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tDeceased

Magnetars are neutron stars with ultra-strong magnetic fields, shining in the x-rays.
Polarization measurements can probe their magnetic fields and the physics of their surface.
We report on the detection of polarized x-rays from the magnetar 4U 0142+61.
Observations with the Imaging X-ray Polarimetry Explorer show a linear polarization
degree of 13.5 + 0.8% averaged over the 2—8 keV band. The polarization changes with
energy: the degree is 15 + 1% at 2—4 keV, drops below the instrumental sensitivity around
4-5 keV, and rises to 35.2 + 7.1% at 5. 5-8 keV. The polarization angle also changes by
90° around 4-5 keV. These results are consistent with a model in which thermal radiation
from the magnetar surface is reprocessed by scattering from charged particles in the
magnetosphere.

Isolated neutron stars (NSs) with extremely strong magnetic fields are referred to as magnetars
(/). The magnetar population is growing and there are about 30 confirmed sources (2), many of
which detectable only during periods of enhanced activity. Magnetar emission is powered by the
magnetic field, producing bursts of hard (= 10 — 100 keV) x-rays, with luminosity L =~ 1038—
10%7 erg s™! and duration ~ 0.1-100 s. Magnetars also exhibit steady x-ray pulsed emission at
L =~ 10%3-10%%erg s, spin frequencies f ~ 0.1-10 Hz and spin-down rates, f ~ —(10716—
1078) Hz s™!. This indicates magnetic fields B < 101> G, assuming a standard spin-down model
(3). The 0.5 — 10 keV spectrum of magnetars consists of a blackbody (BB) component (with
temperature ~ 0.1-1 keV) and a power-law (PL; photon index I' ~ 2—4) dominating above ~ 4—
5 keV (2, 3). Some sources exhibit a second BB component instead of the PL. Many magnetars
are detected in x-rays up to = 200 keV, where the spectrum is dominated by a PL.
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The magnetic field surrounding magnetars is expected to differ from a pure dipole, with a non-
negligible toroidal component which twists the field lines. Because charged particles flow along
closed magnetic field lines, as required to sustain the field, the region threaded by the magnetic
field (the magnetosphere) becomes optically thick to Compton scattering at the cyclotron
resonance [resonant Compton scattering, RCS, (4)]. The BB spectral component is expected to
be emitted by (multiple regions on) the cooling surface of the neutron star, while the PL
originates from the reprocessing of thermal photons via resonant up-scattering in the
magnetosphere (3).

Magnetar x-ray persistent emission is expected to be linearly polarized in two orthogonal modes,
referred to as ordinary (O) and extraordinary (X), with the polarization vector either parallel or
perpendicular to the plane of the photon propagation direction and the (local) magnetic field (5).
The expected polarization degree of the emitted radiation strongly depends on the physical state
of neutron star external layers. If radiation comes from the bare, condensed surface, the
polarization is expected to be < 10%, but a magnetized atmosphere can produce polarization <
80% (6-8). The polarization of outgoing photons is then modified by RCS, leading to a
polarization degree < 30% in the X-mode for the PL component, independent of the initial
polarization state of the thermal photons (7-9).

Because NSs cannot be spatially resolved by observations, contributions from regions with
different magnetic field orientations (therefore with different emitted polarization orientations)
are blended together, which reduces the observed polarization (10, 11). However, if the magnetic
field is strong enough (3), it forces the photon polarization vectors to follow the magnetic field
direction, resulting in an observed polarization almost unchanged from that at the emission (70,
11).

The magnetar 4U 0142+61 (right ascension 01h 46m 22.41s, declination 61° 45’ 03.2”) has a
persistent (lightly variable) x-ray flux of ~ 6 X 10711 erg s™' cm 2 in the 2-10 keV range, spin
frequency f = 0.12 Hz and frequency derivative f = —2.6 X 10~ Hz s™'; implying spin-
down (equatorial) magnetic field B ~ 1.3 x 10** G (2, 12). It is visible at infrared and optical
wavelengths (/3), but no (pulsed) radio emission has been detected.

We observed 4U 0142+61 with the Imaging X-ray Polarimetry Explorer [IXPE, (/4)] between
2022 January 31 and 2022 February 27 for a total on-source time of 840 ks. IXPE provides
imaging polarimetry over a nominal energy band of 2—-8 keV. The data were extracted and
processed according to standard procedures (/5). Pulsations were detected at f =

0.115079336 + 6 x 107° Hz with f = —(2.1 + 0.7) X 10~'* Hz s™! [Modified Julian Date
(MJD) 59624.050547; uncertainties are 68.3% confidence, see Figure S3 in (/5)], consistent with
previous measurements within the uncertainties (/2). We performed a spectral analysis using the
software package XSPEC (/6), version 12.12.1. The data are not consistent with a single-
component model, so we considered several two-component models (75). In all models we fixed
the value of the interstellar column density to 0.57 X 1022 cm™2 (/7) which cannot be
constrained by the IXPE data because of the insufficient sensitivity below 2 keV. The parameters
we found for a BB+PL model (Table S2) are consistent with previous measurements (17, 18).

Polarization was measured by extracting the (calibrated) Stokes parameters I, Q and U from each
photon collected by the three independent IXPE detector units (DUs). After subtracting the sky
background, the contributions of each DU were combined, accounting for the 120° offset
between the DUs. Figure 1 shows the phase-averaged, normalized Stokes parameters (Q /I and
U/I) in the 2-8 keV energy range, for the individual DUs and the combined value. The phase-
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averaged, energy-integrated values are Q /I = 0.013 + 0.008 and U/I = 0.120 + 0.008,
implying a polarization degree, PD = /Q? + U?/I, of 13.5 + 0.8% and a polarization angle,
PA = arctan(U/Q) /2, of +48.5° £+ 1.6°, with positive values being East of (local celestial)
North; uncertainties are 1g. These values were derived using two different methods, with
consistent results (/5). We determined that the minimum detectable polarization at 99%
confidence level (MDPyo) for our observation is ~ 2% over the 2—8 keV range, so the
significance of the non-zero polarization degree is ~ 180.

To investigate whether the PD and PA depend on the photon energy, the data were grouped into
5 energy bins selected to contain similar numbers of counts in each bin. Figure 2 shows a polar
plot of the results. We find the PD is 15.0 + 1.0% at low energies (~ 2—4 keV), ~100 above the
MDPyo, which is ~ 4%. At 4-5 keV the PD is consistent with zero. In the highest energy bin
(5.5-8keV), the PDis 35.2 + 7.1% , above the MDP9y9 which is ~ 21%. The PA is about 50°
at energies below 4 keV and —40° above 5 keV, a swing of 90°.

We also performed a spectro-polarimetric analysis, by separately convolving the low- and high-
energy spectral components with a constant polarization model (POLCONST in XSPEC). This
confirms the 90° swing in polarization angle for all the two-component spectral models:
BB-+BB, BB+PL and BB+Truncated PL (75). For the latter model, the derived PD for the two
components is within ~ 1o from the observed values, with the low energy BB component being
less polarized than the high-energy PL (735).

To perform a phase-dependent analysis, we divided the flux into 100 phase bins and used an
unbinned maximum likelihood technique (/9) to determine the PD and PA. Figure 3A shows the
resulting pulse profile, which is double-peaked as in previous observations (/8). Phase variations
are evident in both PD and in PA (Fig. 3B-3C), with amplitudes of ~ 10% and ~ 30°,
respectively. At low energies (2—4 keV), we find the main and secondary peaks have higher
polarization fraction (~ 15%) than the phase valley between them (~ 9%). In contrast, the
phase-resolved PA is single peaked. This is as predicted by pulsar models discussed in the
literature [i.e. the rotating-vector model (20)], although the strong degeneracy prevents to
recover the NS spin and magnetic axes orientations from fitting the PA data [see (/5)].

A phase-resolved spectral analysis of 4U 0142+61 shows no statistically significant dependence
of the spectrum on rotational phase. The blackbody component is compatible with being constant
in phase (Fig. S5). The same result was obtained in (27) and is consistent with the low pulsed
fraction (~ 5% ) below 3—4 keV detected in a previous observation more sensitive at low
energies (/8).

We considered the IXPE results within the twisted-magnetosphere model (4), accounting for the
quantum electrodynamical effect of vacuum birefringence (7—9). The observed

polarization pattern as function of energy, with a minimum PD and a 90° swing of PA at 4-5
keV, indicates that the 2—8 keV x-ray emission from 4U 0142+61 has two distinct components,
polarized in two different normal modes, corresponding to the two components identified in the
spectral analysis. In this framework, the low-energy component is produced by thermal emission
from the surface of the neutron star, while the high-energy component is produced by photons
scattered to higher energies in the magnetosphere (Figure 4A). The measured polarization
fraction at high energies (~ 35% at 5.5-8 keV) is compatible with the theoretical prediction of
the RCS model (7) and indicates that X-mode photons dominate at high energies; conversely, O-
mode photons dominate at low energies.
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Theoretical models for magnetar surface emission of soft x-rays predict either 1) a large (2
50%) polarization degree in the X-mode if there is a gaseous atmosphere heated from below
(22), or i1) a small < 10% polarization degree in the O-mode, if there is a condensed
(solid/liquid) surface (68, 23). The IXPE measurement below 4 keV is not compatible with the
presence of an atmosphere and are only marginally compatible with a condensed surface. The
latter would be more consistent with the data if the PD could be raised in the model, perhaps by
thermal radiation being emitted by only a limited region, not the entire surface (as was assumed
in previous calculations). The low pulsed fraction at low energies (/8) indicates an extended
emitting area. Using the numerical code discussed in (7), we found that radiation from an iron
condensed surface emitted from an equatorial belt produces O-mode photons at low energies (2—
4 keV) with PD ~ 15%. Reprocessing by RCS then produces an excess of X-mode photons at
higher energies (5.5-8 keV) with PD ~ 35%, while PA changes by 90°. We remark that our
calculation does not assume that the reference direction in the plane of the sky (from which PA is
computed) coincides with the projection of the NS spin axis. To match the measured and
predicted (absolute) values, an offset is added to the simulated PA [see (/5)]. Figure 2 shows the
results of the numerical simulation for a magnetic field strength ~ 101* G, as derived for 4U
0142+61 (18), and using the emissivities of a magnetized iron condensate discussed in (23), in
the “fixed-ion” approximation. A hotter belt close to the magnetic equator appears in NS
magneto-thermal evolution calculations, both in 2D and 3D (24, 25).

We also consider alternative models to explain the IXPE data. Within the RCS paradigm, low-
energy O-mode photons could be produced by a gaseous layer with an inverted temperature
profile, with a downward flow of energy as might be produced by external particle bombardment
(26). In this case, O-mode photons would escape from a deeper (and so hotter) region with
respect to a passively cooling atmosphere, and dominate the outgoing flux.

In an alternative scenario, the low-energy emission could be interpreted as polarized in the X-
mode and the high energy emission, above 4-5 keV, in the O-mode. Low-energy, X-mode
dominated emission with a low polarization degree (~ 15%) could originate from an extended
region of a condensed iron surface seen few degrees away from the magnetic axis. Radiation
from a thin atmosphere or corona, in the presence of thermal photons undergoing Compton
scattering (8) could produce the observed polarization at low energies. However, this scenario
does not explain how O-mode photons would dominate the emission in the 5-8 keV band.
Saturated Compton scattering in a thin atmosphere or corona (&) or emission from an electron-
positron plasma (27) could potentially produce O-mode dominated radiation (Figure 4B), but
these models predict a much higher PD than is observed. Emission from a small region of the
surface that is covered by an externally illuminated gaseous layer but hot enough to dominate the
high-energy band, would also produce substantial polarization in the O-mode. No detailed
modeling of these scenarios is available.

Identifying the mode in which the observed x-ray photons are predominantly polarized would
determine the orientation of the magnetar spin axis projected onto the plane of the sky. The
phase-averaged PA is 0° (or 90°) for radiation mostly polarized in the O-mode (or X-mode),
taking the reference direction in the plane of the sky to be along the spin axis projection (/0). If
O-mode photons dominate at low energies where PA~ 50°, as in the RCS model, the projection
of the spin axis would be ~ 50° East of North. Conversely, if low-energy photons are polarized
in the X-mode the spin axis projection would be ~ 40° West of North. In the latter case, the spin
projection would be consistent with the direction of the magnetar proper motion, 60° £+ 12° West
of North (28) [Figure 2], while in the former case the two would be almost orthogonal. It is
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unclear which is more appropriate for magnetars. Observations of pulsars (including the Crab
Pulsar and Vela Pulsar), a different type of neutron star, show alignment of the spin axis with the
proper motion (29). On the other hand, binary star evolution theory predicts that neutron stars
should be accelerated perpendicular to the spin axis during their formation process (30). We are
unable to distinguish between these possibilities.

We have detected (linearly) polarized x-ray emission from the magnetar 4U 0142+61. The
polarization properties vary with x-ray energy, including a 90° swing of the polarization angle.
These observations can be explained by a model of emission from the bare condensed surface of
the NS, reprocessed by RCS in a twisted magnetosphere. Alternative explanations are also
possible.
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Fig. 1. Normalized, background-subtracted Stokes parameters Q/I and U/I for x-ray
emission from 4U 0142+61.

The values measured from each of the three IXPE DUs (in the 2—8 keV range) are marked by
green, orange and blue dots with 1o error bars, while their combination obtained using the two
approaches discussed in (/5) are shown in black and gray, respectively. The background circles
indicate PD and the radial lines indicate PA, measured East from North. The purple shaded area
shows the detection limit (MDPygo) for the combined measurement.

Fig. 2. Energy dependence of the measured PD and PA (polar plot).

Crosses indicate the measured values, in labelled energy bins, and contours enclose the 68.3%
confidence level regions obtained with XSPEC (/35). Stars indicate the corresponding PD and PA
calculated using the condensed-surface RCS model. The arc bounded by the two dashed lines
shows the change in polarization angle from the lowest (2—3 keV, black dashed line) to the
highest (5.5-8 keV, red dashed line) energy bins. The black arrow and gray shaded area indicate
the proper motion direction of the source and its associated uncertainty (28).

Fig 3. Phase-dependent x-ray flux and polarization properties.

(A) Energy-integrated (2—8 keV) IXPE counts as a function of spin phase. Error bars are at 10
confidence level. (B) Polarization degree as a function of spin phase. Error bars indicate

Alog L = 1 of the unbinned likelihood L. (C) Same as panel B, but for the polarization angle.
The orange curve shows the best-fitting rotating vector model [see (/5)].

Fig 4. Schematic illustration of the proposed theoretical scenarios.

(A) Thermal radiation emitted by an equatorial belt on the condensed surface of the magnetar (or
an atmosphere with an inverted temperature gradient), then reprocessed by RCS in the
magnetosphere. (B) Radiation from the whole surface reprocessed by (unsaturated) thermal
Compton scattering in a near-surface atmospheric layer, then additional (saturated) Compton
scattering in an extended corona. The darker areas on the NS surface indicate the emitting
regions. Black lines with arrows indicate the (dipole) magnetic field lines. The gray boxes along
the photon trajectories highlight the polarization plane and the oscillating electric field.



