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Magnetars are neutron stars with ultra-strong magnetic fields, shining in the x-rays. 20 
Polarization measurements can probe their magnetic fields and the physics of their surface.  
We report on the detection of polarized x-rays from the magnetar 4U 0142+61. 
Observations with the Imaging X-ray Polarimetry Explorer show a linear polarization 
degree of 𝟏𝟑. 𝟓 ± 𝟎. 𝟖% averaged over the 𝟐–𝟖 keV band. The polarization changes with 
energy: the degree is 𝟏𝟓 ± 𝟏% at 𝟐–𝟒 keV, drops below the instrumental sensitivity around 25 
𝟒–𝟓 keV, and rises to 𝟑𝟓. 𝟐 ± 𝟕. 𝟏% at 𝟓. 𝟓–𝟖 keV. The polarization angle also changes by 
𝟗𝟎∘ around 𝟒–𝟓 keV. These results are consistent with a model in which thermal radiation 
from the magnetar surface is reprocessed by scattering from charged particles in the 
magnetosphere. 
 30 

Isolated neutron stars (NSs) with extremely strong magnetic fields are referred to as magnetars 
(1). The magnetar population is growing and there are about 30 confirmed sources (2), many of 
which detectable only during periods of enhanced activity. Magnetar emission is powered by the 
magnetic field, producing bursts of  hard (≈ 10 − 100 keV) x-rays, with luminosity 𝐿 ≈ 1038–
1047 erg s−1 and duration ≈ 0.1–100 s. Magnetars also exhibit steady x-ray pulsed emission at 35 
𝐿 ≈ 1033–1035  erg s−1, spin frequencies 𝑓 ≈ 0.1–10 Hz and spin-down rates,  𝑓̇ ≈ −(10−16–
10−8) Hz s−1. This indicates magnetic fields 𝐵 ≲ 1015 G, assuming a standard spin-down model 
(3). The 0.5 − 10 keV spectrum of magnetars consists of a blackbody (BB) component (with 
temperature ∼ 0.1–1 keV) and a power-law (PL; photon index Γ ∼ 2–4) dominating above ∼ 4–
5 keV (2, 3). Some sources exhibit a second BB component instead of the PL. Many magnetars 40 
are detected in x-rays up to ≈ 200 keV, where the spectrum is dominated by a PL. 
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The magnetic field surrounding magnetars is expected to differ from a pure dipole, with a non-
negligible toroidal component which twists the field lines. Because charged particles flow along 
closed magnetic field lines, as required to sustain the field, the region threaded by the magnetic 
field (the magnetosphere) becomes optically thick to Compton scattering at the cyclotron 
resonance [resonant Compton scattering, RCS, (4)]. The BB spectral component is expected to 5 
be emitted by (multiple regions on) the cooling surface of the neutron star, while the PL 
originates from the reprocessing of thermal photons via resonant up-scattering in the 
magnetosphere (3). 

Magnetar x-ray persistent emission is expected to be linearly polarized in two orthogonal modes, 
referred to as ordinary (O) and extraordinary (X), with the polarization vector either parallel or 10 
perpendicular to the plane of the photon propagation direction and the (local) magnetic field (5). 
The expected polarization degree of the emitted radiation strongly depends on the physical state 
of neutron star external layers. If radiation comes from the bare, condensed surface, the 
polarization is expected to be ≲ 10%, but a magnetized atmosphere can produce polarization ≲
80% (6–8). The polarization of outgoing photons is then modified by RCS, leading to a 15 
polarization degree ≲ 30% in the X-mode for the PL component, independent of the initial 
polarization state of the thermal photons (7–9).  
Because NSs cannot be spatially resolved by observations, contributions from regions with 
different magnetic field orientations (therefore with different emitted polarization orientations) 
are blended together, which reduces the observed polarization (10, 11). However, if the magnetic 20 
field is strong enough (5), it forces the photon polarization vectors to follow the magnetic field 
direction, resulting in an observed polarization almost unchanged from that at the emission (10, 
11).  

The magnetar 4U 0142+61 (right ascension 01h 46m 22.41s, declination 61° 45’ 03.2”) has a 
persistent (lightly variable) x-ray flux of ∼ 6 × 10−11 erg s−1 cm−2 in the 2–10 keV range, spin 25 
frequency 𝑓 = 0.12 Hz and frequency derivative   𝑓̇ = −2.6 × 10−14 Hz s−1; implying spin-
down (equatorial) magnetic field 𝐵 ∼ 1.3 × 1014 G (2, 12). It is visible at infrared and optical 
wavelengths (13), but no (pulsed) radio emission has been detected. 

We observed 4U 0142+61 with the Imaging X-ray Polarimetry Explorer [IXPE, (14)] between 
2022 January 31 and 2022 February 27 for a total on-source time of 840 ks. IXPE provides 30 
imaging polarimetry over a nominal energy band of 2–8 keV. The data were extracted and 
processed according to standard procedures (15). Pulsations were detected at 𝑓 =

0.115079336 ± 6 × 10−9 Hz with  𝑓̇ = −(2.1 ± 0.7) × 10−14 Hz s−1 [Modified Julian Date 
(MJD) 59624.050547; uncertainties are 68.3% confidence, see Figure S3 in (15)], consistent with 
previous measurements within the uncertainties (12). We performed a spectral analysis using the 35 
software package XSPEC (16), version 12.12.1. The data are not consistent with a single-
component model, so we considered several two-component models (15). In all models we fixed 
the value of the interstellar column density to 0.57 × 1022 cm−2 (17) which cannot be 
constrained by the IXPE data because of the insufficient sensitivity below 2 keV. The parameters 
we found for a BB+PL model (Table S2) are consistent with previous measurements (17, 18). 40 

Polarization was measured by extracting the (calibrated) Stokes parameters 𝐼, 𝑄 and 𝑈 from each 
photon collected by the three independent IXPE detector units (DUs). After subtracting the sky  
background, the contributions of each DU were combined, accounting for the 120∘ offset 
between the DUs. Figure 1 shows the phase-averaged, normalized Stokes parameters (𝑄/𝐼 and 
𝑈/𝐼) in the 2–8 keV energy range, for the individual DUs and the combined value. The phase-45 
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averaged, energy-integrated values are 𝑄 𝐼⁄ = 0.013 ± 0.008 and 𝑈 𝐼⁄ = 0.120 ± 0.008, 
implying a polarization degree, PD ≡ √𝑄2 + 𝑈2 𝐼⁄ , of 13.5 ± 0.8% and a polarization angle, 
𝑃𝐴 ≡ arctan(𝑈 𝑄⁄ ) /2, of +48.5∘ ± 1.6∘, with positive values being East of (local celestial) 
North; uncertainties are 1𝜎. These values were derived using two different methods, with 
consistent results (15). We determined that the minimum detectable polarization at 99% 5 
confidence level (MDP99) for our observation is ∼ 2% over the 2–8 keV range, so the 
significance of the non-zero polarization degree is ∼ 18𝜎. 

To investigate whether the PD and PA depend on the photon energy, the data were grouped into 
5 energy bins selected to contain similar numbers of counts in each bin. Figure 2 shows a polar 
plot of the results. We find the PD is 15.0 ± 1.0% at low energies (∼ 2–4 keV), ~10𝜎 above the 10 
MDP99, which is ∼ 4%. At 4–5 keV the PD is consistent with zero. In the highest energy bin 
(5.5–8 keV), the PD is  35.2 ± 7.1% , above the MDP99 which is ∼ 21%. The PA is about 50∘ 
at energies below 4 keV and −40∘ above 5 keV, a swing of 90°. 

We also performed a spectro-polarimetric analysis, by separately convolving the low- and high-
energy spectral components with a constant polarization model (POLCONST in XSPEC). This 15 
confirms the 90∘ swing in polarization angle for all the two-component spectral models: 
BB+BB, BB+PL and BB+Truncated PL (15). For the latter model, the derived PD for the two 
components is within ∼ 1𝜎 from the observed values, with the low energy BB component being 
less polarized than the high-energy PL (15). 

To perform a phase-dependent analysis, we divided the flux into 100 phase bins and used an 20 
unbinned maximum likelihood technique (19) to determine the PD and PA. Figure 3A shows the 
resulting pulse profile, which is double-peaked as in previous observations (18). Phase variations 
are evident in both PD and in PA (Fig. 3B–3C), with amplitudes of ∼ 10% and ∼ 30∘, 
respectively. At low energies (2–4 keV), we find the main and secondary peaks have higher 
polarization fraction (∼ 15%) than the phase valley between them (∼ 9%). In contrast, the 25 
phase-resolved PA is single peaked. This is as predicted by pulsar models discussed in the 
literature [i.e. the rotating-vector model (20)], although the strong degeneracy prevents to 
recover the NS spin and magnetic axes orientations from fitting the PA data [see (15)].  

A phase-resolved spectral analysis of 4U 0142+61 shows no statistically significant dependence 
of the spectrum on rotational phase. The blackbody component is compatible with being constant 30 
in phase (Fig. S5). The same result was obtained in (21) and is consistent with the low pulsed 
fraction (∼ 5% ) below 3–4 keV detected in a previous observation more sensitive at low 
energies (18). 

We considered the IXPE results within the twisted-magnetosphere model (4), accounting for the 
quantum electrodynamical effect of vacuum birefringence (7–9). The observed 35 
polarization pattern as function of energy, with a minimum PD and a 90∘ swing of PA at 4–5 
keV, indicates that the 2–8 keV x-ray emission from 4U 0142+61 has two distinct components, 
polarized in two different normal modes, corresponding to the two components identified in the 
spectral analysis. In this framework, the low-energy component is produced by thermal emission 
from the surface of the neutron star, while the high-energy component is produced by photons 40 
scattered to higher energies in the magnetosphere (Figure 4A). The measured polarization 
fraction at high energies (∼ 35% at 5.5–8 keV) is compatible with the theoretical prediction of 
the RCS model (7) and indicates that X-mode photons dominate at high energies; conversely, O-
mode photons dominate at low energies. 
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Theoretical models for magnetar surface emission of soft x-rays predict either i) a large (≳
50%) polarization degree in the X-mode if there is a gaseous atmosphere heated from below 
(22), or ii) a small ≲ 10% polarization degree in the O-mode, if there is a condensed 
(solid/liquid) surface (6–8, 23). The IXPE measurement below 4 keV is not compatible with the 
presence of an atmosphere and are only marginally compatible with a condensed surface. The 5 
latter would be more consistent with the data if the PD could be raised in the model, perhaps by 
thermal radiation being emitted by only a limited region, not the entire surface (as was assumed 
in previous calculations). The low pulsed fraction at low energies (18) indicates an extended 
emitting area. Using the numerical code discussed in (7), we found that radiation from an iron 
condensed surface emitted from an equatorial belt produces O-mode photons at low energies (2–10 
4 keV) with PD ∼ 15%. Reprocessing by RCS then produces an excess of X-mode photons at 
higher energies (5.5–8 keV) with PD ∼ 35%, while PA changes by 90∘. We remark that our 
calculation does not assume that the reference direction in the plane of the sky (from which PA is 
computed) coincides with the projection of the NS spin axis. To match the measured and 
predicted (absolute) values, an offset is added to the simulated PA [see (15)]. Figure 2 shows the 15 
results of the numerical simulation for a magnetic field strength ∼ 1014 G, as derived for 4U 
0142+61 (18), and using the emissivities of a magnetized iron condensate discussed in (23), in 
the “fixed-ion” approximation. A hotter belt close to the magnetic equator appears in NS 
magneto-thermal evolution calculations, both in 2D and 3D (24, 25). 

We also consider alternative models to explain the IXPE data. Within the RCS paradigm, low-20 
energy O-mode photons could be produced by a gaseous layer with an inverted temperature 
profile, with a downward flow of energy as might be produced by external particle bombardment 
(26). In this case, O-mode photons would escape from a deeper (and so hotter) region with 
respect to a passively cooling atmosphere, and dominate the outgoing flux.  

In an alternative scenario, the low-energy emission could be interpreted as polarized in the X-25 
mode and the high energy emission, above 4–5 keV, in the O-mode. Low-energy, X-mode 
dominated emission with a low polarization degree (∼ 15%) could originate from an extended 
region of a condensed iron surface seen few degrees away from the magnetic axis. Radiation 
from a thin atmosphere or corona, in the presence of thermal photons undergoing Compton 
scattering (8) could produce the observed polarization at low energies. However, this scenario 30 
does not explain how O-mode photons would dominate the emission in the 5–8 keV band. 
Saturated Compton scattering in a thin atmosphere or corona (8) or emission from an electron-
positron plasma (27) could potentially produce O-mode dominated radiation (Figure 4B), but 
these models predict a much higher PD than is observed. Emission from a small region of the 
surface that is covered by an externally illuminated gaseous layer but hot enough to dominate the 35 
high-energy band, would also produce substantial polarization in the O-mode. No detailed 
modeling of these scenarios is available. 

Identifying the mode in which the observed x-ray photons are predominantly polarized would 
determine the orientation of the magnetar spin axis projected onto the plane of the sky. The 
phase-averaged PA is 0∘ (or 90∘) for radiation mostly polarized in the O-mode (or X-mode), 40 
taking the reference direction in the plane of the sky to be along the spin axis projection (10). If 
O-mode photons dominate at low energies where PA∼ 50∘, as in the RCS model, the projection 
of the spin axis would be ∼ 50∘ East of North. Conversely, if low-energy photons are polarized 
in the X-mode the spin axis projection would be ∼ 40∘ West of North. In the latter case, the spin 
projection would be consistent with the direction of the magnetar proper motion, 60∘ ± 12∘ West 45 
of North (28) [Figure 2], while in the former case the two would be almost orthogonal. It is 



Submitted Manuscript: Confidential 
Template revised February 2021 

7 
 

unclear which is more appropriate for magnetars. Observations of pulsars (including the Crab 
Pulsar and Vela Pulsar), a different type of neutron star, show alignment of the spin axis with the 
proper motion (29). On the other hand, binary star evolution theory predicts that neutron stars 
should be accelerated perpendicular to the spin axis during their formation process (30). We are 
unable to distinguish between these possibilities.  5 

We have detected (linearly) polarized x-ray emission from the magnetar 4U 0142+61.  The 
polarization properties vary with x-ray energy, including a 90∘ swing of the polarization angle. 
These observations can be explained by a model of emission from the bare condensed surface of 
the NS, reprocessed by RCS in a twisted magnetosphere. Alternative explanations are also 
possible.  10 
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Fig. 1. Normalized, background-subtracted Stokes parameters 𝑸/𝑰 and 𝑼/𝑰 for x-ray 
emission from 4U 0142+61.  
The values measured from each of the three IXPE DUs (in the 2–8 keV range) are marked by 
green, orange and blue dots with 1𝜎 error bars, while their combination obtained using the two 
approaches discussed in (15) are shown in black and gray, respectively. The background circles 5 
indicate PD and the radial lines indicate PA, measured East from North. The purple shaded area 
shows the detection limit (MDP99) for the combined measurement.  

 

Fig. 2. Energy dependence of the measured PD and PA (polar plot).  
Crosses indicate the measured values, in labelled energy bins, and contours enclose the 68.3% 10 
confidence level regions obtained with XSPEC (15). Stars indicate the corresponding PD and PA 
calculated using the condensed-surface RCS model. The arc bounded by the two dashed lines 
shows the change in polarization angle from the lowest (2–3 keV, black dashed line) to the 
highest (5.5–8 keV, red dashed line) energy bins. The black arrow and gray shaded area indicate 
the proper motion direction of the source and its associated uncertainty (28). 15 

 
 
Fig 3. Phase-dependent x-ray flux and polarization properties.  
(A) Energy-integrated (2–8 keV) IXPE counts as a function of spin phase. Error bars are at 1𝜎 
confidence level.  (B) Polarization degree as a function of spin phase. Error bars indicate 20 
Δ log 𝐿 = 1 of the unbinned likelihood 𝐿. (C) Same as panel B, but for the polarization angle. 
The orange curve shows the best-fitting rotating vector model [see (15)]. 

 

Fig 4. Schematic illustration of the proposed theoretical scenarios.  
(A) Thermal radiation emitted by an equatorial belt on the condensed surface of the magnetar (or 25 
an atmosphere with an inverted temperature gradient), then reprocessed by RCS in the 
magnetosphere. (B) Radiation from the whole surface reprocessed by (unsaturated) thermal 
Compton scattering in a near-surface atmospheric layer, then additional (saturated) Compton 
scattering in an extended corona. The darker areas on the NS surface indicate the emitting 
regions. Black lines with arrows indicate the (dipole) magnetic field lines. The gray boxes along 30 
the photon trajectories highlight the polarization plane and the oscillating electric field. 

 


