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Data from the cellular network have been proved as one of the most promising way to understand large-scale human mobility
for various ubiquitous computing applications due to the high penetration of cellphones and low collection cost. Existing
mobility models driven by cellular network data suffer from sparse spatial-temporal observations because user locations are
recorded with cellphone activities, e.g., calls, text, or internet access. In this paper, we design a human mobility recovery
system called CellSense to take the sparse cellular billing data (CBR) as input and outputs dense continuous records to
recover the sensing gap when using cellular networks as sensing systems to sense the human mobility. There is limited work
on this kind of recovery systems at large scale because even though it is straightforward to design a recovery system based
on regression models, it is very challenging to evaluate these models at large scale due to the lack of the ground truth data. In
this paper, we explore a new opportunity based on the upgrade of cellular infrastructures to obtain cellular network signaling
data as the ground truth data, which log the interaction between cellphones and cellular towers at signal levels (e.g., attaching,
detaching, paging) even without billable activities. Based on the signaling data, we design a system CellSense for human
mobility recovery by integrating collective mobility patterns with individual mobility modeling, which achieves the 35.3%
improvement over the state-of-the-art models. The key application of our recovery model is to take regular sparse CBR data
that a researcher already has, and to recover the missing data due to sensing gaps of CBR data to produce a dense cellular
data for them to train a machine learning model for their use cases, e.g., next location prediction.
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1 INTRODUCTION
Sensing human mobility in term of fine-grained locations is of great importance for ubiquitous computing [4] [66],
location-based services [65], urban planning[54] [55], and recent pandemic mitigation [52]. Most existing sensing
systems to capture human mobility suffer from either high deployment cost [34] or low spatial coverage [33].
Recently, thanks to the ubiquitous cellular devices, the study of human mobility sensing on cellular networks
has gained significant attention because of the high penetration rate of cellphones and the low marginal cost to
collect cellphone data.
The cellular service providers collect Cellular Billing Records (CBRs) for billing purposes such as phone

calls, messages, and internet access, which can be re-purposed to sense users’ locations and benefit the cellular
providers for their use cases, e.g., cellular network capacity modeling. Compared with Call Detail Records (CDR)
data, which mostly refers to records for users’ phone calls and message calls, CBR is a more general dataset
covering both call records and internet connection records. Relying on various CBR datasets collected by network
operators, human mobility sensing is extensively investigated by fellow researchers [28] [41] [64]. Existing works
mainly focus on either (1) collective mobility such as flows [17] and travel time [61], or (2) individual mobility
such as commuting patterns [27] and user spatial profiling [28] based on statistical methods, e.g., Hidden Markov
Model, or Conditional Random Field, which leads to satisfactory performance [65]. We summarize the existing
work on cellphone billing records (CBR) in table 1.

Table 1. Related Work Using Cellphone Billing Records (CBR)

Name Location # Days Volume
[28] NY & LA 91 585K users
[25] NY & LA 78 168K users
[26] NY & LA 140 352K users
[37] New York 91 250K users
[3] Ivory Coast 150 50K users
[35] China — 100K users
[8] Shanghai 14 642K users
[30] Singapore 14 3.17M users
[67] Shenyang & Dalian 48 3M users
[22] Dhaka City 30 2.87M users
[51] Paris 21 800M records
[17] Shenzhen — 10.2M records
[23] Milan 60 319M records
[11] Italy 67 17K trajectories

Recent advance of Machine Learning, especially deep learning, has the potential to further improve human
mobility modeling accuracy, e.g., prediction accuracy. However, the challenges of using cellular network data
for machine learning models is that users’ CBR are often too sparse on temporal dimension. This is because
these CBR data are mainly collected for billing purposes, e.g., phone call, text, and internet access, but most of
people have long period time of day without any CBR data because of no activities. For example, in our CBR
dataset, the average time with no activities is around 12 hours, which occupy 75% of people’s everyday time
if considering 8-hour sleeping. As a result, it is challenging for researchers to explore the advance of machine
learning to improve human mobility models because of CBR data sparsity. It motivates us to design a recovery
model to infer historical missing observations in the gaps between raw CBR data of individual users. With such a
recovery model, the fellow researchers (e.g., the ones in table 1) can enhance their legacy sparse CBR data to
obtain dense CBR data to train predictive machine learning models for their use cases.
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Existing works address the above sparsity challenge from three aspects. (i) Some work integrates CBR data
with other mobility data sources, e.g., transportation data, with methods such as cotraining [17] or multi-view
learning [64]. Studies in this category require extra data sources for calibration, which are not always accessible
by other researchers with CBR data. (ii) Other similar works include map matching from cellular towers such
as ctrack [50], coSense [57], which achieves continuous location sensing from connection with cellular towers;
location positioning by combining cellular signal strength distribution from nearby towers and CDR data [18];
However, these works require dedicated data collection such as continuous active cellphone connections or
cellphone interior sensor data. (iii) Admittedly, in theory, some work can infer the missing observations to fill
sensing gaps in cellular data by classical regression models. Those work are either built on theoretical models
with statistical assumptions [42], or lack details of implementation and evaluations [16]. However, little work has
been done in this category because it is challenging to obtain large-scale ground truth data for model validation.
Different from existing works, data recovery on CBR introduces two unique challenges: (i) uncertainty in

individual mobility caused by insufficient sensing data and irregular cellular usage patterns. This is because the
CBR is passively collected for billing purposes instead of active mobility tracking, and therefore the data quality
highly depends on cellular usage patterns of individual users. (ii) in practice, it is almost impossible to calibrate
the uncertainty with external data sources such as transportation data because users have different anonymous
IDs in different datasets due to encryption, and fine-grained mobility is hard to be matched with data fusion
from different data sources at the individual level. To address the two specific challenges in CBR data recovery,
our recovery methodology is built with two key techniques, i.e., collective individual mobility calibration in a
single data source, and stage-based bidirectional learning. We extract collective mobility features (e.g., travel time,
based on CBR data from all users) and apply the collective mobility features as calibration factors in individual
mobility inference to address the uncertainty in individual CBR data. For individual users, instead of focusing on
single records, we divide users into a staged distribution of observed and unobserved stages. Based on continuous
records in the observed stages, we infer user status such as transportation modalities, which are used in the
learning phase.
To rigorously evaluate our recovery model, we explore a new opportunity based on the upgrade of cellular

infrastructures to obtain the ground truth data. In particular, recently, the cellular service providers have been
logging signaling data, in addition to the CBR. Different from the CBR for billing purposes, the signaling data log
the interactions between cellphones and cellular towers, e.g., attaching, detaching, paging, etc, even without
billable activities. These signaling data were not typically logged and stored by the operators before due to the
large data storage without immediate use cases. But given the development 5G and AI use cases, the service
providers have realized the value of such data and started to invest to collect these signaling data. We have been
working with one of cellular operators in Hefei City, China to access these signaling data as the ground truth for
a recovery model we build. The key application of our recovery model is to take legacy sparse CBR data that a
researcher has (e.g., the ones in in table 1), and to recover the missing data due to sensing gaps of CBR to produce
a dense cellular data for them to train a machine learning model for their use cases, e.g., next location predictions.
The problem we are focusing is straightforward: Can we recover missing records in CBR to improve data

quality without access to other data sources? To address the above problem, we design and implement a human
mobility recovery system named CellSense with two key components. an individual-independent component
for collective mobility modeling, and an individual-dependent component for context-aware individual mobility
modeling. We summarize our contributions as follows.

• To our knowledge, we conduct the first study CellSense to infer sensing gaps in cellular billing records
(CBR) of cellular networks, which benefits both fine-grained human mobility and existing researchers with
sparse CBR. Our study is based on CBR (i.e., for phonecall, message and internet access) of a city-scale
cellular network in Hefei city, China covering around 3.37 million active users (around 40% penetration rate
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in the city). Under the consent of our collaborators, we will share one week of sample data including both
cellular billing records and signaling records so fellow researchers can validate and build upon our work.

• To address the prediction uncertainty in individual mobility, we have three key system design and technical
contribution in CellSense: (i) we integrate collective and individual mobility in one uniform learning
framework to solve uncertainty of individual-level human mobility; (ii) We normalize and embed the
contextual information from heterogeneous data sources in the learning framework to calibrate the mobility
learning; (iii) Instead of focusing on single directional learning (forward direction) in most existing studies
on human mobility, we consider mobility from two directions, e.g., past and future mobility observations,
and successfully apply bidirectional learning in CellSense.

• We evaluate CellSense with a separate data source, e.g., signaling data, as the ground truth, which are
collected internally by cellular network and different than CBR, i.e., the input of CellSense. The evaluation
results show that CellSense achieves 35.3% improvement on performance compared with state-of-the-art
methods.

2 MOTIVATION

2.1 Challenges
2.1.1 New Locations. Even though human mobility shows regular patterns such as commuting between home and
work locations, there exists uncertainty in human mobility. As shown in Fig. 1a, we profile users’ visited locations
with two weeks of CBR and then study the irregularity of users by new locations in the following week. we found
only 37.1% users move among existing locations and around 23.2% users visited more than 8 new locations. The
new locations introduce challenges for human mobility recovery due to the lack of historical observations.

(a) New Visited Locations (b) Average Interval
Fig. 1. Challenges of CBR Data for Mobility Recovery

2.1.2 Sensing Granularity. Different from sensors such as GPS devices, which passively sense human locations with
constant time intervals, e.g., 5 seconds, cellphone devices rely on active user activities for location sensing. As a
result, the temporal sensing granularity of cellular billing records is non-uniform. The average sensing granularity,
i.e., time interval between two CBR records, differs among users, which is caused by different cellphone usage
patterns of users. As shown in Fig. 1b, the average time interval between two CBR records is less than 1 minute
among 26.3% users while more than 10 minutes in top 26.4% (100%-73.6%) users. The non-uniform and irregular
sensing granularity introduces new challenges for human mobility recovery.

2.2 Opportunities
2.2.1 Increasing Demand for Cellular Services.With the increasing demand of high-quality, ubiquitous internet
access, cellular networks become one of the most promising ways to sensing human mobility in the city since
mobile devices such cellphones and tablets rely on cellular networks for internet services. According to Statista,
cellphone users have been increasing from 4.3 billion in 2016 to 4.8 billion in 2020, and in addition smartphone

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 100. Publication date: September 2021.



CellSense: Human Mobility Recovery via Cellular Network Data Enhancement • 100:5

Fig. 2. User Density Distribution
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Fig. 3. Road Networks
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Fig. 4. Population

users increases from 2.5 billion to 3.5 billion [38]. More importantly, due to the increasing demand of internet
services, users spend more time on cellular services for internet access. Compared with 62 minutes of average
daily usage time and 0.38 GB of average handset data traffic per user per month in 2015, users spend 358.2 minutes
per day on their cellphones and use 7.82 GB cellular networks per month for data transmission in 2019 [1]. In
particular, most users use cellular networks for data transmission in outdoor settings when they have no access
to indoor WiFi. We divide user behaviors into two stages, i.e., an observed stage with continuous user location
observations and an unobserved stage without any cellular billing records. The increasing demand of cellular
services generates enough CBR data to (i) infer individual travel features such as speeds and transportation
modes in the observed stages, and (ii) provide high spatio-temporal coverage for collective travel features such as
travel time on roads.

2.2.2 Contextual Information. To provide better service experience, in recent years, cellular providers start to collect
users’ contextual information with incentives, e.g., data package rate discounts. In return, users consent to provide
high-level contextual information for social good, backend analysis and metric monitoring, e.g., subscription plan
information, active time on certain apps, etc. The contextual information includes a wide range of demographic
factors describing users such as user age, car owner or not, which are used for the user profiling for the cellular
provides’ new services and products. Such demographic information is correlated with the usage and mobility
patterns of users. Therefore, in this paper, we collaborate with cellular providers and integrate such contexts in
our mobility modeling. The details of our data are given in the following section.

3 DATASETS
Cellular Billing Records (CBR): We are collaborating with one of three major cellular network operators
in China and have offline data access to its CBR data under NDA (Non-disclosure agreement). Please see our
discussion section our privacy protection, consent and ethics consideration. This cellular network has 23,704
cellular towers providing services for 3.37 million users in a Chinese city Hefei, the capital of the Anhui province.
It generates 20GB daily usage records, which we use for our mobility recovery. CBR contain the location and
time information when a user uses cellular services including phone calls, messages, and internet services. Each
CBR record has 5 attributes. A sample record and some statistical information is given in Table 2.
The details of each attribute are given as follows.
• Timestamp: Date and time when the record was generated. The precision of the time is millisecond.
• User ID: A unique encrypted identification of the cellphone user who generates the record.
• Tower ID and Tower Location: A unique identification of a cellular tower and its corresponding GPS location
with a longitude and latitude.

• Connection Type: The types of connections, i.e., phone calls, messages, or internet services.
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Table 2. Cellular Billing Records

Field Value
Timestamp 2017/06/12 00:23:55.357
Tower ID 110613042

Tower Location 116.9855024, 31.7906872
User ID 3B8xZpNZJpTjfOnwYbcdyA==

Connection Type 4G
Number of Daily Records 267 million
Number of Daily Users 3.37 million
Number of Cell Towers 23,704

We study the spatial and temporal distribution of CBR for a preliminary analysis. On the spatial dimension, a
Voronoi partition is applied to estimate spatial coverage of cellular towers [17]. As shown in Fig. 2, we found
a higher user density in downtown compared with surrounding suburban areas. The quantitative results are
reported and compared in Fig. 5a, where we found a unbalanced distribution of records on towers. 80% records
are concentrated on 30% cellular towers, which are mostly located in the downtown areas of the city. This is
because there is a higher user density and business activities in the downtown areas compared with suburban
areas. It indicates an uneven distribution of user locations for mobility inference. We further study the temporal
distribution of cellular activities in Fig. 5b. We found three peak usages at 8:00, 13:00, and 22:00, which are
corresponding to the morning peak hour, lunch time, and evening peak hour of users.

(a) Records (b) Users
Fig. 5. (a) Spatial Distribution of CBR on cellular towers (b) Temporal Distribution of CBR during One Day

User Contextual Information: We are also granted the access to the user contextual data collected from
subscription data and cellular operator metadata. The subscription data come from a new commercial pattern
emerging in China, where IT companies cooperate with cellular operators to dedicate cellular data plans for
specific apps or services with a lower cellular data price, e.g., providing a 5GB exclusive data package which
can only be used for certain car insurance apps or video apps. Then these contextual data can indirectly provide
us with more behavioral information about users. For example, "car" tags can indicate this user may own a car,
which further indicates that this user may use a navigation app or listen to streaming music, resulting in more
cellular data consumption. In total, all subscribed cellular users in our CBR data have tags. Around 80% of users
have fewer than 5 tags, the maximum number of tags for a user is 37, and the average number of tags for all users
is 4. In summary, the six categories and statistics are shown in Table 3. The first column shows the categories;
the second column denotes the percentage of corresponding tags of this category out of all the tags; the last
column presents the percentage of users with tags of this category out of all the users. For clarification and
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brevity, here we show some representative examples of tags for categories. For the phone usage category, typical
tags include video, music, etc; for the car-related category, typical tags include car-related properties such as the
user has car(s); for the demographic category, typical tags include gender, age range (e.g., the twenties), etc; for
the services category, typical tags are related to services in life, such as Internet services. These tags from cellular
service providers were collected with incentives, e.g., rate discount, to improve user experience and network
efficiency with better understanding of correlation between usage patterns and their contextual information. We
gives some detailed distributions on major tags as follows.

Table 3. Categories and Statistics

Categories Tag/Tags(%) Users/Users(%)
Phone usage 38.64 87.25
Car related 35.87 83.68
Demographic 17.91 46.74

Services 3.95 12.19
Average number of tags per user: 4
Number of users with tags: 3.37 millions

Road Network: Road networks describe the topological structure of human mobility in cities and highly
correlated with spatial traces. The road networks of Hefei city are collected from OpenStreetMap [21], which
include 4,9603 road segments and have a length of 12,813 km. The road network distribution in Fig. 3 complies
with the user density in Fig. 2, i.e., we found more users in places with a denser road segments.
Population: Another impact indicators for human mobility modeling is the static population distribution based
on census data [17]. In general, it is more possible for a user to visit places with a higher population distribution.
We visualize population distribution in Fig. 4 based on census data collected by the Worldpop project [19]. Similar
to the road network distribution, we found a high correlation between user density distribution and population
distribution when comparing Fig. 2 with Fig. 4.

Fig. 6. Framework

4 METHODOLOGY
In this section, we elaborate on design of CellSense. We introduce the system overview, followed design details
of the system.
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4.1 System Overview
In our design, we utilize the two opportunities to address the two challenges described in the motivation section
with two key components as shown in Fig. 6: (i) an individual-independent component for collective mobility
modeling; (ii) an individual-dependent component for context-aware individual mobility modeling.

4.2 Preliminary
4.2.1 Spatial and Temporal Granularity. We use Voronoi partition to estimate the coverage of cellular towers [17]
since users are connected to the nearest towers. On the temporal dimension, we divide time into 5-minute time
slots. If a user is connected to more than one tower during the same time slot, we set the location in the time slot
as the most frequent tower. A user mobility is described by a sequence of towers in 5-minute time slots.
4.2.2 Mobility Graph Construction. In the first step, since road networks describe the topology of user mobility but
our sensing granularity is on cellular towers, we construct a mobility graph by combining both road networks
and tower locations. Specifically, a mobility graph is defined as𝐺 = (𝑉 , 𝐸) where𝑉 is tower locations and 𝐸 is the
collection of edges connecting cellular towers. As shown in Fig. 7, when a road connects two adjacent covered
areas of towers, e.g., tower 1 and tower 2, an edge will be added into 𝐸.

Fig. 7. Mobility Graph Construction

4.2.3 Ping-pong Effects and Outliers Outliers and noise exist in user records, which are caused by many factors
such as load balancing [44] [15] and Ping-Pong effects [24] [41]. Even those outlier records are always ignored
and invisible for collective mobility analysis, they are identifiable on individual mobility when we conduct a
correlation analysis on a user’s current locations with his previous and later status. We give an example of such
outliers in Fig. 8 where the red points are locations of towers. A user drives on highway of the city and follows
the mobility graph structure. However, the user is connected to a tower which is far from his actual trace due to
ping-pong effect. We identify outlier records by combining mobility graph with heuristic features such as travel
speed. During the trip, for a user 𝑢, we sort his records 𝑟 with time and then calculate travel speed 𝑠𝑖→(𝑖+1) of
every adjacent pair of records 𝑟𝑖 and 𝑟𝑖+1. For all travel speed 𝑠𝑖→(𝑖+1) ,∀ 𝑖 during a time period, e.g., 1 hour, we
calculate their mean and variance. We calculate z-score of speed by 𝑧 =

|𝑠𝑖→(𝑖+1)−𝑠 |
𝜎

, and remove 𝑟𝑖+1 if the z-score
𝑠𝑖→(𝑖+1) is less than a predefined threshold with a certain confidence interval.

4.2.4 Stay Point Detection and Trip Segmentation. Stay points are locations where a user stays for a certain time.
Those locations are always important PoI (point of interests) for spatial profiling, such as home and work
locations [28]. More importantly, stay points are segmentation boundaries of logistic trips. We identify stay points
based on travel speed and time, e.g., travel speed is 0 during a certain time period. Based on the stay points, we
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Fig. 8. Outlier Records Fig. 9. Staggered Stages

segment user records into logistic travel trips. If both origin and destination of a trip are the same stay point, we
label all user missing locations during this trip as the stay point.
4.2.5 Observed and Unobserved Stages. Based on analysis, we found cellular users use cellular service in a short
continuous time period during a trip and then disconnect for a while. For instance, a user will check emails or
send instant messages with friends when riding on bus. The users’ locations are observed in cellular networks
during this time period. When no cellular connection is established with nearby towers, users’ locations become
invisible. Therefore, we divide a user trace into two stages, i.e., an observed stage with cellular activity and
non-observed stage with no cellular activity. As a result, a user’s trip consists of staggered distribution of observed
and unobserved stages as shown in Fig. 9. Our target is to infer locations of users at certain time in unobserved
stages. In the observed stage, we can infer transportation modality of cellular users by thresholds of speed since
we have continuous observations. Specifically, we label user modality in the observed stage into three modalities
including walking, bikes and vehicles based on the travel speed. We initialize modality of users in unobserved
stage from its last observed stage and then dynamic adjust their modality with model iteration.

4.3 Collective Mobility Modeling
4.3.1 Target. To infer missing records in unobserved stages, i.e., locations of users at certain time, it is essential
to estimate both travel time and routes of users during the unobserved stages. However, the individual users
have limited number of observed records. Many edges on the mobility graph lack direct observations from users
for travel time estimation. Therefore, it is challenging to directly estimate travel time and routes for individuals.
We first estimate the average travel time with different modalities and then integrate the average travel time
with individual features, which is introduced in the individual-dependent mobility modeling. Instead of focusing
on individual mobility modeling, we estimate user average travel time on the mobility graph under different
transportation modalities.
4.3.2 Design. For edges with direct observations, the travel time can be directly estimated by the statistic mean.
However, for edges with sparse observations, travel time estimation is challenging due to the lack of direct
observations even users travel on those edges in their unobserved stages. To solve both cases, it is required to
infer travel time from both direct observations (observed stages) and indirect observations (unobserved stages). In
general, total travel time on any trip can be expressed by the following formula where𝑋𝑇 = (𝑥1, 𝑥2, . . . , 𝑥𝑖 , . . . , 𝑥𝑛)
and 𝑥𝑖 is the travel time on edge 𝑒𝑖 and 𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑖 , . . . , 𝑝𝑛) is the route indicator where 𝑝𝑖 = 1 when user
pass edge 𝑒𝑖 and otherwise 𝑝𝑖 = 0.

𝜏 = 𝑋𝑇𝑃 (1)
For observed stages, the travel time on edges can be directly inferred from user observations. For unobserved
stages, only total travel time is known, which can be inferred by the time difference of last and later observations.
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We take two steps to estimate the travel time from unobserved stages: (i) route inference; and (ii) edge travel time
inference as follows.
4.3.3 Route Inference.We infer detailed moving route of users on mobility graph based on distance and travel time
constraints. Theoretically, there are an infinite number of routes between two locations on the mobility graph.
To avoid the extra computing cost and make the problem feasible, we only focus on non-returning travel routes,
in which a user will not travel the same edge twice. We validate this assumption from users’ observed stages and
found around 98.3% trips covers no-duplicate edges in one trip. We apply the Depth-First Search (DFS) algorithm
to search for possible route candidates between two observed locations before and after an unobserved stage.
We set a visited indicator for each search and prune all returning routes. As shown in Fig. 10a, we found travel
distance of 82.6% unobserved stages is less than 2 kilometers.
To further reduce the number of route candidates and identify users’ actual travel routes, we apply several

heuristic factors to prune route candidates: (i) travel speed should be in a reasonable range, e.g., less than 80km
per hour in downtown area and 150km per hour in suburban area; (ii) because passengers normally choose routes
with short distance or travel time, we apply another heuristic constraint: travel distance should be less than a
certain threshold, e.g., twice of the shortest distance. With both pruning methods, the number of route candidates
is less than 3 for 79.3% unobserved stages as shown in Fig. 10b.

(a) Distance Interval (b) Route Candidates
Fig. 10. Distance and Routes in Unobserved Stages

4.3.4 Edge Travel Time Inference. In the unobserved stages, for Equation 1, the total travel time 𝜏 and travel
route 𝑃 are known from route candidate searching and pruning. Instead, edge travel time 𝑋 remains unknown.
To estimate the travel time 𝑋 , we present the edge travel time 𝑋 with hidden parameters 𝜃 , i.e., means and
variances for Gaussian distributions. For one edge and one modality, the set of parameters includes mean and
variance to present a Gaussian distribution for travel time. With the presentation, our target is to estimate a set
of parameters 𝜃 , which maximize likelihood estimation of 𝜏 in Equation 1. To solve the problem, we apply an EM
(Expectation-Maximization) algorithm [63] [62]. First of all, we initialize the set of parameters from surrounding
edges that have direct observations. Second, we update edge travel time with an iterative EM algorithm with
two steps. In the E-step, we generate samples from each edge on the route of CBR according to the current edge
travel time distribution. Each sample contains two elements, the travel time 𝑥𝑖 and the corresponding probability
in the distribution. In the M step, we update the parameters of edge 𝑒 with new samples.

4.4 Individual Mobility Modeling
4.4.1 Global Information. The global information module fuses the estimated travel time from collective mobility
modeling, population and mobility graph. Human mobility is highly correlated with population distribution
in cities, e.g., higher travel demand in regions with high population density [59]. Even though population
distribution can be modeled from cellular network data, previous work has revealed that user distribution from
single networks could be biased to reflect the real accurate population distribution [15]. Therefore, we use a
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separate census-based data source for population distribution [19] . The mobility graph and travel time are
created and estimated from collective mobility modeling. The population distribution is directly inferred from
the worldpop dataset. Since population and mobility graph are static information, which do not change during
a short time period, we apply a spatial mapping on this two datasets, e.g., dividing cities into small Voronoi
regions and then using the mobility graph and population density in the same regions where individual users
are located. Travel time dynamically changes with time and locations, so both spatial and temporal mapping
is applied. Specifically, we calculate the average travel time in Voronoi regions during different time slots of a
day. When modeling individual mobility, we aligned the travel time in the same region and same time slot with
individual users. Then the output of spatial-temporal mapping is the concatenation of global information aligned
in regions and time slots.
4.4.2 Contextual Information Embedding. The contextual information includes the demographic factors of users. We
found those information has an impact on individual mobility patterns. The impact of factors differs among users.
For example, it is more possible that a car owner will drive a car for the commuting purpose but the possibility
among users are different. If the user lives in suburban areas, the car usage will be more frequent for the commuting
purpose compared with users living in downtown areas with a denser coverage of public transportation. To
capture those differences of hidden correlation, we adopt an attention mechanism to automatically learn the
weights of factors because attention mechanisms have become an integral part of compelling sequence modeling
and transduction models in various tasks, allowing modeling of dependencies [53].
4.4.3 Bidirectional Mobility Learning. We apply a Bi-directional GRU model to integrate users’ mobility inference
with collective mobility patterns with personal information. Specifically, we integrate the mobility graph, travel
time on graph, and personal contextual information with location estimation. Due to the spatial-temporal nature,
the individual mobility presents a high correlation with the spatial and temporal information.

Fig. 11. GRU Cell

Recurrent Neural Network (RNN) is especially suitable to capture
the temporal and spatial evolution of human moving. Compared with
a regression model, which restricts a constant relation between input
and output, e.g., a polynomial relation, RNN presents higher flexibility
on hidden relations. Besides, the configuration flexibility makes it suit-
able to integrate spatial and temporal dependency. However, previous
studies [49] have shown that traditional RNNs fail to capture the long
temporal dependency for the input sequence due to the vanishing gra-
dient and exploding gradient problems. To address these drawbacks,
gated recurrent units (GRU) are a special RNN architecture for sequence
labeling and prediction tasks [10]. Compared with Long-Short Term
Memory (LSTM) unit, GRU is simpler to compute and converges faster. Therefore, we apply a time series learning
GRU model combined with collective mobility, contextual information and user historical records to capture
individual mobility dynamics. Specifically, the input of the GRU model is the concatenation of collective mobility,
contextual information, and individual historical records. For static information such as age, gender, we directly
copy the same values in different positions of inputs for a same user. Fig. 11 illustrates the internal structure of
GRU cell, which consists of two gates, i.e., reset gate 𝑟 and update gate 𝑧, and ℎ and ℎ̃ are the activation and the
candidate activation. We can use the following formula to present the learning process. In the formula, 𝑥𝑡 is the
input vector at time 𝑡 , ℎ𝑡 is the out vector, ℎ̃𝑡 is the candidate activation vector, 𝑧𝑡 is the update gate vector, 𝑟𝑡 is
the reset gate vector.𝑊 ,𝑈 and 𝑏 are parameters to learn in the training process. 𝜎𝑔 is a sigmoid function as the
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activation function which functions as a gate, i.e., 1 with large values and 0 with small values.
𝑧𝑡 = 𝜎𝑔 (𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)
𝑟𝑡 = 𝜎𝑔 (𝑊𝑟𝑥𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟 )
ℎ̂𝑡 = Φℎ (𝑊ℎ𝑥𝑡 +𝑈ℎ (𝑟𝑡 ⊙ ℎ𝑡−1 + 𝑏ℎ)
ℎ𝑡 = (1 − 𝑧𝑡 ) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̂𝑡

(2)

A single direction GRU is widely used in prediction tasks, in which the input vectors only contain historical
information. Different from prediction tasks, we found users’ current locations are highly correlated with both
his previous and later locations. Because our target is to infer sensing gaps instead of focusing on prediction, we
apply a bi-directional GRU to utilize users’ past and future mobility records for inference. To infer a sensing gap,
a two-direction information will be learned and stored in hidden states. In the forward pass, the past mobility
patterns will be learned and encoded in hidden states. In the backward pass, the future mobility patterns will be
reversed. The reversed mobility patterns will be learned and encoded in hidden states.
We initialize the transportation modality of users in the unobserved stages from last observed stages. Users’

transportation modality is highly correlated with users’ moving speed, routes and locations. In general, users
keep the same modality in unobserved stages from last observed stages because distance and time of unobserved
stages are small and not enough for modality changes as shown in Fig. 10a. As shown in Fig. 9, the modality of
stage B (unobserved stage) will be initialized with modality of stage A (observed stage with direct continuous
observations). To utilize the prior information and dynamically update user modality in the training process, we
adopt a multi-task learning mechanism in the training process. Specially, we apply an encoder layer to embed
personal mobility records and transportation modality; a decoder layer to decode the embedded locations and
transportation modality. We apply two shared hidden layers between the encoder and decoder. At each iteration,
the updated modality will be fed into training and prediction of next time slots for calibration.
4.4.4 Model details. In our GRU model, after careful tuning, the number of time slots used as the input is 9 and the
output at a time is 1 location. To minimize the training cost, we use the euclidean distance as the loss function
because it is almost proportional to the geographic distance in a city-size region where the curvature of earth
is negligible. The optimization method is Adam. We initialized the learning rate as 0.001 but enabled dynamic
learning rate in the training cycles based on the number of target convergence steps.

4.4.1 Implementation. We implement CellSense on one week of CBR data. Our model and baseline models are
implemented with Keras and PyTorch libraries. We train and evaluate our design on a server with 8 Nvidia K40C
GPUs. We set the learning rate as 0.001. For each GRU layer, we set the number of cells as 60 and initialize the
GRU parameter with random values between -0.001 to 0.001.

5 EVALUATION
In this section, we systematically evaluate CellSense with a comprehensive internal signaling data as ground
truth.

5.1 Evaluation Settings
5.1.1 Signaling Data as Ground Truth. We utilize a signaling dataset as the ground truth for our model validation.
Signaling data capture signal switch activities including 7 service types including Patch Switch, Circuit Switched
FallBack (CSFB), Tracking Area Updating (TAU), LTE Attach, LTE Detach, LTE Paging, Service Request (e.g., 2G,
3G, 4G/LTE). When a user moves from one tower to the next tower, the device will detach from the last tower
and then attach to the next cellular tower. At the same time, two records including one detach record and one
attach record will be generated in the dataset. Therefore, the signaling dataset captures user locations with high
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spatio-temporal coverage. If a user detached from one tower and attached to another tower, a signal switch will
be captured in signaling records. When no record is found for a user in one time slot, it indicates the user stays
at the same location or insides the coverage of the same towers. Therefore, we may fill users’ locations at any
time slot from signaling records. However, different from CBR, which are collected and are accessible for many
researchers [58] [6] [40], signaling data are passively generated only for maintenance purposes during certain
time periods. Fig. 12 presents spatial and temporal granularity of signaling records. Signaling data have the same
spatial granularity as CBR because both data are generated on the same cellular towers. As shown in Fig. 12a, the
covered cell size is less than 1 km2 area for 85% towers. For temporal granularity, the update interval of signaling
is less than 80 seconds for 80% of signaling records in Fig. 12b; whereas the update interval of CBR is less than 13
minutes for 80% of CBR users as shown in Fig. 1b. Therefore, signaling records achieve a much finer grained
sensing granularity on temporal dimension compared with CBR data. Moreover, because signal level data have
sector level ID that can be used to infer the more fine-grained area of users within a tower coverage, e.g., four
sectors can further partition a tower into fine-grained areas, signaling record can be used as ground truth data
for our mobility recovery system.

(a) Spatial Granularity (b) Temporal Granularity
Fig. 12. Granularity of Signaling Data

5.1.2 Metrics.We use the mean geographic distance, i.e., the great-circle distance, to report the estimation error
between ground-truth locations and estimated locations. The great-circle distance (dist) quantifies the geographic
distance between two GPS locations, e.g., 5km. We give its formula in Equation 3, where 𝜑 is latitude, 𝜆 is
longitude, and R is the radius of the earth, i.e., 6,371km.

𝑎 = 𝑠𝑖𝑛2 (Δ𝜑/2) + 𝑐𝑜𝑠𝜑1 · 𝑐𝑜𝑠𝜑2 · 𝑠𝑖𝑛2 (Δ𝜆/2)

𝐶 = 2 · 𝑎𝑡𝑎𝑛2 (
√
𝑎,
√
1 − 𝑎)

𝑑𝑖𝑠𝑡 = 𝑅 ·𝐶
(3)

5.1.3 Baselines.We implement two exiting models as our baselines, which are listed as follows.
• HMM: Hidden Markov Model is widely used to estimate the dependency of locations in human mobility. We
adopted a widely-used HMM method to estimate the missing records. Specifically, we divided one day into
5-minute time slots and infer missing locations of users in a time slot based on the transition probability in
historical records.

• DT: DeepTransport is a state-of-the-art method based on the LSTM method to infer detailed traces of
users [49]. Different from our method, DeepTransport ignores both global, e.g., travel time, and contextual
information, e.g., demographic factors. Instead, it only feeds the learning model with individual mobility
records.

• TripGen: TripGen is one of the most recent models to infer human mobility based on CDR data. This method
is built on statistical features of collective and individual mobility [2]. First, it estimates users’ important
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locations such as home and work locations in Voronoi partitions; second, filter valid samples and extract
origin-destinations from those samples; third, integrate magnification factors in the inference.

an Ablation Study for Impact of Factors: To better understand user mobility patterns and measure the
robustness the proposed model, we study the impact of three real-world factors on the performance of CellSense:

• The impact of the spatial dimension, e.g., performance difference in the downtown area and suburban
areas;

• The impact of the temporal dimension, e.g., peak hours vs. non-peak hours;
• The impact of the population, e.g., area with high or low population density;
• The impact of the system design component, e.g., with or without collective mobility.

5.2 Evaluation Results
We report the evaluation results and the comparison with the baseline methods in terms of overall performance
and the impact of listed factors.
5.2.1 Performance. As shown in Fig. 13, all three methods achieve a decent performance on the inference. When
comparing CellSensewith baseline models, we found CellSense outperforms both baseline models. Specifically,
CellSense reduces the inference error from 102 meters to 39 meters on average compared with the HMM model.
CellSense outperforms DT and reduces the inference error from 61 meters to 39 meters. Fig. 14 presents the
CDF (cumulative distribution function) of inference. We found 80% of inferred locations in CellSense are less
than 45 meters away from the ground truth, which is better than the two baseline models, i.e., 71 meters for DT,
82 meters for TripGen, and 120 meters for HMM.

Fig. 13. Performance Fig. 14. Performance CDF

5.2.2 Impact of Spatial and Temporal Dimension. We further investigate the impact of the spatial dimension
(i.e., different city areas) on the performance of CellSense. Fig. 15 illustrates the qualitative distribution of the
inference performance where each point is the ground truth of users’ locations, i.e., connected towers.
A red color indicates a high inference error (i.e., distance) and a yellow color indicates a low inference error.

We found a lower inference error in downtown areas and major highways. Based on the analysis, we found it is
caused by the tower distribution and road structures. In downtown areas, there is a denser tower distribution
and users have more frequent cellular interactions. The travel distance of unobserved stages is relatively small
compared with other areas. Besides, a larger amount of direct observations from users improve the accuracy
of travel time estimation in downtown areas. On highways, the topological structure of the mobility graph is
simple because there are always no brunches or u-turns on highways. Moreover, the variance of the travel time
on highways is smaller compared with that on regular roads. As a result, we found a lower inference error on
highways over other areas. On temporal dimension, we study the model performance dynamics during different
hours of one day and present the result in Fig. 16. CellSense achieves a better performance during the day time
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Highway

Downtown

Low

Large

Distance

Fig. 15. Spatial Distribution Fig. 16. Temporal Distribution

compared with the night time. We found two peaks in terms of performance around 9am and 6pm, which are
two peak hours for commuters. The potential reason is two folds. First, commuting patterns are regular for most
users between home and work locations. Second, users have more cellular services for internet access during
home-work trips, which leads to more observations. The two factors result in a better performance of CellSense.

5.2.3 Impact of Population. To validate the impact of external features on model performance, we study the
inference error under different population density. Fig. 17 shows the population density distribution under tower
coverage. We found the population density is less than 2.4 thousand on 80% towers. In contrast, the population
density is larger than 2.4 thousand per 𝑘𝑚2 on 20% towers, which are mostly located in the downtown areas of the
city. We report the detailed comparison of the performance under the impact of the population in Fig. 18, where
we found the inference error increases first and then decreases with population density. When the population
density is less than 3 thousand per 𝑘𝑚2, the inference error increases with population density. However, in
regions with a larger population density, the inference error decreases. Based on our analysis, we found the
potential reason is that in regions with a small population density, there is a small variance of route choices and
travel time, which leads to a better performance. On the other hand, in regions with a high population density,
even though there is higher uncertainty of route choices and travel time for individual users, a larger amount of
user records and observations are generated in those areas. As a result, it improves the model performance with
more training data and direct observations.

Fig. 17. Pop Density Fig. 18. Impact of Pop
5.2.4 Impact of System Design. To investigate the impact of different components in our design, we compare
CellSense with its two variants:

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 100. Publication date: September 2021.



100:16 • Fang et al.

• C-P, i.e., CellSense minus Personalized contextual information, where we drop individual contextual
information from CellSense.

• C-G, i.e., CellSenseminusGlobal information, wherewe drop collectivemobilitymodeling from CellSense.
As shown in Fig. 19, we found both collective mobility modeling and contextual information boosts the perfor-
mance of CellSense. Comparing two variant models, we found the collective mobility modeling has a higher
impact on the performance of mobility recovery. In particular, the impact is larger during the commuting peak
hours as shown in Fig. 20. The potential reason is that the contextual information is correlated with routine
commuting patterns of users. For example, car owners prefer to drive personal vehicles for commuting purpose.
Another example is the contextual factor age. A young users are more likely to have routine commuting patterns
compared with elders. For collective mobility modeling, the increasing travel demand during peak hours increases
the amount of observations for travel time estimation and leads to a higher estimation accuracy. Therefore, the
drop of collective mobility modeling has a larger impact during peak hours compared with normal time.

Fig. 19. Population Density Fig. 20. Impact of Time

6 DISCUSSIONS
In this section, we share several lessons learned from our design and implementation and then discuss limitations
and real-world impacts of our work.
Lessons Learned: we summarize four lessons learned as follows.
(1) Collective Information for Data Sparsity: Our target is to infer sensing gaps and human mobility

recovery. However, CBR from an individual user are always too sparse for modeling training. Human
mobility presents similar patterns under the same spatial and temporal dimension, e.g., all cars have a
similar travel time and route on the same road at the same time. Therefore, to solve the data sparsity
in individual users, we can infer common features without differentiating among users. The collective
mobility can be used to initialize the distribution of individual mobility patterns, which can be adjusted
and updated with individual mobility data.

(2) Contextual Information for Personalization: Apart from direct features inferred from individual
traces, contextual information is an implicit feature for individual mobility. An attention mechanism or
other learning strategies can be applied to capture the underlying correlations between user contextual
information and mobility patterns to achieve context-aware individual mobility modeling. Such contextual
information profiles users and provides insights for individual mobility modeling. Beyond mobility, we can
explore many other applications with the same method such as context-aware recommendation, advertising,
travel time estimation.

(3) Sensing Stages for Irregular Sensing Granularity: Previously, most users relied on cellular services
mainly for phone calls or messages. In recent years, with the upgrades of cellular infrastructures and
the high popularity of smartphones, users use cellphones more frequently for internet connections. The
change of usage patterns provides new opportunities for mobility modeling from users’ billing activities.
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The new usage pattern enables us to divide CBR into two different stages, i.e., an observed stage with
continuous CBR and an unobserved stage without observations. In the observed stage, we can infer detailed
mobility status with continuous records, which can benefit the modeling on unobserved stages. The idea
can be generalized into scenarios with similar irregular sensing granularity. With the same method, we can
extract stages with regular sensing granularity (observed stages) and infer user features in those stages.
The inferred user features can further improve the modeling of other irregular stages.

(4) Bi-directional Mobility Inference: Human mobility is highly correlated with both the previous and
later status of the same users. Different from the prediction, in which future status remains unknown
for individual users, an inference task for recovery can utilize information from both directions. The
bi-directional inference used in the paper can be generalized to other sensing gap inference caused by
unstable sensors or data transmissions. Moreover, a record closer to the sensing gap has a higher correlation
with the missing records. Therefore, a bi-directional LSTM or GRU can be applied to automatically capture
the two-dimensional correlation.

Limitations: Even a large scale of CBR and signaling data is collected and used, a major limitation of CellSense
is we only evaluate it with the data from a single city and a single operator in China, whose users might have a bias
against generic mobility patterns. We are exploring additional evaluation with cellular network data from other
operators, but the internal signaling data contains detailed information of users and may rise commercial privacy
concerns if we are granted access to more than one operators when those operators are always competitors to
each other. Another limitation is that our work requires large-scale user records for global information inference.
However, because our system is mostly beneficial to the researchers who already have CBR, this limitation may
not be significant because CBR often have large-scale user records involved. Even with this limitation, we believe
that the design philosophy and lessons we summarized in CellSense, i.e., utilizing a few real-world features
to contextualize vehicular usage to better model and predict future vehicle usage, can be generalized to other
scenarios.

Real World Impacts: Understanding large-scale human mobility at the individual level builds the foundation
for pandemic or epidemic mitigation such as recent COVID 19. The existing study has also revealed many
scenarios and applications built on human spatial-temporal information, e.g., identifying locations of crimes [12].
CellSense has the potential to help understanding the city resident interaction at the macro-level, which can be
used to understand the coarse grained spreading path and identify potentially affected groups. Compared to the
other approaches, e.g., Exposure Notification developed by Apple and Google with Bluetooth data, cellular data
has two major strengths compared with other data sources for such purposes: (i) high penetration rates, i.e., most
people take cellphones with them every day; (ii) low collection cost and incentive, i.e., cellular billing records
are already collected for billing purpose and no extra cost or incentive is introduced for data collection. Besides,
the sensing gap recovery of CellSense on cellular billing records provides an efficient solution to improving
data quality for existing data holders such as researchers and service providers. For example, researchers
with data access to either CDR (Call Detail Record) or CBR can interpolate synthetic records into the existing
dataset to improve the spatiotemporal coverage of cellular data, which benefits existing models or motivates new
applications. Cellular providers can provide more accurate commercial strategies with a better understanding of
user distribution, e.g., building towers, discount strategies.

Ethics and Privacy: we model and infer users’ sensing gap for cellular billing records with contextual demo-
graphic and behavior data, which were collected by cellular service providers under the consents of users by
providing incentives such as data package rate discount. Moreover, our study is built for research purposes for
social good. One important application of our model is to enable researchers to augment their sparse legacy CBR
for a dense and fine-grained CBR data for their own applications [36][9][6]. Further, our inferred fine-grained
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CBR data can be used (1) by cellular service providers to predict the cellular user demand [40]; (2) by public
security to understand human flow prediction [31], e.g., to avoid stampedes in public events; (3) by public health
to understand human mobility for epidemic spreading trace analysis and control [43]. Finally, for researchers who
do not have access to real-world data, our model can be validated and improved based on artificial generation of
CDRs [13]. Even with consents, we have to protect the privacy of involved users. In this project, we took the
following active steps for privacy protections under IRB (Institutional Review Boards).

• Anonymization: As shown in the sample record in Tab. 2, all data analyzed is anonymized by the cellular
operators, so data cannot be used to trace back to individual users;

• Secure Severs: We process all data in a secure server with access granted by cellular operators. Raw data is
secured and cannot be downloaded from the secure server. All data training and evaluation are performed
on the secure server, and only statistical features or evaluation results are directly reported to individual
researchers.

• Minimal Exposure: We only store and process data that is useful for our sensing gap inference and human
mobility modeling project, and drop other information for the minimal exposure, e.g., we drop detailed
information related to users’ connections. Therefore, we minimize the exposure risk of individuals in
raw data. We also take active privacy protection steps to decrease the privacy leakage risks with utility
preservation for our system. For instance, we decrease the frequency and normalize the weights of high-
frequent locations for individual users because those locations are possible to be privacy sensitive places,e.g.,
home and work locations [28].

• Data Release: We only release sample data with the consent of users. For each user, only sample of data
during a continuous time period is released to minimize the exposure of individual users and preserve
data utility of mobility during the time period. We will normalize the location frequency from individual
users, e.g., decrease data samples from high frequent locations of individual users, since high frequent
locations increase user privacy concern significantly [29] [14]. We will take active protection mechanisms,
e.g., differential privacy or adding synthetic records [13], to protect user privacy when we release sample
user data.

Generalization:Data sparsity is a common issue inmobilitymodeling based on spatio-temporal datasets [6] [9] [60].
Even though CellSense is built on CBR data, it can be generalized to other spatio-temporal data sources de-
scribing human mobility. Specifically, it can be generalized to any other human mobility data with location
including both exact GPS locations or relative locations, e.g., coordinates, and time including both exact times-
tamps and relative time order information. Those data sources can be either with fine-grained (e.g., continuous
GPS traces, [57] [56]) or course-grained temporal gaps (discrete user-triggered check-in locations [6] [9]). In
particular, to generalize CellSense to GPS data, we can use existing digital road maps, e.g., OpenStreetMap, as
the mobility map in the implementation. For check-in data, we can construct the mobility map by combining PoI
(Point-of-Interests) locations with road map topology and improve the model performance with preprocessing
steps for data enhancement, e.g., route planning.

7 RELATED WORK
Due to the ubiquity of mobile devices and the unique advantage of cellular networks (i.e., high penetration
rates), large-scale human location sensing based on cellular networks has been extensively investigated by peer
researchers. We summarize the related work based on a two-dimension taxonomy: (i) mobility level, i.e., individual
mobility or collective mobility; (ii) goal’s temporal continuity, i.e., the goal is to get the temporally continuous or
discontinuous mobility. The result is shown as Tabel 4.
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Table 4. Mobility Sensing in Cellular Networks

Categories Level
Collective Individual

Goal’s
Temporal
Continuity

Discontinuous [28] [37] [30]
[39] [7] [2] [32]

[20] [36] [46]
[48] [47] [9] [6]

Continuous [64] [59] [17]
[5] [45] [7] CellSense

7.1 Temporally Discontinuous Mobility
Most of the existingmobility sensingwork in cellular networks can be characterized in this category. Isaacman et al.
designedWHERE based on Call Detail Records (CDRs) to model general human mobility based on a few important
locations and evaluate it on the population movement [28]. Batran et al. extracted OD (origin-destination) trips
from Call Detail Record (CDRs) for location attraction analyses and synethetic trip generation [2]. Jundee et
al. inferred and visualized the users’ commuting patterns from CDRs [32]. Mir et al. introduced DP-WHERE
to prevent privacy leak in the WHERE model using differential privacy. Gonzalez et al. [20] modeled human
mobility by studying the trajectory of 100,000 anonymized mobile phone users, and they unveiled that individuals
trajectories show a high degree of temporal and spatial regularity. Pappalardo et al. [39] revealed two basic
mobility patterns of users including exploration and preferential return individual mobility. Jiang et al. [30]
revealed the basic patterns from CDR data to describe users’ activities. Cao et al. [6] and Chen et al. [9] models
and predicts user revisitation patterns on certain locations. Lin et al. [36] studies the correlation between mobility
patterns and users’ health conditions. These works are different from ours that they only focus on the mobility
(i.e., individually or collectively) with discontinuous location observations, while our work focuses on inferring
the missing location observations when users do not interact with cellular networks.

7.2 Temporally Continuous Mobility
Temporally continuous mobility is also studied and modeled at some works. Zhang et al. used multiple data
sources to model human mobility at an aggregated level in real time [64]. Xu et al. [59] and Fang [17] et al.
modeled the real-time collective population distribution in cities based on cellular CDR data. Cao et al. [7]
investigated crowd mobility behaviors with cellulat tower accessing data. Calabrese et al. estimated the flow
between origins and destinations using CDR data. These works generally focused on collective mobility such as
real-time flow, while our work focused on individual-level mobility. The most similar work as ours is CTrack [50]
that Thiagarajan et al. inferred the trajectories of individuals based on cellular tower signal fingerprinting and
inertial sensors. The key difference is that it requires the participation of users (i.e., expose data from inertial
sensors) that limits its scalability. In our work, all the workload is done on the cloud based on existing cellular
access records and does not require extra efforts from users.

8 CONCLUSION
In this paper, we design, implement, and evaluate a human mobility recovery system named CellSense.
CellSense targets to recover sensing gaps in CBR on temporal dimension. CellSense takes sparse CBR data as
input and outputs dense continuous records to recover the sensing gap when using cellular networks as sensing
systems. In CellSense, we design two key components: (i) an individual-independent component for collective
mobility modeling; (ii) an individual-dependent component for context-aware individual mobility modeling.
More importantly, we systematically evaluate CellSense with large-scale signaling data. The evaluation results
indicate CellSense reduces the inference error by 35.3% compared with state-of-the-art models. We share several
lessons learned from our implementation of CellSense. We believe the design philosophy in not restricted to
human mobility recovery, and can be applied to many other real-world systems. Last but not least, Under the
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consent of our collaborators, we will share one week of sample data including both cellular billing records and
signaling records so peer researchers can validate and follow our work.
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