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Abstract
With the rapid development of ubiquitous computing, our society is witnessing a rapid expansion of mobility-on-demand 
services, in which ridesharing (e.g., Uber, Lyft, and DiDi) has become one of the most successful applications and has 
percolated into people’s daily life. Even though a large number of research studies have been conducted to understand the 
demand and supply patterns or improve the operation efficiency of ridesharing services, little is known at a comprehensive 
level on their evolution, especially during the widely-initiative vehicle electrification process that electric vehicles start to 
take over conventional gas vehicles gradually. Different from conventional gas vehicles, electric vehicles have some unique 
characteristics, e.g., long charging time compared to the refueling process of gas vehicles, which potentially makes a differ-
ence in providing ridesharing services. In this paper, we seek to shed light on the evolution of city-scale ridesharing services 
with the penetration of large-scale electric vehicles. In particular, our study is based on a ridesharing operation dataset from 
the Chinese city Shenzhen in 2019, including all orders served by over 50,000 unique ridesharing drivers. We perform a set 
of observations on the differences between gas vehicle and electric vehicle drivers for ridesharing services from different 
dimensions, e.g., spatial, temporal, and income, etc. Our study shows that understanding the evolution of city-scale rideshar-
ing with the penetration of electric vehicles has strong implications for ridesharing drivers, passengers, operators, and city 
governments. On the one hand, our findings paint a promising picture of electric vehicles for ridesharing services, showing 
its prosperity in the Chinese city Shenzhen. On the other hand, our study also has the potential to provide some meaning-
ful guidelines for other cities that plan to replace their vehicles for ridesharing services with electric vehicles based on the 
obtained insights, e.g., possible drawbacks for long trips and charging infrastructure deployment.

Keywords  Sharing mobility · Ridesharing service · Electric vehicle · Evolution

1  Introduction

Due to the prevalence of smartphones and ubiquitous 
mobile devices, in the past decade, we have been witness-
ing an explosion of mobility-on-demand services (He and 
Shin 2019), including bikesharing (Wang et al. 2019a; He 
and Shin 2020b), carsharing (Wang et al. 2021a, 2020b), 
e-scooter sharing (He and Shin 2020a), and ridesharing (e.g., 
Uber, Lyft, and DiDi (Xu et al. 2020; Li et al. 2019)). At 
the same time, with the ever-increasing concerns over air 
pollution, we are also witnessing a rapid vehicle electrifi-
cation process since electric vehicles (EV) are considered 
as a cleaner alternative to conventional gas vehicles (GV) 
(Zhang et al. 2021; Wang et al. 2020d; Du et al. 2018), e.g., 
zero tailpipe emissions of EVs, which motivates many cities 
around the world to replace their ridesharing GVs with EVs. 
For example, Uber and Lyft (Walz 2019; SASHA LEKACH 
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2019) are accelerating the electrification of ridesharing vehi-
cles, and Uber has announced a new goal to electrify its 
entire London fleet by 2025 (Vincent 2017).

Even though there is an increasing number of studies on 
different aspects of ridesharing services, e.g., competition 
and accessibility (Jiang et al. 2018), labor issues (Glöss et al. 
2016), and order dispatching (Zhang et al. 2017; Lin et al. 
2018), most of them focused on conventional GVs. To our 
knowledge, little work has been done to investigate the pen-
etration of EVs into ridesharing services during the evolu-
tion process. However, EVs are typically different from GVs 
due to their long charging time (e.g., it usually takes over 2 h 
for EV drivers to fully charge their vehicles even using the 
fast chargers, while the refueling processes of GVs typically 
last for 3–5 min (Wang et al. 2019b), which potentially limits 
EVs’ operation time, resulting in low supply and accessibil-
ity of ridesharing vehicles. Therefore, it is necessary for us 
to understand the comprehensive evolution patterns (e.g., 
driver profit and passenger waiting time) of city-scale ride-
sharing during its electrification process.

To reveal the unseen, in this paper, we conduct the first 
longitudinal study on the evolution of city-scale ridesharing 
services during the EV penetration process. We seek to shed 
light on the evolution of ridesharing services in the Chinese 
city Shenzhen, which has, to our knowledge, the largest elec-
tric ridesharing fleet in the world. Specifically, our meas-
urement study has three key features: (i) a long data col-
lection period, including all ridesharing order records from 
January 2019 to September 2019 in Shenzhen; (ii) a large 
number of vehicles for ridesharing services (e.g., over 50k 
vehicles), and the number of EVs for ridesharing has sig-
nificantly increased from 8k to 24k during the nine months; 
(iii) a large number of user trip records, e.g., more than 165 
billion ridesharing trips. We first utilize the dataset to show 
the evolution of the number of EVs and GVs (Sect. 2.4). 
Then we explore the spatiotemporal evolution of electric 
ridesharing (Sect. 3). Next, we extensively investigate the 
impacts of ridesharing EV penetration on drivers (Sect. 4), 
passengers (Sect. 5), and society (Sect. 6) with different met-
rics. Finally, we report a set of findings and insights obtained 
from our investigation, combined with some discussions 
about potential implications (Sect. 7). Among all observa-
tions and insights, we provide some of the most prominent 
below, and more details will be shown in the paper.

•	 Income EV drivers typically have higher daily income 
than GV drivers due to longer operation distance and 
time, but almost all long trips (e.g., cross-city trips) are 
served by GVs.

•	 Driver age The newly registered ridesharing drivers are 
more likely to be young EV drivers. Middle-aged drivers 
have the longest average daily operation time, distance, 
and income compared to drivers of other ages.

•	 Driver gender The average daily operation time of female 
drivers is longer than that of male drivers, but the number 
of regions they operate is less than male drivers on aver-
age.

•	 Passenger waiting time With more EVs penetrating into 
the ridesharing services, passengers are more vulnerable 
to longer waiting time when there are too many concur-
rent orders. Passengers’ waiting time has a strong corre-
lation with the difference between the number of orders 
and the number of ridesharing EVs.

•	 Societal impact on CO2 reduction Ridesharing EVs have 
a huge potential to reduce the CO2 emissions, e.g., the 
ridesharing EVs in Shenzhen reduced 1.17 × 107 kg CO2 
emissions in September 2019.

To the best of our knowledge, this is the first comprehen-
sive longitudinal study on EV penetration into ridesharing 
services at the city scale. We believe that our efforts and the 
revealed insights have the potential to benefit the research 
community, as well as city governments, ridesharing opera-
tors, and drivers.

2 � Dataset and statistics

In this section, we introduce the operation of ridesharing 
systems, datasets that we will use throughout this paper, as 
well as some preliminary analysis.

2.1 � Ridesharing operation

Figure 1 shows the general ridesharing operation paradigm. 
Different roles (user/passenger, driver, and operator) are 
interacted with each other to invigorate the urban mobility 
dynamics.

•	 Users/passengers need to sign up as a user role via 
mobile Apps provided by operators before the first-time 
use of ridesharing services. Each ridesharing operator 

<Users>

Mobile Apps

<Drivers>

User List Driver List

User-Driver Matching:
Order Generation

<Operators>

VehiclesServe (Pickup and Drop off)

Confirm Trip and Pay

Apps

Fig. 1   Ridesharing operation
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provides its own App for users, e.g., Uber, Lyft, and 
DiDi. The original locations and time and expected des-
tinations (i.e., OD) of users are required for sending a 
ride request through an App, and these request records 
are then uploaded to the ridesharing data center through 
network connections for responding.

•	 Drivers need to sign up as a driver role via mobile Apps 
if they want to be ridesharing drivers, and their demo-
graphic information (e.g., age and gender) is needed for 
security purposes. The real-time location (i.e., vehicle 
GPS coordinates) and status information (i.e., avail-
able or not) of drivers are also periodically uploaded via 
communication devices and then stored in the servers for 
management and analysis.

•	 Operators provide operation management services (e.g., 
order dispatching) for all registered drivers and users via 
centralized ridesharing management platforms. After 
receiving ridesharing requests from users in a short dura-
tion, the management platform will match these users to 
the optimally available drivers by batching matching. The 
dispatching decisions will be sent to drivers and users 
once they are matched. EVs and GVs are equally treated 
when making scheduling decisions. After completing a 
trip, a complete ridesharing record will be generated, 
including user and driver information, as well as trans-
action information.

2.2 � Data description

In total, our dataset includes ridesharing data in Shenzhen 
in 2019, which includes over 165 million records of more 
than 50,000 ridesharing vehicles. The details of our datasets 
are shown below:

•	 Ridesharing order data Each order record consists of 
fields describing vehicle and driver information, and 
transaction information, e.g., the order ID, order time, 
pick-up time, pick-up GPS coordinates (i.e., longitude 
and latitude), drop-off time, drop-off GPS coordinates, 
trip length, vehicle ID, EV flag, age and gender of driv-
ers, etc.

•	 Contextual data In addition to the two main ridesharing 
data, we also leverage various contextual data for this 
longitudinal study, e.g., urban partition data provided 
by the Transport Commission of Shenzhen and weather 
data.

2.3 � Data cleaning and management

Due to the long-term and large-scale ridesharing data, we 
made a lot of efforts in the data cleaning processes, e.g., 
data masking, map matching, and errant data filtering. We 
utilize an 80 TB Hadoop Distributed File System (HDFS) 

on a cluster consisting of 20 nodes to manage the data. For 
daily data processing, we utilize the MapReduce-based Pig 
and Hive since our analyses are based on historical log 
data, instead of streaming data.

Based on the cleaned large-scale dataset, we investigate 
the impacts of ridesharing evolution with EV penetration 
on different roles (e.g., driver and passenger) by defining 
various quantification metrics from different dimensions 
(e.g., spatial, temporal, and income). In addition, we also 
take the demographic information of ridesharing drivers 
(e.g., age and gender) into consideration.

2.4 � Vehicle count evolution

Figure 2 shows the evolution of the number of EVs and 
conventional GVs in Shenzhen from January 2019 to Sep-
tember 2019. We found that the number of EVs has sig-
nificantly increased during the nine months, from 8676 
(17.9%) to 24,663 (42.5%), while the number of GVs has 
gradually decreased, from 39,766 to 33,381. We depict the 
evolution trend of EVs using a linear distribution with the 
coefficient of determination R2 = 0.9931 , as shown below:

NEV is the number of EVs. YM is the month of the year, and 
YM starts from Jan 2019, which means Jan 2019 is 1 in Eq. 1.

After we fit the number of GVs in different functions, 
we found the Cubic function with R2 = 0.9565 and Root 
Mean Square Error RMSE = 521.1 would be a superb 
choice, as shown below:

With the two distributions describing the evolution of the 
number of EVs and GVs, it is expected that the number of 
EVs will exceed GVs since November 2019.

(1)NEV

(

YM
)

= 2085 ⋅ YM + 5944.1
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Fig. 2   Evolution of the # of EVs and GVs in Shenzhen
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3 � Spatiotemporal evolution

In this section, we investigate the spatiotemporal evolution 
of ridesharing orders during the EV penetration process.

3.1 � Temporal evolution

Figure 3 shows the evolution distributions of average served 
order ratios by EVs and GVs in 24 h of a day. We have fol-
lowing observations: 

	 (i)	 In January 2019, the percentage of served orders 
by GVs (79.1%) is much higher than that of EVs 
(20.9%), with 384,562 (GV):101,610 (EV) orders 
each day on average. From January to September, the 
supply gap between GVs and EVs becomes smaller 
and smaller, and the served order ratio becomes 
52%:48%, with 393,679 (GV):363,396 (EV) orders 
each day on average. In some hours of September, 
e.g., 19:00–21:00, the percentage of served orders by 
EVs actually exceeds that of GVs, which may suggest 
the EVs have the potential to take over the GVs for 
ridesharing services.

	 (ii)	 The served order distributions of EVs and GVs 
(shape of curves) are similar from January to Sep-
tember, which potentially indicates that operators 
dispatch the vehicles to serve passengers without 
considering they are EVs or GVs (we verified this 
with operators in Shenzhen), so passengers cannot 
decide the serving vehicle types (i.e., EVs or GVs).

	 (iii)	 During the evolution process, we found the largest 
gap between served orders by EVs and GVs hap-
pens during the morning and evening rush hours (i.e., 
9:00–10:00 and 18:00–19:00). The reason behind 
this phenomena would be there are both higher ride-
sharing demand and supply during the rush hours, as 
we found there are some part-time ridesharing driv-
ers who only provide rides for passengers when they 
go to work or come back to home from work, while 
most of those private cars are GVs.

3.2 � Spatial evolution

We leverage the urban partition data of Shenzhen to investi-
gate the spatial evolution of EV drivers for ridesharing ser-
vices. There are 491 regions in Shenzhen based on the parti-
tion of the Shenzhen government. We define the spatial ratio 
SR to investigate the served order distributions by EVs and 
GVs, which is the number of orders served by EVs or GVs 
divided by the total orders in each region in one day. Equa-
tion 3 shows the spatial ratio SR of EVs in region X  , where 
NOEV (X) is the number of orders served by EVs in region 
X  and NOall(X) is the total number of orders in region X .

Figure 4 shows the SR of EVs in each region during 
the evolving process of the Shenzhen ridesharing services, 
where the darker red areas means there are low SR of EVs 
in these regions, and the lighter yellow areas indicate more 
orders are served by EVs in these regions compared to GVs. 
In addition to the qualitative visualization, we also quanti-
tatively show the SR distributions in all the 491 regions, 
which can be seen from the upper right corner of the figure. 
According to Fig. 4, we have the following observations: 

	 (i)	 The SR of EVs have significantly increased from 
January 2019 to September 2019, which may be 
mainly caused by the penetration of large-scale EVs 
into the Shenzhen ridesharing services during this 
period, e.g., the number of EVs for ridesharing ser-

(3)SR(X) =
NOEV (X)

NOall(X)
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vices has tripled from 8676 to 24,663 during the nine 
months.

	 (ii)	 A surprising finding is that almost all regions of 
high SR of EVs are in the suburban areas (e.g., non-
CBD area), and this phenomenon is persistent during 
the EV penetration process. There is a rapid increase 
of the SR of EVs, and more orders are served by 
EVs in the suburban areas compared to the GVs. One 
possible reason is that the heavy traffic jams in urban 
Central Business District (CBD) areas will accelerate 
the energy consumption of EVs, so drivers prefer to 
use EVs for ridesharing services in suburban areas 
to prolong their daily operation time. Another reason 
could be there are more charging stations deployed in 
the suburban areas, so EV drivers are easier to charge 
their EVs in those areas.

	 (iii)	 Quantitatively, the SR of EVs in 93.7% of regions 
is not larger than 0.3 in January, which suggests the 
ridesharing market in January is dominated by GVs 
in Shenzhen. In May, the SR of EVs in about 88% 
of regions is between (0.4-−0.6], which means the 
EVs and GVs have a similar ridesharing share at this 
time. In September, we found that the service ratios 
of EVs in 92.7% of regions are over 0.5, which means 
EVs have more orders than GVs in almost all regions 
in Shenzhen, and they are dominating the Shenzhen 
ridesharing market. In summary, Shenzhen has expe-
rienced a rapid ridesharing market transition in the 
nine months, from the GV-dominating market to an 
EV-leading one.

3.3 � Order entropy evolution

Since the order pickup (i.e., origin) locations indicate where 
the ridesharing drivers are willing to go and provide rides for 
users, we define the Order Entropy to quantitatively measure 
the operation activity range of each individual driver, which 
is denoted as below:

Where H(O) is the Order Entropy of the ridesharing driver 
in a time period (e.g., one month, one week, or one day). 
R is a region set, which includes all regions that the driver 
provides rides for users. p(ri) is the probability of served 
orders by the driver in the region ri and ri ∈ R.

Since we found there is no much difference during 
the nine months for the Order Entropy distributions, 
we utilize all data to compare the Order Entropy distri-
butions of EV drivers and GV drivers, which is shown 
in Fig. 5. We found the EV drivers typically operate in 
more regions than GV drivers, e.g., more than 72% of EV 

(4)H(O) = −
∑

ri∈R

p
�

ri
�

log2 p
�

ri
�

drivers operate in more than 16 regions on average (Order 
Entropy>4), while only about 53% of GV drivers oper-
ate in more than 16 regions on average. This observation 
indicates that the EV model may not limit the activity 
regions of drivers to provide ridesharing services within 
the city, and we also found about 75% of rides are shorter 
than 10 km.

We also compare the Order Entropy distributions of 
ridesharing drivers belonging to the three major operators 
in Shenzhen, as shown in Fig. 6. We found that the drivers 
of Operator 3 normally operate in more regions to serve 
passengers, e.g., about 95% of Operator 3’s drivers serve 
passengers in more than 8 regions (Order Entropy=3) 
on average, while about 79% of drivers of Operator 1 
and 32% of drivers of Operator 2 operate in more than 
8 regions on average. About 66% of drivers in Operator 
2 operate in 2 regions (Order Entropy = 1) to 16 regions 
(Order Entropy = 4), while most drivers in Operator 1 
(i.e., 67%) and Operator 3 (i.e., 86%) operate in 16 regions 
to 64 regions on average. We also found that the drivers 
with the highest activity range (Order Entropy > 6) are 
almost in Operator 1. Even though there may be different 
possible reasons behind this phenomena, (e.g., different 
operators have a different number of vehicles and different 
operation policies, drivers’ preference), we can conclude 
that EVs have the potential to operate and serve passen-
gers in different regions, and it implies the range limitation 
of EVs may not hinder their daily operation in most cases.
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4 � Impacts on drivers

In this section, we investigate the impact of the evolution of 
ridesharing services with EV penetration on drivers’ daily 
operation time, distance, and income. In addition, we also 
study the impacts on drivers with different demographic 
features.

4.1 � Evolution of time, distance, and income

In Fig. 7, we compare the daily operation time, distance, and 
income of EV drivers and GV drivers during the evolution 
process.

From Fig. 7a, we surprisingly found that the 25th, 50th, 
and 75th percentiles of EVs are always larger than that of 
GVs from January to September, which means EV drivers 
typically operate longer time than GV drivers. This finding 
is counter-intuitive since we usually think EVs need a longer 
time for charging than refueling of GVs, so EVs should have 
shorter operation time. One possible reason may be that the 
newly registered full-time drivers must use EVs to provide 
ridesharing services and more existing ridesharing drivers 
replace their GVs with EVs. The longest operation time 
of GVs is always longer than that of EVs from January to 
September, but the gap becomes smaller with more EVs 
penetrating into the ridesharing services. One reason may 
be that there are more new EV models that have large bat-
tery capacities introduced to the ridesharing market, which 
potentially indicates that EVs have the potential to take over 
GVs for ridesharing services with the development of bat-
tery technologies.

A similar pattern is drawn from Fig. 7b, i.e., EV drivers 
typically operate longer distances than GV drivers. How-
ever, the maximum daily operation distance of EVs is always 
shorter than that of GVs. The possible reason is that the 
restricted battery capacity and the long charging time of 
EVs make them challenging to provide very long trips, e.g., 
cross-city trips. We found 93% of trips longer than 150 km 
are served by GVs and 100% of trips longer than 200 km 
are served by GVs. Therefore, we argue that the current 

ridesharing EVs are hard to fulfill very long trips, so they 
cannot entirely replace GVs under current settings.

With the above findings, it is not surprising that some 
GV drivers have very high daily income, which cannot be 
achieved by EV drivers due to the battery limitation. How-
ever, in general, most EV drivers have higher daily income 
than GV drivers since they operate for a longer time.

4.2 � Age related evolution

4.2.1 � Age evolution of ridesharing drivers

Figures 8 and 9 show the age distributions of EV drivers 
and GV drivers during the evolving process. We found the 
youngest driver is 20 years old, and very few drivers are 
over 55 years old, e.g., about 1.7% of EV drivers and 2.9% 
of GV drivers are over 55. Nearly half of the drivers (48.3% 

Fig. 7   Comparisons of daily operation time, daily operation distance, and daily income of EV drivers and GV drivers
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of EV drivers and 45.2% of GV drivers) are between 30 and 
40 years old.

	 (i)	 From January to September 2019, the ratio of young 
EV drivers with age under 40 has increased from 
61.7% to 68.2%, while the counterpart of GV driv-
ers has not change much during this period, which 
potentially indicates that more young drivers have 
registered as ridesharing drivers with their EVs.

	 (ii)	 Comparing the age distributions of EV drivers and 
GV drivers, we found that the EV drivers are younger 
than GV drivers since 68.2% of EV drivers are under 
40 years old, but only 54.8% of GV drivers are under 
40. One possible reason would be that young peo-
ple are easier to overcome the disadvantages of EVs 
caused by their long charging time and accept EVs, 
while elderly drivers are more conservative and pre-
fer to utilize GVs for ridesharing services.

4.2.2 � Comparison of drivers in different age groups

We empirically divide the drivers into different groups 
using five-year-old as the slot. Then we utilize two statisti-
cal indicators (i.e., Mean and standard deviation (i.e., std)) 
to compare the daily operation time, distance, income, and 
order entropy of EV drivers and GV drivers in different age 
groups.

As shown in Table 1, we found both the Mean and std 
of daily operation time of GV drivers in all age groups are 
small than that of EVs, which means EV drivers usually 
operate a longer time than GV drivers. In addition, both 
EV drivers and GV drivers in 45–59 have the longest daily 
operation time than drivers in other age groups. One pos-
sible reason could be that most ridesharing drivers in this 
age range are full-time ridesharing drivers, and they need to 
work a long time to make a living.

We found that the average daily operation distance of EV 
drivers is longer than that of GV drivers for all age groups, 
while the std of GV drivers is larger than that of EV driv-
ers, which indicates that EV drivers usually operate longer 
distances than GV drivers and have a small deviation in the 
same age group. The EV drivers in 50–59 have the longest 
daily operation distance, but the corresponding GV drivers 
are in 45–49.

For the daily income, we found that both EV drivers and 
GV drivers in 45–59 have the highest daily income from 
serving ridesharing passengers than drivers in other age 
groups, and the average daily income of EV drivers in senior 
age groups (over 50) is higher than that of GV drivers in the 
corresponding age groups. However, we found that the std 
of GV drivers is larger than corresponding age groups of EV 
drivers between 20–59, which potentially indicates that EVs 
cannot operate very far distance to earn a very high income.

We also compare the Order Entropy of EV drivers and 
GV drivers, and we found that EV drivers in 25–59 have 
larger Order Entropy and std, which means EV drivers in 
almost all age groups operate in more regions than GV driv-
ers in corresponding groups. And the elderly drivers have 
higher Order Entropy than young drivers.

4.3 � Gender related evolution

We also investigate the differences between male drivers and 
female drivers. From January 2019 to September 2019, we 
found both the number of male drivers and female drivers 
increased.

We found there are no obvious changes from January 
to September, so we utilize all data to compare male and 
female drivers. Figure 10 shows the CDF of daily opera-
tion time of male drivers and female drivers. Although 
only a small number of female drivers for ridesharing ser-
vices, their average daily operation time is longer than 

Table 1   Age related comparisons

Age groups Daily operation time (h) Daily operation distance (km) Daily income (CNY) Order entropy

EV GV EV GV EV GV EV GV

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

20–24 4.09 2.35 3.6 2.35 84.17 48.51 79.7 51.08 320.61 179.7 319.74 223.18 4.6 1.2 4.38 1.23
25–29 4.16 2.38 3.71 2.38 87.42 50.29 84.15 55.55 333.1 184.94 346.59 238.37 4.48 1.39 4.4 1.28
30–34 4.27 2.5 3.7 2.43 90.39 52.34 84.2 57.19 345.63 195.85 354.4 254.74 4.48 1.39 4.4 1.29
35–39 4.25 2.49 3.64 2.47 90.16 52.06 81.3 58.01 344.94 192.27 345.86 261.28 4.5 1.35 4.4 1.2
40–44 4.43 2.56 3.77 2.49 92.35 53.13 81.06 56.56 355.63 196.52 345.8 255.7 4.56 1.33 4.49 1.2
45–49 4.62 2.53 4.02 2.5 94.25 51.23 84.73 56.21 362.5 188.3 362.92 254.88 4.6 1.25 4.57 1.13
50–54 4.76 2.55 4.05 2.46 95.62 50.85 82.76 53.59 368.51 189.01 353.59 243.91 4.6 1.26 4.6 1.0
55–59 4.85 2.59 4.13 2.42 95.8 51.51 82.49 51.52 367.96 195.39 345.39 227.89 4.75 1.24 4.67 0.96
60–64 4.05 2.54 3.62 1.92 86.03 54.31 73.28 42.3 326.59 206.67 290.12 167.72 4.46 0.57 4.80 0.80
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male drivers, e.g., 24% of female drivers operate longer 
than 4 h per day, but only 19% of male drivers operate 
longer than 4 h per day. There are similar patterns for daily 
operation distance and income, so we do not show them.

Figure 11 shows Order Entropy of male drivers and 
female drivers. We found male drivers operate in more 
regions than female drivers on average. For example, about 
62% of male drivers operate in more than 16 regions on 
average, and about 57% of female drivers operate in more 
than 16 regions on average.

In summary, female drivers may operate a longer time in 
fewer regions than male drivers on average.

5 � Impacts on passengers

In this section, we investigate the impact of the evolution of 
city-scale ridesharing with EV penetration on passengers’ 
waiting time. The waiting time is defined as the time dura-
tion between a passenger sends a ride request through the 
App and the dispatched vehicle picks the passenger up.

5.1 � Qualitative measurement

We first investigate the average waiting time of passengers 
in different areas. Similarly, we utilize the urban partition 
with 491 regions to visualize the average waiting time of all 
orders in different months in each region, which is shown in 
Fig. 12a, where the lighter yellow parts mean shorter waiting 
time and the darker red parts mean longer waiting time in 
these regions. We found the light yellow part becomes larger 
from January to May, which means the waiting time in more 
areas becomes shorter. However, from May to September, 
the waiting time in many regions has increased. It should 
be noted that both the number of ridesharing vehicles (i.e., 
supply) and the number of orders (i.e., demand) increased 
from January to September.

In addition, we also investigate the passengers’ aver-
age waiting time evolution during rush hours and non-rush 
hours. As shown in Fig. 12b and c, for the morning rush 
hours, the average waiting time in most suburban (e.g., non-
CDB) regions has significantly reduced from January to Sep-
tember, but the waiting time in urban areas does not reduce 
too much. One possible reason is that there are more EVs 
in the suburban areas during the evolution process, and they 
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234	 G. Wang et al.

1 3

provide more rides in suburban areas, as shown in Fig. 4, 
which potentially reduces the vehicles to serve passengers 
in urban areas.

Figure 12d shows the average waiting time during non-
rush hours, and we found that from January to September, 
the average waiting time of passengers’ has decreased in 
most regions, especially for the suburban areas. One poten-
tial reason would be more EVs increase and operate in sub-
urban areas.

5.2 � Quantitative measurement

We define the vehicle accessibility and deficiency to quantify 
the relation between passenger waiting time and the num-
ber of observed vehicles and orders, which are described 
as follow:

Where Accessibility(i) is the vehicle accessibility in the ith 
hour in a day, denoting the average number of vehicles avail-
able to each order; Deficiency(i) is the vehicle deficiency in 
the ith hour in a day; Nveh is the number of vehicles in the ith 
hour; Norder is the number of orders in the ith hour.

We first calculate the average waiting time of each hour, 
and then we obtain 24 values for each month. We show the 
waiting time and accessibility of each hour in Fig. 13, and 
we found with the increase of accessibility, the waiting 
time decreases. This phenomenon exists in all months. We 
also show the deficiency and waiting time in Fig. 14, where 
we found the waiting time increases with the increase of 
deficiency.

We further compare the correlation between the wait-
ing time of passengers and some relevant factors, including 
the number of orders Norder , accessibility, and deficiency. 
The Pearson correlation coefficient r and p-value are shown 
in Table 2. We found that from January to September, the 
correlation between passenger waiting time and Norder or 

(5)Accessibility(i) =
Ndriver(i)

Norder(i)

(6)Deficiency(i) = Norder(i) −Nveh(i)

deficiency becomes larger, which means with more EV pen-
etration, passengers are more vulnerable to longer waiting 
time if there are too many concurrent orders.

The relation between waiting time and accessibility is 
negative correlation, and the largest value happens in May, 
but the waiting time will be smaller with the increase of 
vehicle accessibility as shown in Fig. 13, which indicates it 
may need a significant large number of vehicles to reduce 
much waiting time of passengers with the penetration of 
large-scale EVs into the ridesharing services.

Even though we do not explicitly study the impacts of 
other factors (e.g., traffic conditions and weather conditions) 
on passengers’ waiting time, they are implicitly included in 
our measurement since we consider the real-time demand 
and supply (i.e., passenger orders and available vehicles).

6 � Impacts on society

In this section, we try to quantify the benefit of ridesharing 
EVs to our society during the evolutionary vehicle electri-
fication process. Specifically, We utilize the CO2 emission 
reduction as a metric to show the benefit of the penetra-
tion of EVs into the ridesharing services. We consider the 
real-world traffic conditions (e.g., travel speed), the daily 
operation distance, and daily operation time of EVs to more 
accurately estimate CO2 emission reduction (Oguchi et al. 
2002), which is shown as

where E is the CO2 emissions (g); C is the coefficient 
between petrol consume and CO2 emissions, which is 2392 g 
(CO2)/liter of petrol for cars (ecscore 2019) in Shenzhen; 
T is the total operation time of vehicles (s); D is the total 
operation distance of vehicles (m); k is the total number of 
GPS records of each vehicle; vt is the speed at time t (m/s); 
1t is a tow-value indicator, which is 1 when vt > vt−1 (i.e., 
accelerating) otherwise it is 0.

(7)

E = C ×

[

0.3T + 0.028D + 0.056

k
∑

t=1

(1i ∗ (v2
t
− v2

t−1
))

]
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We utilize the GPS records of all ridesharing EVs to 
estimate their CO2 emission reduction. Figure 15 shows 
the monthly CO2 emission reduction from January 2019 
to September 2019, and we found that the CO2 emission 
reduction has significantly increased from 3.44 × 106 kg to 
1.17 × 107 kg during this period. There is a slight decrease 
in February as it includes the Chinese New Year (i.e., 
Spring Festival), so both the ridesharing supply and 
demand decreased, resulting in the CO2 emission reduc-
tion in February lower than other months.

We depict the CO2 emission reduction evolution due 
to the penetration of EVs into the ridesharing services by 
using a quartic function with the coefficient of determina-
tion R2 = 0.9942 , as shown below:

Where YM is the month of the year, and YM starts from Jan 
2019, which means Jan 2019 is 1 in Eq. 8. If all the ride-
sharing GVs are replaced with EVs by the end of 2020, it 
is expected the yearly CO2 reduction due to the ridesharing 
EVs will be over 5.9 × 108 kg in Shenzhen in 2021, which 
is equivalent to the CO2 emissions from 102,888 homes’ 
electricity use for one year or CO2 emissions from 2.92 × 108 
kg of coal burned (Agency 2018). This finding indicates 
that EV penetration into ridesharing services may have a 

(8)

E
(

Y
M

)

= 8.913 × 10
3
⋅ Y

M

4 − 2.10791 × 10
5
⋅ Y

M

3

+ 1.671877 × 10
6
⋅ Y

M

2 − 3.781144

× 10
6
⋅ Y

M
+ 5.642903 × 10

6

huge potential to reduce CO2 emissions and make a more 
sustainable society.

7 � Discussion

In this section, we summarize our findings and discuss some 
implications and limitations of our work.

7.1 � Findings and insights

We summarize some findings and insights obtained from our 
longitudinal study in Table 3.

7.2 � Implications

We believe that our efforts and the revealed insights in 
Table 3 can contribute to different roles in our society for 
policy suggestions, e.g., (i) ridesharing drivers, (ii) operators 
and governments, and (iii) related researchers.

For ridesharing drivers Our findings have the potential 
to encourage ridesharing drivers to replace their GVs with 
EVs since most EV drivers’ income did not decrease when 
they work long daily time to provide ridesharing services. 
Since most ridesharing usages are short trips, e.g., 75% of 
trips are within 10 km, drivers do not need to worry that 
they cannot provide services for most trips. Some locations 
can be recommended for EV drivers to operate, e.g., some 
CBD areas, as there is high demand while inadequate supply.

For ridesharing operators and city governments It would 
benefit our society to replace ridesharing GVs with EVs 
since EVs have the potential to achieve huge greenhouse 
gas emission reduction, which could pave the way for more 
sustainable mobility. However, it may be not the best deci-
sion to replace 100% of GVs with EVs under the current 
setting (e.g., low battery capacity and the long charging time 
of EVs) since some long inter-cities trips may not be ful-
filled by EVs. Ridesharing operators and city governments 
can replace 90% of their ridesharing GVs with EVs at the 
first stage of vehicle electrification. In addition, with high 
EV penetration, more EVs are needed to reduce passengers’ 
waiting time. The government should deploy more charging 
infrastructures in CBD areas to encourage more EV drivers 
to operate there, which is also necessary for large-scale EV 
penetration into ridesharing services. With the development 

Table 2   Correlation between 
waiting time and some factors

Waiting time January May September

r p r p r p

Norder 0.567 0.0039 0.613 0.0015 0.761 < 0.0001

Deficiency 0.646 0.0006 0.693 0.0002 0.777 < 0.0001

Accessibility −0.522 0.009 −0.551 0.0052 −0.527 0.008
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of battery technology and charging technology, we believe 
the GVs may be fully replaced by EVs.

For researchers With more and more cities advocat-
ing vehicle electrification, the ever-increasing number of 
EVs for ridesharing services must have huge impacts on 
our society, and the EV topic also attracts a lot of interest 

in the research community (Du et al. 2018; Li et al. 2015; 
Wang et al. 2019b; Xiong et al. 2015). In this paper, we 
provided a first look at the EV penetration into ridesharing 
services, and we found ridesharing EVs have many different 
patterns from conventional GVs. However, there are still 
many veiled questions, e.g., the impact of ridesharing EVs 

Table 3   Findings and insights

Findings obtained from our longitudinal study Spatial and Temporal Evolution (ST1) distance We found there are more EV drivers operat-
ing in suburban (e.g., non-CBD) areas. Almost all regions 
of high spatial ratios of EVs (i.e., percentage of orders 
served by EV drivers in a region) are in the suburban 
areas, as shown in Fig. 4. The spatial ratios of EVs in 
93.7% of regions are not larger than 0.3 in January, but 
the spatial ratios of EVs in 92.7% of regions become over 
0.5 in September, which means the ridesharing service in 
Shenzhen has converted from a GV-dominating market into 
an EV-leading one during the rapid EV penetration process. 
(ST2) Potential of EVs for Ridesharing EV drivers typically 
operate in more regions than GV drivers based on our 
observations, which may imply the range limitation of EVs 
may not hinder their daily operation in most cases and EVs 
have the potential to replace GVs for ridesharing services, 
as shown in Fig. 5. (ST3) Temporal Evolution The served 
order distributions of EVs and GVs are similar during the 
evolution process, which potentially indicates that operators 
dispatch the vehicles to serve passengers without consider-
ing they are EVs or GVs, so passengers cannot decide the 
serving vehicle types (i.e., EVs or GVs)

Impacts on Drivers (ID1) Income EV drivers typically have higher daily income 
than GV drivers due to the longer daily operation distance 
and time. However, almost all long trips (e.g., cross-city 
trips) with very high costs are served by GV drivers due to 
the battery capacity and long charging time of EVs, which 
indicates that EVs cannot fully replace the GVs for long 
trips under the current setting (Fig. 7).(ID2) Age 1  The 
newly registered ridesharing drivers are more likely to be 
young EV drivers, e.g., the ratio of young EV drivers with 
age under 40 has increased from 61.7% to 68.2% from Janu-
ary to September 2019 (Fig. 8), while the counterpart of GV 
drivers has not increased much during this period (Fig. 9). 
2  Middle-aged drivers (e.g., 45–59) have the longest aver-

age daily operation time, distance, and income compared to 
drivers of other ages (Table 1). (ID3) Gender Only 1.1% of 
ridesharing drivers are female. Although the average daily 
operation time of female drivers is longer than that of male 
drivers (Fig. 10), the number of operation regions of them is 
less than male drivers on average (Fig. 11)

Impacts on Passengers (IP) Waiting Time With more EVs penetrating into the 
ridesharing services, passengers are more vulnerable to 
longer waiting time if there are too many concurrent orders. 
We found passengers’ waiting time has a strong correlation 
with the deficiency of ridesharing vehicles, with Pearson 
r = 0.777 and p < 0.0001 in September 2019 (Table 2)

Impacts on society (IS) CO
2
 emissions EVs have a huge potential to reduce the 

CO
2
 emissions for ridesharing services, e.g., we found the 

ridesharing EVs in Shenzhen reduced 1.17 × 107 kg CO
2
 

emissions in September 2019 (Fig. 15), which is equivalent 
to the CO

2
 emissions from about 24,500 homes’ electricity 

use for one month or CO
2
 emissions from 5.8 × 106 kg of 

coal burned
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on smart grids, individual drivers’ operation pattern change, 
the impact of EVs on individual drivers, etc. Although our 
work can lay the foundation for some of these works, having 
access to the ridesharing EV data is still a problem for most 
researchers. Hence, to benefit the research community and 
make our work more reproductive, our collaborator agrees 
to release sample data used in this paper after we can reveal 
our identity.

7.3 � Ethics and privacy

As the utilized data is from real ridesharing services, we 
took careful steps to ensure that our work met ethical stand-
ards. (i) The staff in the Transport Commission of Shenzhen 
removed all sensitive information about drivers and passen-
gers, and they replaced all driver IDs with unique identifiers, 
so all of the identifiers in our datasets are opaque IDs. (ii) 
We only collected GPS coordinates of ridesharing vehicles 
when they were on duty, which means we did not collect 
their information when these vehicles were used for personal 
purposes, so we did not obtain the personal private trajectory 
information of drivers. (iii) All users and drivers have been 
notified their order data or vehicle information will be col-
lected for ridesharing management and payment evaluation 
when they register to use or provide ridesharing services. 
Users and drivers consented that their data while using/pro-
viding ridesharing services can be utilized to understand and 
improve the services of the ridesharing operators by signing 
a contract when registering.

7.4 � Limitations and future work

Cross-city investigation In this work, we only utilize ride-
sharing data from the Chinese city Shenzhen to investigate 
the penetration evolution of EVs for ridesharing services. 
Due to certain features of Shenzhen (e.g., one of the most 
crowded cities in China with the fastest economic growth, a 
pilot city to replace ridesharing GVs with EVs), the results 
we have in Shenzhen may not be directly applied to all other 
cities. Although there are no signs that the same results will 
hold to a different city, we argue that our longitudinal study 
and obtained insights can provide guidelines for other cities 
(e.g., London) to understand and predict their ridesharing 
evolution when replacing GVs with EVs.

We are also trying to conduct a dual-city investigation. 
However, since only Shenzhen has such a large-scale and 
high penetration of EVs for ridesharing services currently, 
it is challenging to find another city for a parallel study. 
One possible direction we are exploring is to design transfer 
learning models to transfer the knowledge (e.g., spatiotem-
poral patterns of EVs, increasing rate of EVs) we obtained 
from the Shenzhen ridesharing services to other cities for a 
“what if” investigation. For example, what if all ridesharing 

GVs in London or New York City were replaced by EVs, 
how it will influence different parties within the rideshar-
ing service. It also opens some very interesting research 
directions.

Including charging data of EVs In this project, we have 
no access to the real-world charging data of ridesharing EVs, 
so we did not have opportunities to study their charging pat-
terns. Based on our field studies in Shenzhen, we found the 
charging activities of ridesharing EVs are extremely compli-
cated due to their private vehicle nature. Different from other 
commercial EVs, e.g., electric buses, which usually charge 
in their exclusive charging stations, ridesharing drivers may 
charge their EVs at any place with charging points at any 
time, so their charging behaviors are more complicated. One 
possible direction we are exploring is to infer the charging 
activities of ridesharing EVs based on their GPS data.

8 � Related work

As ridesharing services continue to gain popularity of the 
research community, there is an emerging body of research 
on them (Anwar et al. 2017; Zhou et al. 2019; Kooti et al. 
2017; Guo et al. 2017a; Bokányi and Hannák 2019; Shokoo-
hyar 2018; Lan et al. 2019; Bansal et al. 2019; Wang et al. 
2018a; Li et al. 2019; Xu et al. 2018; Lin et al. 2018). In 
general, most existing works on ridesharing services can be 
classified into the following two categories: (i) understand-
ing ridesharing services based on real-world data; and (ii) 
enhancing ridesharing services by designing some optimiza-
tion algorithms (Li et al. 2019; Wang et al. 2018a).

8.1 � Understanding ridesharing services

There is a set of research conducted on understanding dif-
ferent dimensions in ridesharing services (Jiang et al. 2018; 
Kooti et al. 2017; Guo et al. 2017a; Bokányi and Hannák 
2019; Shokoohyar 2018; Lan et al. 2019; Bansal et al. 2019). 
Jiang et al. (2018) took a comprehensive look at the competi-
tion and accessibility of Uber, Lyft, and taxis in two major 
U.S. cities. Kooti et al. (2017) conducted a study to reveal 
the demographic and socioeconomic factors that affect 
participation in the ridesharing market. Guo et al. (2017b) 
conducted research to understand the demand and dynamic 
pricing in ridesharing services, and they also investigated 
the patterns of passengers’ reactions to dynamic prices 
Guo et al. (2017a). Bokányi and Hannák (2019) combined 
approaches from complex systems and algorithmic fairness 
to investigate the effect of algorithm design decisions on 
wage inequality in ridesharing services. Lan et al. (2019) 
systematically studied the impact factors and their rela-
tions to ridesharing services in an empirical way. Bansal 
et al. (2019) provide some new insights on understanding 
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preferences to use ridesharing services by identifying rela-
tionships of individuals’ socio-demographic characteristics 
with their preferences to use ridesharing services. However, 
these works rarely consider the evolution of ridesharing 
services, which potentially causes incomplete observations, 
especially for the characteristics of ridesharing EVs.

8.2 � Improving ridesharing services

There is also an increasing number of existing work focusing 
on improving ridesharing services, e.g., increasing drivers’ 
incomes (Chaudhari et al. 2018), and reducing passengers’ 
waiting time (Zhang et al. 2017), balancing demand and sup-
ply (Wang et al. 2018a; Tang et al. 2019; Li et al. 2019; Xu 
et al. 2018; Lin et al. 2018). Chaudhari et al. (2018) focused 
on the problem of maximizing a driver’s individual earn-
ings on ridesharing platforms like Uber or Lyft, and they 
described a series of dynamic programming algorithms to 
solve this problem. Fang et al. (2018) aimed to target the 
optimal loyalty program (subsidy) design. The results show 
that heterogeneity in users helps reduce the competition 
among platforms, and they validated the results with real 
transaction data from a ridesharing platform. Much of the 
recent literature focuses on the ridesharing order dispatch-
ing. Xu et al. (2018) presented a novel order dispatch algo-
rithm to provide a more efficient way to optimize resource 
utilization and user experience in a global and more far-
sighted view. Wang et al. (2018a) modeled the ridesharing 
order dispatching problem as a Markov Decision Process 
and proposed learning solutions based on deep Q-networks 
with an action search to optimize the dispatching policy for 
drivers on ridesharing platforms. Li et al. (2019) tried to 
address the ridesharing order dispatching problem using 
multi-agent reinforcement learning, which shows the ability 
to capture the stochastic demand-supply dynamics in large-
scale ridesharing scenarios. However, these works did not 
consider the penetration of EVs into the ridesharing ser-
vices, without considering characteristics of EVs potentially 
making their solutions do not work on EVs.

8.3 � Uniqueness of our work

Our paper is in the first category, i.e., understanding ride-
sharing, but it has unique features compared to existing 
works. Our work investigates the evolution of city-scale 
ridesharing when it encounters the vehicle electrification 
(Wang et al. 2018b, 2020a, c, 2021b, 2022a, b), which, to 
our knowledge, has not been studied by existing research, 
which has the potential to lay the foundation for improving 
ridesharing and other following research.

9 � Conclusion

In this paper, we conduct the first longitudinal study to 
understand the evolution of ridesharing services with large-
scale EV penetration. Specifically, our analysis covers over 
165 million ridesharing orders collected from all ridesharing 
operators in the Chinese city Shenzhen over a period of 9 
months, during which the number of EVs for ridesharing 
services has significantly increased from 8k to 24k. Differ-
ent roles in ridesharing services (e.g., passengers, EV and 
GV drivers, and operators) are investigated. We provide a 
set of insights regarding the evolution of city-scale rideshar-
ing services with large-scale EV penetration, e.g., differ-
ences in spatial & temporal patterns and incomes of EV 
and GV drivers, passengers’ waiting time, etc. The evolution 
of drivers of different demographic characteristics is also 
investigated. In addition, we also quantify the benefits of 
ridesharing EVs for the CO2 emission reduction. We believe 
that our research efforts and obtained insights (e.g., EV driv-
ers have the potential to achieve higher daily profit than GV 
drivers) have the potential to benefit ridesharing drivers and 
operators, and also attract the focus of the research commu-
nity. The uncovered advantages and drawbacks of rideshar-
ing EVs may also provide guidelines for other cities when 
replacing their GVs with EVs.
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