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Data-Driven Distributionally Robust Electric Vehicle
Balancing for Autonomous Mobility-on-Demand
Systems under Demand and Supply Uncertainties
Sihong He, Zhili Zhang, Shuo Han, Lynn Pepin, Guang Wang, Desheng Zhang, John Stankovic, Fei Miao

Abstract—Electric vehicles (EVs) are being rapidly adopted
due to their economic and societal benefits. Autonomous mobility-
on-demand (AMoD) systems also embrace this trend. However,
the long charging time and high recharging frequency of EVs
pose challenges to efficiently managing EV AMoD systems. The
complicated dynamic charging and mobility process of EV AMoD
systems makes the demand and supply uncertainties significant
when designing vehicle balancing algorithms. In this work, we
design a data-driven distributionally robust optimization (DRO)
approach to balance EVs for both the mobility service and
the charging process. The optimization goal is to minimize the
worst-case expected cost under both passenger mobility demand
uncertainties and EV supply uncertainties. We then propose a
novel distributional uncertainty sets construction algorithm that
guarantees the produced parameters are contained in desired
confidence regions with a given probability. To solve the proposed
DRO AMoD EV balancing problem, we derive an equivalent
computationally tractable convex optimization problem. Based
on real-world EV data of a taxi system, we show that with
our solution the average total balancing cost is reduced by
14.49%, and the average mobility fairness and charging fairness
are improved by 15.78% and 34.51%, respectively, compared to
solutions that do not consider uncertainties.

Index Terms—Data Driven, Electric Vehicle, Mobility-on-
Demand Systems, Fairness, Distributionally Robust Optimization

I. INTRODUCTION

In Autonomous Mobility-on-Demand (AMoD) systems,
self-driving vehicles provide personal on-demand transporta-
tion service for customers and rebalance themselves to main-
tain acceptable quality of service throughout the system [1],
[2]. AMoD systems have been advocated as one of the most
promising energy-efficient transportation solutions. Electric
Vehicles (EVs) have tremendous potential in AMoD systems
for being economical and environmentally friendly [3]. For
instance, EV AMoD systems directly address the problems of
oil dependency and air pollution. However, EVs have quite
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different energy-refilling patterns compared with traditional
gas-powered vehicles. They have long charging times, high
charging frequency, uncertain sporadic demands, and dispersed
mobility patterns [4], [5].

There are emerging problems when commercial EVs are
gradually introduced into AMoD systems, considering current
charging technologies and limited charging infrastructures.
EVs’ frequent intermittent charging requirements may reduce
the quality of mobility service. Unbalanced EV distribution
may also cause long waiting times and low charging service
quality in some charging stations. To address these challenges,
researchers proposed plenty of vehicle allocation methods,
charging scheduling approaches and joint charging-relocation
recommendation schemes. Vehicle allocation methods rebal-
ance the vehicle distributions over time in responding to known
or predicted demand and supply [1], [6], [7]. We further
discuss these methods in the Related Work section.

However, most existing vehicle allocation methods and
charging scheduling approaches do not consider uncertainties
by assuming the measurement and prediction models are per-
fect [1], [8], while model uncertainty affects the performance
of decisions [9]. And it is difficult to accurately predict passen-
gers’ demand and EVs’ charging patterns. As the promotion
of EVs continues, we cannot ignore the uncertainties caused
by EVs’ charging behaviors. For example, uncertain charging
time, queuing time and charging frequency all contribute to
the supply uncertainty, due to the limited knowledge we have
about charging patterns [4]. Then difficulties appear in many
aspects, such as introducing multiple uncertainties into AMoD
systems, modeling the uncertain parameters, and analyzing the
mutual dependency between supply and demand. Therefore,
making real-time decisions under both supply and demand
uncertainties is still a charging and unsolved research problem.

Considering both passenger demand and EV supply un-
certainties, we propose a distributionally robust optimization
(DRO) approach to make robust vehicle balancing decisions
for both mobility service and charging scheduling. DRO
method considers the uncertain parameters’ probability distri-
butions are contained in some pre-specified distributional un-
certainty sets [9]. More DRO literature is discussed in Section
II. In our method, we assume the true probability distribution
of passenger demand and EV supply lies in a set of probability
distributions, i.e., a distributional uncertainty set. We define
the vehicle balancing cost and system-level charging service
fairness requirement in our objective function, which is convex
over the decision variables and concave over the uncertain
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parameters. The vehicle balancing cost includes the balancing
cost to send vacant EVs to predicted mobility demand and low-
battery EVs to charging stations. We put the mobility service
fairness requirement in convex constraints. This objective and
constraint design decouple the mutual dependencies between
EV supply and passenger demand. Thus, we calculate balanc-
ing decisions by solving the DRO problem, i.e. minimizing
the worst-case expected objective function over distributional
uncertainty sets and convex constraints. We further derive an
equivalent convex optimization problem form for the DRO
problem to provide solutions in a computationally tractable
way. We also propose an efficient distributional uncertainty
set construction algorithm to construct stable uncertainty sets.
We briefly summarize the proposed framework structure of
this paper in Fig. 1.

The key contributions of our work are as follows:
• To the best of our knowledge, our proposed mathematical

system-level vehicle balancing framework is the first
to consider both future mobility demand uncertainties
and EV supply uncertainties for EV AMoD systems.
While model predictive control algorithms [1], [10], [11]
have been designed considering AMoD system demand
uncertainties in the literature, the supply side uncertainties
for EV AMoD are not well studied yet.

• We design a distributionally robust optimization approach
to balance EVs across a city to provide fair passenger
mobility and EV charging service while reducing the total
balancing cost. We consider probabilistic distribution un-
certainties of both the passenger mobility demand and the
EV supply caused by the challenge of charging process
prediction [5], [12]. The proposed problem formulation
decouples the mutual dependencies between EV supply
and passenger demand. We further design an efficient
algorithm to construct distributional uncertainty sets, and
prove that the produced uncertainty set parameters are
guaranteed being contained in desired confidence regions
with a given probability.

• We derive an equivalent convex optimization problem for
the proposed distributionally robust optimization prob-
lem. Hence, we provide a system-level performance guar-
antee in a computationally tractable way under supply
and demand uncertainties. Based on the E-taxi fleet of
Shenzhen city, which is a real-world EV AMoD system
dataset, we show that our method reduces the average
total balancing cost, the average mobility unfairness and
charging unfairness by 14.49%, 15.78% and 34.51%,
respectively, compared to non-robust solutions.

The rest of the paper is organized as follows. The related
work and distributionally robust EV balancing problem for-
mulation are presented in Section II and III, respectively.
The formal distribuitonally uncertainty set form and novel
construction algorithms are in Section IV. An equivalent
computationally tractable form is derived in Section V. Ex-
periments are in Section VI. We conclude in Section VII.

II. RELATED WORK

A. Vehicle Allocation: To improve the performance of
AMoD systems, multiple vehicle allocation and balancing

Fig. 1. We briefly summarize the proposed framework structure of this paper
in this figure. In module 1, we use historical data to train a prediction model
for supply and demand then use the well-trained prediction models as the input
of our Algorithm 1 to finally get the distributional uncertainty sets for demand
and supply in form of (20). In module 2, we get the DRO EV balancing
problem (the distributionally robust optimization problem (12)) using the real-
time sensing data and distributional uncertainty sets. In module 3, we apply
the conclusions in Theorem 1 to obtain the EV balancing decisions by solving
the equivalent convex optimization problem (25).

approaches have been proposed. For instance, queuing network
model [8], flow framework [13], model predictive control [1],
[10], receding horizon control [14], and reinforcement learning
method [15], [16] have been designed. However, most of them
do not consider EV charging patterns nor uncertainties caused
by EV charging behaviors. Making real-time decisions under
supply and demand uncertainties is still a challenging and un-
solved problem. Our work jointly considers the EV allocation
and charging problem in a distributionally robust optimization
problem while considering two-sided uncertainties.

B. Charging Scheduling: To improve EV charging effi-
ciency, MDP based [17] and queuing model based [5] charging
scheduling, charging station deployment [18], online charging
recommendations [12] have been proposed. Future charging
supply or demand are usually considered in charging rec-
ommendation [19], [20]. But these methods haven’t provided
integrated passenger picking-up and EV charging scheduling
solutions for EV AMoD systems. Though an E-taxi charging
framework under dynamics of renewable energy and passenger
mobility is proposed [19], [21], its performance may be
undermined by system uncertainties that are not considered.
Other existing works either only focus on robust charging
scheduling with uncertainties from charging behavior [22],
[23] or only study joint EV balancing and charging strategies
without considering uncertainties [19]. It is still challenging to
simultaneously deal with passenger mobility demand and EV
supply uncertainties when making EV balancing decisions for
both passenger picking-up and EV charging. Our work fills this
gap by proposing a novel distributionally robust optimization
EV balancing framework to provide fair passenger mobility
and EV charging service while reducing the total balancing
cost.

C. Robust and Distributionally Robust Optimization:
Robust optimization (RO) assumes that uncertain parameters
can be any value in an uncertainty set, whereas distributionally
robust optimization (DRO) models the uncertain parameters as
random variables whose underlying probability distribution is
contained in a distributional uncertainty set [9]. In both cases,
the goal is to find the best decision in view of the worst-
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case realization of uncertainty. However, RO may propose
overly conservative decisions than DRO since they do not
exploit distributional information [24]. Both RO and DRO
have wide application in many disciplines, such as energy,
healthcare, transportation, logistics, and inventory [24]–[27].
Set-membership methods use a deterministic unknown-but-
bounded description of noise and parametric uncertainties [28],
[29]. Contrasted to such deterministic approaches, DRO is a
stochastic approach in that uncertain parameters are assumed
to follow some statistical distributions. For AMoD system
balancing, Hao et al. consider the idle vehicle pre-allocation
problem with uncertain demands and covariate information
using DRO [6]; Miao et al. develop a data-driven DRO
vehicle balancing method to accommodate uncertainties in
the predicted demand distribution [30]. These methods only
consider the demand uncertainty and cannot be directly applied
to solve the challenge of integrally considering the demand and
EV supply uncertainties. To the best of our knowledge, we are
the first to consider both future mobility demand distribution
uncertainties and EV supply distribution uncertainties.

III. PROBLEM FORMULATION

Mobility demand uncertainty has been considered in AMoD
vehicle allocation or balancing [1], [30]. EV supply uncer-
tainty has also been addressed in EV charging scheduling [22],
[23]. However, it is still challenging and has not been studied
to simultaneously consider these two-sided uncertainties for
EV AMoD systems, where the EV balancing for mobility and
charging process is tightly integrated and should be optimized
jointly.

In this section, we formulate the EV balancing problem
as a distributionally robust optimization (DRO) problem con-
sidering both predicted passenger mobility demand and EV
supply uncertainties. The DRO decision minimizes the worst-
case expected cost over a set of uncertain supply-and-demand
probability distributions and provides a performance guaran-
tee of the decisions under model uncertainties. We consider
both passenger supply-demand ratio fairness and EV charging
supply-demand ratio fairness. While previous work considers
only passenger mobility supply-demand ratio fairness in the
objective function [30], we put it in the constraints and put EV
charging supply-demand ratio fairness in the objective function
(see Eq. (12) for detail). Such a problem formulation makes it
possible to consider both charging and mobility fairness under
two-sided uncertainties and decouple the mutual dependencies
between EV supply and passenger demand under complex
dynamics between EV charging and mobility patterns.

The balancing decisions are updated in a receding horizon
control process [14], [31]. At each time step, the dispatching
center first updates vehicle status and passenger demand
information, then calculates the EV balancing decisions, and
finally sends the decisions to the EVs to execute. Vacant EVs
are allocated among different regions to pick up current and
predicted future passengers. Low-battery EVs are dispatched
to regions with charging stations to charge. The dispatching
center focuses on the global-level balancing among regions. A
local controller finishes one-to-one or one-to-group (carpool)
EV-passenger or EV-charging station matching and detailed

routing. We focus on the system-level robust EV balancing
method design within a city. Local-level trip assignment and
routing algorithms are out of the scope of this work and are
investigated in the literature [32]–[34]. Our system-level EV
balancing method can be applied in conjunction with these
local-level one-to-one or one-to-group matching algorithms.

L V O

finish charging start order

lack of energy finish order
Fig. 2. Status transition process: the status ”vacant” is a bridge between status
”low-battery” and ”occupied”.

NOMENCLATURE

Parameters of Problem (12)
K number of time intervals in a day
N number of regions
τ model predicting time horizon
r ∈ RNτ concatenated demand vector with unknown

distribution function F ∗r
c ∈ RNτ concatenated newly supply vector with un-

known distribution function F ∗c
W ∈ RN×N cost matrix for vacant EVs, wij is the moving

cost from region i to j for one vacant EV
W ∗ ∈ RN×N cost matrix for low-battery EVs, w∗ij is the

moving cost from region i to j for one low-
battery EV

P kv , P
k
o , P

k
l , Q

k
v , Q

k
o region transition matrices from time k to

(k + 1)
V 1 ∈ NN the initial number of vacant EVs at each region

provided by streaming data
O1 ∈ NN the initial number of occupied EVs at each

region provided by streaming data
m1,m2 ∈ R+ upper bound of distance each EV can drive idly
a ∈ R+ power on the denominator of the objective
θ, β ∈ R+ weight factors of the objective function
l, h ∈ Rτ lower and upper bounds of mobility supply-

demand ratio
Variables of Problem (12)
Xk ∈ RN×N+ xkij is the number of vacant EVs dispatched

from region i to region j at time k
Y k ∈ RN×N+ ykij is the number of low-battery EVs dis-

patched from region i to region j at time k
V k ∈ RN+ number of vacant EVs at each region before

dispatching at the beginning of time k
Ok ∈ RN+ number of occupied EVs at each region before

dispatching at the beginning of time k
Lk ∈ RN+ number of low-battery EVs at each region

before dispatching at the beginning of time k
Sk ∈ RN+ number of vacant (available) EVs at each re-

gion after dispatching at time k
D,U ∈ RNτ+ slack variables in constraint (8)
A. EV Status and Corresponding Actions

We define three statuses for one EV according to its battery
level and working state: vacant, occupied, and low-battery. A
vacant EV: one is working and has a battery level higher than
a threshold e, but has no passengers. An occupied EV: one



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2022 4

is working and has a battery higher than a threshold e and
has passengers. A low-battery EV: one is working and has
no passengers in it and has a battery level lower than the
threshold e. The controller dispatches vacant EVs according
to current and predicted future passenger demands, and assigns
low-battery EVs to regions where located charging stations. It
has no actions for occupied EVs since these EVs are busy
serving passengers. An EV’s status can transit among these
three categories. Fig. 2 shows the status transition process of
the EVs according to the EV AMoD system dynamics [11],
[34]–[37]. A low-battery/occupied EV can only transfer to a
vacant EV or stay in the current status. The status ”vacant” is
a bridge between the status ”low-battery” and ”occupied”.

B. DRO EV Balancing Problem for Mobility and Charging

Our goal is to find robust EV balancing decisions when
considering the randomness and prediction errors of both EV
supply and passenger mobility demand. Hence, we formulate
a distributionally robust optimization (DRO) problem to mini-
mize the expected EV balancing cost and provide fair charging
and mobility service over an uncertainty set of demand and
supply probability distributions. The nomenclature provides
an overview of parameters and variables in the problem
formulation and algorithm.

We divide one day into K time intervals and denote
k ∈ {1, 2, ...,K} as the temporal index. We separate a city into
N regions and denote i ∈ {1, 2, ..., N} as the spatial index.
We denote rki as the predicted total number of passengers
demand, and cki as the predicted total number of vacant EVs
that finish charging and turn to supply in region i at time
interval k. We then define rk = [rk1 , r

k
2 , ..., r

k
N ]> ∈ RN

and ck = [ck1 , c
k
2 , ..., c

k
N ]> ∈ RN as vectors containing

the demand and supply of each region in time interval k,
r = [r1, r2, ..., rτ ] ∈ RNτ and c = [c1, c2, ..., cτ ] ∈ RNτ
as the concatenation of demand and supply respectively. To
consider model uncertainties, we assume they are random
vectors instead of deterministic vectors. We use F ∗r and
F ∗c to denote the unknown true probability distributions of
r, c ∈ RNτ respectively, i.e., r ∼ F ∗r and c ∼ F ∗c . We
use non-negative matrices Xk, Y k ∈ RN×N as the decision
matrices, where xkij , y

k
ij is the total number of vacant, low-

battery EVs that will be dispatched from region i to region j
at the beginning of time interval k, respectively. Minimizing
the expected vacant and low-battery EVs balancing cost under
random demand vector r and supply vector c is described as
the following stochastic programming (SP) problem:

min.
X1:τ ,Y 1:τ

Er∼F∗
r ,c∼F∗

c

[
J(X1:τ , Y 1:τ , r, c)

]
s.t. X1:τ , Y 1:τ ∈ D,

(1)

where J(X1:τ , Y 1:τ , r, c) is a cost function of allocating EVs
given balancing decisions X1:τ = {X1, X2, . . . , Xτ} and
Y 1:τ = {Y 1, Y 2, . . . , Y τ}. D defines the convex constraints
domain of the decision variables.

However, in the real world, we usually have limited knowl-
edge about the true probability distributions F ∗r and F ∗c .
With historical or streaming data, we can estimate sets of
probability distributions Fr and Fc such that F ∗r ∈ Fr,

F ∗c ∈ Fc [12], [38], [39], instead of the exact F ∗r and F ∗c .
Meanwhile, problem (1) is computationally expensive to solve
in real-time [25]. Hence, we consider minimizing the worst-
case expected cost, i.e., a minimax form of problem (1):

min.
X1:τ ,Y 1:τ

max.
Fr∈Fr,Fc∈Fc

E
[
J(X1:τ , Y 1:τ , r, c)

]
s.t. X1:τ , Y 1:τ ∈ D.

(2)

Problem (2) is a distributionally robust optimization (DRO)
problem [9], [25] that assumes F ∗r ∈ Fr, F ∗c ∈ Fc. In the
following context, we define the complete forms of objective
function and constraints. The formal definitions and construc-
tion algorithms of the distributional uncertainty sets Fr and
Fc are introduced in Section IV.

Remark (Difficulties of considering multiple mutual effected
parameter uncertainties). DRO methods have been designed in
the literature [30] for vehicle balancing problems for gasoline
vehicle MoD systems, where only the passenger mobility
demand uncertainty has been considered. In contrast, our
work considers the uncertainties of multiple parameters, i.e.
demand and supply uncertainties. It is not straightforward to
apply DRO methods that only consider a single parameter
uncertainty to solve problems with multiple uncertain param-
eters, especially in a complicated and dynamic transporta-
tion system. The uncertain parameters of the system model
are usually dynamically coupled [40], [41]. This mutual-
dependent property results in two-fold difficulties. One is that
formulating a computationally tractable DRO problem for
vehicle balancing of an EV MoD system considering both
the charging and passenger service processes gets more chal-
lenging. Considering the intrinsic connections of uncertain
parameters, the DRO problem formulation should be carefully
designed to satisfy necessary conditions of computational
tractability, which is even challenging with a single uncertain
parameter as shown in the literature [25]. To keep the problem
formulation convex over decision variables and concave over
uncertain parameters, we define the system performance re-
quirements such as charging fairness in the objective function
as a fractional function, and the mobility service fairness in
the constraint functions as linear inequalities. We define the
mobility dynamic process and status transition process of EVs
as linear constraints. We explain all the detail in the problem
formulation section. Another challenge is that numerically
solving a DRO problem like (12) can be challenging given
the definitions of the parameter uncertainty sets [25], [40],
[41]. In this work, we decouple the dependencies of uncertain
parameters in the problem formulation (12), and then derive a
computationally tractable and equivalent convex optimization
problem for (12) in Section V.

C. Balancing Cost

One optimization goal is to minimize the worst-case EV
balancing cost. We define W ∈ RN×N as the cost matrix
where wij is the cost of sending a vacant EV from region
i to region j. The cost can be the approximated distance
given a specific region partition method, approximated routing
distance or travel time between two regions, etc. We select
the approximated routing distance as the cost definition in our
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data-driven experiments. We also define W ∗ ∈ RN×N , w∗ij as
the cost matrix of sending a low-battery EV. We set w∗ij =∞
if there are no charging stations in region j, since low-battery
EV should not go to regions without charging stations.

Then the total balancing cost function JD for τ intervals is
defined as (3), where β is a positive weight coefficient.

JD(X1:τ , Y 1:τ ) :=
τ∑
k=1

N∑
i=1

N∑
j=1

(xkijwij + βykijw
∗
ij). (3)

D. Constraints Definition

1) Mobility Dynamics Constraints: We define the mobility
dynamics constraints in (4) which describes the EV status
transition. Let V ki , O

k
i ∈ R be the number of vacant and

occupied EVs in region i at the beginning of time k before
balancing, respectively. We define Ski as the total number
of vacant EVs that are available to serve in region i after
executing balancing decisions at time k. Then the following
Equations (4) of V ki , O

k
i , S

k
i describe the EV AMoD dynamics

[11], [34]–[37], [42] for k ∈ {1, . . . , τ − 1}:

Ski =
N∑
j=1

xkji −
N∑
j=1

xkij + V ki , k ∈ {1, . . . , τ};

V k+1
i =

N∑
j=1

P kvjiS
k
j +

N∑
j=1

QkvjiO
k
j + cki ;

Ok+1
i =

N∑
j=1

P kojiS
k
j +

N∑
j=1

QkojiO
k
j , k ∈ {1, . . . , τ − 1};

(4)

where P kv , P
k
o , Q

k
v , Q

k
o ∈ RN×N are region transition matri-

ces: P kvji(P
k
oji) is the probability that a vacant EV moves

from region j at the beginning of time k will transverse to
region i and being vacant (occupied) at the beginning of time
k+1. Similarly, Qkvji(Q

k
oji) is the probability that an occupied

EV moves from region j at time k will go to region i and
being vacant (occupied) at the beginning of time k + 1. The
mobility constraints (4) show that (i) the number of vacant
EVs after balancing is related to the number of vacant EVs
before balancing and the net change number of vacant EVs
according to the balancing decisions; (ii) there are two sources
of occupied EVs: one is former occupied EVs that are still
occupied, and the other is former vacant EVs that change
into occupied; (iii) similarly, there are two sources of low-
battery EVs: former low-battery EVs that stay in low-battery
status, and former vacant EVs that change into low-battery
status. The method of calculating region transition matrices
is introduced in the literature [14]. When receding the time
horizon, locations and status of all EVs are updated by real-
time sensing data therefore V 1, O1 are real-timely provided.

2) Charging Dynamics Constraints: We define Lki as the
total number of low-battery EVs in region i before balancing
at the beginning of time k, the charging dynamics constraints
in Equation (5) states the quantitative relationship between
low-battery EVs and available vacant EVs.

Lk+1
i =

N∑
j=1

ykji −
N∑
j=1

ykij +
N∑
j=1

P kljiS
k
j , (5)

where L1 is given by real-time data, P kl ∈ RN×N is the region
transition matrix. Here P klji is the probability that a vacant EV
moves from region j at the beginning of time k will go to
region i and being low-battery at the beginning of time k+ 1.
The region transition matrices estimated from data satisfy that
N∑
j=1

P klij + P kvij + P koij = 1 and
N∑
j=1

Qkoij + Qkvij = 1. The

method of calculating region transition matrices is introduced
in the literature [14].

3) Moving Constraints: We also have moving constraints
for decision variables Xk and Y k defined in (6). When the
balancing cost wij stands for distance, the idle driving distance
EVs can move during a given time interval is limited, either
due to speed limit or insufficient battery. Hence,

xkij ≥ 0 and xkij = 0 when wij ≥ m1;

ykij ≥ 0 and ykij = 0 when w∗ij ≥ m2,
(6)

where m1 > 0 and m2 > 0 is the upper bound moving dis-
tance for one vacant EV, and one low-battery EV, respectively.
The values of m1 and m2 can be obtained by applying the
comprehensive investigation results and methods in mobility
and charging patterns of EVs from the literature [4], [43].

E. Mobility Supply-Demand Ratio

Mobility supply-demand ratio fairness is one service quality
metric for AMoD systems [1], [15], [30]. In the literature,
this goal is usually defined as minimizing the total absolute
difference between local and global mobility supply-demand
ratio for τ time intervals, i.e., JM (X1:τ ) defined in (7).

JM (X1:τ ) :=
τ∑
k=1

N∑
i=1

∣∣∣∣∣ rkiSki −
∑N
j=1 r

k
j∑N

j=1 S
k
j

∣∣∣∣∣ . (7)

Note that the uncertain parameter cki is related to Ski as defined
in (4), the uncertain parameters rki and cki are included in
the numerator and denominator of mobility demand-supply
ratio, respectively. Hence, directly minimizing JM (X1:τ ) is
computationally intractable. Instead of minimizing JM (X1:τ )
in (7), we consider the following mobility fairness constraints
to make sure the mobility supply-demand ratio of each region
is within a same range to provide fair service: lk ≤ rki /Ski ≤
hk, k ∈ {1, . . . , τ}, where lk(hk) is the lower (upper) bound
of the mobility supply-demand ratio at time k. The value
of lk and hk can be decided by historical data. We transfer
those inequalities to the following Equations form with slack
variables Dk

i , U
k
i :

rki − lkSki − (Dk
i )2 = 0, rki − hkSki + (Uki )2 = 0, (8)

F. Charging Supply-Demand Ratio

When a fixed number and locations of charging stations are
given, to avoid long waiting times or queues at some charging
stations, we send low-battery EVs to regions with charging
stations according to the dynamic availability of charging spots
at different regions. Hence, we balance the charging supply-
demand ratio for EV charging across the whole city [44].



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2022 6

We denote T ki as the net number of low-battery EVs in
region i after the low-battery EV balancing decision Y k,

T ki =
N∑
j=1

ykji −
N∑
j=1

ykij , ∀ i ∈ σ. (9)

where σ is the set of regions with charging stations. And we
set T ki = 0, ∀ i 6∈ σ, since low-battery EVs should not be
dispatched to regions without charging stations. The charging
supply-demand ratio in region i during time k is approximated
as the ratio of the new charging spots supply and the EV
charging demand rate cki /T

k
i , where cki is the number of EV

that finished charging and become vacant vehicle supply in
region i during time k. When one EV finishes charging, there
will be one newly available charging spot; hence, we use cki
to approximate the amount of charging supply to serve low-
battery EVs. To balance the charging supply-demand ratio over
the city, we minimize the total absolute difference between
the local and global charging supply-demand ratio for τ time
intervals, i.e. J1 defined in (10). Smaller J1(Y 1:τ ) means the
charging decisions Y 1:τ achieve higher charging fairness. Such
fairness metrics have been widely used in literature [14], [30].

J1(Y 1:τ ) =
τ∑
k=1

∑
i∈σ

∣∣∣∣∣ ckiT ki −
∑
j∈σ c

k
j∑

j∈σ T
k
i

∣∣∣∣∣ . (10)

However, function (10) is not concave over uncertainty pa-
rameter cki . For computationally tractability, we define the
objective of fair charging as to minimize the function JE

JE(Y 1:τ ) :=

τ∑
k=1

∑
i∈σ

cki
(T ki )a

. (11)

JE(Y 1:τ ) has good properties that it is linear in cik and convex
over Y 1:τ when the power parameter a > 0. What’s more, the
function (11) approximates function (10) when a is designed to
be small enough, according to Lemma 1 in the literature [30].

G. DRO EV Balancing Problem Formulation

With constraints (4), (5), (6), (8), we finally define the
distributionally robust EV balancing for mobility and charging
process under uncertain probability distributions of the demand
and supply in (12), where the objective function J is a
weighted sum of the balancing cost function JD defined in
(3) and charging unfairness function JE defined in (11).

min.
X1:τ ,Y 1:τ ,S1:τ ,D1:τ ,
U1:τ ,V 2:τ ,O2:τ ,L2:τ

max.
{Fr∈Fr,Fc∈Fc}

E [J ]

s.t. (4); (5); (6); (8),

(12)

where J is the final objective defined in (13),

J = JD(X1:τ , Y 1:τ ) + θJE(Y 1:τ , c) (13)

θ is a positive weighted parameter for a trade-off between
JD and JE . And T ki = LT (Y k) is a linear function of
decision variables Y k, Ski = LS(X1:k, c1:k−1i ) is a linear
function of decision variables X1:k := {X1, ..., Xk} and
supply uncertain parameter c1:k−1i := {c1i , ..., c

k−1
i }. We prove

the following Lemma 1, there must exist a set of lower

and upper bounds of the mobility supply-demand ratio in
constraint (8) to guarantee that there is a feasible solution for
the proposed DRO problem (12).

Lemma 1. We can find at least one lower and one upper
bound of the mobility supply-demand ratio such that the DRO
problem (12) has at least one feasible solution. We name these
bounds global bounds. And there exists a pair of lower and
upper bounds lk and hk that are no looser than global bounds
as well as guarantee the DRO problem (12) has at least one
feasible solution.

Proof. See Appendix VIII-A.

Remark (Novelty of problem formulation). The DRO EV
balancing problem formulation (12) decouples the mutual
dependencies between EV supply and passenger demand. By
putting the mobility supply-demand ratio fairness requirement
in the constraints and the EV charging supply-demand ratio
fairness in the objective, we make it possible to consider both
charging and mobility fairness under two-sided uncertainties.
We then derive a computationally tractable convex optimiza-
tion form of problem (12) in Section V.

H. Generalization for Heterogeneous EV Fleet

We generalize the DRO problem (12) with homogeneous
EVs (i.e. all vacant EVs have the same capacity or number
of available seats) to a heterogeneous EV balancing problem
formulation that considers EVs with different capacities.

We denote the capacity of one EV as Ce, where e (type)
is the index of different types as e = 1, · · · , E. E is the total
number of capacity types. For instance, Ce is the number of
seats for type e EVs. We use V ke,i to denote the number of
vacant EVs with capacity Ce in region i at time k before
balancing. So the total number vacant EVs in region i at
time k before balancing is V ki :=

∑E
e=1 V

k
e,i. Similarly, we

use Ske,i, O
k
e,i, L

k
e,i to denote numbers of available, occupied,

low-battery EVs with Ce capacity, respectively. Then xke,ij
is the number of type-e vacant EVs that will be dispatched
from region i to region j in time interval k. And yke,ij is the
decision for type-e low-battery EVs. Then the balancing cost
constraints (6) become:

xke,ij ≥ 0 and xke,ij = 0 when wij ≥ me,1;

yke,ij ≥ 0 and yke,ij = 0 when w∗ij ≥ me,2, (14)

because different types of EVs may have different moving
constraints. For example, EVs with a smaller number of seats
may use less energy or time to finish the same-length trip
compared to EVs with a larger number of seats. Because they
usually benefit from lighter cargo and metal frames, as well
as fewer traffic constraints (due to height limit, size limit,
lane limit, etc.). We can determine these constraints param-
eters by applying the comprehensive investigation results and
methods in mobility and charging patterns of EVs from the
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literature [4], [43]. And the mobility dynamic constraints (4)
become: for e = 1, · · · , E,

Ske,i =
N∑
j=1

xke,ji −
N∑
j=1

xke,ij + V ke,i, k = 1, · · · , τ ;

V k+1
e,i =

N∑
j=1

P ke,vjiS
k
e,j +

N∑
j=1

Qke,vjiO
k
e,j + cke,i, (15)

Ok+1
e,i =

N∑
j=1

P ke,ojiS
k
e,j +

N∑
j=1

Qke,ojiO
k
e,j , k = 1, · · · , τ − 1,

where Ske,i is the total number of type-e vacant EVs in region
i at time k, cke,i is the number of type-e low-battery EVs in
region i that finish charging in time k. The charging dynamic
constraint (5) turns to:

Lk+1
e,i =

N∑
j=1

yke,ji −
N∑
j=1

yke,ij +
N∑
j=1

P ke,ljiS
k
e,j . (16)

The region transition matrices P ke,vij , P
k
e,oij , P

k
e,lij denote the

probability that an available type-e EV moves from region i at
the beginning of time k will transverse to region j and being
vacant, occupied, low-battery, respectively at the beginning of
time k+1. Similarly, Qke,vij , Q

k
e,oij denote the probability that

an occupied type-e EV becomes vacant, occupied, respectively
in the transition process. The objective JE has a new form that:

J ′E :=
τ∑
k=1

∑
i∈σ

∑E
e=1 c

k
e,i

(
∑E
e=1 T

k
e,i)

a
. (17)

The objective JD also has a new form that:

J ′D :=
E∑
e=1

τ∑
k=1

N∑
i=1

N∑
j=1

(xke,ijwij + βyke,ijw
∗
ij). (18)

The objective function J ′E defined in Equation (17) is linear
(concave) over ck, convex over Y 1:τ

1:E . The objective function
J ′D defined in Equation (18) is convex over X1:τ

e and Y 1:τ
e ,

e = 1, · · · , E, since linear operation preserves convexity [47].
The generalized balancing cost constraints (14), mobility dy-
namic constraints (15) and charging dynamic constraints (16)
are linear of decision variables. So we have Lemma 2.

Lemma 2. The generalized heterogeneous EV balancing prob-
lem (19)

min.
X1:τ ,Y 1:τ ,S1:τ ,D1:τ ,
U1:τ ,V 2:τ ,O2:τ ,L2:τ

max.
{Fr∈Fr,Fc∈Fc}

E [J ′D + θJ ′E ]

s.t. (8); (14); (15); (16).

(19)

is still convex with respect to the decision variables, and
concave on uncertain parameters, where J ′E and J ′D are
defined in (17) and (18) respectively.

Proof. See Appendix VIII-B.

IV. DISTRIBUTIONAL UNCERTAINTY SET FORM AND
CONSTRUCTION ALGORITHM

We design an efficient algorithm to construct the demand
and supply uncertainty sets Fr,Fc of probability distributions

defined in problem (12), with historical data that contains
information related to the true demand and supply distribu-
tions. The works in [25] and [45] use empirical estimates
to construct the uncertainty set according to confidence re-
gions of hypothesis testing in portfolio management problems.
The method in [30] leverages the structure property of the
covariance matrix to develop efficient uncertainty sets con-
struction algorithms. However, the literature methods do not
provide stable uncertainty set guarantees. Hence, we design a
bootstrap-based algorithm that produces stable uncertainty set
given different prediction models, and prove that the produced
uncertainty set parameters are guaranteed to be contained in
desired confidence regions with a given probability.

A. General Distributional Uncertainty Set

Without loss of generality, we denote z as a random vector
variable and denote {z1, ..., zn} as a set of sample vectors;
f(o) as a prediction model of random variable z and ẑ as the
prediction of z by the model f(o), i.e., ẑ = f(o), where o is
the input data. We use δ to denote the prediction error which
is the difference between the true value and the estimated
value, i.e., z = ẑ + δ. Therefore, δ is also a random vector
variable. We define the following distributional uncertainty set
construction problem for random variable z. We then calculate
the uncertainty sets for both random demand r and supply c
according to formulation (20).

Problem 1. Given a sample set of the random vector variable
z, a prediction method f(o), find values of ẑ, Σ̂, ω̂ and γ̂, such
that with probability at least 1 − α the true distribution of z
is contained in the distributional uncertainty set (20).

Fz(ẑ, Σ̂, ω̂, γ̂) = {z = ẑ + δ :

E[δ]T Σ̂−1E[δ] 6 ω̂,E(δδT ) � γ̂Σ̂},
(20)

where Σ̂ is the estimate covariance of δ, ω̂ and γ̂ are two
estimated constraints parameters.

Definition (20) means that the distributional uncertainty set
Fz relies on the estimated covariance matrix of prediction
error δ. The mean of δ is supposed to lie in an ellipsoid.
The estimate covariance Σ̂ lies in a positive semi-definite cone
defined with a matrix inequality.

B. Uncertainty Set Construction Algorithm

We develop Algorithm 1 to solve Problem 1. Algorithm 1
computes the constraint parameters based on the bootstrap
sample method [46]. Given a pre-determined prediction model,
historical data and observation data, in the outer loop, we
sample with replacement from the historical sample set to train
prediction model, then compute the set of prediction residual
∆̃, i.e., realizations of prediction error, compute the sample
mean and sample covariance. Then we compute constraint
parameters by solving (21) and (22).

ωij = [δ̄ij ]
T (Σ̂i)−1[δ̄ij ] (21)

min.
γij

γij s.t Σ̄ij � γijΣ̂i, (22)

where δ̄ij is a sample mean; Σ̄ij is a sample covariance;
Σ̂i =

∑N
j=1 Σ̄ij is the estimated covariance in the i-th outer
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Algorithm 1: Uncertainty Set Parameters Estimation
Data: a set of samples Z, bootstrap time A, bootstrap

sample set size M , inner-bootstrap time B and
inner-bootstrap sample set size N , a significance
level α, a confidence parameter η, a prediction
model f and a observation set O.

Result: Uncertainty Set Parameters and Confidence
Regions

1 while i in 1 to A do
2 while j in 1 to B do
3 Re-sample Zij = {z̃ij1, ..., z̃ijN} from Z with

replacement, estimate parameters of a
prediction model f ij(O), calculate the
estimation residual set ∆̃i

j = {δ̃ij1, ..., δ̃ijN},
where δ̃ijk = z̃ijk − ẑijk. Compute its sample
mean δ̄ij and sample covariance Σ̄ij .

4 end
5 Compute estimated covariance Σ̂i = 1

B

∑B
j=1 Σ̄ij .

6 while j in 1 to B do
7 Compute ωij and γij according to (21) and (22)

get Ωi = {ωi1, ..., ωiB} and Γi = {γi1, ..., γiB}
8 end
9 Compute ωiα from Γi and γiα from Γi

10 while k in 1 to C do
11 Sampling with replacement from set Ωi and Γi

to get bootstrap sample sets Ωik and Γik;
12 Compute ωikα from Ωik and γikα from Γik

13 end
14 end
15 Compute sample standard deviations: siω , siγ , sω , sγ ,

estimated parameters: ω̂α, γ̂α, Σ̂, quantiles: qωη/2 and
qω1−η/2, qγη/2 and qγ1−η/2

loop; i ∈ {1, 2, ..., A}, j ∈ {1, 2, ..., B} denote the outer
loop and inner loop numbers, respectively. Now we compute
the α percentiles for the sets Ωi = {ωij}j∈{1,2,...,B}, Γi =
{γij}j∈{1,2,...,B}, which we denote as ωiα, γ

i
α respectively. We

then sample with replacement from Ωi and Γi respectively to
get constraint parameter sample sets Ωik and Γik for C times,
where k ∈ {1, ..., C} denotes loop numbers. We also compute
the α percentiles ωikα for Ωik, γikα for Γik.

Finally we get estimated constraint parameters ω̂α, γ̂α and
estimated covariance Σ̂ by (23).

ω̂α =
A∑
i=1

ωiα/A, γ̂α =
A∑
i=1

γiα/A, Σ̂ =
A∑
i=1

Σ̂i/A. (23)

Then we compute the η/2 and 1 − η/2 quantiles: qωη/2
and qω1−η/2 for {ω

i
α−ω̂α
siω
}i∈{1,...,A}, qγη/2 and qγ1−η/2 for

{γ
i
α−γ̂α
siγ
}i∈{1,...,A}, where siω and siγ are standard deviations

on the set of {ωikα }k∈{1,...,C} and {γikα }k∈{1,...,C}, respec-
tively. We define the confidence regions of ωα and γα: [ωl, ωu]

and [γl, γu], with the lower and upper bounds in (24),

ωl = ω̂α − sωqω1−η/2, ωu = ω̂α − sωqωη/2,
γl = γ̂α − sγqγ1−η/2, γu = γ̂α − sγqγη/2,

(24)

where sω and sγ are respectively standard deviations on the set
of {ωiα}i∈{1,...,A} and {γiα}i∈{1,...,A}. These two confidence
regions are guaranteed to contain the true constraint parame-
ters ωα and γα respectively, at the 1− η confidence level.

Lemma 3 provides the theoretical support to the computing
procedure of confidence regions. Thus, the produced uncer-
tainty set parameters are guaranteed to be contained in some
confidence regions with a given probability.

Lemma 3. Given a pre-selected probability 1−η, parameters
calculated by Algorithm 1 satisfy that ωα is contained between
ω̂α − sωq

ω
η/2 and ω̂α − sωq

ω
1−η/2, γα is contained between

γ̂α − sγqγη/2 and γ̂α − sγqγ1−η/2.

Proof. See Appendix VIII-C

V. COMPUTATIONALLY TRACTABLE FORM

In this section, we derive the main theoretical result of
this work: Theorem 1, a computationally tractable and equiv-
alent convex optimization form for the distributionally robust
optimization problem (12) via strong duality. The objective
function (13) is convex over the decision variables and linear
(concave) over the random parameter, with decision variables
on the denominators. Though constraints are affine or con-
vex over decision variables, most of them contain random
parameters. This form is not a Linear Programming (LP) [47]
or Semidefinite Programming (SDP) [48]. The main process
of deriving an equivalent convex optimization problem is to
analyze (13) and the constraints part. Based on Theorem 1, the
optimal solution to (12) can be calculated in real-time consid-
ering both passenger demand and EV supply uncertainties.

Theorem 1. The distributionally robust optimization prob-
lem (12) with two distributional sets (20) is equivalent to the
following convex optimization problem

min
X1:τ ,Y 1:τ ,D1:τ ,U1:τ ;
S1:τ ,V 2:τ ,O2:τ ,L2:τ ;

λ,Qr,qr,vr,tr,Qc,qc,vc,tc

Ho + vr + tr + vc + tc

s.t.
[

vr
1
2 (qr + λU + λD)T

1
2 (qr + λU + λD) Qr

]
� 0,[

vc
1
2 (qc + λV − Z)T

1
2 (qc + λV − Z) Qc

]
� 0,

tr > (γ̂rΣ̂r + r̂r̂T ) ·Qr + r̂T qr

+
√
ω̂r‖Σ̂1/2

r (qr + 2Qr r̂)‖2,
tc > (γ̂cΣ̂c + ĉĉT ) ·Qc + ĉT qc

+
√
ω̂c‖Σ̂1/2

c (qc + 2Qcĉ)‖2,
Qr, Qc � 0, λ, vr, vc ≥ 0,

zki >
1

(T ki )a

xkij > 0 and xkij = 0 when wij ≥ m1;

ykij > 0 and ykij = 0 when w∗ij ≥ m2,

(25)
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where Ho = JD−(λTSfS+λTOfO+λTLfL+λTs S
1:τ+λTl L

2:τ )−

λTDdiag(lST−DDT )−λTUdiag(hST+UUT )−
τ−1∑
k=1

(−V k+1
i +

N∑
j=1

P kvjiS
k
j +

N∑
j=1

QkvjiO
k
j )λV ki , JD is defined as (3).

Proof. See Appendix VIII-D.

This convex optimization problem (25) has a objective
which is a linear function of decision variables vr, tr, vc,
tc, X1:τ , Y 1:τ , S1:τ , V 2:τ , O2:τ , L2:τ and λ; as well as
a quadratic function of decision variables D1:τ and U1:τ .
It includes linear matrix inequalities constraints, linear norm
inequalities constraints and other convex constraints.

Remark (Computational Complexity). In the DRO EV bal-
ancing problem, every uncertain parameter is in a convex
and compact support set. Each support set is equipped with
an oracle which has the following properties. First, given
any value of the uncertain parameter, within polynomial time
(with respect to the dimension of the uncertain parameter),
the oracle can (i) either confirm the value is within the
support set; (ii) or provide a hyperplane that separates the
value from the support set [49]. Second, given all parameters
and variables, the value of JD and JE can be evaluated in
polynomial time. Notice that the problem (25) has a linear
objective function and convex constraint functions over deci-
sion variables. Hence, Proposition 1 in [25] can be applied
and the problem (25) can be solved to any precision ε within
polynomial time of log(1/ε) and the size of the problem.
This equivalent computationally tractable convex optimization
problem can be solved by existing convex optimization problem
solvers such as CVXPY [50]. For instance, CVXOPT converts
a problem into its equivalent standard form known as conic
form, and provide polynomial interior-point algorithms [51]
to solve it.

VI. EXPERIMENT
In this section, we evaluate the performance of the de-

signed distributionally robust optimization-based EV balanc-
ing method with electric taxi (e-taxi) data from the Chinese
city Shenzhen (one of the largest cities in China, which
operates over 10,000 E-taxis). Six-week real-world data is
utilized in the experiment, which includes 60GB EV GPS data,
and 5.5 GB transaction data from over 10,000 EVs. We split
the whole dataset 67%-33% between the training set and the
testing set. This 2:1 ratio is commonly used in train-test split
for evaluating machine learning algorithms. Even though two
weeks seem short for testing compared to the data used in
other machine learning methods, the data size is large (20GB
GPS and 1.9 GB transaction data involving over 10,000 EVs).
To our knowledge, few existing EV works utilized such large-
scale data from large-scale EV deployments for algorithm
evaluation. In Fig. 1, there is a high-level illustrative flow
graphic to describe the proposed solution framework to help
readers understand the experimental procedures.

A. Data Description

In total, there are four different datasets used in this paper,
including E-taxi GPS data (vehicle ID, locations, time and

Fig. 3. Heat map of demand in Shenzhen City: lighter means less demand.

speed, etc), Transaction data (vehicle ID, pick-up and drop-
off time, pick-up and drop-off location, travel distance, etc),
charging station data (locations, name, the number of charging
ports, etc), and city partition data (geographic boundaries of
491 small separate regions composing Shenzhen). Our datasets
are obtained by collaborating with the Shenzhen Transporta-
tion Committee for its smart city initiative. An example of
these four datasets is shown in the Tab. I.

GPS Data include fields of the status of taxis, e.g., the
vehicle ID, the GPS location longitude and latitude informa-
tion, time-stamp, direction, current speed, etc. Transaction
Data describe each transaction information, e.g., vehicle ID,
pick-up/drop-off time, pick-up/drop-off location (longitude &
latitude), and travel distance, etc. Charging Station Data
include the locations (i.e., GPS) of each charging station,
station name, and the number of charging ports in each station,
etc. Urban Partition Data describe the urban partition for
population census of the Shenzhen city. There are 491 regions
in total, and each region has a region ID and longitudes &
latitudes of its boundary.

Fig. 3 is a heat map of demand in Shenzhen city. It
shows the unbalanced distribution of mobility demand. There
is higher passenger demand in downtown and airport areas
than in suburban areas. This realistic situation verifies the
necessity to provide fair service in EV AMoD systems. These
blue markers in Fig. 3 denote charging station locations.
The unbalanced charging stations distribution also enhances
our motivation to consider charging fairness in EV AMoD
balancing problems.
B. Data Processing

For the host machine and software used to clean and
manipulate the original datasets, we utilize a 34 TB Hadoop
Distributed File System (HDFS) on a cluster consisting of 11
nodes, each of which is equipped with 32 cores and 32 GB
RAM. To make this data fit within the context of our problem
formulation, we further clean our datasets according to several
principles including continuity of time, homogeneity in data
distributions, uniform time granularity, etc. EV mobility and
charging patterns are also considered in the filtering process
and a comprehensive investigation of the process has been
introduced in the literature [52].

To merge multi-source datasets, we first select the electric
taxis with complete GPS and the transaction records in the
dataset. Then we insert the departure and arrival of each
transaction as new GPS timestamps and have area informa-
tion labeled, building an aligned timeline for each taxi. We
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TABLE I
AN EXAMPLE OF THE FOUR DATASETS

GPS Data plate ID longitude latitude time speed (km/h)
BDXXXX 114.0121 22.526104 2015-08-16 08:30:43 35

Transaction Data plate ID pickup time dropoff time pickup location travel distance (m)
BDXXXX 2015-09-03 13:47:58 2015-09-03 13:57:23 (113.9867, 22.5433) 6954

Charging Station Data station ID station name longitude latitude number of charging ports
30 NB0005 113.9878608 22.55955418 40

Urban Partition Data Region ID Longitude1 Latitude1 Longitude2 Latitude2
1 114.31559657 22.78559093 114.311230763 22.78220351

further utilize a widely adopted spatiotemporal constraint-
based method in the literature [12], [38] to infer the charging
activities taken by taxis based on their individual timeline. We
also define 7 mutually exclusive labeling codes for marking
timestamps’ riding or charging status, based on which we
can obtain the statistics of EV activities in both spatial and
temporal dimensions.

Fig. 4. The performance of ARIMA model in predicting supply and demand
is better than MLP and LSTM models. So we decide ARIMA model as the
prediction model f when using Algorithm 1 to construct uncertainty sets.

C. Prediction Model

We decide which prediction model to be used by comparing
the performance of these three models: Long Short-Term
Memory model (LSTM) [53], AutoRegressive Integrated Mov-
ing Average model (ARIMA) [54] and Multi-Layer Perceptron
model (MLP) [55]. In Fig. 4, the three models all show
the general trend of supply in one day. But ARIMA model
performs better than other two models in term of prediction
accuracy. In Fig. 5, the prediction errors for supply at each
hour are reported. MLP model has the largest prediction errors
since the blue curve is almost always higher than all the other
curves. The curve of LSTM model is close to the ground
truth (the zero horizon line) but still has larger errors than the
ARIMA model. To quantitatively compare the performance of
these models, we further provide the mean square error (MSE)
in Tab. III. MSE is the average squared difference between

Fig. 5. The ARIMA model has the lowest supply prediction errors.

Fig. 6. ARIMA model demonstrates time trends very well.

the predicted values and the historical values. It measures
the prediction quality of a model and a lower MSE indicates
a better accuracy. We can see that ARIMA model achieves
the smallest MSE. Hence, we decide ARIMA model as the
prediction model f when using Algorithm 1 to construct
uncertainty sets. In Fig. 6, we compare ARIMA model’s
predicted values and historical values of supply and demand
on one day in region 2. ARIMA model demonstrates supply
and demand’s time trends very well and the predicted values
of demand in peak hours: 8am-10am, 2pm-4pm, 8pm-10pm,
are close to historical values.

D. Distributional Uncertainty Set

Tab. II shows how the constraint parameters ω̂c, γ̂c change
for different parameter B of Alg. 1. The values of ω̂c and γ̂c
decrease when B increases and the speed of decreasing turns
slower as B becoming larger. We also notice that as B in-
creases, the corresponding estimated constraint parameters ω̂c
and γ̂c have a trend to converge to a certain constant that meets
bootstrapping algorithm’s intuition. Here one time interval is 1
hour, the time horizon τ is 2, the significant α = 0.25 and the
true probability distributions of demand and supply variables
r, c are separately contained in the constructed distributional
uncertainty sets with probability 75%.

TABLE II
THRESHOLDS ω̂c AND γ̂c FOR DIFFERENT PARAMETERS B

B 10 20 50 100 500 1000
ω̂c 1.504 0.964 0.576 0.399 0.296 0.176
γ̂c 3.715 2.832 2.006 1.768 1.374 1.317

We validate the robustness of our proposed uncertainty set
construction Alg. 1 in Fig. 7-1 and Fig. 7-2. We run Alg. 1 with
different bootstrap time A and the baseline algorithm [30] for
20 times, using the same prediction model and parameters. We
use A = 0 to denote the baseline algorithm. Then we compute
the variances of the outputted uncertainty set parameters.
Variance is an indicator of the robustness of random algorithms
[56]. It is known that in several general cases, a random
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Fig. 7. The variances of constraint parameters/balancing cost are decreased
as the bootstrap time A increasing.

Fig. 8. By using our DRO method, the average total balancing cost is reduced
by 14.49% compared to non-robust method.

algorithm which produces a set of outputs with a smaller vari-
ance is more robust. Compared to the baseline algorithm, our
Alg. 1 produces outputted constraint parameters with smaller
variances. In particular, our construction algorithm improve
the robustness to randomness by at least 65%, compared with
the baseline algorithm. And the values of variance decrease as
A getting larger.

Fig. 9. By using our DRO method, the average fairness of mobility supply-
demand ratio is improved by 15.78% compared to non-robsut method.

Fig. 10. By using our DRO method, the average fairness of charging supply-
demand ratio is improved by 34.51% compared to non-robsut method.

TABLE III
MEAN SQUARE ERROR OF DIFFERENT MODELS

MLP ARIMA LSTM
MSE 20148.21 254.65 647.45

E. Performance Comparison

We compare our distributionally robust optimization (DRO)
method with the baseline robust method [6] and the non-robust
method [57] by using the same real-time sensing data. The
non-robust method is described in Appendix, please refer to
Equation (41). The EV balancing decision is made every hour,
and the running time of our algorithm is within 5 seconds
(3.76 s ±1.18), which can satisfy the real-time requirement of
making balancing decisions. Fig. 8 shows the total balancing
cost Mk

b from 5am to 11pm using our method (12) as well
as two baseline methods. The metric Mk

b is formally given in
(26), which is a weighted sum of the vacant and low-battery
EVs’ moving distance after executing balancing decisions at
time k. A smaller Mk

b is better, since a smaller total balancing
cost indicates higher system efficiency and lower distance that
the EVs run without serving passengers.

Mk
b = JD(Xk, Y k) =

N∑
i=1

N∑
j=1

(xkijwij + βykijw
∗
ij). (26)

We can see that most of the time, the total cost of our
method is lower than that of the two baseline methods. In
particular, the average total balancing cost is reduced by
14.49% compared with the non-robust method and reduced
by 7.37% compared with the baseline robust method. In Fig.
7-3, we also show the variance of the optimal daily balancing
cost of the DRO (12) solutions when using Alg. 1 with
different bootstrap parameters A and the baseline uncertainty
set construction algorithm [30] (A = 0). For an uncertainty
set produced in different settings, we keep other parameters
the same and run our DRO method for 20 times. Then we
compute the variance of daily balancing cost

∑K
k=1M

k
b . The

variance of the daily balancing cost decreases as A gets larger.
And when using our Alg. 1, we obtain a lower variance of
daily balancing cost, compared with the baseline algorithm. In
particular, the variance is reduced by at least 31%, compared
with the baseline algorithm. Our DRO method achieves more
stable balancing cost, by using together with our proposed
uncertainty set construction algorithm.

Mk
c = −J1(Y k) = −

∑
i∈σ

∣∣∣∣∣ ckiT ki −
∑
j∈σ c

k
j∑

j∈σ T
k
i

∣∣∣∣∣ ; (27)

Mk
m = −JM (Xk) = −

N∑
i=1

∣∣∣∣∣ rkiSki −
∑N
j=1 r

k
j∑N

j=1 S
k
j

∣∣∣∣∣ . (28)

In Fig. 9 and Fig. 10, we show the charging fairness Mk
c

and mobility fairness Mk
m of executing different balancing

decisions from 5am to 11pm, respectively. As the fairness
metrics defined in (27) and (28), the charging fairness Mk

c

is a negative sum of total absolute difference between the
global and local charging supply-demand ratios at time k. The
mobility fairness Mk

m has a similar definition. For both of
them, larger values means higher fairness, which are prefer-
able. And higher fairness indicates better balanced resource
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allocation and similar service quality for customers among
different regions and time frames in the city.

By using our DRO method, the average mobility fairness
and charging fairness are improved by 15.78% and 34.51%,
respectively, compared to the non-robust method, and im-
proved by 10.45% and 30.92%, respectively, compared to the
baseline robust method. Our DRO method outperforms the
non-robust method because it considers both supply and de-
mand uncertainties when making EV balancing decisions. The
DRO problem formulation, uncertainty set construction based
on data and equivalent convex optimization form derivation
procedures are all designed carefully to solve the challenge
in a computationally tractable way. In contrast, the baseline
methods in the literature either do not consider model uncer-
tainties such as the non-robust methods, or only consider one
type of uncertainty such as the robust optimization method
with the demand uncertainty.

Fig. 11. With a shorter time interval length, the DRO solution results a higher
total balancing cost in the same time frame, but better mobility and charging
fairness.

In Fig. 11, we show the effect of different time interval
lengths on our DRO method. We compare the total balancing
cost, the mobility and charging fairness when using 0.5 hour
and 1 hour as the time interval length, respectively. The metric
values of the balancing cost, the mobility and charging fairness
shown in Fig. 11 are normalized within [0, 1] such that the
highest result is fixed at value 1. With a shorter time interval
l0,1ength, the DRO solution results a higher total balancing
cost (a larger value in Fig. 11) in the same time frame, but
better mobility and charging fairness. One interpretation is that
there exists trade-off between different objectives for balancing
EVs in the AMoD system. For instance, the algorithm can
sacrifice balancing cost to get higher charging and mobility
fairness by balancing the vehicles more frequently.

Remark (Practical implementation to address ITS open prob-
lems). Our proposed DRO method can be applied to the
control of EV AMoD systems such as EV balancing and
charge scheduling problems. Vehicle balancing is an important
objective of EV AMoD systems [5], [38], [52]. By reposi-
tioning customer-free EVs, it aims to minimize the imbalance
of the EV distribution caused by asymmetrical transportation
demand [36]. Our method achieves lower balancing cost and
higher mobility and charging fairness, thus contributing to
congestion mitigation and transportation efficiency. Further,
it is verified by using real-world data thus able to provide
insights and helps autonomous taxis operation companies in
their decisions.

Remark (Limitations). (i) In this paper, we did not consider
the potential impacts of political policies such as tax and
subsidy in EV AMoD systems. For example, the EV promotion
in Shenzhen is strongly supported by the government [58].
However, some literature has found that though tax and
subsidy affect EV fleet evolution, there are little impacts on the
EVs mobility and charging patterns [52]. Therefore, political
factors are not emphasized in this work. (ii) The potential
impacts of private EVs in AMoD systems are not considered.
For instance, private EVs may share charging stations with
autonomous EVs. However, according to some field studies in
Shenzhen [38], few private EVs prefer utilizing fast charging
stations because they have no need to leverage fast charging
like commercial EVs for keeping normal business activities.
Therefore, we did not explicitly include the impact of private
EVs in AMoD balancing decisions. We do update the status
and available spots of charging stations before making EV
charging decisions in the designed DRO method, to mitigate
the effects of other EVs that share the charging resource
with the EV AMoD system. (iii) Our model shows good
performance on the six-week data, and we will try to test it
on datasets of longer time duration after we can have access
to them.

VII. CONCLUSION
Autonomous mobility-on-demand systems can provide ef-

ficient transportation services. However, with an increasing
number of EVs, it is still challenging to improve the ef-
ficiency of AMoD systems under EVs supply uncertainty,
due to limited charging facilities in cities and complicated
charging dynamics. In this paper, we design a data-driven
distributionally robust EV balancing method to minimize the
worst-case expected cost under uncertainties of both passenger
mobility demand and EV supply. In addition to reducing total
vehicle balancing costs, we also balance the mobility and
charging supply-demand ratios of different regions in the city.
We propose efficient algorithms to construct distributionally
uncertainty sets of the predicted mobility demand and EV
supply. Then we derive an equivalent computationally tractable
form of the distributionally robust EV balancing problem
under the ellipsoid uncertainty sets constructed from historical
data. Evaluations based on real-world E-taxi data show that the
average total balancing cost is reduced by 14.49%, and the
average passenger mobility fairness and EV charging fairness
are improved by 15.78% and 34.51%, respectively. In the
future, we will further evaluate our algorithm based on large-
scale data from several years from multiple cities.

VIII. APPENDIX

A. Proof of Lemma 1

Proof. From the real data, we have historical S1:τ and r1:τ :
Ŝ1:τ = {Ŝ1

1 , ..., Ŝ
τ
N}, r̂1:τ = {r̂11, ..., r̂τN}. Then lkg =

min{Ŝki /r̂ki }i∈{1,...,N} is a global lower bound and hkg =

max{Ŝki /r̂ki }i∈{1,...,N} is a global upper bound in time k
when there is no optimization on balancing. We call these
two bounds global bounds. Let lk = lkg , hk = hkg for all k,
the supply-demand ratio after balancing should be contained



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2022 13

in this range. We denote these global lower and upper bounds
of the mobility supply-demand ratio as l̄k and h̄k.

Consider the optimization problem (29) that is similar to
problem (2) except that problem (29) uses the global bounds
as lower and upper bounds in the quality constraints.

min.
X1:τ ,Y 1:τ ,S1:τ ,D1:τ ,
U1:τ ,V 2:τ ,O2:τ ,L2:τ

max.
{Fr∈Fr,Fc∈Fc}

E [JD + θJE ]

s.t. (4); (5); (6);

rki − l̄kSki − (Dk
i )2 = 0,

rki − h̄kSki + (Uki )2 = 0,

i ∈ {1, . . . , N}, k ∈ {1, . . . , τ}.

(29)

Suppose problem (29) has feasible optimal solutions S∗1:τ =
{S∗11 , ..., S∗τN } and from the real data we have historical r̂1:τ =
{r̂11, ..., r̂τN}. Then we can compute lk and hk as following:

lk = max{lkg ,min{S∗ki /r̂ki }i∈{1,...,N}},
hk = min{hkg ,max{S∗ki /r̂ki }i∈{1,...,N}}.

(30)

It is obvious that lk ≥ lkg and hk ≤ hkg , so the range [lk, gk]
is no wider than [lkg , h

k
g ]. We find feasible lower and upper

bounds that no loose than the global bounds.

B. Proof of Lemma 2

Proof. For the generalized EV balancing optimization prob-
lem, let’s first check the modified constraints and objective
functions. The modified constraints (14), (15) and (16) are
still linear equality or inequality. So if the objective function in
problem (19) is convex over all Ske,i, V

k
e,i, O

k
e,i, L

k
e,i, the mod-

ified objective function is a convex problem of the decision
variables since the composition of affine or linear operation
preserves convexity [ [59], Chapter 3.2.2]. Now we only need
to check the minimization problem (31) part in the generalized
optimization problem is convex (since the maximization part is
over the uncertain demand and supply parameters, not affected
by the new formulation of Ske,i, V

k
e,i, O

k
e,i, L

k
e,i).

min.
X1:τ ,Y 1:τ ,S1:τ ,D1:τ ,
U1:τ ,V 2:τ ,O2:τ ,L2:τ

[J ′D + θJ ′E ] s.t.(14); (15); (16); (8).
(31)

By the definition of J ′D(X1:τ
1:E , Y

1:τ
1:E ) in (18), it is a linear

function of Xk
e and Y ke , hence also a convex function of Xk

e

and Y ke , ∀k = 1, ..., τ ; e = 1, ..., E according to the definition
of convex. And J ′E is a convex function of all decision
variables for any fixed value of cke , ∀k = 1, ..., τ ; e = 1, ..., E:
this is because the function of power 1

xa is convex on scalar
x > 0 when a > 0 [ [59], Chapter 3.1.5], so ∀k = 1, ..., τ ,
J i,e,kE =

cke,i
(Tki )

a is a convex function on T ki > 0. For more

detail, for T ki =
∑E
e=1 T

k
e,i =

∑E
e=1[

N∑
j=1

yke,ji−
N∑
j=1

yke,ij ], with

a matrix Bi ∈ RN×N that Biji = 1, Bij = −1, T r[BiY ke ] =

T ke,i. Then J i,l,kE = 1/(
∑
e Tr[B

iY ke ])a is a composition of
convex function 1/xa with an affine mapping: trace of the
multiplication of metrics Bi and Y ke . It’s an operation that
preserves convexity [ [59], Chapter 3.2.2]. Finally, θ > 0,
J ′D + θJ ′E , J ′E =

∑τ
k=1

∑L
e=1

∑
i∈σ J

i,e,k
E are both weighted

sums of convex function, an operation that preserves convexity
[ [59], Chapter 3.2.1]. Hence, the minimization problem (31)
is a convex optimization problem.

C. Proof of Lemma 3

Proof. Without loss of generality, we prove the case for
constraint parameter γα. Then according to the definition of
quantiles qγη/2 and qγ1−η/2 we have: 1 − η = P (qγη/2 ≤
γ̃α−γ̂α
sγ

≤ qγ1−η/2). Under the assumption that the distribu-
tion of γ̃α−γ̂α

sγ
is close to the distribution of γ̂α−γα

sγ
[ [60],

Chapter 18.6.1.1.2], we have: P (qγη/2 ≤
γ̃α−γ̂α
sγ

≤ qγ1−η/2) =

P (qγη/2 ≤
γ̂α−γα
sγ

≤ qγ1−η/2) = P (γ̂α − sγq
γ
1−η/2 ≤ γα ≤

γ̂α − sγqγη/2) = 1 − η. So the probability that γα is between
γ̂α − sγqγη/2 and γ̂α1 − sγqγ1−η/2 equals to 1− η.

D. Proof of Theorem 1

Proof. We notice that the uncertainty parameters are involved
in both objective functions and constraints. We first use
max.
Fr∈Fr

E(rki ) substitute rki , min.
Fc∈Fc

E(cki ) substitute cki in con-

straints (4) and (8). It’s valid for minimizing the worst case:
any uncertain values of rki and cki should meet the relationship
with other decision variables in constraints (4) and (8). No
matter which probability distribution is selected as the specific
distribution to attain the worst case, the simplest worst case for
single value of rki and cki is the case that the demand is really
large that attains the maximal possible demand value while the
supply is very small that attains the minimal possible supply
value. And E(rki )(E(cki )) is the probability-weighted average
of all its possible values. Then we transfer all constraints into
functional formats as below:

fDki = max.
Fr∈Fr

E(rki )− lki Ski − (Dk
i )2 = 0,

fUki = max.
Fr∈Fr

E(rki )− hki Ski + (Uki )2 = 0,

fSki = −Ski +Xk
i + V ki = 0, k = 1, . . . , τ,

fV k+1
i

= −V k+1
i +

N∑
j=1

P kvjiS
k
j +

N∑
j=1

QkvjiO
k
j

− max.
Fc∈Fc

E(−cki ) = 0,

fOk+1
i

= −Ok+1
i +

N∑
j=1

P kojiS
k
j +

N∑
j=1

QkojiO
k
j = 0, ,

fLk+1
i

= −Lk+1
i + Y ki +

N∑
j=1

P kljiS
k
j = 0, Lki > 0,

k = 1, . . . , τ − 1, Ski > 0, k = 1, . . . , τ.

(32)

Let fD = [fD1
1
, fD2

1
, ..., fDτ1 , ..., fDτN ]T ∈ RNτ be a constraint

function vector, for i = 1, . . . , N, k = 1, . . . , τ − 1, and
fU , fS , fV , fO, fL have the same definition but for computa-
tional convenient, if one’s dimension is less than Nτ , we add 0
in corresponding missing positions to complete its dimension.
For the primal maximization problem

max.
Fr∈Fr,Fc∈Fc

E [JD + θJE ] , s.t. (32)
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The primal objective function only contains uncertainty pa-
rameter c and is concave over c, because it’s a linear function
of c given other decision variables. The constraints are also all
linear in r and c. For this primal problem, strong duality and
Slater’s theorem hold according to [59]. Then the Lagrange
dual problem (33) can obtain its best upper bound:

min
λ�0

max
Fr∈Fr,Fc∈Fc

Jdual,

Jdual = E [JD + θJE ]− (λTUfU + λTSfS + λTV fV

+ λTOfO + λTLfL + λTs S
1:τ + λTl L

2:τ )

(33)

Here λTU , λ
T
S , λ

T
V , λ

T
O, λ

T
L, λ

T
s , λ

T
l are the corresponding La-

grange multipliers and λ is defined as a concatenated vector
combined by all these Lagrange multipliers. We have cki

(Tki )
a >

0 and cki > 0 by the definitions of JE in (11), then for any
vector Z ∈ RNτ , Z = [z11 , z

1
2 , . . . , z

τ
1 , z

τ
2 , . . . , z

τ
Nτ ]T that

satisfies 0 < 1
(Tki )

a 6 zki , we also have

0 6
∑τ
k=1

N∑
i=1

cki
(Tki )

a 6 ZT c,

and the second inequality strictly holds when all cki
(Tki )

a = zki ,
for i = 1, . . . , N , k = 1, . . . , τ . The constraints of prob-
lem (33) are independent of c, hence, for any c, the minmax
problem (33) is equivalent to

min
λ�0

max
Fr∈Fr,Fc∈Fc

J ′duals.t.
1

(T ki )a
6 zki , Z ∈ RNτ , (34)

where J ′dual = E
[
JD + θZT c

]
− (λTUfU + λTSfS + λTV fV +

λTOfO + λTLfL + λTs S
1:τ + λTl L

2:τ ). We separate J ′dual into
three parts: Hr = −(λTU + λTD)r,Hc = θJE − λTV c,Ho =
J ′dual − E[Hc +Hr], only Hr contains all r, Hc contains all
c. Ho can be put as a deterministic value given other decision
variables. So we have the following maximization problem

max
r∼Fr,c∼Fc,Fr∈Fr,Fc∈Fc

E[Hr +Hc]. (35)

Since r and c are independent, problem (35) is equivalent to
the separated maximization problem

max
r∼Fr,Fr∈Fr

E[Hr] + max
c∼Fc,Fc∈Fc

E[Hc]. (36)

Problem (36) satisfies the conditions of Lemma 1 in [25], and
the maximum expectation value of Hr +Hc for any possible
r ∼ Fr, c ∼ Fc where Fr ∈ Fr, Fc ∈ Fc equals the optimal
value of the problem

min
Qr,qr,vr,tr;
Qc,qc,vc,tc

vr + tr + vc + tc

s.t. vr > Hr − rTQrr − rT qr, Qr, Qc � 0

tr > (γ̂rΣ̂r + r̂r̂T ) ·Qr + r̂T qr

+
√
ω̂r‖Σ̂1/2

r (qr + 2Qr r̂)‖2,
vc > Hc − cTQcc− cT qc,
tc > (γ̂cΣ̂c + ĉĉT ) ·Qc + ĉT qc

+
√
ω̂c‖Σ̂1/2

c (qc + 2Qcĉ)‖2.

(37)

Note that the first and third constraints about vr and vc
is equivalent to vr > fr(r

∗) and vc > fc(c
∗) where

fr(r
∗)(fc(c

∗)) is the optimal value of the following problem

max
r

Hr − rTQrr − rT qr s.t. r > 0.

max
c

Hc − cTQcc− cT qc s.t. c > 0.
(38)

Since Qr and Qc are positive semi-defined, Hr(Hc) is a
linear function over r(c), problem (38) is convex. Solving
this problem by taking partial derivative over r(c) without
constraints, we have:

vr >
1

4
(qr + λU + λD)TQ−1r (qr + λU + λD)

vc >
1

4
(qc + λV − Z)TQ−1c (qr + λV − Z)

(39)

By Schur complement, the above constraints are[
vr

1
2 (qr + λU + λD)T

1
2 (qr + λU + λD) Qr

]
� 0,

[
vc

1
2 (qc + λV − Z)T

1
2 (qc + λV − Z) Qc

]
� 0,

(40)

But these constraints are under the conditions of no constraints
in problem (38). We still have another two constraints for
vr(vc) that vr > fr(r = 0) = 0 and vc > 0. We then use
the fact that min-min operations can be performed jointly and
combine all constraints to reformulate problem (33) as (1).

E. Non-robust Method Used in Experiment

The non-robust method treats the predictions of demand
and supply as deterministic vales. Therefore, the non-robust
method is solving a minimization problem (41) instead of a
minimax problem.

min.
X1:τ ,Y 1:τ ,S1:τ ,D1:τ ,
U1:τ ,V 2:τ ,O2:τ ,L2:τ

E [JD + θJE ] s.t. (4), (5), (6), (8),
(41)

In the minimization problem (41), JD is defined in Eq. (3) and
JE is defined in Eq. (11), θ is a positive coefficient which is
chosen as the same value of the weight in the distributionally
robust optimization EV balancing problem formulation (the ro-
bust minimax problem), i.e. Equation (12). We have discussed
or proved that the objective functions JD and JE are both
convex over all variables in the text. And all constraints (4),
(5), (6), and (8) are convex (linear or quadratic). Therefore,
this non-robust minimization problem can be solved through
any convex optimization solver. This non-robust minimization
problem is in a receding horizon control paradigm as well.
So we are able to use the same parameters and real-sensing
data used in our DRO method. The predictions of demand d
and supply c are obtained from the same well-trained ARIMA
model used in our DRO method.
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