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Abstract

With the rapid development of ubiquitous computing, our society is witnessing a rapid expansion of mobility-on-demand
services, in which ridesharing (e.g., Uber, Lyft, and DiDi) has become one of the most successful applications and has
percolated into people’s daily life. Even though a large number of research studies have been conducted to understand the
demand and supply patterns or improve the operation efficiency of ridesharing services, little is known at a comprehensive
level on their evolution, especially during the widely-initiative vehicle electrification process that electric vehicles start to
take over conventional gas vehicles gradually. Different from conventional gas vehicles, electric vehicles have some unique
characteristics, e.g., long charging time compared to the refueling process of gas vehicles, which potentially makes a differ-
ence in providing ridesharing services. In this paper, we seek to shed light on the evolution of city-scale ridesharing services
with the penetration of large-scale electric vehicles. In particular, our study is based on a ridesharing operation dataset from
the Chinese city Shenzhen in 2019, including all orders served by over 50,000 unique ridesharing drivers. We perform a set
of observations on the differences between gas vehicle and electric vehicle drivers for ridesharing services from different
dimensions, e.g., spatial, temporal, and income, etc. Our study shows that understanding the evolution of city-scale rideshar-
ing with the penetration of electric vehicles has strong implications for ridesharing drivers, passengers, operators, and city
governments. On the one hand, our findings paint a promising picture of electric vehicles for ridesharing services, showing
its prosperity in the Chinese city Shenzhen. On the other hand, our study also has the potential to provide some meaning-
ful guidelines for other cities that plan to replace their vehicles for ridesharing services with electric vehicles based on the
obtained insights, e.g., possible drawbacks for long trips and charging infrastructure deployment.
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1 Introduction

Due to the prevalence of smartphones and ubiquitous
mobile devices, in the past decade, we have been witness-
ing an explosion of mobility-on-demand services (He and
Shin 2019), including bikesharing (Wang et al. 2019a; He
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Fan Zhang e-scooter sharing (He and Shin 2020a), and ridesharing (e.g.,
zhangfan@siat.ac.cn Uber, Lyft, and DiDi (Xu et al. 2020; Li et al. 2019)). At
Desheng Zhang the same time, with the ever-increasing concerns over air
desheng @cs.rutgers.edu pollution, we are also witnessing a rapid vehicle electrifi-

cation process since electric vehicles (EV) are considered
as a cleaner alternative to conventional gas vehicles (GV)
(Zhang et al. 2021; Wang et al. 2020d; Du et al. 2018), e.g.,
zero tailpipe emissions of EVs, which motivates many cities
around the world to replace their ridesharing GVs with EVs.
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2019) are accelerating the electrification of ridesharing vehi-
cles, and Uber has announced a new goal to electrify its
entire London fleet by 2025 (Vincent 2017).

Even though there is an increasing number of studies on
different aspects of ridesharing services, e.g., competition
and accessibility (Jiang et al. 2018), labor issues (GIoss et al.
2016), and order dispatching (Zhang et al. 2017; Lin et al.
2018), most of them focused on conventional GVs. To our
knowledge, little work has been done to investigate the pen-
etration of EVs into ridesharing services during the evolu-
tion process. However, EVs are typically different from GVs
due to their long charging time (e.g., it usually takes over 2 h
for EV drivers to fully charge their vehicles even using the
fast chargers, while the refueling processes of GVs typically
last for 3—5 min (Wang et al. 2019b), which potentially limits
EVs’ operation time, resulting in low supply and accessibil-
ity of ridesharing vehicles. Therefore, it is necessary for us
to understand the comprehensive evolution patterns (e.g.,
driver profit and passenger waiting time) of city-scale ride-
sharing during its electrification process.

To reveal the unseen, in this paper, we conduct the first
longitudinal study on the evolution of city-scale ridesharing
services during the EV penetration process. We seek to shed
light on the evolution of ridesharing services in the Chinese
city Shenzhen, which has, to our knowledge, the largest elec-
tric ridesharing fleet in the world. Specifically, our meas-
urement study has three key features: (i) a long data col-
lection period, including all ridesharing order records from
January 2019 to September 2019 in Shenzhen; (ii) a large
number of vehicles for ridesharing services (e.g., over 50k
vehicles), and the number of EVs for ridesharing has sig-
nificantly increased from 8k to 24k during the nine months;
(iii) a large number of user trip records, e.g., more than 165
billion ridesharing trips. We first utilize the dataset to show
the evolution of the number of EVs and GVs (Sect. 2.4).
Then we explore the spatiotemporal evolution of electric
ridesharing (Sect. 3). Next, we extensively investigate the
impacts of ridesharing EV penetration on drivers (Sect. 4),
passengers (Sect. 5), and society (Sect. 6) with different met-
rics. Finally, we report a set of findings and insights obtained
from our investigation, combined with some discussions
about potential implications (Sect. 7). Among all observa-
tions and insights, we provide some of the most prominent
below, and more details will be shown in the paper.

e Income EV drivers typically have higher daily income
than GV drivers due to longer operation distance and
time, but almost all long trips (e.g., cross-city trips) are
served by GVs.

e Driver age The newly registered ridesharing drivers are
more likely to be young EV drivers. Middle-aged drivers
have the longest average daily operation time, distance,
and income compared to drivers of other ages.

e Driver gender The average daily operation time of female
drivers is longer than that of male drivers, but the number
of regions they operate is less than male drivers on aver-
age.

e Passenger waiting time With more EVs penetrating into
the ridesharing services, passengers are more vulnerable
to longer waiting time when there are too many concur-
rent orders. Passengers’ waiting time has a strong corre-
lation with the difference between the number of orders
and the number of ridesharing EVs.

e Societal impact on CO, reduction Ridesharing EV's have
a huge potential to reduce the CO, emissions, e.g., the
ridesharing EVs in Shenzhen reduced 1.17 x 10’kg CO,
emissions in September 2019.

To the best of our knowledge, this is the first comprehen-
sive longitudinal study on EV penetration into ridesharing
services at the city scale. We believe that our efforts and the
revealed insights have the potential to benefit the research
community, as well as city governments, ridesharing opera-
tors, and drivers.

2 Dataset and statistics

In this section, we introduce the operation of ridesharing
systems, datasets that we will use throughout this paper, as
well as some preliminary analysis.

2.1 Ridesharing operation

Figure 1 shows the general ridesharing operation paradigm.
Different roles (user/passenger, driver, and operator) are
interacted with each other to invigorate the urban mobility
dynamics.

e Users/passengers need to sign up as a user role via
mobile Apps provided by operators before the first-time
use of ridesharing services. Each ridesharing operator
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provides its own App for users, e.g., Uber, Lyft, and
DiDi. The original locations and time and expected des-
tinations (i.e., OD) of users are required for sending a
ride request through an App, and these request records
are then uploaded to the ridesharing data center through
network connections for responding.

e Drivers need to sign up as a driver role via mobile Apps
if they want to be ridesharing drivers, and their demo-
graphic information (e.g., age and gender) is needed for
security purposes. The real-time location (i.e., vehicle
GPS coordinates) and status information (i.e., avail-
able or not) of drivers are also periodically uploaded via
communication devices and then stored in the servers for
management and analysis.

e Operators provide operation management services (e.g.,
order dispatching) for all registered drivers and users via
centralized ridesharing management platforms. After
receiving ridesharing requests from users in a short dura-
tion, the management platform will match these users to
the optimally available drivers by batching matching. The
dispatching decisions will be sent to drivers and users
once they are matched. EVs and GVs are equally treated
when making scheduling decisions. After completing a
trip, a complete ridesharing record will be generated,
including user and driver information, as well as trans-
action information.

2.2 Data description

In total, our dataset includes ridesharing data in Shenzhen
in 2019, which includes over 165 million records of more
than 50,000 ridesharing vehicles. The details of our datasets
are shown below:

e Ridesharing order data Each order record consists of
fields describing vehicle and driver information, and
transaction information, e.g., the order ID, order time,
pick-up time, pick-up GPS coordinates (i.e., longitude
and latitude), drop-off time, drop-off GPS coordinates,
trip length, vehicle ID, EV flag, age and gender of driv-
ers, etc.

e Contextual data In addition to the two main ridesharing
data, we also leverage various contextual data for this
longitudinal study, e.g., urban partition data provided
by the Transport Commission of Shenzhen and weather
data.

2.3 Data cleaning and management
Due to the long-term and large-scale ridesharing data, we
made a lot of efforts in the data cleaning processes, e.g.,

data masking, map matching, and errant data filtering. We
utilize an 80 TB Hadoop Distributed File System (HDFS)
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on a cluster consisting of 20 nodes to manage the data. For
daily data processing, we utilize the MapReduce-based Pig
and Hive since our analyses are based on historical log
data, instead of streaming data.

Based on the cleaned large-scale dataset, we investigate
the impacts of ridesharing evolution with EV penetration
on different roles (e.g., driver and passenger) by defining
various quantification metrics from different dimensions
(e.g., spatial, temporal, and income). In addition, we also
take the demographic information of ridesharing drivers
(e.g., age and gender) into consideration.

2.4 Vehicle count evolution

Figure 2 shows the evolution of the number of EVs and
conventional GVs in Shenzhen from January 2019 to Sep-
tember 2019. We found that the number of EVs has sig-
nificantly increased during the nine months, from 8676
(17.9%) to 24,663 (42.5%), while the number of GVs has
gradually decreased, from 39,766 to 33,381. We depict the
evolution trend of EVs using a linear distribution with the
coefficient of determination R? = 0.9931, as shown below:

NEV(YM) = 2085 - Y}, +5944.1 ¢))

Ny is the number of EVs. ), is the month of the year, and
Y, starts from Jan 2019, which means Jan 2019 is 1 in Eq. 1.

After we fit the number of GVs in different functions,
we found the Cubic function with R?> = 0.9565 and Root
Mean Square Error RMSE = 521.1 would be a superb
choice, as shown below:

Ney(Yy) = =22.16 - Y,,> +376.7 - Y,,* — 2533 - ), + 415500
@)
With the two distributions describing the evolution of the

number of EVs and GVs, it is expected that the number of
EVs will exceed GVs since November 2019.
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Fig.2 Evolution of the # of EVs and GVs in Shenzhen
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3 Spatiotemporal evolution

In this section, we investigate the spatiotemporal evolution
of ridesharing orders during the EV penetration process.

3.1 Temporal evolution

Figure 3 shows the evolution distributions of average served
order ratios by EVs and GVs in 24 h of a day. We have fol-
lowing observations:

(i) In January 2019, the percentage of served orders
by GVs (79.1%) is much higher than that of EVs
(20.9%), with 384,562 (GV):101,610 (EV) orders
each day on average. From January to September, the
supply gap between GVs and EVs becomes smaller
and smaller, and the served order ratio becomes
52%:48%, with 393,679 (GV):363,396 (EV) orders
each day on average. In some hours of September,
e.g., 19:00-21:00, the percentage of served orders by
EVs actually exceeds that of GVs, which may suggest
the EVs have the potential to take over the GVs for
ridesharing services.

(ii)) The served order distributions of EVs and GVs
(shape of curves) are similar from January to Sep-
tember, which potentially indicates that operators
dispatch the vehicles to serve passengers without
considering they are EVs or GVs (we verified this
with operators in Shenzhen), so passengers cannot
decide the serving vehicle types (i.e., EVs or GVs).
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Fig. 3 Evolution of order distribution in 24 h of a day

(iii) During the evolution process, we found the largest
gap between served orders by EVs and GVs hap-
pens during the morning and evening rush hours (i.e.,
9:00-10:00 and 18:00-19:00). The reason behind
this phenomena would be there are both higher ride-
sharing demand and supply during the rush hours, as
we found there are some part-time ridesharing driv-
ers who only provide rides for passengers when they
go to work or come back to home from work, while
most of those private cars are GVs.

3.2 Spatial evolution

We leverage the urban partition data of Shenzhen to investi-
gate the spatial evolution of EV drivers for ridesharing ser-
vices. There are 491 regions in Shenzhen based on the parti-
tion of the Shenzhen government. We define the spatial ratio
SR to investigate the served order distributions by EVs and
GVs, which is the number of orders served by EVs or GVs
divided by the total orders in each region in one day. Equa-
tion 3 shows the spatial ratio SR of EVs in region X', where
NOpgy(X) is the number of orders served by EVs in region
X and NO ,;,(X) is the total number of orders in region X.

NOLy(X)
SR(X) = NO (&) €)

Figure 4 shows the SR of EVs in each region during
the evolving process of the Shenzhen ridesharing services,
where the darker red areas means there are low SR of EVs
in these regions, and the lighter yellow areas indicate more
orders are served by EVs in these regions compared to GVs.
In addition to the qualitative visualization, we also quanti-
tatively show the SR distributions in all the 491 regions,
which can be seen from the upper right corner of the figure.
According to Fig. 4, we have the following observations:

(i) The SR of EVs have significantly increased from
January 2019 to September 2019, which may be
mainly caused by the penetration of large-scale EVs
into the Shenzhen ridesharing services during this
period, e.g., the number of EVs for ridesharing ser-
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Fig.4 A visualization of the evolution of the served order ratios by EVs in 491 regions of Shenzhen
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vices has tripled from 8676 to 24,663 during the nine
months.

(i) A surprising finding is that almost all regions of
high SR of EVs are in the suburban areas (e.g., non-
CBD area), and this phenomenon is persistent during
the EV penetration process. There is a rapid increase
of the SR of EVs, and more orders are served by
EVs in the suburban areas compared to the GVs. One
possible reason is that the heavy traffic jams in urban
Central Business District (CBD) areas will accelerate
the energy consumption of EVs, so drivers prefer to
use EVs for ridesharing services in suburban areas
to prolong their daily operation time. Another reason
could be there are more charging stations deployed in
the suburban areas, so EV drivers are easier to charge
their EVs in those areas.

(iii) Quantitatively, the SR of EVs in 93.7% of regions
is not larger than 0.3 in January, which suggests the
ridesharing market in January is dominated by GVs
in Shenzhen. In May, the SR of EVs in about 88%
of regions is between (0.4-—0.6], which means the
EVs and GVs have a similar ridesharing share at this
time. In September, we found that the service ratios
of EVs in 92.7% of regions are over 0.5, which means
EVs have more orders than GVs in almost all regions
in Shenzhen, and they are dominating the Shenzhen
ridesharing market. In summary, Shenzhen has expe-
rienced a rapid ridesharing market transition in the
nine months, from the GV-dominating market to an
EV-leading one.

3.3 Order entropy evolution

Since the order pickup (i.e., origin) locations indicate where
the ridesharing drivers are willing to go and provide rides for
users, we define the Order Entropy to quantitatively measure
the operation activity range of each individual driver, which
is denoted as below:

H(0) = - rERp(n) log, p(r;) )

Where H(O) is the Order Entropy of the ridesharing driver
in a time period (e.g., one month, one week, or one day).
‘R is a region set, which includes all regions that the driver
provides rides for users. p(r;) is the probability of served
orders by the driver in the region r; and r; € R.

Since we found there is no much difference during
the nine months for the Order Entropy distributions,
we utilize all data to compare the Order Entropy distri-
butions of EV drivers and GV drivers, which is shown
in Fig. 5. We found the EV drivers typically operate in
more regions than GV drivers, e.g., more than 72% of EV
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drivers operate in more than 16 regions on average (Order
Entropy>4), while only about 53% of GV drivers oper-
ate in more than 16 regions on average. This observation
indicates that the EV model may not limit the activity
regions of drivers to provide ridesharing services within
the city, and we also found about 75% of rides are shorter
than 10 km.

We also compare the Order Entropy distributions of
ridesharing drivers belonging to the three major operators
in Shenzhen, as shown in Fig. 6. We found that the drivers
of Operator 3 normally operate in more regions to serve
passengers, e.g., about 95% of Operator 3’s drivers serve
passengers in more than 8 regions (Order Entropy=3)
on average, while about 79% of drivers of Operator 1
and 32% of drivers of Operator 2 operate in more than
8 regions on average. About 66% of drivers in Operator
2 operate in 2 regions (Order Entropy = 1) to 16 regions
(Order Entropy = 4), while most drivers in Operator 1
(i.e., 67%) and Operator 3 (i.e., 86%) operate in 16 regions
to 64 regions on average. We also found that the drivers
with the highest activity range (Order Entropy > 6) are
almost in Operator 1. Even though there may be different
possible reasons behind this phenomena, (e.g., different
operators have a different number of vehicles and different
operation policies, drivers’ preference), we can conclude
that EVs have the potential to operate and serve passen-
gers in different regions, and it implies the range limitation
of EVs may not hinder their daily operation in most cases.
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4 Impacts on drivers

In this section, we investigate the impact of the evolution of
ridesharing services with EV penetration on drivers’ daily
operation time, distance, and income. In addition, we also
study the impacts on drivers with different demographic
features.

4.1 Evolution of time, distance, and income

In Fig. 7, we compare the daily operation time, distance, and
income of EV drivers and GV drivers during the evolution
process.

From Fig. 7a, we surprisingly found that the 25th, 50th,
and 75th percentiles of EVs are always larger than that of
GVs from January to September, which means EV drivers
typically operate longer time than GV drivers. This finding
is counter-intuitive since we usually think EVs need a longer
time for charging than refueling of GVs, so EVs should have
shorter operation time. One possible reason may be that the
newly registered full-time drivers must use EVs to provide
ridesharing services and more existing ridesharing drivers
replace their GVs with EVs. The longest operation time
of GVs is always longer than that of EVs from January to
September, but the gap becomes smaller with more EVs
penetrating into the ridesharing services. One reason may
be that there are more new EV models that have large bat-
tery capacities introduced to the ridesharing market, which
potentially indicates that EV's have the potential to take over
GVs for ridesharing services with the development of bat-
tery technologies.

A similar pattern is drawn from Fig. 7b, i.e., EV drivers
typically operate longer distances than GV drivers. How-
ever, the maximum daily operation distance of EVs is always
shorter than that of GVs. The possible reason is that the
restricted battery capacity and the long charging time of
EVs make them challenging to provide very long trips, e.g.,
cross-city trips. We found 93% of trips longer than 150 km
are served by GVs and 100% of trips longer than 200 km
are served by GVs. Therefore, we argue that the current
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ridesharing EVs are hard to fulfill very long trips, so they
cannot entirely replace GVs under current settings.

With the above findings, it is not surprising that some
GV drivers have very high daily income, which cannot be
achieved by EV drivers due to the battery limitation. How-
ever, in general, most EV drivers have higher daily income
than GV drivers since they operate for a longer time.

4.2 Age related evolution

4.2.1 Age evolution of ridesharing drivers

Figures 8 and 9 show the age distributions of EV drivers
and GV drivers during the evolving process. We found the
youngest driver is 20 years old, and very few drivers are

over 55 years old, e.g., about 1.7% of EV drivers and 2.9%
of GV drivers are over 55. Nearly half of the drivers (48.3%
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of EV drivers and 45.2% of GV drivers) are between 30 and
40 years old.

(i) From January to September 2019, the ratio of young
EV drivers with age under 40 has increased from
61.7% to 68.2%, while the counterpart of GV driv-
ers has not change much during this period, which
potentially indicates that more young drivers have
registered as ridesharing drivers with their EVs.
Comparing the age distributions of EV drivers and
GV drivers, we found that the EV drivers are younger
than GV drivers since 68.2% of EV drivers are under
40 years old, but only 54.8% of GV drivers are under
40. One possible reason would be that young peo-
ple are easier to overcome the disadvantages of EVs
caused by their long charging time and accept EVs,
while elderly drivers are more conservative and pre-
fer to utilize GVs for ridesharing services.

(ii)

4.2.2 Comparison of drivers in different age groups

We empirically divide the drivers into different groups
using five-year-old as the slot. Then we utilize two statisti-
cal indicators (i.e., Mean and standard deviation (i.e., std))
to compare the daily operation time, distance, income, and
order entropy of EV drivers and GV drivers in different age
groups.

As shown in Table 1, we found both the Mean and std
of daily operation time of GV drivers in all age groups are
small than that of EVs, which means EV drivers usually
operate a longer time than GV drivers. In addition, both
EV drivers and GV drivers in 45-59 have the longest daily
operation time than drivers in other age groups. One pos-
sible reason could be that most ridesharing drivers in this
age range are full-time ridesharing drivers, and they need to
work a long time to make a living.

Table 1 Age related comparisons

We found that the average daily operation distance of EV
drivers is longer than that of GV drivers for all age groups,
while the std of GV drivers is larger than that of EV driv-
ers, which indicates that EV drivers usually operate longer
distances than GV drivers and have a small deviation in the
same age group. The EV drivers in 50-59 have the longest
daily operation distance, but the corresponding GV drivers
are in 45-49.

For the daily income, we found that both EV drivers and
GV drivers in 45-59 have the highest daily income from
serving ridesharing passengers than drivers in other age
groups, and the average daily income of EV drivers in senior
age groups (over 50) is higher than that of GV drivers in the
corresponding age groups. However, we found that the std
of GV drivers is larger than corresponding age groups of EV
drivers between 20-59, which potentially indicates that EVs
cannot operate very far distance to earn a very high income.

We also compare the Order Entropy of EV drivers and
GV drivers, and we found that EV drivers in 25-59 have
larger Order Entropy and std, which means EV drivers in
almost all age groups operate in more regions than GV driv-
ers in corresponding groups. And the elderly drivers have
higher Order Entropy than young drivers.

4.3 Gender related evolution

We also investigate the differences between male drivers and
female drivers. From January 2019 to September 2019, we
found both the number of male drivers and female drivers
increased.

We found there are no obvious changes from January
to September, so we utilize all data to compare male and
female drivers. Figure 10 shows the CDF of daily opera-
tion time of male drivers and female drivers. Although
only a small number of female drivers for ridesharing ser-
vices, their average daily operation time is longer than

Age groups Daily operation time (h) Daily operation distance (km)  Daily income (CNY) Order entropy

EV GV EV GV EV GV EV GV

Mean Std Mean Std Mean Std Mean Std Mean  Std Mean  Std Mean Std Mean Std
20-24 4.09 235 3.6 235 84.17 4851 79.7 51.08 320.61 179.7 319.74 223.18 4.6 1.2 438 123
25-29 4.16 238 3.71 238 8742 5029 84.15 55.55 333.1 18494 346.59 23837 448 139 44 1.28
30-34 427 25 37 243 90.39 5234 842 57.19 34563 19585 3544 254774 448 139 44 1.29
35-39 425 249 3.64 247 90.16 52.06 81.3 58.01 34494 19227 34586 261.28 4.5 1.35 44 1.2
40-44 443 256 3.77 249 9235 53.13 81.06 56.56 355.63 196.52 3458 2557 456 133 449 12
45-49 4.62 253 402 25 9425 5123 8473 56.21 3625 1883 36292 25488 4.6 1.25 457 1.13
50-54 476 255 405 246 95.62 50.85 8276 53.59 368.51 189.01 353.59 24391 4.6 1.26 4.6 1.0
55-59 485 259 413 242 958 51.51 8249 51.52 36796 19539 34539 22789 475 124 4.67 096
60-64 405 254 3.62 192 86.03 5431 7328 423 32659 206.67 290.12 167.72 446 057 4.80 0.80
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male drivers, e.g., 24% of female drivers operate longer
than 4 h per day, but only 19% of male drivers operate
longer than 4 h per day. There are similar patterns for daily
operation distance and income, so we do not show them.

Figure 11 shows Order Entropy of male drivers and
female drivers. We found male drivers operate in more
regions than female drivers on average. For example, about
62% of male drivers operate in more than 16 regions on
average, and about 57% of female drivers operate in more
than 16 regions on average.

In summary, female drivers may operate a longer time in
fewer regions than male drivers on average.

5 Impacts on passengers

In this section, we investigate the impact of the evolution of
city-scale ridesharing with EV penetration on passengers’
waiting time. The waiting time is defined as the time dura-
tion between a passenger sends a ride request through the
App and the dispatched vehicle picks the passenger up.

5.1 Qualitative measurement

We first investigate the average waiting time of passengers
in different areas. Similarly, we utilize the urban partition
with 491 regions to visualize the average waiting time of all
orders in different months in each region, which is shown in
Fig. 12a, where the lighter yellow parts mean shorter waiting
time and the darker red parts mean longer waiting time in
these regions. We found the light yellow part becomes larger
from January to May, which means the waiting time in more
areas becomes shorter. However, from May to September,
the waiting time in many regions has increased. It should
be noted that both the number of ridesharing vehicles (i.e.,
supply) and the number of orders (i.e., demand) increased
from January to September.

In addition, we also investigate the passengers’ aver-
age waiting time evolution during rush hours and non-rush
hours. As shown in Fig. 12b and c, for the morning rush
hours, the average waiting time in most suburban (e.g., non-
CDB) regions has significantly reduced from January to Sep-
tember, but the waiting time in urban areas does not reduce
too much. One possible reason is that there are more EVs
in the suburban areas during the evolution process, and they
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Fig. 12 Visualization of passengers’ average waiting time evolution in 491 regions
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provide more rides in suburban areas, as shown in Fig. 4,
which potentially reduces the vehicles to serve passengers
in urban areas.

Figure 12d shows the average waiting time during non-
rush hours, and we found that from January to September,
the average waiting time of passengers’ has decreased in
most regions, especially for the suburban areas. One poten-
tial reason would be more EVs increase and operate in sub-
urban areas.

5.2 Quantitative measurement

We define the vehicle accessibility and deficiency to quantify
the relation between passenger waiting time and the num-
ber of observed vehicles and orders, which are described
as follow:

Accessibility(i) = Jj\\/% .
Deficiency() = Nyt (1)~ N ©

Where Accessibility(i) is the vehicle accessibility in the ith
hour in a day, denoting the average number of vehicles avail-
able to each order; Deficiency(i) is the vehicle deficiency in
the ith hour in a day; NV, is the number of vehicles in the ith
hour; NV, ., is the number of orders in the ith hour.

We first calculate the average waiting time of each hour,
and then we obtain 24 values for each month. We show the
waiting time and accessibility of each hour in Fig. 13, and
we found with the increase of accessibility, the waiting
time decreases. This phenomenon exists in all months. We
also show the deficiency and waiting time in Fig. 14, where
we found the waiting time increases with the increase of
deficiency.

We further compare the correlation between the wait-
ing time of passengers and some relevant factors, including
the number of orders N, ., accessibility, and deficiency.
The Pearson correlation coefficient » and p-value are shown
in Table 2. We found that from January to September, the
correlation between passenger waiting time and N, ,,, or
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Fig. 13 Waiting time vs. accessibility
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Fig. 14 Waiting time vs. deficiency

deficiency becomes larger, which means with more EV pen-
etration, passengers are more vulnerable to longer waiting
time if there are too many concurrent orders.

The relation between waiting time and accessibility is
negative correlation, and the largest value happens in May,
but the waiting time will be smaller with the increase of
vehicle accessibility as shown in Fig. 13, which indicates it
may need a significant large number of vehicles to reduce
much waiting time of passengers with the penetration of
large-scale EVs into the ridesharing services.

Even though we do not explicitly study the impacts of
other factors (e.g., traffic conditions and weather conditions)
on passengers’ waiting time, they are implicitly included in
our measurement since we consider the real-time demand
and supply (i.e., passenger orders and available vehicles).

6 Impacts on society

In this section, we try to quantify the benefit of ridesharing
EVs to our society during the evolutionary vehicle electri-
fication process. Specifically, We utilize the CO, emission
reduction as a metric to show the benefit of the penetra-
tion of EVs into the ridesharing services. We consider the
real-world traffic conditions (e.g., travel speed), the daily
operation distance, and daily operation time of EVs to more
accurately estimate CO, emission reduction (Oguchi et al.
2002), which is shown as

k
E=Cx 03T +0.028D +0.056 ) (1, * (v; = v._)))

=1

(7

where E is the CO, emissions (g); C is the coefficient
between petrol consume and CO, emissions, which is 2392 g
(COy/Miter of petrol for cars (ecscore 2019) in Shenzhen;
T is the total operation time of vehicles (s); D is the total
operation distance of vehicles (m); & is the total number of
GPS records of each vehicle; v, is the speed at time ¢ (m/s);
1, is a tow-value indicator, which is 1 when v, > v,_, (i.e.,
accelerating) otherwise it is 0.
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Table 2 Correlation between

Lo Waiting time January May September
waiting time and some factors
r p r p r p
Norer 0.567 0.0039 0.613 0.0015 0.761 < 0.0001
Deficiency 0.646 0.0006 0.693 0.0002 0.777 < 0.0001
Accessibility —0.522 0.009 —0.551 0.0052 —0.527 0.008
huge potential to reduce CO, emissions and make a more
x10¢ sustainable society.
12 ‘ e
£ al
E ? 7 Discussion
5]
© 6 H
8N In this section, we summarize our findings and discuss some
2z 37 F— m 1 implications and limitations of our work.
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Months in 2019

Fig. 15 Evolution of CO, reduction

We utilize the GPS records of all ridesharing EVs to
estimate their CO, emission reduction. Figure 15 shows
the monthly CO, emission reduction from January 2019
to September 2019, and we found that the CO, emission
reduction has significantly increased from 3.44 x 10%kg to
1.17 x 107kg during this period. There is a slight decrease
in February as it includes the Chinese New Year (i.e.,
Spring Festival), so both the ridesharing supply and
demand decreased, resulting in the CO, emission reduc-
tion in February lower than other months.

We depict the CO, emission reduction evolution due
to the penetration of EVs into the ridesharing services by
using a quartic function with the coefficient of determina-
tion R? = 0.9942, as shown below:

E(Yy) =8913x10° - Y),* —2.10791 x 10° - Y,
+1.671877 x 10° - ¥,,> — 3.781144
X 10° - Y,; + 5.642903 x 10° 8)

Where Y, is the month of the year, and Y, starts from Jan
2019, which means Jan 2019 is 1 in Eq. 8. If all the ride-
sharing GVs are replaced with EVs by the end of 2020, it
is expected the yearly CO, reduction due to the ridesharing
EVs will be over 5.9 x 108kg in Shenzhen in 2021, which
is equivalent to the CO, emissions from 102,888 homes’
electricity use for one year or CO, emissions from 2.92 x 10®
kg of coal burned (Agency 2018). This finding indicates
that EV penetration into ridesharing services may have a

We summarize some findings and insights obtained from our
longitudinal study in Table 3.

7.2 Implications

We believe that our efforts and the revealed insights in
Table 3 can contribute to different roles in our society for
policy suggestions, e.g., (i) ridesharing drivers, (ii) operators
and governments, and (iii) related researchers.

For ridesharing drivers Our findings have the potential
to encourage ridesharing drivers to replace their GVs with
EVs since most EV drivers’ income did not decrease when
they work long daily time to provide ridesharing services.
Since most ridesharing usages are short trips, e.g., 75% of
trips are within 10 km, drivers do not need to worry that
they cannot provide services for most trips. Some locations
can be recommended for EV drivers to operate, e.g., some
CBD areas, as there is high demand while inadequate supply.

For ridesharing operators and city governments It would
benefit our society to replace ridesharing GVs with EVs
since EVs have the potential to achieve huge greenhouse
gas emission reduction, which could pave the way for more
sustainable mobility. However, it may be not the best deci-
sion to replace 100% of GVs with EVs under the current
setting (e.g., low battery capacity and the long charging time
of EVs) since some long inter-cities trips may not be ful-
filled by EVs. Ridesharing operators and city governments
can replace 90% of their ridesharing GVs with EVs at the
first stage of vehicle electrification. In addition, with high
EV penetration, more EVs are needed to reduce passengers’
waiting time. The government should deploy more charging
infrastructures in CBD areas to encourage more EV drivers
to operate there, which is also necessary for large-scale EV
penetration into ridesharing services. With the development
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Table 3 Findings and insights

Findings obtained from our longitudinal study Spatial and Temporal Evolution

Impacts on Drivers

Impacts on Passengers

Impacts on society

(ST1) distance We found there are more EV drivers operat-
ing in suburban (e.g., non-CBD) areas. Almost all regions
of high spatial ratios of EVs (i.e., percentage of orders
served by EV drivers in a region) are in the suburban
areas, as shown in Fig. 4. The spatial ratios of EVs in
93.7% of regions are not larger than 0.3 in January, but
the spatial ratios of EVs in 92.7% of regions become over
0.5 in September, which means the ridesharing service in
Shenzhen has converted from a GV-dominating market into
an EV-leading one during the rapid EV penetration process.
(ST2) Potential of EVs for Ridesharing EV drivers typically
operate in more regions than GV drivers based on our
observations, which may imply the range limitation of EVs
may not hinder their daily operation in most cases and EVs
have the potential to replace GVs for ridesharing services,
as shown in Fig. 5. (ST3) Temporal Evolution The served
order distributions of EVs and GVs are similar during the
evolution process, which potentially indicates that operators
dispatch the vehicles to serve passengers without consider-
ing they are EVs or GVs, so passengers cannot decide the
serving vehicle types (i.e., EVs or GVs)

(ID1) Income EV drivers typically have higher daily income
than GV drivers due to the longer daily operation distance
and time. However, almost all long trips (e.g., cross-city
trips) with very high costs are served by GV drivers due to
the battery capacity and long charging time of EVs, which
indicates that EVs cannot fully replace the GVs for long
trips under the current setting (Fig. 7).(ID2) Age (D The
newly registered ridesharing drivers are more likely to be
young EV drivers, e.g., the ratio of young EV drivers with
age under 40 has increased from 61.7% to 68.2% from Janu-
ary to September 2019 (Fig. 8), while the counterpart of GV
drivers has not increased much during this period (Fig. 9).
(@ Middle-aged drivers (e.g., 45-59) have the longest aver-
age daily operation time, distance, and income compared to
drivers of other ages (Table 1). (ID3) Gender Only 1.1% of
ridesharing drivers are female. Although the average daily
operation time of female drivers is longer than that of male
drivers (Fig. 10), the number of operation regions of them is
less than male drivers on average (Fig. 11)

(IP) Waiting Time With more EVs penetrating into the
ridesharing services, passengers are more vulnerable to
longer waiting time if there are too many concurrent orders.
We found passengers’ waiting time has a strong correlation
with the deficiency of ridesharing vehicles, with Pearson
r=0.777 and p < 0.0001 in September 2019 (Table 2)

(1S) CO, emissions EVs have a huge potential to reduce the
CO, emissions for ridesharing services, e.g., we found the
ridesharing EVs in Shenzhen reduced 1.17 x 10’kg CO,
emissions in September 2019 (Fig. 15), which is equivalent
to the CO, emissions from about 24,500 homes’ electricity
use for one month or CO, emissions from 5.8 X 10%kg of
coal burned

of battery technology and charging technology, we believe
the GVs may be fully replaced by EVs.

For researchers With more and more cities advocat-
ing vehicle electrification, the ever-increasing number of
EVs for ridesharing services must have huge impacts on
our society, and the EV topic also attracts a lot of interest
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in the research community (Du et al. 2018; Li et al. 2015;
Wang et al. 2019b; Xiong et al. 2015). In this paper, we
provided a first look at the EV penetration into ridesharing
services, and we found ridesharing EVs have many different
patterns from conventional GVs. However, there are still
many veiled questions, e.g., the impact of ridesharing EVs
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on smart grids, individual drivers’ operation pattern change,
the impact of EVs on individual drivers, etc. Although our
work can lay the foundation for some of these works, having
access to the ridesharing EV data is still a problem for most
researchers. Hence, to benefit the research community and
make our work more reproductive, our collaborator agrees
to release sample data used in this paper after we can reveal
our identity.

7.3 Ethics and privacy

As the utilized data is from real ridesharing services, we
took careful steps to ensure that our work met ethical stand-
ards. (i) The staff in the Transport Commission of Shenzhen
removed all sensitive information about drivers and passen-
gers, and they replaced all driver IDs with unique identifiers,
so all of the identifiers in our datasets are opaque IDs. (ii)
We only collected GPS coordinates of ridesharing vehicles
when they were on duty, which means we did not collect
their information when these vehicles were used for personal
purposes, so we did not obtain the personal private trajectory
information of drivers. (iii) All users and drivers have been
notified their order data or vehicle information will be col-
lected for ridesharing management and payment evaluation
when they register to use or provide ridesharing services.
Users and drivers consented that their data while using/pro-
viding ridesharing services can be utilized to understand and
improve the services of the ridesharing operators by signing
a contract when registering.

7.4 Limitations and future work

Cross-city investigation In this work, we only utilize ride-
sharing data from the Chinese city Shenzhen to investigate
the penetration evolution of EVs for ridesharing services.
Due to certain features of Shenzhen (e.g., one of the most
crowded cities in China with the fastest economic growth, a
pilot city to replace ridesharing GVs with EVs), the results
we have in Shenzhen may not be directly applied to all other
cities. Although there are no signs that the same results will
hold to a different city, we argue that our longitudinal study
and obtained insights can provide guidelines for other cities
(e.g., London) to understand and predict their ridesharing
evolution when replacing GVs with EVs.

We are also trying to conduct a dual-city investigation.
However, since only Shenzhen has such a large-scale and
high penetration of EVs for ridesharing services currently,
it is challenging to find another city for a parallel study.
One possible direction we are exploring is to design transfer
learning models to transfer the knowledge (e.g., spatiotem-
poral patterns of EVs, increasing rate of EVs) we obtained
from the Shenzhen ridesharing services to other cities for a
“what if” investigation. For example, what if all ridesharing

GVs in London or New York City were replaced by EVs,
how it will influence different parties within the rideshar-
ing service. It also opens some very interesting research
directions.

Including charging data of EVs In this project, we have
no access to the real-world charging data of ridesharing EVs,
so we did not have opportunities to study their charging pat-
terns. Based on our field studies in Shenzhen, we found the
charging activities of ridesharing EVs are extremely compli-
cated due to their private vehicle nature. Different from other
commercial EVs, e.g., electric buses, which usually charge
in their exclusive charging stations, ridesharing drivers may
charge their EVs at any place with charging points at any
time, so their charging behaviors are more complicated. One
possible direction we are exploring is to infer the charging
activities of ridesharing EVs based on their GPS data.

8 Related work

As ridesharing services continue to gain popularity of the
research community, there is an emerging body of research
on them (Anwar et al. 2017; Zhou et al. 2019; Kooti et al.
2017; Guo et al. 2017a; Bokanyi and Hannédk 2019; Shokoo-
hyar 2018; Lan et al. 2019; Bansal et al. 2019; Wang et al.
2018a; Li et al. 2019; Xu et al. 2018; Lin et al. 2018). In
general, most existing works on ridesharing services can be
classified into the following two categories: (i) understand-
ing ridesharing services based on real-world data; and (ii)
enhancing ridesharing services by designing some optimiza-
tion algorithms (Li et al. 2019; Wang et al. 2018a).

8.1 Understanding ridesharing services

There is a set of research conducted on understanding dif-
ferent dimensions in ridesharing services (Jiang et al. 2018;
Kooti et al. 2017; Guo et al. 2017a; Bokanyi and Hannéak
2019; Shokoohyar 2018; Lan et al. 2019; Bansal et al. 2019).
Jiang et al. (2018) took a comprehensive look at the competi-
tion and accessibility of Uber, Lyft, and taxis in two major
U.S. cities. Kooti et al. (2017) conducted a study to reveal
the demographic and socioeconomic factors that affect
participation in the ridesharing market. Guo et al. (2017b)
conducted research to understand the demand and dynamic
pricing in ridesharing services, and they also investigated
the patterns of passengers’ reactions to dynamic prices
Guo et al. (2017a). Bokanyi and Hanndk (2019) combined
approaches from complex systems and algorithmic fairness
to investigate the effect of algorithm design decisions on
wage inequality in ridesharing services. Lan et al. (2019)
systematically studied the impact factors and their rela-
tions to ridesharing services in an empirical way. Bansal
et al. (2019) provide some new insights on understanding
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preferences to use ridesharing services by identifying rela-
tionships of individuals’ socio-demographic characteristics
with their preferences to use ridesharing services. However,
these works rarely consider the evolution of ridesharing
services, which potentially causes incomplete observations,
especially for the characteristics of ridesharing EVs.

8.2 Improving ridesharing services

There is also an increasing number of existing work focusing
on improving ridesharing services, e.g., increasing drivers’
incomes (Chaudhari et al. 2018), and reducing passengers’
waiting time (Zhang et al. 2017), balancing demand and sup-
ply (Wang et al. 2018a; Tang et al. 2019; Li et al. 2019; Xu
et al. 2018; Lin et al. 2018). Chaudhari et al. (2018) focused
on the problem of maximizing a driver’s individual earn-
ings on ridesharing platforms like Uber or Lyft, and they
described a series of dynamic programming algorithms to
solve this problem. Fang et al. (2018) aimed to target the
optimal loyalty program (subsidy) design. The results show
that heterogeneity in users helps reduce the competition
among platforms, and they validated the results with real
transaction data from a ridesharing platform. Much of the
recent literature focuses on the ridesharing order dispatch-
ing. Xu et al. (2018) presented a novel order dispatch algo-
rithm to provide a more efficient way to optimize resource
utilization and user experience in a global and more far-
sighted view. Wang et al. (2018a) modeled the ridesharing
order dispatching problem as a Markov Decision Process
and proposed learning solutions based on deep Q-networks
with an action search to optimize the dispatching policy for
drivers on ridesharing platforms. Li et al. (2019) tried to
address the ridesharing order dispatching problem using
multi-agent reinforcement learning, which shows the ability
to capture the stochastic demand-supply dynamics in large-
scale ridesharing scenarios. However, these works did not
consider the penetration of EVs into the ridesharing ser-
vices, without considering characteristics of EVs potentially
making their solutions do not work on EVs.

8.3 Uniqueness of our work

Our paper is in the first category, i.e., understanding ride-
sharing, but it has unique features compared to existing
works. Our work investigates the evolution of city-scale
ridesharing when it encounters the vehicle electrification
(Wang et al. 2018b, 2020a, c, 2021b, 2022a, b), which, to
our knowledge, has not been studied by existing research,
which has the potential to lay the foundation for improving
ridesharing and other following research.
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9 Conclusion

In this paper, we conduct the first longitudinal study to
understand the evolution of ridesharing services with large-
scale EV penetration. Specifically, our analysis covers over
165 million ridesharing orders collected from all ridesharing
operators in the Chinese city Shenzhen over a period of 9
months, during which the number of EVs for ridesharing
services has significantly increased from 8k to 24k. Differ-
ent roles in ridesharing services (e.g., passengers, EV and
GV drivers, and operators) are investigated. We provide a
set of insights regarding the evolution of city-scale rideshar-
ing services with large-scale EV penetration, e.g., differ-
ences in spatial & temporal patterns and incomes of EV
and GV drivers, passengers’ waiting time, etc. The evolution
of drivers of different demographic characteristics is also
investigated. In addition, we also quantify the benefits of
ridesharing EVs for the CO, emission reduction. We believe
that our research efforts and obtained insights (e.g., EV driv-
ers have the potential to achieve higher daily profit than GV
drivers) have the potential to benefit ridesharing drivers and
operators, and also attract the focus of the research commu-
nity. The uncovered advantages and drawbacks of rideshar-
ing EVs may also provide guidelines for other cities when
replacing their GVs with EVs.
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