns of polarization variability (for example, the above-mentioned ψ 
rotations) have been found to be inconsistent with purely stochastic 
processes12,13. This indicates that there is some coherent ordering of 
the magnetic field, for example, by compression or amplification by 
plasma processes in shocks14 or by the presence of a global, perhaps heli-
cal, magnetic field component15–17. In the commonly used single-zone 
model, the radiating particles are accelerated by an unspecified process 
to highly relativistic energies while being confined within a plasmoid 
with a partially ordered or helical magnetic field. The global magnetic 
field structure is expected to produce similar polarization patterns 
across frequencies, with little variability over time18. If the field is 
helical, ψ should align with the jet direction for most viewing angles15.  
In an alternative scenario, which includes shock acceleration, particles 
become energized over a limited volume, for example at a shock front, 
and then advect or diffuse away from that region4,6,19. In this process, 
the electrons lose energy to radiation, and so emit at progressively 
decreasing frequencies as they travel away from the acceleration site. 
We refer to this model as being ‘energy-stratified’. If the magnetic field 
is well ordered over the small volume of the acceleration region and 
becomes increasingly turbulent farther downstream, Π will decrease 
towards longer wavelengths, whereas ψ can vary with frequency if the 
mean direction of the magnetic field changes as the volume increases. 
In Mrk 501, we expect a progressively higher Π from radio to X-rays. 
A shock partially orders the magnetic field of the plasma crossing 
the shock, with the ordered field perpendicular to the shock normal. 
This causes the net polarization electric vector to be aligned with the 
jet. In a kink-instability-induced magnetic reconnection scenario, 
in which contiguous regions of oppositely directed magnetic field 
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come into contact, the jet flow is sheared because of transverse veloc-
ity gradients20. Shearing would stretch the magnetic field along the jet 
boundary, so that ψ is expected to be transverse to the jet direction. 
The simultaneous contribution of multiple current sheets will lead 
to an overall lower polarization than in a shock scenario, with similar 
levels of polarization across frequencies21. Our expectations from the 
different emission models are summarized in Table 1.

The first IXPE observation of Mrk 501 took place during the period 
8–10 March 2022 (100 ks, MJD 59646–59648) and was accompanied 
by observations across the electromagnetic spectrum from multiple 
observatories (Methods). IXPE measured a polarization degree of 
ΠX = 10 ± 2% and an electric vector position angle ψX = 134 ± 5ο (meas-
ured east of north) over the X-ray energy range of 2–8 keV. Contem-
poraneous millimetre-radio and optical observations (Extended Data 
Table 2) measured the degree of polarization ΠR = 1.5 ± 0.5% along a 

radio polarization angle ψR = 152 ± 10ο and ΠO = 4 ± 1% along an optical 
polarization angle ψO = 119 ± 9ο, respectively. A second IXPE obser-
vation took place during the period 26–28 March 2022 (86 ks, MJD 
59664–59667) yielding ΠX = 11 ± 2% along ψX = 115 ± 4ο. Simultaneously 
to the second observation, the optical polarization was measured as 
ΠO = 5 ± 1% along ψO = 117 ± 3ο(Extended Data Table 3). The two observed 
ψX are consistent within 3σ. The radio and optical ψ also lie within 3σ 
from each other and ψX. Moreover, the position angle of the jet of Mrk 
501 has been determined through Very Long Baseline Array imaging 
at 43 GHz to be 120 ± 12ο(ref. 22). This would suggest that, in both cases, 
radio-to-X-ray ψ is aligned with the jet axis within uncertainties (Fig. 1). 
We do not find evidence of polarization variability during either IXPE 
observation. Compared with the archival multiwavelength observa-
tions, we find the flux and polarization of Mrk 501 for both observations 
to be within one standard deviation of the median of the long-term 
light curves (Fig. 2). Blazars such as Mrk 501 are known to reach X-ray 
fluxes during outbursts as much as an order of magnitude higher. For 
the first IXPE observation the measured X-ray flux indicates an average 
activity state, whereas during the second observation we find evidence 
of a slightly elevated X-ray flux state. Compared with the historical 
maximum X-ray flux, during our observations Mrk 501 was a factor of 
three and a factor of two fainter, respectively.

The polarization measurements reported here reveal an increase in 
Π towards higher frequencies, with a degree of X-ray polarization that 
is more than twice the optical value (Fig. 3). This is in tension with the 
single-zone, turbulent multizone and magnetic reconnection models 
discussed above. There is no significant variability within the dura-
tion of the individual IXPE observations, in contrast to the predicted 
behaviour if turbulent cells moved in and out of the emission region 
on timescales of less than 2 days. On the other hand, the low (<10%) 
optical and X-ray polarization suggests significant disordering of the 
local magnetic field, possibly due to the presence of stationary turbu-
lence. The wavelength dependence and lack of variability of Π, plus the 
constancy of ψ and its alignment with the jet direction, supports the 
shock-accelerated energy-stratified electron population scenario4,19,21. 
Previous intensely sampled measurements of the polarization of Mrk 

Table 1 | Summary of model properties

Model Multiwavelength 
polarization

X-ray 
polarization 
variabilitya

X-ray 
polarization 
angle

Single zone Constantb Slow Any

Multizone Mildly chromatic High Any

Energy stratified 
(shock)

Strongly chromatic Slow Along the jet 
axis

Magnetic 
reconnection 
(kink instability)

Constant Moderate Perpendicular to 
the jet axis

Observed Strongly chromatic Slow Along the jet 
axis

 First, we find an increasing Π towards higher frequencies. Second, we do not find significant 
variability during the 2–3-day-long IXPE observations, and finally, we find a rough alignment 
of ψ with the jet axis from radio to X-rays. Therefore, a shock-accelerated, energy-stratified 
electron population model satisfies all our multiwavelength polarization observations. 
aSlow variability, a few days to a week; moderate variability, days; high variability, less than 1 day. 
bThere is a slight dependence on the slope of the emission spectrum.
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Fig. 1 | IXPE observations of Mrk 501. a, IXPE image of Mrk 501 during the  
8–10 March 2022 observation in the 2–8 keV band. The colour bar denotes the 
number of X-ray photons per pixel. b, Normalized Stokes Q/I and Stokes 
U/I parameters, where I is the total intensity, of both IXPE observations.  
The yellow and cyan shaded regions denote the uncertainty (68% confidence 

interval (CI)) in the polarization angle for the 8–10 March and 26–28 March 
observations, respectively. The dashed black line shows the jet direction and 
the magenta shaded area its uncertainty (68% CI). The dashed circles mark 
different levels of polarization degree, as labelled. Error bars denote the 68% CI.
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501 have found variations in ΠO by ±5% and in ψO by 50ο from one night 
to the next10. These apparently discrepant results can be reconciled if 
the turbulence of the plasma flowing through shocks in the jet is only 

intermittent, as has been found previously in other blazars23. One would 
also expect deviations of the observed ψ from the jet axis as one moves 
further away from the shock front into more turbulent regions of the 
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Fig. 2 | Multiwavelength and polarization archival observations of Mrk 501. 
a–d, Optical brightness (R-band, a), observed optical Π in per cent (b), observed 
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b, Comparison between the observed logarithm of the X-ray and optical Π ratio 
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energy-stratified models (grey shaded area) for both IXPE observations  
(black for 8–10 March and red for 26–28 March). The solid error bars show the 
ratio uncertainty from the IXPE measurements; the dotted error bars show the 
full uncertainty including optical uncertainties. In both panels, the error bars 
denote the 68% CI.
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jet. At present, the large ψ uncertainties prevent us from confirming 
such behaviour. Future observations of Mrk 501 or similar blazars will 
allow us to explore the jet’s multiwavelength polarization variability.  
A prediction of the energy-stratified model is that the X-ray polarization 
angle of blazars that have synchrotron spectral energy distribution 
peaks at X-ray frequencies, like Mrk 501, will exhibit rotations24.

Probing the magnetic environment of the site of energization of radi-
ating particles has supplied a new method for discriminating among 
particle acceleration mechanisms in astrophysical jets. The new X-ray 
polarization observations, in combination with the previously available 
radio and optical polarization diagnostics, have provided a discrimi-
nating set of evidence. Our results demonstrate how multiwavelength 
polarization uniquely probes the physical conditions in supermas-
sive black-hole systems. Future monitoring of the time variability of 
multiwavelength polarization with IXPE and other instruments will 
improve the definition of the range of physical conditions that occur 
in astrophysical jets.
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Methods

X-ray polarization observations
IXPE is a joint mission of the US National Aeronautics and Space Admin-
istration and the Italian Space Agency (Agenzia Spaziale Italiana). A 
description of the spacecraft and of the payload is given in ref. 7 and the 
detector units are described in ref. 25. Mrk 501 was observed with IXPE 
over an effective exposure time of 100 ks from 8 to 10 March 2022 (MJD 
59646–59648) and again from 26–28 March 2022 (MJD 59664–59666) 
for 86 ks. The exposure times were selected on the basis of the results of 
ref. 26, which determined that a 100 ks exposure would be sufficient to 
measure polarization in Mrk 501 in a blind survey. At the approximately 
30” angular resolution of IXPE, Mrk 501 is essentially a point source.

The IXPE raw (level-1) data were first reduced and corrected 
for instrumental polarization artifacts as well as boom and space-
craft motion to create level-2 event files (L2). The L2 data were then  
corrected for the energy scaling of the detector and bad aspect time 
intervals following standard procedures within the latest version of 
the ixpeobssim pipeline27,28. The IXPE L2 files contain the polarization 
information in the form of photon-by-photon Stokes parameters.  
All the quoted results refer to the average of the three identical IXPE 
detector units. We selected source photons using xpselect and a circu-
lar region with a radius of 60” centred on the source. The polarization 
degree and angle were determined in the 2–8 keV energy range using 
three different analysis techniques performed by five independent 
groups to ensure an unbiased estimation. Those techniques were a 
model-independent analysis, a spectropolarimetric fit in the X-ray 
spectral fitting package (XSPEC) and a maximum likelihood spec-
tropolarimetric fit implemented within the MULTINEST algorithm. 
Although the effect of the photoelectric absorption is negligible over 
the 2–8 keV energy range of IXPE, the spectropolarimetric fits included 
photoelectric absorption based on the measured Galactic neutral 
hydrogen column density toward Mrk 501 of NH = 1.69 × 1020 cm−2  
(ref. 29). The model-independent analysis applies the formalism of ref. 30 
to a user-defined subset of photons and determines the total Stokes 
parameters. We have performed both a weighted and unweighted 
analysis. In the model-independent analysis we do not perform back-
ground subtraction. We found that the sky background counts for a 60” 
region are only 3% of the total counts. We have verified that for a bright 
blazar such as Mrk 501 the background has a negligible effect on the 
polarization analysis. For the spectropolarimetric fits, we simultane-
ously fit 3× I, Q and U spectra (one set from each IXPE detector unit). 
In XSPEC, following the approach of ref. 31, we used an absorbed single 
power-law component with constant Π and ψ (CONSTPOL model). 
For the maximum likelihood spectropolarimetric fit, we used a single 
power-law spectral component with constant intrinsic Q and U values. 
Given the exposure time and flux of Mrk 501 at the time of the IXPE 
observations, the minimum degree of detectable polarization at a 
99% confidence level (MDP99) that we were able to achieve was 6.6% 
for the 8–10 March and 5.2% for the 26–28 March observations. The 
source was brighter in X-rays during the 26–28 March observation (see 
below), hence the lower MDP99. The derived Π and ψ values for the 
different methods are summarized in Extended Data Table 1 for both 
observations. In both cases, all the measurements through the differ-
ent analyses are consistent within the uncertainties with the median 
linear X-ray Π and ψ of ΠX = 10 ± 2%, ψX = 134 ± 5ο and ΠX = 11 ± 2% and 
ψX = 115 ± 4ο, respectively. Extended Data Figure 1 shows the Stokes 
Q/I and Stokes U/I values of our observations along with the MDP99. 
Depending on the emission model, variability timescales are expected 
to range from subday to a few days18. A 16-day interval between obser-
vations allows us to look for variability on a timescale of a few days, 
which, however, we do not find. We have also searched for variability 
within the individual IXPE observations. This was done by splitting the 
IXPE exposures into two and three equal-sized time bins. We again do 
not find evidence for variability within the uncertainties.

Multiwavelength observations
Here we report on a subset of our contemporaneous multiwavelength 
campaign from radio to TeV γ-rays, which is summarized in Extended 
Data Tables 2 and 3 and Fig. 3. The complete multiwavelength dataset 
will be presented in a forthcoming paper.

Millimetre-radio observations
Polarimetric millimetre-radio measurements at 3.5 mm (86.24 GHz) 
and 1.3 mm (230 GHz) were obtained with the 30 m Telescope of the 
Institut de Radioastronomie Millimetrique (IRAM), located at the Pico 
Veleta Observatory (Sierra Nevada, Granada, Spain), on 9–10 March 
2022 (MJD 59647–59649), within the Polarimetric Monitoring of AGN 
at Millimeter Wavelengths (POLAMI) programme, http://polami.iaa.es/ 
(refs. 32–34). Weather-related reasons prevented us from obtaining radio 
observations during the second IXPE exposure. Under the POLAMI 
observing setup, the four Stokes parameters (I, Q, U and V) are recorded 
simultaneously using the XPOL procedure35. The data reduction,  
calibration and managing and flagging procedures used in POLAMI are 
thoroughly described in ref. 32. The source was relatively stable in flux 
during the observations at both 1.3 and 3.5 mm with total flux densi-
ties of 0.71 ± 0.04 Jy and 0.73 ± 0.04 Jy at 3.5 mm and 0.41 ± 0.02 Jy and 
0.39 ± 0.02 Jy at 1.3 mm, on 9 and 10 of March, respectively. Also, the 
polarized flux at 3.5 mm remained stable both in the linear polarization 
degree and the angle between the two dates. No polarization above 
3.46% (95% confidence upper limit) was detected at 1.3 mm.

Optical and infrared observations
Optical polarization observations were performed using several tel-
escopes across the world: the Nordic Optical Telescope on the night 
of 8–9 March (MJD 59647); the Tohoku 60 cm (T60) telescope at the 
Haleakala Observatory on 10 March (MJD 59649) and on 28 March (MJD 
59667); the 2.2 m Calar Alto Observatory and 1.5 m Sierra Nevada Obser-
vatory telescopes on 8–10 March; the AZT-8 telescope of the Crimean 
Astrophysical Observatory and the St Petersburg State University 
LX-200 telescope during the periods 8–10 March and 25–28 March 2022.

The Nordic Optical Telescope observations used the Alhambra Faint 
Object Spectrograph and Camera (ALFOSC) in four bands (BVRI) in 
the standard polarimetric mode. The data were then analysed with 
the semi-automatic pipeline developed at the Tuorla Observatory 
using standard photometric procedures36,37. Both highly polarized 
and unpolarized standard stars were observed during the same night 
for calibration purposes. The T60 polarimetric measurements were per-
formed using the Dipol-2 polarimeter38. Dipol-2 is a remotely operated 
double-image charged coupled device polarimeter, which is capable of 
recording polarized images in three (BVR) filters simultaneously39–42. 
We obtained 24 individual measurements of the Stokes Q/I and U/I 
parameters simultaneously in three filters (BVR). Twenty unpolarized 
and two highly polarized (HD204827 and HD25443) nearby standard 
stars were observed for calibration and determination of the polari-
zation angle zero point. The individual measurements were used to 
compute nightly average values using the ‘2× sigma-weighting algo-
rithm’. The algorithm iteratively filters out outliers, assigning smaller 
weights to these measurements. The errors on the Stokes Q/I and U/I 
parameters were computed as standard errors of the weighted means. 
These errors were then used to estimate uncertainties on the polariza-
tion degree and angle42,43. The Calar Alto Observatory observations 
were performed in the Johnson Cousins Rc optical band by the Calar 
Alto Faint Object Spectrograph in imaging polarimetric mode on the 
2.2 m telescope. The data were reduced following standard analysis 
procedures using both unpolarized and polarized standard stars for 
calibration purposes. Similarly, Mrk 501 was observed by the 1.5 m 
telescope at Sierra Nevada Observatory using polarized Rc filters dur-
ing the three nights. The 70 cm AZT-8 telescope and the 40 cm LX-200 
telescope observations were carried out in the Cousins R-band. Both 

http://polami.iaa.es/


telescopes are equipped with nearly identical imaging photometers–
polarimeters based on a ST-7 camera. Two Savart plates rotated by 45o 
relative to each other are swapped to measure the relative Stokes q 
and u parameters from the two split images of each source in the field.  
The polarization parameters for each observation are produced by the 
sum of 15 × 30 s consecutive exposures. The data are then corrected for 
bias, flat field and background level, and calibrated for instrumental and 
interstellar polarization using the (assumed) unpolarized comparison 
stars 1, 4 and 6 from ref. 44. The same stars were used to perform dif-
ferential photometry. During both IXPE observations, all the optical 
polarization observations are within uncertainties, which suggests no 
significant variability.

Observations were also obtained with the WIRC+Pol instrument45 
on the 200-inch Palomar Hale telescope in the J-band. WIRC+Pol uses 
a polarizing grating to disperse the light into four beams that sense the 
four different components of linear polarization (0ο, 45ο, 90ο, 135ο), 
and a half-wave plate for beam swapping to improve polarimetric sen-
sitivity46,47. Data reduction made use of the WIRC+Pol Data Reduction 
Pipeline software (https://github.com/WIRC-Pol/wirc_drp(ref. 45)). 
The pipeline software averages the measurements over the course of 
the half-wave plate rotation cycles to account for subtle differences in 
light paths through the instrument, and reports the degree and angle 
of polarization in each band. The results were verified with the use of 
both polarized and unpolarized standard stars. For additional details 
on the data reduction, see ref. 48.

The starlight from the host galaxy (assumed to be unpolarized) of Mrk 
501 contributes a significant fraction of the optical flux. For this reason, 
the observed ΠO needs to be corrected for the depolarization effect of 
the host galaxy. To achieve this, we need to estimate the contribution  
of the host galaxy (Ihost, in mJy) within the aperture used for the analysis 
of individual observations. The light profile of Mrk 501's host galaxy has 
been fully characterized in the R-band in ref. 49. This allows us to estimate 
Ihostfor each observation separately. We then subtract Ihostfrom the total 
intensity I and estimate the intrinsic polarization degree following ref. 36  
as Πintr = ΠO × I/(I − Ihost). Owing to the Dipol-2 instrument layout as well 
as the lack of a light profile model for the host galaxy in the J-band we 
are not able to accurately estimate the host-galaxy contribution to the 
polarization measurements for the T60 and Palomar Hale telescopes. 
For this reason, the measurements from T60 and Hale should be treated 
as lower limits to the intrinsic polarization degree. For the remaining 
telescopes, we calculate Πintrin the R-band for each observation and then 
estimate a median. We find the median intrinsic polarization degree 
and its uncertainty to be Πintr = 4 ± 1% for the 8–10 March observation 
and Πintr = 5 ± 1% for the 26–28 March observation. Figure 3 shows the 
multiwavelength polarization degree from radio to X-rays.

X-ray observations
During the IXPE observations we independently measured the X-ray 
total flux and spectrum with the X-Ray Telescope50 on the orbiting Neil 
Gehrels Swift Observatory (Swift) in Window Timing mode (WT, 4 × 1 ks 
exposures, with 2 × 1 ks for each IXPE observation) and with the Nuclear 
Spectroscopic Telescope Array (NuSTAR, 20 ks exposure51) during the 
8–10 March observation. We extracted the X-ray spectrum from each 
telescope following standard analysis procedures and the latest calibra-
tion data files. For the source regions we used a circular radius of 47” and 
49” for Swift and NuSTAR, respectively. To estimate the background for 
the NuSTAR spectra we used a 147’’ circular region outside of the region 
containing significant photon counts from Mrk 501. The background for 
Swift was extracted using the same size circular region from an available 
blank sky WT observation from the Swift archive. For the 8–10 March 
observation, we fit the combined Swift and NuSTAR data in XSPEC with an 
absorbed log-parabola model N(E) = (E/Ep)(−α − βlog(E/Ep)), in the 0.3–79 keV 
energy range; N(E) is the number of photons as a function of energy E. 
NH was set to the Galactic value and the pivot energy was set to Ep = 5 keV. 
This model provides a reasonably good fit to the data (χ2/dof = 862/850) 

with best-fit parameters α = 2.27 ± 0.01 and β = 0.28 ± 0.01. We also tested 
a single power-law model; however, there is clear curvature in the spec-
trum and the fit is statistically worse (χ2/dof = 2,005/851). We measure the 
flux of the source in the 2–8 keV range to be (10.0 ± 0.5) × 10−11 erg s−1 cm−2.  
We do not find evidence for variability during the IXPE observations. 
For the 26–28 March observation we follow the same procedure using 
only the available Swift data. The source was in a higher flux state with 
α = 2.05 ± 0.02 and β = 0.26  ±0.04 and flux in the 2–8 keV range of  
(21.0 ± 0.6) × 10−11 erg s−1 cm−2. The Swift observations show a change 
from 12 to 14 counts s−1 (17% increase) from the beginning until the end of 
the IXPE observation. The results from our multiwavelength campaign 
are summarized in Extended Data Tables 2 and 3.

Activity state of Mrk 501
Mrk 501 is a BL Lac object at a redshift of z = 0.033, corresponding to a 
luminosity distance of 141.3 Mpc, assuming a flat Lambda cold dark mat-
ter (ΛCDM) cosmological model with a matter density Ωm = 0.27 and a 
Hubble constant H0 = 71 km s−1 Mpc−1 (ref. 52), and a synchrotron peak 
frequency νsyn ~ 2.8 × 1015 Hz (ref. 53). It is among the brightest sources in 
the sky at very high γ-ray energies (>0.1 Tev), and is well-studied across 
the electromagnetic spectrum54–58. We use archival data from Swift 
(https://www.swift.psu.edu/monitoring/), the Steward observatory 
(http://james.as.arizona.edu/~psmith/Fermi/(ref. 59)), the RoboPol 
programme (http://robopol.physics.uoc.gr/(ref. 3)) and the Boston Uni-
versity blazar monitoring programme (https://www.bu.edu/blazars/
index.html) to build the long-term light curves of Mrk 501 in optical 
brightness (R-band magnitude), optical polarization degree, polari-
zation angle and X-ray flux (Fig. 2). The optical observations cover a 
range from October 2008 to June 2021. For the R-band, the source 
varied between 13.53 min and 13.24 min, with a median of 13.4 min.  
The median observed ΠO (not corrected for the host-galaxy contribu-
tion) was 2.1% with a minimum of 0.07% and a maximum of 5.9%. The ψΟ 
typically fluctuates about the jet axis (120 ± 12ο) with a median of 136ο, 
and a minimum and maximum of 65ο and 171ο, respectively. The X-ray 
observations cover a range from April 2005 to June 2020. The median 
X-ray flux in the 0.3–10 keV was 15 × 10−11 erg s−1 cm−2, with a minimum 
and maximum at around 3.7 × 10−11 erg s−1 cm−2 and 76 × 10−11 erg s−1 cm−2, 
respectively. At the time of the IXPE observations our multiwavelength 
campaign finds the flux and polarization of the source within one 
standard deviation of the median of the respective archival light curve.  
For the first IXPE observation the X-ray flux of the source seems to 
correspond to an average state, whereas in the second observation 
we find the source in a slightly elevated flux state.

Data availability
The data that support the findings of this study are either publicly 
available at the HEASARC database or available from the correspond-
ing author upon request.
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Extended Data Fig. 1 | Stokes Q/I and Stokes U/I parameters of our IXPE 
observations during 8–10 March 2022 (left) and 26–28 March 2022 (right). 
The measurements are shown for the three detectors (DU1 [red x], DU2 [blue star], 

DU3 [magenta circle]) separately and combined (black triangle). In both panels 
error bars denote the 68% CI.



Article
Extended Data Table 1 | Median polarization degree and angle measurements from the IXPE data analysis performed by 
independent groups using three analysis techniques



Extended Data Table 2 | Multiwavelenth and polarization observations for the 2022 March 8–10 observation

Table comments: The millimeter-radio flux density is in Janskys. For the millimeter-radio and optical observations we report the median estimate of the observations during the IXPE observation. 
The listed uncertainty is either the standard deviation of the measurements or the median uncertainty, whichever is larger. For the NOT and T60 analysis we used a circular 1.5” radius aperture. 
For the data analysis of remaining optical telescopes we used a 7.5’ aperture. The Palomar observations are in the J-band. ψ is given in degrees. The X-ray fluxes are estimated in the 2–8 keV 
range, and given in units of 10−11 erg/s/cm2.
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Extended Data Table 3 | Multiwavelenth and polarization observations for the 2022 March 26–28 observation

Table comments: Same as in Extended Data Table 2.
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