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Biweekly county COVID-19 data were linked with Longitudinal Employer-Household Dynamics data to analyze
population risk exposures enabled by pre-pandemic, country-wide commuter networks. Results from fixed-
effects, spatial, and computational statistical approaches showed that commuting network exposure to COVID-
19 predicted an area’s COVID-19 cases and deaths, indicating spillovers. Commuting spillovers between
counties were independent from geographic contiguity, pandemic-time mobility, or social media ties. Results
suggest that commuting connections form enduring social linkages with effects on health that can withstand

mobility disruptions. Findings contribute to a growing relational view of health and place, with implications for
neighborhood effects research and place-based policies.

1. Introduction

Research developments on how neighborhoods affect health (Arcaya
et al., 2016; Diez Roux, 2001) offer great insights for understanding the
community context of health behaviors and outcomes during the current
COVID-19 pandemic. Community-level forces associated with
COVID-19 include age structure (Dowd et al., 2020), population density
(Sy et al., 2021), and racial composition (Millett et al., 2020). Such
studies however, often treat places as bounded areas, separated by
physical distance, and with largely stable residential communities.
However, a growing relational turn in the literature on health and place
sees places as nodes in broader networks, separated by socio-relational
distances, and shaped by routine mobility of populations (Cummins
et al., 2007, p. 1827; Sampson, 2012).

During the pandemic and long before, scholars of health, place, and
neighborhoods effects have highlighted the need for a deeper under-
standing of place-to-place exposures to health risk through routine
population mobility networks (Bavel et al., 2020; Block et al., 2020),
based on activities located in non-residential environments (Browning

et al., 2017; Krivo et al., 2013; Matthews and Yang, 2013; Sampson,
2012). The rapid spread of COVID-19 across the country painfully il-
lustrates the significance of this critical, yet insufficiently understood,
relational perspective. It underscores the urgent need for studies to move
beyond local (within place) factors, and begin to prioritize the role of
extra-local (between places) exposures to health risk (Berkman et al.,
2014; Browning et al., 2017; Kuchler et al., 2021; Newmyer et al., 2022).
The current study addresses this need and takes a relational approach to
examining the role of place-to place commuting networks on an area’s
COVID-19 outcomes across space and time.

A growing number of COVID-19 studies have examined human
mobility as a part of a community’s risk exposures (Carteni et al., 2020;
Fazio et al., 2022; Pluchino et al., 2021; Weill et al., 2020), but data
accessibility and computational costs greatly limit the ability of analyses
to take a truly relational approach to understand place-to-place mobility
that contributes to a community’s exposures to high-risk areas across the
country. Moreover, studies that examined the role of workplaces (e.g.,
Jay et al., 2020), have focused on the effects of distancing from work
areas in general (vs. other types of sites). Yet, when people commute to

* Corresponding author. Department of Sociology and Criminology, Pennsylvania State University, University Park, PA, USA.
** Corresponding author. Department of Sociology and Criminology, Pennsylvania State University, University Park, PA, USA.

E-mail addresses: chs37@psu.edu (C.H. Seto), corina.graif@psu.edu (C. Graif).

https://doi.org/10.1016/j.healthplace.2022.102891

Received 29 April 2022; Received in revised form 23 July 2022; Accepted 4 August 2022

Available online 11 August 2022
1353-8292/© 2022 Elsevier Ltd. All rights reserved.


mailto:chs37@psu.edu
mailto:corina.graif@psu.edu
www.sciencedirect.com/science/journal/13538292
https://www.elsevier.com/locate/healthplace
https://doi.org/10.1016/j.healthplace.2022.102891
https://doi.org/10.1016/j.healthplace.2022.102891
https://doi.org/10.1016/j.healthplace.2022.102891
http://crossmark.crossref.org/dialog/?doi=10.1016/j.healthplace.2022.102891&domain=pdf

C.H. Seto et al.

specific high-risk workplace areas, their health behaviors and COVID-19
outcomes at home may be affected as well (Bavel et al., 2020; Kang et al.,
2020). The current study thus seeks to contribute to the literature and
address these gaps by first, taking an explicitly relational approach that
allows for a more nuanced understanding of dyadic, county-to-county
flows and their associations with local COVID-19. Second, it analyzes
the role of commuting to workplace areas while accounting for the
strengths of these flows and the levels of COVID-19 in the connected
work areas.

Commuting represents an important place-to-place form of popula-
tion mobility through which diseases can be transmitted to new pop-
ulations (Balcan et al., 2009; Viboud et al., 2006). Millions of people
commute every day in the US (McKenzie, 2015). The workplace, where
people spend great portions of their days, is a key environment of
exposure to risk and resources (Deziel et al., 2020; Lan et al., 2020), even
when mobility is restricted through policies and interventions. For these
reasons, local and state-level COVID-19 mitigation and prevention pol-
icies and guidelines have involved social and physical distancing rec-
ommendations, including telecommuting for work. As a result, many
workers were able to switch to remote work; with some studies indi-
cating about a third of workers doing so early in the pandemic (Rafiq
et al., 2022). However, those who started telecommuting continued to
communicate remotely. Moreover, a large share of the population
continued to commute for work due to working in essential or frontline
jobs or due to lack of access to remote resources such as high-speed
internet (Chiou and Tucker, 2020; Tomer and Kane, 2020; Weill et al.,
2020). Therefore, the predominant focus of prior research on the effects
of stay-at-home policies and declines in mobility has been very impor-
tant but has also left largely unanswered fundamental questions about
the extent to which, despite disruptions in mobility, the commuting
flows established before the pandemic continued, through enduring
connections (direct or remote), to impact the spread of COVID-19.

This is an important gap because, without fully understanding the
role of place-to-place commuting on health risk, the impact of local
health promotion or risk prevention policies may be severely diluted
through a place’s exposures to high-risk in its connected communities.
The current study aims to address this gap by examining the extent to
which the roles of commuting ties, from before and during the
pandemic, are unique from the influence of other neighboring areas,
pandemic-time mobility disruptions, or social media links.

2. Theoretical and empirical background: pandemic and pre-
pandemic commuting

Despite pandemic lockdowns, many people that commuted before
the pandemic continued to travel to work due to the nature of their jobs
or because they could not afford to work from home. Indeed, as the
COVID-19 pandemic hit the US in 2020, about 60% of US workers found
themselves in essential jobs and about 34% in frontline jobs that could
not be performed from home (Tomer and Kane, 2020). Additionally,
populations of lower socioeconomic status or with lower access to
high-speed internet were less able to telecommute during the pandemic.
(Chiou and Tucker, 2020; Jay et al., 2020; Weill et al., 2020). For these
reasons, despite social distancing policies and other disruptions (De Vos,
2020) work-related transmission was found to account for close to half
of COVID-19 outbreaks early in the pandemic (Lan et al., 2020).

Importantly, workplaces facilitate not only physical transmission of
diseases through in person contacts but also the social transmission of
health-relevant information and norms, which have been found to in-
fluence people’s preventive behavior and health outcomes (Berkman
et al., 2014; Zhang and Centola, 2019). As co-workers are often among
people’s close friends and confidants (Christakis and Fowler, 2008;
Marks, 1994), social contacts at work have been shown to impact health
behaviors, like quitting smoking (Christakis and Fowler, 2008), adopt-
ing a healthier diet (Buller et al., 2000), and risky behaviors in workers’
households (Bolger et al., 1989; Taylor et al., 1997). Work environments
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where distancing and facemasks are normative may influence com-
muters to practice similar safe behaviors in home communities.

Therefore, to the extent that commuting networks facilitated in-
person ties and risk exposures (physical or social) among those who
continued to travel to work during the pandemic, we hypothesize that
COVID-19 exposures through commuting ties (adjusted for pandemic dis-
ruptions) affected local COVID-19, net of local mobility or geographic
contiguity.

Even in the absence of in-person contact among those who tele-
commuted during parts of the pandemic, work and personal ties were
likely maintained using the Internet and social media platforms. Online
communication and digital media was shown to facilitate the mainte-
nance of in-person social contacts and the remote exchange of health
information and social support (Bavel et al., 2020; Zhang and Centola,
2019). For instance, the spread of misinformation through social media
has contributed to disease outbreaks such as Ebola (Allgaier and Sva-
lastog, 2015) and to the adoption of unhealthy behaviors like vaping
(Allem et al., 2017). Recently, Facebook connections were shown to be
associated with county COVID-19 outbreaks (Kuchler et al., 2021). Prior
studies that focused primarily on the effects of pandemic changes in
physical mobility of populations (e.g., Weil et al., 2020; Jay et al., 2020)
are, thus, likely to miss key dynamics of influence related to pre-existing
in-person connections gone digital. The current study seeks to bridge
these gaps by examining pre-pandemic commuting network patterns.

Therefore, to the extent that commuting networks forged before the
pandemic facilitated remote social ties and exposures that bypassed
physical distancing between residential and work communities, we hy-
pothesize that pre-pandemic commuting ties functioned as significant path-
ways for the spread of COVID-19, independent of pandemic-time mobility
disruptions.

3. Current study

Overall, the current study seeks to contribute theoretically and
advance a relational perspective of health and place (Bavel et al., 2020;
Berkman et al., 2014; Browning et al., 2017; Kuchler et al., 2021) by
investigating how local COVID-19 cases and deaths are affected by
commuters’ prior COVID-19 risk exposures in their specific work envi-
ronments. It aims to understand the preexisting place-to-place trans-
mission structures that enabled the fast and wide spread of COVID-19
across the country despite stay-at-home orders and increased remote
work.

The study integrates methodological advances in population health,
neighborhood effects, social epidemiology, and computational sociology
(such as the operationalization of network measures and applications of
negative binomial models, spatial-network regression models, permu-
tation approaches, leave-one-out cross validation). These techniques
allow us to account for spatial and the more complex, network de-
pendencies within the data. The study uses origin-destination linkage in-
formation, i.e., comprehensive commuting flows between the residential
and workplace locations and conceptualizes commuting as network ties
of various strengths between counties, part of macro-level network
systems forged before the pandemic. In addition, we draw on Safe-
Graph’s smart-phone based mobility data, Google’s Mobility Reports,
and Facebook’s Social Connectivity Index (SCI) to better understand the
unique contributions of commuting-network diffusion to COVID-19
outcomes.

Among the COVID-19 studies so far, those that examined mobility
flows have tended to rely on cell phone data (Chang et al., 2021; Jay
et al., 2020; Weill et al., 2020). However, approaches using such data
inevitably reflect only a small percentage of a community’s population,
over-representing young and affluent groups (Kang et al., 2020), and use
rough estimates of workplace locations (Jay et al., 2020). Our study
addresses these important limitations in several ways. First, we created
measures based on a uniquely comprehensive commuting data that
covers most US working population, of all ages and socioeconomic
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statuses. Moreover, we used formal workplace locations, as reported by
the states to the Census Bureau - information from unemployment in-
surance forms submitted by businesses and organizations across the US.

4. Methods, data, and measures
4.1. COVID-19 network and spatial exposure measures

We examined COVID-19 confirmed cases and deaths from the USA
Facts database, which integrates data from the Centers for Disease
Control and Prevention (CDC), state-, and local-level public health
agencies. We analyzed data based on twenty-three 2-week intervals
between April 1st, 2020, and February 16th, 2021 (N = 62,445 county-
time periods), within 2715 counties (those with complete data on rele-
vant covariates), and 49 states (and Washington, D.C.).% The outcomes
are new COVID-19 cases and deaths within each county-time period.®

Network-weighted and spatially-weighted exposures to COVID-19
are based on case rates from the prior time period. In our study, these
measures capture social and geographic proximity to COVID-19, respec-
tively. Data on inter-county commuting, used to construct the network
weighted average COVID-19 exposure risk index (or Network COVID-19),
were based on the Longitudinal Employer-Household Dynamics (LEHD)
Origin-Destination Employment Statistics (LODES) 2018 dataset,4 from
the U.S. Census Bureau (Abowd et al., 2005).° Formulas for the network
and spatial exposure measures are shown in Equations (1) and (2).

Cases,,

Network COVID —19,= Y G (

100,000 Eq. 1
w:]Ch—mm[ >( ’ ) ( q )

Population,,

B 1 Cases,,
= — | =———— ] (100,
Zb:lB (Populationb>( 00,000)

Network COVID-19 exposure was based on Equation (1), where a
given home county (h) is connected to W work counties. Cj_,, represents
the number of commuters from county h who commute to county w,
while Cp_ represents the total number of outgoing commuters from
county h. Within-county commuters is excluded from this measure.
Spatially weighted exposure risk (Spatial COVID-19) was based on the
average rate of COVID-19 cases of all queen-contiguous counties (e.g.,
Equation (2) for a county h that is queen-contiguous to B bordering
counties). We incorporate a temporal lag into the construction of both

Spatial COVID — 19, (Eq. 2)

! Because March counts were low and sparsely distributed across space
compared to the later months, this study period started on April 1st. This
enabled more reasonable variation across space in COVID-19 cases and deaths.

2 Out of 3143 US counties and equivalents, we omitted observations with
missing data on key variables, including all of Alaska (missing commuting data)
leading to an analytical sample of N = 2715 counties. Note that we also esti-
mated primary models without controlling for local work mobility, allowing for
an analytic sample of 3111 counties, with substantively similar results (avail-
able on request).

3 A small number of county-times had negative counts of either new cases or
new deaths recorded, due to reporting errors or corrections. These counts were
coded as O for the construction of lagged variables and subsequent analyses.

4 The most recent available data at the time of the analysis, as updated on an
annual basis, with a delay in release by the Census Bureau. Supplemental an-
alyses revealed a high degree of network stability for each of the five prior years
(available upon request), suggesting that even more recent data would yield
substantively similar findings.

5 Data on Unemployment Insurance earning records from states and other
local institutions were collected and matched by the US Census Bureau to other
administrative records, census data, and survey data on firms, workers, and
households. About 95% of salary and wage jobs are covered by the Unem-
ployment Insurance records (Graham et al., 2014). The commuting flow sta-
tistics are created based on matching the location of employers’ establishments
(work destination location) to the residential location of employees (home
origin locations). We aggregated the LEHD-LODES data to create an
origin-destination, inter-county weighted network among US counties.
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exposure measures by using cases from the prior two-week period to
account for both physical processes (e.g., COVID-19 case incubation)
and social processes (e.g., time to observe and implement new
behaviors).

4.2. Google-based measures of work-related mobility during the pandemic

We used the Community Mobility Reports (CMR) data from Google
to control for local variation in mobility across the pandemic, likely
driven both by government-enforced lockdowns and public health
guidance. The CMR aggregate information about daily visits and length
of stay, focusing on how mobility changed from a pre-pandemic baseline
(here, January 3 - February 6), based on a sample of Google accounts,
depending on location history settings, specific user settings, connec-
tivity, and privacy requirements. We averaged the daily data both
geographically (by county) and temporally, matching the same lagged,
two-week units as the network and spatial exposure measures. When
possible, missing data were interpolated using the time periods imme-
diately before and after for the corresponding county. For comparability
with the commuting data, we focused in on mobility trends for places of
work. As such, this variable captures the level of work-related mobility
throughout the study period, relative to a pre-pandemic baseline, and
was included in all models as a control (“local work mobility”).7 More
positive values convey greater mobility, while more negative values
convey less mobility.

4.3. Cellphone mobility and social media ties measures

We also use measures of human mobility or intercounty social link-
ages based on independent data to assess the extent to which the role of
commuting is unique from these.

Smart-phone based mobility and distancing measures. Using SafeGraph
data,® we capture intercounty visitor home-to-business travel flows for
the entire US based on aggregations of over 6 million point-of-interest
business locations combined with foot-traffic information anonymized
from GPS location from smart phone applications. As such, in addition to
capturing mobility changes over the course of the pandemic, a key
benefit of the SafeGraph data is its inclusion of travel to locations not
related to work (e.g., restaurants and gathering places) that may facili-
tate COVID-19 spread. First, we created a weighted network average of
COVID-19 case rate based on proportion of outgoing travelers forming
each tie to a home county (“SafeGraph network™). Next, we created a
new, pandemic-adjusted version of the original LEHD network using the
SafeGraph data by weighting each commuting tie (between county
pairs, as used in the original network exposure to COVID-19) during a
specific month by the % of the SafeGraph change in traffic that same
month, relative to the SafeGraph mobility in the corresponding month
one year before the pandemic.” We then standardized and subtracted
this dynamic network exposure measure from the pre-pandemic mea-
sure of COVID-19 network exposure (based on the LEHD commuting
data also aggregated to the 10 months of our study). The resulting
network exposure difference (pre-pandemic influence) estimates por-
tions of the commuting network exposure effect related to enduring
social ties of pre-pandemic origin (e.g., co-worker relationships that

% The data and more documentation details are available here: https://www.
google.com/covid19/mobility/.

7 During the study period, governmental measures to mitigate the spread of
COVID-19 primarily took the form of lockdowns, stay at home orders, and
mandated business closures. As such, controlling for local work mobility is
helps to adjust for spatial and temporal variation in governmental pandemic
response measures.

8 SafeGraph data was obtained from https://www.safegraph.com.

9 The weights were log-transformed to adjust for undue influence of extreme
outliers.
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continued to influence health behaviors throughout COVID-19).

Social media connectivity measures. We utilize the Facebook Social
Connectedness Index (SCI) is based on anonymized users of Facebook
and their friendship links to other users who have interacted with
Facebook over the 30 days prior to August 2020, all assigned to locations
according to their Facebook activity and their device and connection
data. The publicly available measures are aggregated and summarized
as links across pairs of counties and include random noise to prevent
user identification (Bailey et al., 2018; Facebook, 2018). We constructed
a measure of county COVID-19 exposure through these social media ties
data, applying a similar logic as that of the LEHD network exposure. For
each county, we measured “outgoing” connections and weight each
connected county’s contribution based on the proportion of these out-
going ties it represents. More details on these measures and data are in
the Methods Supplement.

4.4. County-level covariates

We include a number of sociodemographic control variables likely
relevant to COVID-19 outcomes.'® These county-level measures were
largely drawn from the 2014-2018 American Community Survey (ACS)
5-year estimates and are considered to be time-invariant for the study
period. They include economic disadvantage, measured as the first
principal component transformation produced from a principal com-
ponents analysis of unemployment rate, median income, percent in
poverty, percent single female-headed family households, percent col-
lege graduates (aged at least 25), percent occupied housing units that are
owner-occupied, and percent vacant housing units (eigenvalue = 3.2
among all US counties). Communities with lower socioeconomic status
can have more pre-existing health conditions, less access to healthcare,
less access to high-speed internet that could enable remote work, and are
less able to engage in social distancing (Chiou and Tucker, 2020; Weill
et al., 2020). We also control the percent of residents 65 years or older
and binary indicators of whether the county is above average, compared
to all counties in the ACS, regarding (1) percentage of the population
that is non-Hispanic White, (2) percentage of the population that is
non-Hispanic Black, and (3) percentage of the population that is His-

Table 1
Descriptive statistics for entire analytic sample (unstandardized).
Mean SD Min. Max.

Outcomes
COVID-19 confirmed cases (count) 429.6 2148.9 .0 189592.0
COVID-19 deaths (count) 7.5 41.9 .0 3086.0
COVID-19 confirmed cases (rate) 374.6 451.9 .0 13726.1
COVID-19 deaths (rate) 7.0 12.1 .0 283.3
Predictors
Network lagged confirmed case rate 364.2 368.7 1.8 3016.4
Spatially lagged confirmed case rate 355.2 397.4 .0 4464.8
Change in local work mobility —24.9 9.5 —77.0 40.2
Economic disadvantage .0 1.7 —6.2 8.4
% 65 and older 17.9 4.2 3.8 55.6
Above avg. non-Hispanic White .63 - .0 1.0
Above avg. non-Hispanic Black .30 - .0 1.0
Above avg. Hispanic 21 - .0 1.0
% Urban population 46.6 29.6 .0 100.0

Notes: N = 62,445 county-time periods, nested within 2715 counties, in 50
states (includes DC, excludes Alaska).

10 Although it is possible that other county-level characteristics could influ-
ence COVID-19 outcomes, we focused on controlling for those that we believed
most likely to confound the effects of network exposure. We address the pos-
sibility of unmeasured, county-level confounders through our fixed effects
models, described subsequently.
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panic. Finally, we include a measure of the percent of the county pop-
ulation with urban residence, as measured in the 2010 US Census.
Table 1 displays descriptive statistics for all variables.

4.5. Analytic strategy

Fixed and mixed effects models. We utilize fixed effects negative
binomial models and two-level mixed effects negative binomial models.
Negative binomial models, as opposed to Poisson, are useful in modeling
over-dispersed count outcomes, especially when outcomes are relatively
rare. First, we estimate fixed effects models to focus only on within-
county variation in COVID-19 outcomes, as predicted by each coun-
ty’s network exposure, spatial exposure, and local work mobility. Next,
we estimate two-level mixed effects models to incorporate between-
county variation as well, allowing for the inclusion of theoretically
relevant, county-level predictors. Further details are provided in the
Methods Supplement. Convergent results across these two modeling
strategies with regard to the influence of network exposure, described in
the following section, strengthen our confidence in the study’s findings.

Due to the high correlation between commuting network COVID-19
exposure and spatial COVID-19 exposure (see Equations (1) and (2)), we
also replicate each model using a “split network™ approach in which the
network exposure measure is constructed two different ways: (a) using
only commuting ties between counties that are spatially queen-
contiguous and (b) using only commuting ties between counties that
are not spatially queen-contiguous. These models help to separate
network effects from possible unmeasured spatial confounders. Consis-
tency in network spillover estimates across network configurations lends
confidence that our results are not unduly influenced by collinearity
between spatial and network COVID-19 spillovers.

Permutations and model fit comparisons. We next utilize permuta-
tion testing of predictor significance, a flexible, simulation-based
approach (Breiman, 2001). This strategy avoids distributional and in-
dependence assumptions about model error, on which traditional sta-
tistical tests of significance rely. Due to the multiple interdependencies
inherent to our data (network exposure to COVID-19, cf. Equation (1),
and spatial exposure to COVID-19, cf. Equation (2)), permutation tests
serve as a useful robustness check of the regression-based results. For
each predictor, we conduct a set of permutations in which the values of
the predictor are randomly permuted across all observations, breaking
any association with COVID-19 outcomes and generating a distribution
of what model error would look like if the predictor had no effect. The
observed error is then compared to this distribution in order to assess
that predictor’s contribution to model fit. We use mean arctangent ab-
solute percentage error (MAAPE) to measure average model error. To
assess the contribution of the network measure to overall model per-
formance, we also compare models using fit statistics like AIC, BIC, and
MAAPE calculated with leave-one-out cross validation (LOOCV--
MAAPE). Further details are in the Methods Supplement.

Spatial autoregressive panel models with county fixed effects.
Additionally, we estimate spatially lagged autoregressive panel models
with county fixed effects. These employ maximum likelihood estimation
and predict COVID-19 confirmed case and death rates (i.e., counts per
100,000 population). This approach has the advantage of accounting for
interdependence among counties in the model structure while focusing
on within-county variance over time to estimate spillovers. We estimate
these models using the spxtregress command in Stata 16 and a spatial
dependence structure defined by (a) only queen-contiguity, (b) queen-
contiguity OR counties which are linked by more than 1% outgoing
commuters, and (c) queen-contiguity OR counties which are linked by
more than 0.5% outgoing commuters.

Appendix 1 shows the different steps utilized throughout our ana-
lyses, as well as the locations of corresponding results.
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5. Results
5.1. Visualizing commuting networks and COVID-19

Fig. 1 shows the inter-county commuting networks based on LEHD-
LODES home-to-work location data. County nodes are located based on
geographical coordinates of their centroids. In Fig. 1A, node size is based
on the number of commuters who work outside the county. For
simplicity, the first mapped network graph shows only ties that are in
the top 5 out of every node, followed by graphs with corresponding ties
in the top 10, 7, 3, and 2 respectively. Across these maps, network ties
tend to be clustered within states and large metropolitan areas, as ex-
pected given the tie definition. Network density depends on the number
of ties included. Fig. 1B shows mobility ties based on different flow
strength. Many ties show clustering within states and more of the weaker
ties (under 250 commuters each) cross state boundaries. The maps in
Fig. 1 illustrate the socially interconnected nature of US counties, above
and beyond geographic contiguity.

In Fig. 2, panels A and B display the concentrations of new COVID-19
cases and deaths, respectively, measured as population rates, at time
periods 1, 8, 16, and 23 in our study. The polygons represent counties,
with darker shades for higher new COVID-19 rates based on time spe-
cific deciles. Panel C shows the geographic and temporal variation in
network COVID-19 exposure. Counties are shaded by concentration of
network-lagged COVID-19 case rate (see Equation (1)), based on new
cases at the prior time period. As shown, the network exposure con-
centration at each time follows and amplifies patterns overlapping with
those of local COVID-19 cases and deaths shown in panels A and B. Panel
C thus highlights the predominance of Northeast and Northwest regions
and many Rocky Mountain counties in the top rank of network COVID-
19 exposure in the early period of the pandemic, followed by an
amplification of Southern network exposures in the next periods,
continuing to a strong emergence of Northcentral exposures, and a re-
turn to the top deciles among the Southern counties during the later
periods. Taken together, the maps of Fig. 2 illustrate the strong links
between COVID-19 exposure via intercounty commuting and COVID-19
outcomes in the following two weeks. As illustrated, this congruence
exists across the duration of the study period.

5.2. Fixed and mixed effects results

Fig. 3 displays estimates from fixed-effects and multilevel mixed-
effects models. In the fixed effects models, new COVID-19 cases and
deaths were regressed on network and spatial exposure, time-lagged
COVID-19 case rate, and dummy variables for each of the 23 time pe-
riods. Network exposure to COVID-19 consistently shows a positive as-
sociation with both COVID-19 cases and deaths, even after controlling
for spatial exposure and local work mobility.

We next estimated the fixed effects models using split network
measures based on commuting between (a) only spatially contiguous
counties and (b) only spatially non-contiguous counties. The results
(lower panel of Fig. 3) show that network effects persist in both cases,
indicating that network exposures matter for the spread of COVID-19
independent of spatial proximity. The reversed sign of the spatial
exposure effect between the main and split network models suggests that
partially de-confounding the network and spatial exposure measures by
splitting the commuting network allowed for the estimation of spatial
spillovers, net of commuting.

The fixed effects results are consistent with those obtained using
multilevel mixed-effects negative binomial models, as shown in Fig. 4.
Adjusting for spatial exposure and all other controls, the count of new
COVID-19 confirmed cases per county population is estimated to in-
crease by a factor of 3.66 (95% CI = 2.90, 4.61) for each unit increase in
standardized network exposure, while the count of new COVID-19
deaths per county population is estimated to increase by a factor of
2.96 (95% CI = 2.23, 3.94) per unit increase in standardized network
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exposure (exponentiated changes in logged count). The mixed effects
analyses showed that population exposure to COVID-19 in a county’s
commuting network increased local COVID-19 cases and deaths in the
subsequent time period, above and beyond the area’s socioeconomic
disadvantage, age composition, urban status, and racial and ethnic
composition. The effect of network exposure to COVID-19 cases on cases
and deaths was also robust to controlling for exposure to COVID-19
cases through spatial contiguity and to controlling for prior local work
mobility.

As expected, an area’s socioeconomic disadvantage contributed to
both higher death rates and cases relative to the local population. The
area’s concentration of non-Hispanic white residents was negatively
associated with infection cases (marginally statistically significant) but
had no significant association with COVID-19 deaths. The concentration
of non-Hispanic Black residents was associated with higher cases and
deaths, while the concentration of Hispanic residents was associated
with higher cases. These findings are consistent with a large body of
work on the health challenges and social vulnerabilities linked to
COVID-19 risk that burden minority communities, including a dispro-
portionate likelihood to be in frontline occupations and in low-paid jobs
with little flexibility in transitioning to a remote format (Tomer and
Kane, 2020).

Multilevel mixed effects model estimates (for network and spatial
exposures) using the split network approach are shown in the lower
panel of Fig. 4. As shown, network effects persist in both cases, indi-
cating that network exposures matter for the spread of COVID-19 in-
dependent of spatial proximity.

5.3. Model fit comparisons and permutations

Table 2 (panel A) shows a comparison of model fit statistics across
multilevel mixed effects models, which included (a) spatial exposure, (b)
network exposure, and (c) both as predictors. Local work mobility,
sociodemographic covariates, and time-period fixed effects were
included in all models. As shown, the table compares BIC, AIC, and
MAARPE fit results. Also included is a set of MAAPE results which was
calculated with a leave-one-out algorithm for comparable models esti-
mated using cumulative (rather than panel) data. As shown, models
including the network-based exposure show consistently better fit than
those which only account for spatial exposure.

Results from the permutation tests (Table 2 panel B) show the robust
importance of COVID-19 network exposure. The network-based mea-
sure improved model fit in all trials predicting deaths and cases (i.e., no
model in which this measure was randomly permuted outperformed the
original model based on observed data).

5.4. Spatial autoregressive panel models with county fixed effects

Estimates from the spatial autoregressive panel analyses are dis-
played in Table 3. Models 1 and 3 include only a spatial or a combined
spatial and commuting network lag, while Models 2 and 4 also control
for local work mobility. All models include time period fixed effects. As
shown, spatial and network lag coefficients are consistently positive and
statistically significant, suggesting inter-county spillovers of COVID-19
case and death rates. Adding commuting network ties to the weight
matrix increases the estimated magnitude of this coefficient (i.e., spill-
overs become more pronounced), and improves model fit. These results
show the salience of human mobility to the spread of COVID-19 above
and beyond geographic contiguity.

5.5. Cell phone mobility results

The upper panel of Fig. 5 shows coefficient estimates from multilevel
mixed-effects models predicting cases and deaths with (a) the
SafeGraph-based measure of pandemic-adjusted commuting network
exposure, (b) pre-pandemic influence, (c) spatial exposure, and (d) all
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Fig. 1. County-to-county commuting networks across the US. Counties are represented as network nodes located based on the geographical coordinates of their
centroids. Across the graphs, the size of the nodes is based on weighted outdegree. (A). Interconnected communities. The maps show only ties that represent a) the
top 5 flows out of every node, b) the top 10, c) top 7, d) top 3, and e) top 2 outflows. (B). Ties of different strengths. The maps show ties that represent a) flows
between 250 and 500 people each b) 50 to 100 people; ¢) 100 to 250 people; d) 500 to 1000 people; and e) more than 1000 people.
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Fig. 2. Geographic distribution of COVID-19 cases, deaths, and network exposures across time. N = 2715 counties in each time. Polygons (counties) are
colored in different shades by decile categories at each time period (lightest to darkest shades for bottom to top deciles). (A) New COVID-19 cases during a selection
of four time periods, at the beginning, middle, and last time periods out of the study’s 23 time periods. Polygons (counties) are colored in different shades by decile
categories at each time period (lightest to darkest shades reflect gradation from bottom to top deciles). (B) New COVID-19 deaths at the same time periods. (C)
Network weighted COVID-19 exposure, based on prior new cases for the same time periods.

controls. As shown, both the pandemic-adjusted commuting exposure commuting ties encapsulate social linkages which continue to influ-
and the measure of pre-pandemic influence are positively associated ence COVID-19 spillovers beyond pandemic-related changes to daily
with both cases and deaths. This result suggests that pre-pandemic mobility. Model fit comparisons using these new measures are shown in
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Fixed effects estimates: Confirmed cases
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Fig. 3. Estimates and 95% Confidence intervals from fixed effects models.
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Fixed effects estimates: Deaths
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N = 62,445 county-time periods (though counties with no variation of the outcome are dropped). Continuous predictors are standardized. All models also include
time period fixed-effects, exposure term of total county population (2014-2018, ACS 5-year population estimates).

Mixed effects estimates: Confirmed cases
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Mixed effects estimates: Deaths
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Fig. 4. Estimates and 95% Confidence intervals from fixed effects models.
N = 62,445 county-time periods. Continuous predictors are standardized. All models also include time period fixed-effects, exposure term of total county population
(2014-2018, ACS 5-year population estimates), and clustered standard errors by state.

Table 2a
Fit statistics across multilevel mixed effects negative binomial models, including
local mobility, county-level covariates, and time period fixed effects.

AIC BIC MAAPE LOO-MAAPE*

Cases

Spatial only 685519 685817 57641 .16686
Network only 683299 683597 .56950 .16556
Spatial and network 683300 683608 .56948 .15935
Deaths

Spatial only 250229 250528 .94104 .39540
Network only 249482 249780 194095 .39304
Spatial and network 249443 249750 194071 .39242

the upper panel of Table 4. As shown, the model including both the
pandemic-adjusted network exposure and pre-pandemic influence (M4)
best predicts cases, while the model using an exposure measure based
entirely on the SafeGraph mobility data (M2) slightly outperforms M4 at
predicting deaths.

5.6. Social media ties results

The lower panel of Fig. 5 shows coefficient estimates from multilevel
mixed-effects models predicting cases and deaths using (a) the original

pre-pandemic commuting based network exposure measure, (b) the
exposure measure based on Facebook SCI data, (c) spatial exposure, and
(d) all controls. As shown, Facebook SCI exposure has no significant
effect after controlling for commuting network exposure. The results of
these analyses, when taken together with the set of SafeGraph models
described above, show that commuting ties represent a composite of
social and physical influences, both of which have important implica-
tions for the spread of COVID-19 across space. That said, the lower panel
of Table 4 suggests that Facebook-based exposure may make some
contributions to model fit beyond commuting, especially in predicting
deaths. For this outcome, the best model fit resulted from the inclusion
of both pre-pandemic commuting network exposure and Facebook SCI-
based exposure.

Taken together, results from the SafeGraph and Facebook data sup-
porting analyses showed that (a) our findings are robust to controls
capturing intercounty changes in mobility during the pandemic, and (b)
COVID-19 exposure based on the pre-pandemic commuting network
captures both physical and social intercounty influences and has pre-
dictive value beyond alternative measures and additional controls based
on SafeGraph mobility data and Facebook social connectivity.

5.7. Supplementary analyses

We conducted several additional analyses to check the robustness of
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Table 2b
Coefficient estimates, 95% confidence, and MAAPE-based permutation test results from mixed-effects models predicting COVID-19 confirmed cases and deaths.
Confirmed cases Deaths
Coef. 95% CI P-test proportion Coef. 95% CI P-test proportion
Network exposure 1.30 [1.07,1.53] 0.000 1.09 [0.8,1.37] 0.000
Spatial exposure .02 [-0.18,0.23] 0.09 .22 [-0.06,0.5] 0.00
Local change in work mobility .01 [-0.12,0.14] 0.77 —.53 [-0.73,-0.33] 0.00
Economic disadvantage .15 [0.08,0.21] 0.00 49 [0.33,0.64] 0.00
Percent 65 and older -.23 [-0.32,-0.14] 0.17 .24 [0.11,0.36] 0.00
Above average non-Hispanic White -.07 [-0.15,0.01] 1.00 -.02 [-0.19,0.15] 0.91
Above average non-Hispanic Black .25 [0.17,0.33] 1.00 .27 [0.09,0.45] 1.00
Above average Hispanic 13 [0.03,0.23] 1.00 .08 [-0.04,0.21] 0.00
Percent urban .02 [-0.04,0.09] 0.96 —.03 [-0.14,0.08] 0.00

Notes: N = 62,445 county-time periods for panel data; N = 2715 counties for cumulative data. Statistics are based on multilevel mixed effects models which include all

sociodemographic controls.
*LOO-MAAPE are based on cumulative data.

Table 3

Spatial autoregressive panel models with county fixed effects, predicting COVID-19 confirmed case rate and death rate.

COVID-19 Case Rate (per 100,000)

COVID-19 Death Rate (per 100,000)

M1 (N = 71,553)

M2 (N = 62,445)

M3 (N = 71,553)

M4 (N = 62,445)

Coef. SE Coef. SE Coef. SE Coef. SE
Only spatial contiguity
Lag .68 o (.003) .67 o (.003) .36 ok (.005) 42 bl (.005)
Local work mobility Yes Yes
AIC 971671.1 833201.5 543004.7 444574.8
BIC 971891.4 833427.6 543225.0 444800.9
Spatial contiguity with 1% commuting ties
Lag .89 el (.004) .89 (.004) .68 (.007) .73 (.006)
Local work mobility Yes Yes
AIC 968008.9 828009.8 540567.8 442122.6
BIC 968229.2 828235.9 540788.0 442348.7
Spatial contiguity with 0.5% commuting ties
Lag .92 ok (.004) .92 ok (.003) .74 el (.007) .78 ek (.007)
Local work mobility Yes Yes
AIC 967923.8 827967.8 540128.2 442029.2
BIC 968144.1 828193.9 540348.4 442255.3
**¥*p < .001; **p < .01; *p < .05; {p < .10; all models include time and county fixed effects.
Safegraph data: Confirmed cases Safegraph data: Deaths
Pandemic-adjusted commuting network exposure —_— Pandemic-adjusted commuting network exposure o e
Pre-pandemic network influence —_—— Pre-pandemic network influence —_—————
Spatial exposure —_— Spatial exposure ——e——
Local change in work mobility — Local change in work mobility —
Economic disadvantage o Economic disadvantage —
Percent 65 and older — Percent 65 and older —
Above average non-Hispanic White —— Above average non-Hispanic White —
Above average non-Hispanic Black —— Above average non-Hispanic Black ——
Above average Hispanic —— Above average Hispanic Fo—
Percent urban —— Percent urban ——
.75 -50 -25 .00 .25 50 .75 100 125 150 175 -75 -50 25 00 25 .50 .75 100 125 150 1.75
Facebook SCl data: Confirmed cases Facebook SCl data: Deaths
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Facebook SCI network — Facebook SCI network ————
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Local change in work mobility —_ Local change in work mobility ——&——
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Fig. 5. Summary of coefficient estimates and 95% confidence intervals from multilevel mixed effects negative binomial models; controls included spatial COVID-19
exposure and county-level sociodemographic factors; Exposure is total county population; Standard errors clustered by state.
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Table 4
Comparison of model fit statistics across models, using additional pandemic-
time datasets.

Confirmed Cases Deaths

AIC BIC AIC BIC

Adjusting for pandemic-time, in-person mobility changes (LEHD and SafeGraph
data; N = 27,300 county-time periods; 2730 counties)

M1: Baseline (only spatial 342934.4 343098.7
exposure + local work
mobility + controls)

M2: Pandemic-time phone
mobility network exposures
(SafeGraph)

M3: Pre-pandemic commuting
network exposure (LEHD)

M4: Commuting networks
(pandemic adjusted +
pre-pandemic)
(SafeGraph + LEHD)

Adjusting for pandemic-time online social ties (LEHD and Facebook SCI Data;
62,445 county-time periods; 2715 counties)

141319.6 141483.8

342593.9 342766.4 140942.0 141114.5

342592.6  342765.1 140965.2 141137.7

342582.0  342762.7 140957.0 141137.7

M1: Baseline (only spatial 685518.9 685817.3 250229.4 250527.8
exposure + local work
mobility + controls)

M2: Pre-pandemic commuting ~ 683300.3  683607.7  249442.9  249750.3
network exposures (LEHD)

M3: Social media ties 685336.1 685643.5 250226.5 250533.9
network (Facebook SCI)

M4: Social media ties + 683295.7 683612.2 249392.1 249708.5

Pre-pandemic commuting
networks (Facebook SCI
+ LEHD)

Fit statistics are based on multilevel mixed effects negative binomial regression
models; all models included the baseline measures: spatial COVID-19 exposure,
local work mobility, and all sociodemographic county-level covariates; SE
clustered by state.

our results.'! In order to assess whether are results were biased due to
regression linearity assumptions, we constructed a 10-categorical mea-
sure of network exposure based on deciles and incorporated this into the
full multilevel mixed effects models in place of the continuous measure
of network exposure. These models allow for a nonlinear effect of
network exposure by estimating a separate coefficient for each decile
category, referenced against the lowest category. Even without the
linearity constraint, these models still estimated near linear relation-
ships between network exposure and the study’s outcomes. Appendix 2
shows predicted values from these models.

As is a frequent challenge in COVID-19 analyses, our study relies on
recent data compiled by numerous agencies, and may be influenced by
factors such as regional testing capabilities and reporting standards. To
test whether our results are robust to alternative measures of COVID-19,
we aggregated county-level COVID-19 data from the New York Times
database (via Social Explorer) to the time periods in our study period.
Appendix 3a shows a correlation between this measure and our USA
Facts-based measure, especially for later time periods (lower correlation
in the earlier periods was likely due to higher data missingness during
those times). Appendix 3b shows coefficient estimates from fixed effects
and multilevel mixed effects models predicting cases and deaths from
the New York Times database (with exposure measures based on the
USA Facts data). As shown, results are substantively similar.

1 In addition to the tests described here, we also estimated a set of models in
which the local work mobility control was replaced by local, time-lagged
COVID-19 case rate. Results were substantively similar to those presented,
available upon request. These alternative models offer an especially conserva-
tive robustness check by adjusting for any spatial or temporal factors that might
influence past COVID-19 incidence, such as governmental pandemic response
measures.
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6. Discussion

The current analyses found that, during the COVID-19 pandemic, US
counties have been significantly affected by their populations’ exposures
to COVID-19 in their commuting networks. The results are robust to
adjusting for changes in mobility during the pandemic using indepen-
dent mobility data from smart phone records. This finding supports our
first proposed hypothesis and is consistent with the fact that millions of
US workers, like bus drivers, postal and health workers, and grocery and
meatpacking workers, are in occupations deemed “essential” with little
possibility of working from home (Tomer and Kane, 2020). Our unique
relational exposure measure capitalizes on the most comprehensive
commuting data available, which allows us to capture the mobile pop-
ulation irrespective of age or socioeconomic status, an important
contribution that extends on studies using phone and digital app data
(Chiou and Tucker, 2020; Jay et al., 2020; Weill et al., 2020). These
results are consistent with prior work indicating both workplace trans-
mission of diseases and resources (Deziel et al., 2020; Lan et al., 2020) as
well as social influences of health behaviors among co-workers and
peers (Buller et al., 2000; Christakis and Fowler, 2008) that can also
carry over to workers’ households (Bolger et al., 1989; Taylor et al.,
1997). Importantly, this finding contributes to advancing the theoretical
and conceptual thinking with new insights in support of the growing
relational perspective on health and place (Bavel et al., 2020; Berkman
et al., 2014; Block et al., 2020; Browning et al., 2017; Cummins et al.,
2007; Kuchler et al., 2021; Matthews and Yang, 2013; Sampson, 2012).

In contrast to studies focused on short-term fluctuations in mobility
of smart phone users during the pandemic, our findings highlight first-
time evidence on the importance of the enduring effects of the pre-
pandemic commuting ties for the spread of COVID-19 across space
and time. The findings suggest that these pre-pandemic network in-
fluences operate above and beyond short-term distancing related to
“stay-at-home” guidelines and worker layoffs. This supports our second
hypothesis and in line with ideas that COVID-19 exposures, like other
health risk exposures, entail remote ties and influence among people and
groups, whether they work from home or not (Allem et al., 2017; All-
gaier and Svalastog, 2015; Bavel et al., 2020; Zhang and Centola, 2019).
Indeed, prior evidence suggests that social influence through digital
communication apps like Facebook, Twitter, or text messaging affects
crisis preparedness (Afzalan et al., 2015) and predicts COVID-19 out-
breaks (Kuchler et al., 2021). Our results similarly indicated that,
consistent with prior evidence (Kuchler et al., 2021), Facebook con-
nectivity exposures contribute to improvements in COVID-19 model fit.
Still, it is instructive that exposures through the commuting network had
additional predictive value beyond the social media network exposure,
contributing further improvement to model fit. The results of these an-
alyses together with findings that adjusted for pandemic-times mobility
from smart phone and applications data, further support the idea that
commuting ties combined both social and physical influences, with
important implications for the spread of COVID-19 across space.

7. Conclusions and implications for research and policy

In sum, the current study found that commuting networks across the
country shaped COVID-19 cases and deaths, above and beyond spill-
overs between geographically contiguous areas, mobility changes dur-
ing the pandemic, or social media connections. Both pre-pandemic
commuting networks as well as pandemic-adjusted commuting mattered
beyond pandemic-time mobility disruptions. The findings indicate that
connections across places forged through population-level commuting
networks, set in place before the pandemic, operate as significant
channels of COVID-19 exposures. This is consistent with important in-
sights in prior work that health risk, such as COVID-19 exposures, entail
not just disease transmission risk but also the social transfer of infor-
mation, attitudes, and resources (Bavel et al., 2020; Browning et al.,
2017; Newmyer et al., 2022) that can contribute to prevention and
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mitigation.

As this pandemic has demonstrated, physical distancing from work is
not an option for many vulnerable groups. Our findings move the aca-
demic and public discussions beyond debates around individual re-
sponsibility and stay-at-home policies toward a macro-level level
relational view of public health that acknowledges the durable place-to-
place interdependent systems of linkages and influence that bridge
across space and time (Berkman et al., 2014; Cummins et al., 2007).
Understanding the value of treating places and neighborhoods as parts
of broader, inter-connected networks of places has important implica-
tions for advancing neighborhood effects research and for better un-
derstanding the mixed effects of costly interventions that moved families
away from poor places while ignoring the poverty of areas nearby (Graif
et al., 2016).

The current results indicates several additional directions for future
research and policy. They suggest that outcomes following a policy
intervention in one place may be substantially hindered by influences
from places connected to it when they take more lax approaches.
Conversely, the results also suggest that place-based policies designed to
lower COVID-19 outbreaks in a highly interconnected place may spill-
over to lower COVID-19 spread in other areas across its commuting
network. For instance, as masks or vaccine mandates are implemented in
highly connected communities, they may contribute to key protection
spillovers in other connected areas in the network. Still, disinformation
campaigns against mask wearing or vaccines that affect a highly con-
nected work hub may also influence health risk behaviors across

Appendix A. Supplementary data
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workers” home communities. On the bright side, the current findings
also suggest that access to policies and provisions such as paid sick leave,
health safety equipment, and affordable health that may help the lives
and health of the workers and families, may also spillover and save lives,
improving the health and wellbeing of the communities in which the
workers live.
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Appendix 1. Flow chart of analyses, data used, and location of results within manuscript
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Appendix 2. Predicted counts of COVID-19 confirmed cases and deaths, based on multilevel mixed effects models in which COVID-19
network exposure was modeled using decile categories; controls included spatial COVID-19 exposure and county-level
sociodemographic factors; Exposure is total county population; Standard errors clustered by state
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Appendix 3a. Correlation coefficients between USA Facts COVID-19 database and The New York Times coronavirus data
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Appendix 3b. Estimates and 95% Confidence intervals from fixed effects and multilevel mixed effects models predicting confirmed cases
and deaths from the New York Times coronavirus database.N = 62,445 county-time periods in main mixed effects models (counties with
no variation of the outcome are dropped from fixed effects models). Continuous predictors are standardized. All models also include

time period fixed-effects, exposure term of total county population (2014-2018, ACS 5-year population estimates). Mixed effects models

have clustered standard errors by state
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