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Abstract—In-silico calculation of binding free energy between
protein and ligands has vast applications in the early stages
of drug discovery. Most of the classical physics-based models,
including implicit solvents, ignore entropy contributions from
the system. Instead, a simplified solvent entropy is indirectly
considered. This simplification is often done because of an under-
sampled conformal space due to physics calculation complexity.
Machine learning (ML) methods offer a practical venue to incor-
porate accurate binding entropy predictions from the experiment.
While accurate, there are growing concerns about the overfitting
of ML models to the training set, lack of interpretation due to
its “black box” characteristics, and failure to comply with well-
known physical models. Recently emerged, physics-guided models
are a class of ML models that combine the robust consistency of
physics-based models with the accuracy of modern data-driven
algorithms. This work presents a method to design two hybrid
models by coupling ML with a physics model. Implementing
these hybrid models have been done through careful modification
of various model learning parameters or hyperparameters. The
proposed hybrid models not only outperform purely data-driven
models by at least 10% but also show more consistent perfor-
mance on both training and test sets. We review the basic theory,
investigate binding entropy calculation methods, present hybrid
models that take advantage of end-point simulation software, and
analyze the performance of these models.

Index Terms—Binding Free Energy, Entropy, Machine Learn-
ing, In-silico Drug Discovery

I. INTRODUCTION

Drug discovery and development can span over 12 years
and cost over $1 billion [1]. Average cost is reported to be
$2.6 billion in 2016 [2]. The drug search finds and evaluates
candidate compounds capable of activating or deactivating
specific biological targets through conformational changes; the
development process involves delivery, toxicity, testing, etc.
[3]. High-throughput screening in the early stages of drug
discovery uses quick computational methods favoring lower
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computation time over accuracy [4]. Later stages focus on
accuracy at the expense of speed.

Binding entropy plays a major role in determining the
change in Gibbs free energy (∆G) of a reaction; in larger sys-
tems, the accuracy of entropy becomes critical for determining
∆G due to increased structure flexibility and solvent interac-
tions [5]. The early stage computer-aided screening is often
accomplished with implicit solvent free energy calculation
methods such as Molecular Mechanics, Poisson–Boltzmann
Solvent Area (MM/PBSA) approaches [6]–[8]. These methods
often ignore the contribution of binding entropy due to its
computational complexity [5]. Note that these implicit solvent
models capture solvent entropy contributions in their polar and
non-polar terms and are reliant on parameters in their model
to estimate this important contribution [9]–[12].

Quantum methods, such as Ab Initio [13], take significant
computational time and are often used for smaller structures;
they become impractical when used on larger structures.
Hence, finding methods that reduce the computational time
and cost of high-level ab initio calculations, especially for
large systems, is significant [14]. Calculating the entropy with
standard quantum thermochemical methods can be challeng-
ing. Appropriate consideration in flexible molecules needs
sampling all thermally accessible conformational degrees of
freedom and calculating the translational, rotational, and vi-
brational partition functions. Binding entropy is composed
of differences between the unbound and bound states of the
systems. Some important components include configurational
entropy and solvation entropy. We will focus the discussion
on configurational entropy due to being ignored for end-
point methods in general. Configurational entropy is associated
with the number of ways a molecule can be represented. It
has been applied to proteins and other biomolecular systems
[15]. To calculate the configurational entropy, the possible
conformations of the molecule are separated into a finite
number of states. Any of them has been assigned energy



calculated with force fields. The calculation of configurational
entropy is time-consuming, primarily due to the need for
a thorough conformal search. Building models that estimate
accurate configurational entropy from the data can offer insight
by predicting binding entropy net contribution to free energy.

Physics-guided neural network (PGNN) is a systematic
framework for combining the scientific knowledge of physics-
based models with neural networks to advance scientific
discovery. There are two primary contributions of PGNN:
first, it presents an approach to create hybrid combinations
of physics-based models and neural network architectures to
make full use of both physics and data. Second, it presents
a novel framework for training neural network architectures
using the knowledge contained in physics-based equations to
ensure the learning of physically consistent solutions [16]–
[18].

In this study, we evaluate the accuracy of four popular
models for calculating the change in entropy, ∆S. The most
accurate method is chosen as the physics-based component
of the two proposed hybrid models. These models couple
together the accuracy of data-driven machine learning and
the consistency of the selected physics-based model. The first
hybrid model is based on the Morgan fingerprint [19], also
known as extended-connectivity fingerprint [4], which encodes
molecular structural characteristics as a vector. The second
model is a graph convolution network, which uses a simple
encoding of the molecular graph, made of atoms and bonds,
to take greater advantage of the information in the molecular
structure. This paper is organized as follows:

• Material and Methods: describes the dataset and physics-
based models used to calculate the binding entropy and
comparison between the models.

• Proposed Hybrid Models: two physics-guided deep learn-
ing models are introduced with their featurizers and
architecture.

• Result and Discussion: performance of the two proposed
hybrid models is assessed and compared with the refer-
ence experiments and physics methods.

II. MATERIAL AND METHODS

A. Dataset: Host-Guest Systems

Host–guest systems have been adopted in different ap-
plied chemistry fields, including drug development, materials
sciences, analytical separation sciences, chemical pollutant
cleanup technology, and the agrochemical industry [20]. Due
to these systems being smaller than most protein-ligand sys-
tems, rapid experimentation and simulation are possible. In
addition, these systems are rigid and favorable for software-
based conformal searching [21]. In this study, past Statis-
tical Assessment of the Modeling of Proteins and Ligands
(SAMPL) challenges and benchmark sets [22] have been uti-
lized. These datasets were put together to evaluate the physical
properties of host-guest systems through computational means
using experimentally derived references. These systems are
provided in repositories containing source files for a host-guest

system conformer and with a valid protonation state; however,
it is suggested to produce own set of best conformers and
protonation as the given one may not be ideal.

SAMPL8 challenge focuses on binding 22 drugs of abuse
with the host cucurbit8uril (CB8) [22]. The benchmark dataset
used for training and testing contains alpha-cyclodextrin as
the host structure and 22 guest structures with a range of 15-
25 atoms, including 1-octylammonium and 6-heptenoate. Both
datasets include experimental data for binding free energy,
binding enthalpy, and binding entropy. The experimental data
is validated using Isothermal Titration Calorimetry (ITC) and
Nuclear Magnetic Resonance (NMR) spectroscopy.

B. Methodologies

1) Normal Mode Analysis Methodology: Normal mode
analysis (NMA) is a post-processing method to compute
vibrational modes and, therefore, vibrational entropy from a
simulation trajectory. The Amber package [23] was used for
implementing NMA [24] on a trajectory generated by the
classical molecular dynamics simulator SANDER. The CB8-
Meth system conformation was taken as-is from the source
repository, parameterized using General Amber Force Field
(GAFF), neutralized with sodium or chloride counter-ions
using Antechamber, and solvated using the TIP3P water model
(1459 water molecules added) through LEaP. The resulting
input files were then minimized and heated from 0K to 300K.
Equilibrium was verified by observing temperature, total en-
ergy, and observing root-mean-square deviation (RMSD) of
ring atomic positions in CB8. The time for this process was
recorded and included in the final computational time. In
addition, starting structures of the host and ligand were taken
from this relaxed system.

With the resulting equilibrium structure, a conformation
search was performed with a standard classical molecular
dynamics simulation. The production runs a combined total
of 20 ns with a recording of coordinates every 10 ps to
generate a trajectory. Finally, to extract normal modes, the
recorded trajectory is used to produce a mass-weighted co-
variance matrix. Then the covariance matrix is diagonalized
to get extract eigenvalues and vectors to produce eigenmodes.
The eigenmodes are converted to frequencies and aggregated
into the thermodynamic components, including entropy. All
these calculations are implemented in CppTraj in Ambertools
through diagmatrix function.

2) Verachem Mining Minima (VM2) Methodology: In a
very similar process to the NMA methodology, VM2 [25]
begins with the raw conformer file. GAFF is used to pa-
rameterize the structure. Following the parameterized, charges
are neutralized using VM2’s vcharge program. Then VM2
attempts to find as many conformers as possible, keeping
track of calculated energies. This search is designed to be as
exhaustive as possible and efficient (TORK) [26] by attempting
to explore the conformal space by rotating or translating non-
rigid bonds to find the steepest change in energy. After every
search step, a relaxation step is performed to allow conformal
changes, moving towards energy minima. Various guest poses



are tried while the host is fixed in place. Once searches yield
little to no energy changes, the resulting conformer is recorded
and checked if energetically similar to others (and combined if
similar). Once the search reveals no new conformers or has ex-
hausted search time, the final binding free energy is calculated
using energies associated with each found conformer. The
resulting free energy is computationally fast while maintaining
accuracy correlated with the experiment. However, for this
work, we focus just on the entropy components reported by
the software suite.

3) BEERT Regression Model Methodology: Binding En-
tropy Estimation for Rotation and Translation (BEERT) is
a method to estimate rotational and translational entropy,
∆SR/T , based on the difference between the bound and
unbound rotational and translational volumes of a ligand [27].
∆SR/T = ∆SR +∆ST = ∆SC

R − (∆SH
R +∆SG

R ) +∆SC
T −

(∆SG
T +∆SH

T ), represents the sum of changes in rotational and
translational binding entropies. These values are the difference
between the bound state (complex) subtracted from the sum
of ligand and host separately.

To extract the necessary features for this model, a mini-
mization is required. Once the system has been minimized,
a short molecular dynamics simulation is executed with the
same constraints as those used during the minimization process
to produce a trajectory sampling the conformations near the
low energy conformation. Using CPPTraj, the center of mass
coordinate is calculated for the starting structure and for each
coordinate in the trajectory - this difference is then summed to-
gether and averaged based on the number of snapshots. Finally,
this number is multiplied by the Boltzmann constant, resulting
in ∆SR/T estimation. This method covers translational and
rotational contributions; however, due to the computational
complexity of vibrational entropy calculations, it is suggested
to use alternative methods accounting for this term [27].

4) OLE Regression Model Methodology: Ordinary least
squares (OLS) is a linear least squares method to approximate
the unknown parameters in a linear regression model. It
minimizes the sum of the squares of the differences between
those predicted by the linear function of the independent
variable and the observed dependent variable. In this approach
[15], conformer ensembles and the corresponding entropies of
over 120,000 small molecules were evaluated with up to 20
rotatable bonds and comprising over 12 million conformers
to develop models to predict conformational entropy across a
wide range of molecules. To extract the necessary features for
the model, RDKit was used.

III. PROPOSED HYBRID MODELS

A graph convolution model and a traditional deep neural
network were developed using PyTorch and the Deepchem
open-source framework [28]. Both models were evaluated
using Root Mean Squared Error (RMSE) to evaluate prediction
error for binding entropy. 10-fold cross-validation was used
due to lack of data, where each fold contained an 80% training
: 20% test data split, with no early stopping. Both models had
their hyper-parameters optimized using a grid search against

RMSE. Both models take advantage of the physics calculations
embedded into both the minimized structure data and the
calculations to produce the estimated binding entropy from
VM2. ADAM optimizer was utilized along with dropout regu-
larization to reduce dependence on the input data. Each model
employs a specific featurizer to generate the fingerprints; the
explanation of each model featurizer is discussed after the
model definition. In addition, the number of layers, number of
hidden units, and dropout percentage are tuned using a simple
grid search for the parameters [29], resulting in the lowest
RMSE across 100 epochs.

A. Hybrid Model I: The Physics Guided Linear Network

The input data is the host-guest system that will have its
binding entropy estimated. The data is fed into two primary
pathways: first, VM2 to perform a conformer search and
produce a binding entropy prediction, then the resulting data is
concatenated to VM2 predicted entropy and, next, fed into the
corresponding linear model. The neural network architecture is
a stacking of one dense and dropout layer (hidden layer). The
number of layers, neurons, learning rate, and rate of dropout
layer is estimated by DeepChem Grid Hyper-parameter Opti-
mization. According to Figure 1, each hidden layer contains a
densely connected layer with 2000 units and ReLU activation
function followed by a dropout function to prevent overfitting.
The learning rate is equal to 0.001.

Fig. 1. Physics guided linear network model

B. Featurizer I: Extended-Connectivity Fingerprints

Extended-connectivity fingerprints (ECFPs) [4] are derived
using a variant of the Morgan algorithm [19]. The ECFP
generation process has three sequential stages:

• An initial assignment stage in which each atom has an
integer identifier assigned to it.

• An iterative updating stage in which each atom identi-
fier is updated to reflect the identifiers of each atom’s
neighbors

• A duplicate identifier removal stage in which multiple
occurrences of the same feature are reduced to a single
representative in the final feature list

First, atoms are assigned integer identifiers, e.g., atomic num-
bers. These initial atom identifiers are collected into an initial
fingerprint set. Next, each atom is assigned a unique identifier,
and the identifiers of its immediately neighboring atoms are



into an array. To avoid order dependence, the neighbors are
ordered using their identifiers and the order of the attaching
bonds. A hash function is applied to reduce the array of
identifiers back into a new, single-integer identifier. Once
all atoms have generated their new identifiers, they replace
their old identifiers with their new identifiers. The new atom
identifiers are added to the fingerprint set. This iteration is re-
peated a specified number of times. Once completed, duplicate
identifiers in the set are removed, and the remaining integer
identifiers in the fingerprint set define the ECFP fingerprint.
The process is shown in Figure 2.

The output of the featurizer is a 2048 binary array which
is a unique fingerprint for each molecule and provides a com-
pact version of the feature matrix. This fingerprint uniquely
captures the topology of the input and uniquely characterizes
information such as neighboring atoms types and number of
bonds and substructures numerically [4]. In this study, in
addition to the output of the featurizer, an additional term is
appended which is a float representing the estimated binding
entropy generated by VM2.

Fig. 2. ECFP process overview over a guest molecule in SAMPL8 dataset
known as 4-Hydroxybenzoic. Each circle and number indicate the molecules
involved in the hash and the step number, respectively. In each round, the
atoms get a new hash number until all atoms are considered, and the final
fingerprint is generated.

C. Hybrid Model II: The Physics Guided Graph Convolution
Network

The main difference between Hybrid Model I and Hybrid
Model II is their featurizers. The linear model used hashed
molecular fingerprints capturing topography directly while the
graph convolution network uses graph convolution featurizer to
generate molecular graph input fingerprint. First, a minimized
system is produced by our physics-based model, along with
a predicted binding entropy. The predicted binding entropy is
concatenated to each atom feature vector in the input. Next, the
minimized system is passed into a graph convolution featurizer
to generate a representation of the minimized structure in
which features of each atom are summed with nearby atoms.
Finally, the modified molecular feature matrix is fed to two
graph convolution layers, followed by a pooling layer, a
normalization layer, and a graph gather layer to generate the
internal fingerprint vector for final prediction through dense
layers. The process is shown in Figure 3.

D. Featurizer II: Molecular Graph Convolutions

In 2015 a new approach was proposed for generating
molecular fingerprint based on a convolution deep learning

Fig. 3. Physics guided graph convolution network model

algorithm [30]. The first generation of this featurizer used
a linear combination of atoms and neighbors to produce a
new feature for each atom. By using a Softmax function,
all new atomic features are transformed into a fixed-size of
vector to be fed to a neural network for extracting molecular
features. Molecular Graph Convolutions (MolGraphConv) [31]
featurizer used in this work, introduces two new concepts
for generating fingerprints. The first concept is introducing
an atom layer that contains an n-dimensional feature vector
associated with each atom. Therefore the atom layer is a two-
dimensional matrix indexed first by the atom and then by
specific features of that atom. The next concept is a pair layer
which contains an n-dimensional vector associated with each
pair of atoms modeling a relationship between specific atoms.
Note that the pair input can contain information not just about
the direct edges of that atom but about any arbitrary atom
in the structure. The end result is a featurizer that represents
features contributed by a specific atom and relationships
between the atoms through a graph representation.

This differs from the prior featurizer in structure and to
how information is modeled. The prior featurizer focused on
topographic or similar substructures throughout the system;
MolGraphConv featurizer works by representing individual
atoms and their relation to other atoms and allows a network
to find the hierarchical structure through the convolution of the
extracted features. In this study, the estimated binding entropy
is inserted as a single float to each atom-specific feature vector.
Inserting the same value into all atoms is based on the idea that
binding entropy applies to every atom of the entire complex
regardless of relationship between atoms.

E. Baseline Model: Purely Data-driven Model

To provide a baseline for comparison between the pro-
posed hybrid models, a purely data-driven model is generated
with the non-minimized SMILES fed into the non-modified
featurizer. All other aspects of the model match exactly to
the proposed hybrid model, including learning rate, layers,
dropout, and other hyperparameters. These networks were
hyperparameter optimized separately; however, both hybrid
and purely data-driven models resulted in the same optimal
hyperparameters. The same training procedure and testing
procedure were applied to the purely data-driven models as
the proposed hybrid models.



IV. RESULTS AND DISCUSSION

A. Selection of the Physics-based Model

The accuracy of the four physics-based methodologies (i.e.,
NMA, VM2, BEERTm, and OLE) in calculating binding
entropy is tested on a host-guest system, see Figure 4. Included
is also the time taken to produce the result. The goal of this
preliminary survey is to assess the accuracy of the aforemen-
tioned methods. The final result of this survey is the selection
of the method that our proposed hybrid models will utilize to
generate the physics component for the input structures.

Fig. 4. All methods run upon CB8-Methamphetamine system. Orange
indicates the value derived from the experiment. Blue is the value generated by
applying the method. Time in minutes is transposed above each corresponding
method, indicating the total computation time.

The results shown in Figure 4 indicates VM2 as the most
accurate entropy result of the methods surveyed. The output
of VM2, in particular, includes a minimized structure, con-
former appearance frequencies, and total binding free energy
(and therefore binding entropy) estimation. All these items
made VM2 a good candidate for developing a hybrid model.
Although estimates are provided for binding free energy,
binding enthalpy, and binding entropy - due to the use of
implicit solvation - binding entropy does not include all solvent
contributions. In addition, preliminary results indicate that both
OLE and BEERT regression models, models that are statistical
or data-driven, have accurate results. This further motivated
the development of the hybrid model, coupling together the
statistical nature of machine learning with the physics-based
information generated from simulation tools.

There are different versions of VM2 available for binding
free energy calculations. Table I shows the average perfor-
mance of five versions of VM2 across all host-guest systems
with the standard deviation. This work chose to utilize VM2’s
Random search simulation mode due to the lowest error across
all structures.

TABLE I
ACCURACY OF DIFFERENT VERSIONS OF VM2 IN TERMS OF

CALCULATING BINDING ENTROPY.

Simulation Type RMSE (kcal/mol)
Fast VM2 Random 15.20 ± 2.06
Fast VM2 Single 15.95 ± 1.84
VM2 Random 14.77 ± 2.02
VM2 Single 14.90 ± 2.06

B. Training Phase: Cross-Validation

The convergence over epoch and the associated error can
be seen in Figure 5 and Figure 6. It is demonstrated that
both hybrid models converged for every fold; the converged
error on the training set of data is less than 0.01 on Model
I on 0.1 on Model II across all folds. This level of error
indicates that Model I’s internal representation aligns closely
with the output of the features. On the other hand, Model
II’s featurizer appears to be significantly more sensitive to
topological changes and better at normalizing the dependence
on input features. During training, no batch regularization was
used due to the size of the data set. Dropout regularization was
used on each epoch. Both Model I and Model II took about
60 epochs to have all folds converge to a similar error on the
training set.

Fig. 5. Model I, Physics Guided Deep Neural Model, convergence across
folds.

Fig. 6. Model II, Physics Guided Graph Convolution Model, convergence
across folds.

C. Test Phase: Model Accuracy

Figure 7 shows error averaged across all folds between a
purely data-driven model and our proposed hybrid models
on test data. The figure indicates the impact to accuracy
and precision due to incorporation of physics information.
Comparing the purely data-driven results (i.e., DNN and GCN)



against the hybrid models (i.e., PGDNN and PGGCN), a
significant jump in accuracy is observed.

Fig. 7. Model Performance (RSME) on Test Sets averaged across all folds.

Table. II shows the RSME on the training dataset as well
as test dataset. While the predictive performance is better
overall on the test dataset, the performance on the training set
averaged across all folds indicate there is additional headroom
for model improvement. It should be noted that the hybrid
models show more consistent results when executed on the
training and test sets. This consistency is the result of embed-
ding physics-based features in the model which makes it more
“transferrable” across different sets.

TABLE II
AVERAGE RMSE OF MODELS IN KCAL/MOL ACROSS ALL FOLDS.

Model Training Set Test Set
Pure data-driven DNN 0.19 ± 0.03 0.23 ± 0.10
Pure data-driven GCN 0.75 ± 0.08 0.52 ± 0.03
Model I (PGDNN) 0.24 ± 0.11 0.19 ± 0.03
Model II (PGGCN) 0.47 ± 0.12 0.43 ± 0.16

D. Correlation Analysis

Both Figure 8 and Figure 9 show model error across training
and test sets between a purely data-driven model and our
proposed hybrid model. This analysis aims to understand
what adding physics-based features to the original data-driven
model changes. While Figure 8 does not indicate a large
difference between data-driven and hybrid model performance
on the same system - Figure 9 shows good correlation between
data-driven and hybrid for larger errors; however, for smaller
errors, the hybrid model outperformed the data-driven model.

V. CONCLUSION

Purely data-driven models can outperform physics-based
models but are always at the risk of overfitting. Another
critique is that the results of data-driven models often lack
meaningful interpretation due to the “black box” characteris-
tics of machine learning. When data-driven models are coupled
with physical models, the resulting hybrid model inherits high
accuracy from the former and interpretability from the latter.

Fig. 8. Model I Correlation Plot across both the train and test sets of data.

Fig. 9. Model II Correlation Plot across both the train and test sets of data.

Earlier works look at the application of hybrid models applied
to binding free energy estimated by purely looking at binding
enthalpy - our work differs by looking at the application of
hybrid models on binding entropy calculations. This work
surveys various binding entropy methods, selects a candidate
method, and proposes an architecture to combine data-driven
machine learning models with the selected physics-based
method.

The publicly available SAMPL and benchmark datasets
provided experimental data needed to run simulations for
binding entropy estimation. Initially, we started with a host-
guest system from SAMPL8 [22], surveying the computational
complexity and accuracy of several methods. The accuracy of
the NMA method on the entropy contribution is directly tied
to how much of the conformal space is captured during the
conformer search. In the BEERT model, the local well near
the energy minima was considered, and the model worked
very well with minor computational overhead. In the OLE
regression model, entropy predictions generated from selected
structural features and weights trained on many small struc-
tures performed accurately with minor computational overhead
as well. Finally, the VM2 method was found to be the most
accurate method, with the highest computational overhead of



the methods surveyed.
The primary reason for selecting VM2 in this work was

due to its accuracy resulting from a comprehensive conformal
search. When evaluating the different simulation modes of
VM2, the outcome appeared to have a dependence on the
input conformer. The full production run of VM2, in either
random search or fixed ligand, converged to similar results,
highlighting the importance of a long conformation search.
Although VM2 analysis needs more computational time, the
top-down approach of finding conformers via TORK produces
an accurate entropy contribution calculation. Training data
with rigid host-guest systems can guide VM2 closer to the
experimental data. Here we implement this idea by introducing
a physics-guided neural network. This hybrid model fuses
VM2 with training data to close the accuracy gap in binding
entropy calculation.

There are many improvements that could be made to this
work, such as extending work to larger structures, adding
additional entropy-specific features, using other fingerprinting
methods, or investigating other network typologies. Another
area is utilizing other physics-based models; for example, Ver-
achem has developed a version of its mining minima algorithm
that utilizes ab-inito calculations for specific active areas to
further increase accuracy. Or alternatively, other conformations
sampling techniques could be used and compared. The key
component of future work is understanding how to maximize
the knowledge contained in the input data. While this work
identified that the minimized structure contained significant
information and the addition of features to allow machine
learning models to utilize, there may be faster, more accurate,
or more information-dense calculations or features available.
Ultimately, coupling data obtained through physics compu-
tation with modern data-driven methods offer an excellent
opportunity to accurately and reliably predict binding entropy
- resulting in a more informed drug screening process.

DATA AND MODEL AVAILABILITY

Both the data and model information
can be found publicly available online at
https://github.com/allesrebel/cd set1 gaff vcharge and
https://github.com/allesrebel/physics-guided-entropy.
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