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ABSTRACT

Given widely adopted vehicle tracking technologies, usage-based
insurance has been a rising market over the past few years. With
potential discounts from insurance companies, customers voluntar-
ily install sensing devices in their vehicles for insurance companies,
which are utilized to analyze their historical driving patterns to
derive the risks of future driving. However, it is challenging to
characterize and predict driving patterns, especially for new users
with limited data. To address this issue, we propose and evaluate a
system called MoCha to accurately characterize driving patterns for
usage-based insurance. The key question we aim to explore with
MoCha is whether we can fully explore long-term driving patterns
of new users with only limited historical data of themselves by
leveraging abundant data of other users and contextual informa-
tion. To answer this question, we design (i) a multi-level driving
pattern modeling component to capture the spatial-temporal de-
pendency on both individual and group level, and (ii) a multi-task
learning method to utilize underlying relations of driving metrics
and predict multiple driving metrics simultaneously. We implement
and evaluate MoCha with real-world on-board diagnostics data
from a large insurance company with more than 340,000 vehicles.
Further, we validate the usefulness of MoCha by predicting driving
risks based on real-world claim data in a Chinese city, Shenzhen.
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1 INTRODUCTION

Usage-Based Insurance (UBI) started in 2003 and has now become
mainstream offered by most insurance companies especially across
North America, Europe, and Asia [23]. Currently, several U.S. insur-
ance companies offer usage-based insurance such as Progressive,
StateFarm, Metromile, and Allstate. In general, these companies
provide UBI based on users’ potential driving risk, which is mod-
eled by many factors including distance, speed, time, and detailed
contexts (e.g., traffic congestion) [22]. With UBIL, an auto insurance
company tracks how users use their vehicles under users’ consent
and then quantifies the risks of their future driving [22].

There are a few approaches to implement UBI based on Black-Box
devices [16], OBD-II devices with Smartphone apps [8], and a hybrid
approach of them [9]. All these approaches log speeds, locations,
or both, when a vehicle is driven and uploads these data through
a smartphone app, which makes these data user-specific. Based
on this logged information, insurance companies analyze driving
patterns in terms of three key metrics, i.e., distance, time, and
speed [21]. Previous studies [22] [26]show that these three vehicle
usage metrics are the main factors to quantify potential future risks
through the multi-factor fitting, along with other metrics, e.g., car
and road condition, traffic density, user experience. We verified this
assumption in our motivation section. Thus, how to predict future
driving metrics (e.g., distance, time, and speed) and resultant risks
based on historical data is essential for UBL

Currently, based on the interactions with a major insurance com-
pany from which we obtain user-specific On-Board Diagnostics
(OBD) data (uploaded by smartphone apps), the driving pattern
analysis they are using is mostly statistical on the individual user
level, which works fine for users with sufficient data and stable
driving patterns. However, there are two kinds of users introducing
significant challenges for a UBI company to continuously charac-
terize their mobility patterns by three driving metrics (i.e., distance,
time, and speed): (i) newly insured users with limited historical
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data (e.g., transferred from another company); (ii) some existing
users with evolving driving behaviors (e.g., new job, new home,
new grocer, new school for kids).

To address this challenge, we explore two fundamental aspects
of vehicular mobility. (1) It has been shown that the role of a user
(e.g., daily commuters, Uber drivers) has an important impact on
mobility patterns [25][14], which inspires us to group users by so-
phisticated mobility features (e.g., home, work, frequent routes, etc)
to compensate for newly insured users with limited data or existing
established users with bias historical patterns due to new driving
behaviors. Due to the dynamic roles of drivers and evolving driving
patterns, we periodically update our user groups with update-to-
date features to compensate for new driving behaviors. Techni-
cally, we design a multi-modal learning component to capture the
driving pattern based on individual user level (one modal) and
user group level (the other modal) features. (2) The key driving
metrics including distance, time, and speed variance are highly
correlated with each other, so prediction results of one metric can
improve the prediction results of others. It motivates us to design a
multi-task learning component to predict the three target metrics
simultaneously where the prediction of each metric is a task.

Based on these two components, we design and test a system
called MoCha for Mobility Characterization. The key novelty of
MoCha is to jointly consider (1) individual-level and dynamic group-
level mobility with multi-modal learning; (2) correlation of driving
metrics with multi-task learning to accurately predict three driving
metrics (i.e., distance, time and speed variance) and driving risks
for both new UBI users with limited data and established UBI users
with involving mobility patterns, in contrast to existing methods for
UBI mostly, if not all, focusing statistical methods with individual
or static user groups. Our key contributions are as follows:

e To our knowledge, we design and test MoCha as the first sys-
tem of large-scale driving pattern prediction for usage-based
insurance. MoCha considers both (i) correlation between differ-
ent UBI users for driving pattern grouping and (ii) correlation
between different driving metrics to address two practical chal-
lenges regarding new users with limited data and established
users with evolving patterns. The design insight of MoCha is
based on real-world vehicular data with more than 340 thousand
vehicles. Under the permission of the UBI company, we will share
sample data of 1,000 anonymous vehicles for reproducibility to
encourage researchers to work in this direction.

We design a multi-modal learning component to integrate indi-
vidual driving patterns with group driving patterns, where each
of them serves as a concrete modality to improve each other.
Specifically, we periodically cluster users into groups based on
seven mobility features regarding essential mobility patterns in-
cluding home/work locations, driving time/distance, etc. We treat
individual driving patterns and group driving patterns as two
separate modalities and integrate them with a multi-modal LSTM
model. Further, we found the driving metrics to be predicted (i.e.,
distance, time, and speed variance) are highly correlated since
they share spatial and temporal contextual factors such as trav-
eled road types. It motivates us to design a multitask learning
component to learn these metrics simultaneously to improve
their prediction accuracy. We implement and evaluate MoCha
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with On-Board Diagnostics data from a national-scale insurance
company with 340 thousand personal and commercial vehicles.
More importantly, we deploy MoCha and validate its usefulness
by predicting driving risks through predicted metrics based on
real-world claim data as the ground truth. We found that the
future driving metrics predicted by MoCha can be utilized by
two learning models to predict their accident risks with an error
rate of 25%.

2 MOTIVATIONS

2.1 Prediction Justification

Some insurance companies (including the one we are working with)
provide a dynamic rate for users with a combination of driving
distance and driving risk. The insurance rate consists of two parts,
i.e., the base rate and per-mile rate, as shown in Figure 1.

Per-mile Rate

2.9'1‘-

Par-mile rate

Base Rate

2 7 60

Monthly Base Rate

rate are determined by the potential future risk quantified
by future predicted metrics.

At the beginning of every month, insurance companies offer
users the rates of the upcoming month. The base rate and per-mile
rate are two dynamic values and determined by the potential risk
of a user, which is quantified through multi-metric analyses. The
dynamic metrics include travel distance [11], travel time [22] [5],
speed variance [24] [22], and static metrics such as gender, coverage,
years of driving and previous claims [11], e.g., exceed speed limits,
traffic signal violation, traffic accidents. At the end of each month,
the total premium is calculated by the summation of two rates with
a formula base rate (quantified by predicted driving behaviors) + per
mile rate (quantified by predicted driving behaviors) X driving miles.
Therefore, the total premium needs the prediction on future driving
behaviors to determine the rates at the beginning of the month,
even though it is paid by the end of the month based on the actual

mileage.

2.2 Metric Justification

Based on the current practice of the UBI insurance we are work-
ing with, we explore a set of dynamic metrics as factors related
to driving risk by utilizing real-world claim data and OBD data.
We found various metrics captured by OBD data are correlated
to driving risks. However, some detailed metrics, e.g., home/work
locations, trip origin and destination, and travel time, are potential
privacy issues since their information was not included in the UBI
agreement. So we utilize these features as features to predict the
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three metrics in almost all UBI agreements without privacy issues.
Based on our dataset, as shown in Figure 2, we found that users
with accidents have longer distances and time, along with higher
standard deviations on speed, i.e., higher variance.

B0 8 25
60 6 ?(s)
40 4 10
20 2 5
0
MNormal — Accident Normal  Accident Normal  Accident
Distance (km) Time (h) Speed STD(km/h)

Fig. 2: Normal users w/o Acc. v.s. users w/ Acc.

2.3 Technical Challenges

New UBI Users with Limited Data: In the business of insurance
companies, there are lots of incoming users with limited data. They
are (i) experienced drivers starting to use UBI, (ii) new drivers get-
ting their first cars, and (iii) a company with existing commercial
vehicles switching to a new insurance model. Based on our analy-
sis, we have around 0.1% - 0.5% new users without historical data
coming into the systems every day, which makes their driving pat-
tern prediction challenging. Based on interactions with our UBI
collaborator, the company has to delay the intensive evaluation
of a new customer until enough data are collected, which would
potentially increase both the premiums for users and the risk of the
UBI company. To provide some quantitative results, we study both
new UBI users (i.e., the users with fewer than one-week data, which
is suggested according to the domain experts from insurance com-
panies and the fact that human mobility presents repeated weekly
patterns [6]) and established users (i.e., the users with more than
one-week data), for both personal and commercial vehicles. Given
new UBI users, a naive method to predict their mobility patterns is
to use the average value of existing observations from other users
within the same category, but it leads to large prediction errors.
As in Figure 3, we compare the predictability of two groups by
calculating the standard deviation (STD) of travel distance, travel
time, and travel speed in trips on the individual level. The formula
for STD is given by STD(X) = \/zgl (xi — %)2/(N — 1) where X
is a collection of user data of a specific driving metric, such as
travel distance, travel time, or travel speed. We use STD instead
of Mean because we try to understand the variance of new users’
driving behaviors since the variances are tied to the predictability
of driving patterns. New users present lower predictability (larger
STD) compared with existing users, which is caused by a limited
sample size, e.g., the number of historical records.

Il Commercial I Personal
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Distance (km) Time (h) Speed (km/h)

Fig. 3: STD of Three Driving Metrics
Established Users with Evolving Pattern: With data collected
by OBD, the current solution of our collaborator is straightforward,
i.e., to use historical vehicle usage directly obtained by OBD data
as future vehicle usage. However, based on our analyses, we found
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that users’ driving patterns have been evolving a lot given more
collected data, and the existing solution has a large prediction er-
ror due to lower predictability (higher STD) in this group of users
compared with routine users without much evolving on driving
patterns as in Figure 4. This phenomenon is mainly caused by (i)
new infrastructure (e.g., new roads, new shopping mall, long-term
constructions such as new subway lines), (ii) new personal routines
(e.g., moving to new apartments, picking up and dropping off kids
to new schools), (iii) new business routines (e.g., new delivery areas
for logistic trucks). The OBD data are uploaded in real-time based
on a smartphone app and tied to individual users and vehicles. The
details of the collected OBD data are given in Section 3. As a result,
our collaborator plans to predict future driving patterns of both
existing and new customers by building customer-specific models
given limited yet constantly-accumulated OBD data.

4
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Distance STD (km) Time STD (h) Speed STD (km/h)
Fig. 4: Established Users with Evolving Patterns

3 DATASET AND PREPROCESSING

The details of 5-year the OBD system data are listed in Figure 5,
where the direction field is given between 0 to 360 degrees to north.

Personal Vehicles Commercial Vehicles

Daily Data Size 11 GB 10 GB
# of Vehicles 295,001 60,773
# of Daily Records 240 million 85 million

Device ID Date&Time
Direction GPS&Speed

Fig. 5: Datasets
These two types of vehicles are spatiotemporally complementary
to each other due to their purposes. Since we focus on an evolving
scenario, we present the driving pattern evolving of UBI vehicles in
Table 1. The average travel speed, travel distance, and travel time
have been increasing in the recent 4 years starting 2017.

Table 1: 4-Year Evolving Pattern

Device ID Date&Time

Format Direction GPS&Speed

Year First Year | Second Year | Third Year | Forth Year
Ratio of New Vehicles 10.1 % 36.5% 47.3% 55.1%
Daily Distance (km) 30.43 33.02 35.20 36.81
Daily Time (h) 1.25 1.28 133 1.34
Average Speed (km/h) 22.02 23.77 24.74 25.81

Spatial Partition: To reduce the computational cost and improve
prediction accuracy, we divide a geographic area into prefixed
grids. A grid partition is given by (i) the maximum and minimum
coordinates of the area; (ii) the length of each grid; (iii) individual
grids with their coordinates. Based on the grid partition, a trajectory
is modeled as continuous changes of grids on the spatial dimension.
Temporal Partition: Based on the previous study [6], human mo-
bility shows a regular pattern given temporal contexts due to the
periodicity of trips. Thus, we utilize a temporal partition including
Time of Day (ToD) and Day of Week (DoW). ToD is indicated by
different time slots within a day, e.g., a 10 min or one hour slot;
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DoW is indicated by Weekdays and Weekends or Monday to Sunday e A temporal dimension indicates a specific time of day on a
because of different patterns in these two categories. day of week when a trip starts (e.g., a slot from 0:00 AM to
Trajectory vs. Trips: Based on the spatial and temporal partition 0:05 AM on Monday): [ty, ..., tm]-
settings, a vehicular trajectory captured by OBD devices is defined e A spatial dimension indicates specific spatial units as the
as a sequence of spatial-temporal changes, i.e., origins of trips: [g1, ... gn]-
trajtrace = {g1,g2, -+~ ,gn}; trajdime = {t, bz, -~ , tul, o A sl:?atia..l dimens.ion indicates specific spatial units as the
destinations of trips: [g1, ..., gn]-
where g; is a spatiotemporal record at timestamp ¢;. In our system For a vehicle, we use 5 datasets related to a trip with a fixed start
setting where onboard devices periodically collect GPS data, a tra- time, origin, and destination to obtain five tensors: (1) Frequency:
jectory is represented as continuous spatial changes after cleaning. an entry is the frequency of a trip; (2) an entry is the average trip
Based cm.the ab?ve spatia.l—tempo.ral partition, W d.ivil:.le a continu- distance; (3) Duration: an entry is the average trip time; (4) Speed: an
ous physical trajectory of a user into several logical trips based on entry is the speed variance of a trip; (5) Route: an entry is a detailed
a temporal interval between OBD data. In OBD data uploading, the trajectory on a grid level, which is represented by an additional
temporal interval is fixed at 10 seconds as long as the engine of a matrix with features related to road types and population density
vehicle is on. We define a trip as a set of records from an engine-on related to a route. Without loss of generality, current driving pattern
and engine-off event. modeling focuses on factors including driving distance, time, and
speed. Other factors such as acceleration (e.g., braking) and turning
4 MOCHA DESIGN can be embedded in our model through tensor extension. The left
4.1 System Overview part of Figure 7 gives an example of the individual mobility tensors.
We present an overview of Mocha in Figure 6 with three modules: Individual b Fregiing Group .
(i) an internal information feeder to feed mobility data of individ- L) 2 Time e ) 2. Time
ual users and user groups introduced in Sec. 4.2; (ii) an external pilt g j ?;;::(:.me £ ] *’_,r' j‘_ 2::1(::’“
information feeder to align contextual factors such as population il 3. Grid-Level L) 5 Grid-Level
distribution and road type distribution with users’ mobility data % = [ ' Trajectory ?n g
introduced in Sec. 4.3; (iii) a multi-modal multitask learning module 5 | " 3 -
to predict future usage based on both internal mobility and external ' ’/ : os‘j - ] ) I s 3\“;
factors in Sec. 4.4. Destinations 'i\g 0&.0"‘l Destinations "'\‘&w Q‘

Static Daily Usages

Internal Informati = 2
! Y Fig. 7: Tensor Construction

4.2.2 Group Tensors. We utilize the individual mobility tensors

Tensor id, Start
Location, number af
trips, Day of Week,
Holiday, Home, Work /i

; . s vy ! - :
[ ndividual Tensor [~ sl .|L., ™ HLSTM oo iSTM] (e.g., frequency, distance, time, speed, and route tensors) to repre-
Fea lur:;s e e i sent the driving patterns of individual users. However, individual
" - smism - [isT] tensors limit the ability of our model to capture new mobility pat-
: = ! terns because of new users with limited data. If we combine indi-

External Information l Fuﬂy lConni:clcd :,aycr | vidual tensors, we have global tensors showing the driving patterns

g’ - Multitask Learning | in the same city. Global tensors contain overall driving patterns,
T 1 T 1 giving the ability to capture driving patterns for new users with
i limited data. But the key drawback of a city-wide global tensor is

too generic due to a large number of users.
As a result, we aim to find some group tensors, which contain

Popufunrml JRGG«‘ Networks Distance, Travel Time,
| Speed Variance

“-h______hhﬂ

| Spatial Alignment }

Fig. 6: Mobility Prediction Framework I mobility patterns in a group of users with similar mobility patterns.
Based on individual tensors, the users in the same group have very
4.2 Internal Information Feeder similar mobility patterns; whereas the users in different groups have

very different mobility patterns. Therefore, we design a clustering
algorithm to group users into different groups. For clustering, a
feature vector is created for all groups and is dynamically updated
when new OBD data are fed into the system. A vehicle’s feature
vector contains a set of advanced features, which are obtained by
direct tensor operations, e.g, projection, and aggregation. We cluster
the vehicles into different groups by three steps.

Step (i): Creating a Feature Vector for Each User. Based on
the individual mobility tensors, the feature vector we used in MoCha
is given in Table 2, in which (1) the home grid and work grid are in-

The internal information feeder constructs two kinds of tensors,
i.e., individual tensors and group tensors as output, and then feeds
the tensor attributes to the learning module. An individual tensor
describes attributes of single users and a group tensor describes
attributes of a user group. The attributes in tensors are categorized
into two types: (1) The static attributes are metrics describing gen-
eral information, e.g., start location of one day, day of the week, etc.
(2) The time series attributes are dynamic metrics used to describe
detailed driving patterns, e.g., distance, travel time, speed variance.

4.2.1 Individual Tensors. We organize trips belonging to the same ferred from spatial-temporal features of individual tensors based on
user (uploaded by the same smartphone) with a few mobility tensors existing work [10] (for commercial vehicles, instead of home/work
A € RNXNXM ith the same dimensions. locations, we use the top two frequent locations); (2) the average
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daily driving time, average daily driving distance, and average
standard deviation of daily speeds are daily mobility patterns on
weekdays and weekends; (3) the number of daily distinct ODs is
the distinct origin-destination pairs a user traveled in one day at
the grid level on weekdays and weekends; (4) we use the number of
daily trips on different days of the week as a weekly travel pattern.
These features capture a permanent geometric distribution of a user
during a long time period, which enables an effective clustering.

Table 2: User Features

Features Values
Home Grid gi
Work Grid gj
Daily Driving Time ti.t2
Daily Driving Distance dy,d
Daily Speed STD 51, 82
# of Daily Distinct OD | n?4,n29
# of Daily Trips in DoW | ny,.,n7

Step (ii): Clustering Users into Groups based on Feature
Vectors. Based on feature vectors, we cluster users into groups by
a Gaussian Mixture Model (GMM) [2] as in Equation 1.

K

p() = > mN (x|, ) )
k=1

where x is a feature vector in our model, N is a Gaussian distribu-
tion with g as the mean and ¥ as the covariance matrix. We apply
a standard Expect Maximization algorithm to maximize the likeli-
hood iteratively. The output of the clustering gives the centroid y of
each cluster and the corresponding probability of x being in a clus-
ter. We apply a Gaussian-based clustering method since Gaussian
distributions are fit into mobility metrics in many scenarios [3].

Step (iii): Periodically Optimizing Clusters based on Davies-
Bouldin Index. We use Davies-Bouldin index to tune the optimum
number of user groups. Davies-Bouldin index measures both the
separation of clusters and cohesion within clusters, which math-
ematically guarantees good clustering results. We found the opti-
mum number of clusters is 135. The results are corresponding to 27
major pairs of home-work areas and 5 real-world driving groups,
i.e., daily commuters, weekend users, weekday commuters, for-hire
vehicle users, and others. Since users’ behavior and roles change
over time, e.g., a daily commuter can change to a Uber user, we
apply the clustering method periodically to update the users’ group
information dynamically based on their most recent driving data.

The right part of Figure 7 gives an example of group tensors.
With group tensors, we use the mobility patterns from similar users
to predict future usage for existing users with limited data.

4.3 External Information Feeder

The external information feeder collects external information on
trips, e.g., road networks and population density, as external fea-
tures and then are fed to the learning component. External fea-
tures include road type distribution and population distribution.
We study road types and population density as external features
since they have a significant influence on driving patterns based
on our analysis in the following analysis. We incorporate these
external features in our system given how often a user travels on a
route with different road types and population density.
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(a) Road Types: We divide all roads into 5 major types (i.e., highway,
road, link road, path, and special road) based on road types provided
by OpenStreetMap road networks [1]. First, we run map matching
on personal and commercial vehicle datasets. Then, we calculate the
average speed and driving distance on-road segments. We found a
significant difference in the speed and distance distribution among
different road types, which is considered as a context in our model.
We omit the results due to space limitation.

(b) Population Density: We further investigate the impact of pop-
ulation density distribution on driving behaviors by calculating
the correlation between speed and population in grids based on
Worldpop dataset [7], which includes population distribution at
night. We aggregate the average speed from 4 pm to 11 pm in grid
partition to study the correlation. We found that over 80% grids
show a negative correlation between population and speed, which
motivates us to consider population density in our model.

4.4 Multi-Modal Multitask Learning

With both internal information and external information, we adopt
a multi-modal LSTM (Long-Short-Term-Memory) in the recurrent
neural network layer. This is because (i) both of the input and
output of our usage can be seen as time-series data; (ii) LSTM is one
of the most effective models to deal with time-series data prediction
and is insensitive to temporal gaps[12]. We did not choose a more
complicated model due to a practical deployment.

Multi-modal LSTM: A multi-modal Long Short Term Memory
LSTM is designed to integrate multiple data sources with different
weights [13] due to its insensitivity to temporal gaps. The previous
work [15] has shown that the multi-modal LSTM model outper-
forms other models in time series prediction problems. The memory
cell unit of Multi-modal LSTM is shown in Figure 8. The model can
be described by Equations in Figure 8 where k indicates the modal-
ity (e.g., individual tensors and group tensors as two modalities) and
|K| = 2 is the total number of modalities. Instead of merging hetero-
geneous data in the preprocessing step, a multimodal model shares
weights across different types of modalities during the forward
pass in the training process but does not share memory units [13].
Wgh, Win, Wrp, and W,, are hidden layers’ weights in the forward
pass, which gives the features of sharing weights across modalities.
The weights are initialized as random and are updated during the
training. Instead, every modality keeps the memory unit h’;‘l in the
forward pass. Therefore, it has some features to share weights but
not memory units in the forward pass. In this work, as shown in the

g = PIW,LX] + Wouhi_, + b))

i¥ = a(WEXF + Wikl + 85

£ = oW XF + Wl +b5)

L 0f = o(WhXF + Waht_, +b5)

ST sf=gfoif st off
B = gis)* @ of
k=12 |Kl

R | Edgze 10 next
time step

Edge from previous time
stepiand current input)

Weight fixed a |

Fig. 8: Multi-modal LSTM Memory Cell

model overview of Figure 6, individual tensors and group tensors
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are fed to two separate LSTM modules since we treat the individual
tensors and group tensors as different modalities. Motivated by this
idea, we integrate the individual mobility patterns with its corre-
sponding group mobility patterns, but we keep the memory cell of
individual mobility and group mobility. We separate the training
data transferred from the internal information feeder into two cate-
gories of features, i.e., static features and usage features. Relying on
external information, we extract contextual features, such as road
type distribution and population density distribution. Finally, we
feed usage features, static features, and contextual features in the
learning component. The rest of the process is standardized after
we format the problem this way, and the details of LSTM can be
found at [12].

Input and Output: Given m days of previous usage data of vehi-
cle i, i.e., travel distance, travel time, and speed STD, along with ex-
ternal contextual information, our target is to predict i's usage over
next n days, the output is denoted as Y/ = {i’:+1, ?:+2’ e, ?L_")
where Yi = (:f,, i, 31),  is the current day; d}, tji, s; is the daily
distance, daily travel time and daily speed standard deviation to
present the variance of the speed for vehicle i at day 7. In our design
we make a daily prediction for fine-grained insurance policies. It is
straightforward to obtain a n day distribution with our model with
an adaptive method.

Loss Function: Since the dependency existing in the three pre-
dicted metrics, we apply a multi-task learning component with
a loss function of the average of the three metrics to show the
performance. We use MAPE which takes the average absolute er-
ror between the estimated value § and ground truth p. e(p) =

100 vn  |pi—pil
n

=1 p
speed varia.ﬁce are closed correlated since all of them are derived
from trips of users. Therefore, we apply a multitask learning model
in the prediction to capture the underlying correlation among them.
A joint loss function is normally defined in multitask learning mod-
els [28]. We define a joint loss function as the weighted MAPE of
the three metrics in Equation 2, where d is the daily travel distance,
t is the daily travel time, and v is the daily travel speed STD.

. For each user, the travel distance, travel time and

L=a-e(d)+f-e(t)+y-e(v)

st.a+f+y=1 @

We tune e, ff and y in our training process to achieve the best overall
performance. The joint loss function is commonly used in multi-
task learning since training of one feature can benefit the learning
of other two metrics and prevent overfitting in a single metrics
learning [19]. To justify our design choice, we compare MoCha
with a single task learning model where separate loss functions are
defined for each metrics in our evaluation of Section 5.

5 EVALUATION

5.1 Methodology

(i) Setting: We utilize two kinds of vehicle data as shown in Figure 5,
which contains nationwide long-term personal and commercial
vehicle OBD data for the evaluation. The personal vehicle dataset
has OBD data from 295 thousand vehicles; the commercial vehicle
dataset has OBD data from 60 thousand vehicles. Both commercial
data and personal data contain the exact time, location, and speed
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of the vehicles and an uploading device ID to identify each user.
We train our model with 10-fold cross-validation (i.e.,90% days of
data for training and 10% of days of data for testing) with both
internal features and external features. We perform temporal cross-
validation to gradually increase the number of continuous days as
training data. The details are given in the evaluation results.

(ii) Metrics: We compare our predicted results p with real metrics
P in terms of travel distance, time, and speed variance by Mean
Absolute Percent Error (MAPE).

(iii) Baseline Approaches:

o ARIMA: An AutoRegressive Integrated Moving Average (ARIMA)
auto-regression model is proposed in [18] to predict human be-
haviors with a set of auto-regression models.

DeepTransport (DT): DeepTransport [17] is a state-of-art model
to predict human mobility. It applies recurrent neural networks
to predict human trajectories and travel time on the individual
level. We adopt the model for distance, travel time, and speed
STD prediction. In particular, we apply DT model on historical
records and incorporate external information in the model.
MoCha-: We implement multitask learning with a joint loss func-
tion to learn the underlying correlations among driving metrics
and prevent overfitting in a single task learning model. In con-
tract, we use a single task learning model with three individual
loss functions to predict specific metrics, i.e., we drop multi-task
learning from MoCha in this baseline model.

(v) Impacts of Factors: We evaluate four factors and their impacts
on our system. (a) New Users vs Established Users: We separate
prediction results into two groups. The first group is new users with
historical records less than one week, i.e., belonging to evolving
patterns. For all incoming UBI users, we use their first one-week
data to predict their future metrics. After more data was collected
about these users, they became established users. The prediction
accuracy is compared in these two groups to show the ability of the
model to capture patterns of new users. (b) Impact of Training Data
Length: (c) Impact of Predicted Period: We use an adaptive way to
predict future user metrics and evaluate the performance in a varied
number of predicted days. (d) Impact of External Information.

(vi) Implementation: Our model and baseline models are imple-
mented with Keras and Tensorflow libraries. We train and evaluate
our work on 8 Nvidia K40C GPU servers. We set the learning rate
as 0.001 and train the model with 100 epoch with cross-validations.
We train our model with a previous one-week driving pattern as
inputs and predict future daily metrics. We apply an adaptive learn-
ing method to predict long-term driving patterns, i.e., we use the
predicted values as input to predict the further three metrics.

5.2 Evaluation Results

(i) Established Users vs. New Users: As the number of users in
UBI is increasing, one of the most important challenges for insur-
ance companies is usage prediction for new users. Therefore, before
giving the general performance, we evaluate our models on the
new users and established users. We report the overall performance,
which is the average prediction error of travel distance, travel time,
and travel speed STD in Figure 9. Our model shows the best per-
formance compared with baselines, especially for new users. In
particular, for new users, MoCha outperforms the existing model
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ARIMA and DT by around 25.4 % by reducing the average MAPE
from 30% to 22.6%. In detail, MoCha reduces MAPE of distance
prediction from 26.1% to 18.8%, travel time prediction from 36.4% to
25.2%, and speed variance from 32.3% to 23.8%. Moreover, the period
to update user groups is critical for the prediction for new users
and evolving users. In the evaluation, we found we can reduce the
prediction error by 12.4% by updating user groups daily compared
with one-time clustering for new and evolving users.
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Fig. 9: Overall Performance

(ii) Travel Distance Prediction: We evaluate the prediction ac-
curacy of the three investigated metrics, i.e., travel distance, travel
time, and speed STD. First, we evaluate MoCha on distance predic-
tion in Figure 10. MoCha presents a better and more stable perfor-
mance compared with baselines in both personal and commercial
vehicles. We found a higher performance gain in personal vehicles
when comparing LSTM-based models (MoCha, DT, MoCha-) with
ARIMA. One possible reason is that driving patterns of personal
vehicles are more relevant to recent mobility since LSTM assigns a
higher weight to short-term memories.
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Fig. 10: Travel Distance
(iii) Travel Time Prediction: Compared with predicting travel
distance, predicting travel time is more challenging since it is af-
fected by external factors such as road traffic and travel start time
while daily travel distance is mostly determined by OD (origin and
destination) pairs and travel routes. As a result, we found a higher
MAPE in Figure 11 compared with the travel distance prediction.
We found a lower MAPE in MoCha, DT, and MoCha- compared
with ARIMA in both users of personal vehicles and commercial
vehicles. MoCha has the best performance, contributed by the pre-
diction improvement on new drivers, and integration of external
features. Besides, MoCha achieves a lower performance variance in
personal vehicle users. Based on the historical data, we found over
30% of commercial vehicle users operate more than 20 hours per
day. It may because some commercial vehicles are shared by more
than one user in a rotation to maximize profits. In contrast, since
personal vehicles have constant mobility patterns and fewer origins
or destinations than commercial vehicles, personal vehicle users
have a small variance on the performance compared with com-
mercial vehicle users. We found the multitask learning component
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(MoCha-) and the multimodal training component (DT) have larger
impacts on personal vehicle users. The possible reason is personal
vehicle users have more constant mobility patterns. As a result, it
is easier for MoCha to find similar drivers, prevent overfitting, and
learn underlying correlations among metrics.
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Fig. 11: Travel Time

(iv) Speed STD Prediction: Different from travel time and dis-
tance, speed is an instant value. We compare the estimated speed
STD with the speed STD calculated based on the raw data from the
OBD reader to evaluate the prediction performance. We found a dif-
ferent prediction performance during days of one week in Figure 12.
Similar to travel distance and travel time prediction, MoCha- has a
better performance than DT. In all four models, personal vehicles
show a higher prediction error on weekends while commercial
shows a lower error. The reason is that personal vehicle users have
regular mobility patterns during weekdays and more random pat-
terns on weekends. For commercial vehicle users, mobility patterns
are not affected significantly by weekday patterns. On weekends,

better traffic conditions lead to lower randomness on speeds.
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Fig. 12: Speed Variance

(v) Impact of Training Data Volume: We further study the im-
pact of training data on the performance. We apply an N + 1 vali-
dation and evaluate the model by average MAPE of three predicted
features. In the N + 1 validation, N continuous days of data are
trained and 1 following day is tested. We evaluate N from 1 to 28 on
both personal and commercial vehicle users. We fill null values for
missing features. We study the impact of training data on overall
performance in Figure 13. MoCha has the best performance in the
average prediction errors. The elbows of the performance changes
locate at around 14 days since it covered the day-of-week pattern.
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(v) Impact of Predicted Period: Since long-term driving pattern
characterization is of great importance to quantify individual driv-
ing risks, we apply an adaptive method to predict individual driving
patterns. Specifically, to predict daily driving distance, travel time,
and speed variance in weeks or months, we use the predicted values
as the input for new prediction. We predict different days of metrics
ranging from one day to one month. We found the overall perfor-
mance drops as the number of predicted days increases in Figure 14.
This is caused by the accumulation of error in the prediction since
we use the predicted data as the input of users.

(vii) Impact of External Features: We compare the impact of
external information with hypothesis tests. We found (i) road in-
formation improves the average model performance by reducing
MAPE from 18.93% to 17.86% for personal vehicle users and 25.88%
to 24.67% for commercial vehicle users; (ii) Worldpop [7] population
improves the average performance by reducing MAPE from 17.86%
to 17.42% in personal vehicles and 24.67% to 24.05% for commercial
vehicles. We omit the detailed results due to space limitations.

6 DEPLOYMENT: RISK PREDICTION

The insurance company we are working with is interested to know
if our driving metric prediction has impacts on future driving risk
prediction of drivers. It is straightforward to quantify driving risks
by the probability of accidents happened to a user based on insur-
ance claim data. We deploy our system for a pilot study to conduct
a case study on 196 UBI users’ claim data to predict their proba-
bility of accidents. As incentives, these users received additional
discounts for further analyses so they consent their claim data shar-
ing. We incorporate the results of MoCha in the prediction task to
study how MoCha contributes to this real-world application.

Claim Data for Validation: We have access to claim data of
196 drivers from Shenzhen and their detailed OBD traces records for
one year as ground truth for validation. The dataset contains four
types of accidents based on their causalities, i.e., collision, wading,
collapse, and others. According to claims, 93.14% of accidents are
caused by collisions, 4.90% of accidents are caused by wading, 0.98%
of accidents are collapse, which is caused by falling objects and
0.98% accidents are caused by other reasons.

Setup: We build two versions of a learning model X with (1) a
logistic regression (i.e., X=LR), and (2) a neural network (i.e., X=NN)
with sigmoid activation functions, to study how MoCha helps im-
prove risk prediction in the two models. The input is the three
metrics of a user (e.g., historical average or future prediction based
on MoCha) with static factors such as gender and age along with if
he/she has accidents before. The output is a value between 0 and 1,
i.e., a higher value means a higher potential risk of the user. Metrics:
Both loss function and evaluation metrics are defined by Mean Ab-
solute Error (MAE) M between real risk p; as ground truth
(Le., 0 without accident or 1 with accident obtained by ground truth)
and predicted risk ﬁf. We define the MoCha based method as MoCha
+ X and compare its performance with two baselines: Hist+X and
DT+X. All MoCha and baselines use the same learning model X to
learn the relationship between drivers’ behavioral factors to their
potential risk, but their behavioral inputs are different. (i) Hist + X:
It uses the historical average of distance, time, and speed variance
as the input without prediction; (ii)) DT + X and (iii) MoCha + X:

2856

KDD 21, August 14-18, 2021, Virtual Event, Singapore

We use DT [17] and MoCha to predict the future driving distance,
time, and speed variance as input for X, respectively.
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Fig. 15: Quantifying Future Driving Risk

Evaluation: Figure 15 shows the prediction of MoCha improves
the performance in quantifying future risks of drivers in both LR
and NN. The X-axis is the MRE and Y-axis is the length of the future
days. As shown in Figure 15a, MoCha improves the performance by
reducing the error from 38% to 29% in the logistic regression model.
In Figure 15b, MoCha improves the performance by reducing the
error from 36% to 26% in the neural network model. We found both
prediction based methods have better performance than historical
data based method Hist+. The reason is that historical data are
biased when used to describe future driving patterns.

7 LESSONS LEARNED AND DISCUSSION

Key Lesson Learned: The most fundamental lesson learned in this
we can predict mobility metrics for new UBI users with limited data
and existing users with new patterns with high accuracy due to
accurate driver group clustering design. The key insight is that the
similarity between new users and existing users can be found by
carefully designing a mobility feature set to quantify their similarity
by periodically clustering. However, using group driving patterns
alone cannot achieve the best performance due to overfitting, so we
need to consider both the individual-level driving pattern and group
driving pattern as two modalities and integrate them in a multi-
modal learning model where these two modals interact with each
other to improve the prediction accuracy. This insight provided
some guidance on the cold start and user pattern evolving problem
for current or future UBI companies.

Deployment Obstacles: Based on our result, the key obstacle for a
large-scale deployment is that for the brand new users without any
historical data, MoCha has the limited ability to predict their future
mobility patterns. In general, their premium plan is determined
based on their demographic information, e.g., gender and age, at the
beginning of using UBI insurance. It makes challenging to convince
the UBI company for a full-scale deployment. Our next step would
be collecting enough historical data for the brand new users and
then adjusting their premium according to the prediction of MoCha.
Privacy Protections and Consent: While modeling and predicting
vehicle usage is important for insurance companies and we have
UBI users’ consent, we protected the privacy of involved users
by using the aggregated metrics to model the driving patterns in
MoCha. Therefore, we minimize the exposure risk for individual
locations collected by the on-board GPS devices.

8 RELATED WORK

We study related work via two features, i.e., spatial scale and vehicle
modality.
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Aggregate Mobility vs. Individual Mobility We divide existing
works on vehicle mobility into two categories based on the mobility
level: (i) On the Aggregate Level, vehicle mobility is estimated
by aggregating historical records without considering individual
behaviors. Zhou et al. compare the speed estimation from either
explicit or implicit sensing data [? ]. Further, a few model calibration
techniques have also been proposed to model travel speeds, e.g.,
offline calibrating based on sensitivity analyses [4]. (ii) On the
individual level, personal behaviors and mobility patterns are taken
into account for mobility modeling. Fang et al. propose a system
called Mac to infer fine-grained travel time [5]. Song et al. propose a
multi-task learning model based on historical trajectories to predict
individual mobility such as transportation mode [17].

Single vs. Multiple Vehicle Fleets Due to the separation and
isolation among vehicular fleets and transportation systems, most
existing works have been focused on mobility on a single fleet
such as taxi travel time estimation in Beijing [20]. Those works
are well-designed for a single-vehicle fleet for vehicle mobility.
However, due to the diversity of driving patterns in different fleets,
the generalizability of such modes is not tested on other vehicular
fleets. A few works were conducted on nationwide data for vehicle
mobility. For instance, Zhang et al. propose a model to estimate the
traffic volumes on major highways of China [27], but did not focus
on predicting mobility behaviors.

Summary Technically, MoCha is different from the above works
from two perspectives. (i) We focus on evolving issues in a UBI
setting where new UBI users with limited data and established
UBI users with long-term records, i.e., three years; whereas the
existing works are mostly based on short-term data, e.g., a few
days or months. (ii) we focus on modeling and prediction on multi-
modality vehicle patterns, e.g., both commercial and personal vehi-
cles; whereas the existing work is mostly focused on one modality.

9 CONCLUSIONS

In this work, we design, implement and evaluate a driving pattern
characterization system called MoCha which models and predicts
individual vehicle usage in the setting of usage-based insurance.
We study driving patterns on three metrics, i.e., travel distance,
travel time, speed variance. To solve the problem of data limitation
of new drivers, we cluster existing drivers into groups based on
their similarity of mobility patterns, and then combine individual
driving patterns with group driving patterns based on a multi-modal
multitask LSTM model. Our evaluation results show both good
prediction results on driving behavior metrics and effectiveness on
driving risk prediction based on real-world GPS and claim data.
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