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With the trend of vehicles becoming increasingly connected and potentially autonomous, vehicles are being equipped with
rich sensing and communication devices. Various vehicular services based on shared real-time sensor data of vehicles from a
�eet have been proposed to improve the urban e�ciency, e.g., HD-live map, and tra�c accident recovery. However, due to
the high cost of data uploading (e.g., monthly fees for a cellular network), it would be impractical to make all well-equipped
vehicles to upload real-time sensor data constantly. To better utilize these limited uploading resources and achieve an optimal
road segment sensing coverage, we present a real-time sensing task scheduling framework, i.e., RISC, for Resource-Constraint
modeling for urban sensing by scheduling sensing tasks of commercial vehicles with sensors based on the predictability of
vehicles’ mobility patterns. In particular, we utilize the commercial vehicles, including taxicabs, buses, and logistics trucks
as mobile sensors to sense urban phenomena, e.g., tra�c, by using the equipped vehicular sensors, e.g., dash-cam, lidar,
automotive radar, etc. We implement RISC on a Chinese city Shenzhen with one-month real-world data from (i) a taxi �eet
with 14 thousand vehicles; (ii) a bus �eet with 13 thousand vehicles; (iii) a truck �eet with 4 thousand vehicles. Further, we
design an application, i.e., track suspect vehicles (e.g., hit-and-run vehicles), to evaluate the performance of RISC on the urban
sensing aspect based on the data from a regular vehicle (i.e., personal car) �eet with 11 thousand vehicles. The evaluation
results show that compared to the state-of-the-art solutions, we improved sensing coverage (i.e., the number of road segments
covered by sensing vehicles) by 10% on average.
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1 INTRODUCTION
There were more than 2 billion vehicles on the road by 2019 [4], and it is well expected that this increasing trend
will keep going in the next 20 years[1]. For example, in some largest cities in the world, vehicles have been
increasing signi�cantly, e.g., in Beijing, the vehicles have been increasing from 3.50 million to 5.64 million in last
ten years [7]; in Los Angels, the vehicles have been rising from 5.86 million to 6.49 million in the same period [2].
Such a surge of vehicles leads to various urban challenges, e.g., tra�c jams, prolonged commuting time, tailpipe
emission, tra�c accidents, etc. To address these challenges, many e�orts have been made from both technical
aspects (e.g., real-time ride-sharing) and policy aspects (e.g., congestion fees in Singapore). In these e�orts, a
critical fundamental approach is real-time vehicular sensing[27]. Vehicular sensing utilizes the sensors equipped
in the vehicles, e.g., dash-cam, lidar, automotive radar, RFID, etc., to sense some urban phenomenon[11, 12],
e.g., the tra�c speed, the tra�c �ow, the locations of the vehicles on the road, etc, to various applications, e.g.,
autonomous driving, anomaly detection, etc.
Given the importance of urban sensing, many techniques have been developed and implemented to model

large-scale vehicular mobility patterns with various sensing devices[36, 39, 40]. For example, Wang et al. proposed
an approach to calculate possible locations and time distribution of the hit-and-run vehicles in parallel [33] based
on camera networks. However, given the stationary features of these sensing solutions, e.g., cameras or loop
sensors, or the limited number of equipped cars[37], they cannot achieve urban-scale real-time vehicular sensing.

In this paper, we argue that there are tens of thousands of potential mobile sensors moving across cities around
24 hours a day on almost all the road segments, including commercial vehicles, e.g., taxis, buses, and trucks. More
importantly, given recent e�orts of smart transportation, many cities have their commercial vehicles equipped
with sensing (e.g., GPS and cameras) and communication devices (e.g., Dedicated Short-Range Communications
DSRC and cellular devices with a monthly service plan) for the management purposes, e.g., uploading vehicle
sensing data to operating centers for security and accounting in real time. These new e�orts provided us with an
unprecedented opportunity to achieve a mobile sensing solution in real time at the urban scale, which includes,
but not limited to, vehicle to vehicle sensing, i.e., sense other vehicles.
However, it is unclear if commercial vehicles can accomplish this objective su�ciently since their mobility

patterns might be biased against their services (e.g., buses with a �xed route). More importantly, their sensing data
uploading capabilities are limited since their current uploading purposes were designed for simple low data-rate
tasks, e.g., reporting GPS locations for accounting [17], and occasionally uploading images for security [13].

The key question we want to explore is if it is possible to transparently use existing commercial vehicles (i.e.,
no changes to their existing mobility patterns) with existing data uploading infrastructures to enable real-time
sensing to cover all road segments? We emphasize the keyword transparently because, in practice, it is di�cult
(i) to change mobility patterns of commercial vehicles just for vehicular sensing given their primary objective is
to provide services (e.g., taxis picking up passengers, buses serving routes, trucks dropping o� packages) and (ii)
to ask for more resources in terms of a higher budget for real-time data uploading to perform such a task.
To answer this question, we conduct a case study in the most crowded city in China, i.e., Shenzhen, with 12

million population and 3.2 million personal vehicles. In this particular case, we use a combination of the taxi
�eet, the bus �eet, and the truck �eet to provide urban-scale real-time vehicular sensing, by uploading sensing
data from the selected commercial vehicles in real time to task scheduling centers to cover all road segments in a
given city for complete urban sensing.

Without optimization, a straightforward solution is to constantly upload real-time sensing data from commercial
vehicles with redundant information, e.g., the same sensing information is uploaded multiple times by vehicles on
the same roads. However, in practice, every vehicle is uploading its data based on cellular communication with a
�xed amount of data uploading, e.g., 1GB per car per month, so continuous uploading will quickly exceed the
data uploading quota. More importantly, many commercial vehicles on the same road segments will upload the
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redundant sensing data. As a result, we design a vehicular sensing task scheduling framework RISC, which aims
to achieve optimal large-scale Real-tIme Sensing from Commercial vehicle �eets with limited data uploading
capability. In particular, RISC provides a real-time task scheduling assignment for commercial vehicles based on
the predictability of their mobility patterns and achieves the real-time local optimal road segment coverage.
In particular, the contributions of the paper are as follows:

• To the best of our knowledge, we conduct the �rst study on the resource-constrained real-time vehicular
sensing with heterogeneous �eets. In particular, our study is based on (i) a taxi �eet with 14 thousand
vehicles, (ii) a bus �eet with 13 thousand vehicles, and (iii) a truck �eet with 4 thousand vehicles. Our
mobility pattern study enables us to comprehensively compare these vehicle �eets in terms of real-time
sensing capabilities and analyze their data for valuable urban mobility insights, which is di�cult to be
obtained by previous studies on a single �eet and their data.

• We design a vehicular sensing task scheduling system called RISC to quantify the mobility patterns of
various commercial vehicles with a uni�ed framework and schedule their vehicular sensing under their
sensing and uploading constraints. Theoretically, we formulate our urban-scale vehicular sensing as a
Markov Decision Process (MDP) problem and design an online framework to schedule dynamic sensing
data uploading in real time. In the standard MDP, the transition matrix is calculated based on historical
data, and the impact of future actions is typically not considered, and the rewards are de�ned by empirical
observations. Instead, we design a convolutional neural network model to predict the future locations of
vehicles, and dynamically incorporate the future actions in the state transmission. Our rewards are also
dynamically updated based on the current distribution of vehicles on roads. Such a combination of the
MDP and CNN components has not been considered by the previous work in a vehicular sensing scenario.

• We implement our RISC system in Shenzhen based on one-month of detailed data from three commercial
�eets. Further, based on RISC we design a potential application to track suspect vehicles, e.g., hit-and-run
vehicles, in real time. More importantly, we use a separate dataset from 11 thousand regular vehicles as
the ground truth to evaluate this application. We rigorously evaluate the impacts of various factors (e.g.,
the sensing area, the limitation of uploading capability, the sensing angle of sensors, the sensing radius
of sensors) on the performance of our sensing system. The evaluation results show that compared to a
state-of-the-art solution, we improved sensing coverage (i.e., number of road segments covered by sensing
vehicles) by 10% on average. In addition, our study results reveal some valuable insights for transparent
urban vehicle sensing with commercial vehicles. Based on these insights, we provide a few lessons learned,
which have the potential to o�er some guidance for some real-world applications based on urban-scale
real-time vehicular sensing.

2 RELATED WORK
We organize the current vehicular sensing work into four categories from on two aspects in Table 1. (1) The
�rst aspect includes participatory sensing and opportunistic sensing, which is divided based on how the sensor
participates during the sensing. In particular, participatory sensing methods sense a target by dispatching mobile
sensors, e.g., vehicles, while opportunistic sensing methods sense a target without changing the vehicles’ mobility
pattern. In particular, many systems install sensors in the vehicles themselves to sense the mobility of the equipped
vehicles are considered opportunistic sensing since this kind of works does not change vehicle traces. (2) The
second aspect is the diversity of mobility patterns of the vehicles involved in the sensing, i.e., homogeneous
sensing and heterogeneous sensing. Homogeneous sensing means these sensing systems only utilize the vehicles
belonging to the same types of vehicles, e.g., bus, taxi, truck, which has similar mobility pattern features, while
heterogeneous sensing indicates these sensing systems utilize the vehicles from multiple vehicles types, which
contains diverse mobility patterns.
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Table 1. Categories of Related Work

Participatory Opportunistic
Homogeneous [19, 37, 48] [10, 15, 24, 46]
Heterogeneous [20, 43, 45, 49] [34],RISC

2.1 Participatory Sensing
2.1.1 Homogeneous Sensing. Participatory sensing has been widely studied by many researchers, but most of
them are based on the homogeneous �eets. [19] proposes a system to recover the situation of tra�c accidents
based on the shared dash-cam data from the vehicles, with the preservation of privacy. [48] design a bus travel time
estimation system based on the interaction between the bus and the mobile phone. [37] proposes a dispatching
system to dispatch taxis to obtain optimal sensing coverage with a limited budget.

2.1.2 Heterogeneous Sensing. [20] provides a greedy optimal heterogeneous vehicle selection algorithm to
collect comprehensive spatial-temporal sensing data. [44] infers tra�c conditions by utilizing two heterogeneous
nationwide vehicles based on real-world contexts and multi-view learning. [45] develops a multi-view learning
framework to iterative obtain mutually-reinforced knowledge for real-time human mobility at the urban scale
based on a massive dataset including data about the taxi, bus, and subway passengers along with cellphone users.
[49] design a crowdsensing method that selectively chooses heterogeneous sensors from participators to collect
data. However, the participatory sensing might cause a heavy burden from the participation, e.g., dispatching
commercial vehicles, or provide an incentive mechanism to participators, which leads to a higher cost than
opportunistic ones.

2.2 Opportunistic Sensing
2.2.1 Homogeneous Sensing. There is also some existing work on opportunistic sensing. Most of them only
utilize the homogeneous �eet. [46] utilizes taxis for urban sensing based on a minimum number of selected
vehicles with the guarantee of speci�c coverage quality requirements. [15] deploys air quality monitoring nodes
on city buses to monitor the air quality of a city. [10] provides a systematic study of three large-scale data
sets of taxi GPS traces to understand spatial patterns in vehicle motions and how such patterns can support
information dissemination. [24] presents a study of the instantaneous topology of the vehicular network in
Cologne, Germany, and it also unveils the underlying structure of the vehicular network in this city. But, these
only consider one homogeneous �eet, so it is hard for them to consider various mobility patterns of di�erent �eets.

2.2.2 Heterogeneous Sensing. Some works utilize di�erent �eets for urban sensing, which improves the capa-
bility of sensing. [34] infers and predicts the trace of regular vehicles based on the interactions between the
heterogeneous �eets without any constraints. Di�erent from previous work, RISC utilizes the equipped sensing
devices from the heterogeneous �eets under the constraint of data uploading capability and addresses the bias
problem caused by the speci�c mobility patterns of the homogeneous �eet and the expensive cost of real-time
data uploading problem. Besides, RISC utilizes the devices equipped in commercial vehicles to preprocess the
collected data, which reduces the burden of the cloud server. To our best knowledge, RISC is the �rst study on the
resource-constrained real-time sensing feasibility for multiple generic �eets based on real-world heterogeneous
�eets’ data.

3 MOTIVATION
Based on a recent survey [3], the total number of connected vehicles is expected to bemore than 200million by 2025,
leading a potentially huge market for Vehicles-to-Vehicles (V2V) applications and Vehicles-to-Infrastructure (V2I)
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applications for connected vehicles[32]. In some of the connected vehicle applications, e.g., route selection, safety
warning, or assistant driving[28], real-time data uploading are necessary due to the short-latency requirement of
these applications. For example, real-time route selection or safety warning based on tra�cs is dependent on
the freshness of the tra�c sensing data, and some outdated data could provide a wrong route or miss important
warnings. Therefore in this section, we investigate the opportunities of utilizing commercial vehicles for vehicular
sensing and the challenge of uploading all the real-time sensor data from commercial vehicles.

3.1 Opportunities for Vehicular Sensing

Fig. 1. Road Coverage

Most city-scale urban sensing applications assume a dense sensor dis-
tribution and to full coverage of road network sensing. However, the
sparsity of stationary road sensing camera distribution can hardly be
avoided in real scenarios, due to the high deployment overheads and the
dynamic nature of urban road networks. For instance, in Shenzhen, a
leading city in deploying urban sensing systems, there are 463 intersec-
tions in the industrial park, while only 3.2% intersections are equipped
with tra�c sensing systems. In contrast, commercial �eets potentially
provide a mobile sensing opportunity. To explore the capability of the
commercial �eets on the city-scale urban sensing, we show the percent-
age of the road segments sensed by at least one vehicle from a particular �eet in 1-minute slots in Figure 1.
We show the coverage of using each �eet as sensors compared with the heterogeneous �eets. We found that
these three commercial �eets have their particular features of coverage of road segments. For example, (i) the
taxi �eet has the highest coverage compared with the bus �eet and the truck �eet, (ii) the di�erence on the
coverage between daytime and nighttime for bus �eets is larger than that of other two �eets, (iii) the truck �eet
has the lowest coverage compared to others, and it is also lower than the tra�c sensing systems. Compared to the
heterogeneous �eets and the tra�c sensing systems, we found that heterogeneous �eets improve the coverage
nearly four times the tra�c sensing systems.

3.2 Challenge of Sensor Data Uploading
In the real-world, many commercial vehicles are passing the same regions, which will create a lot of duplicated
real-time sensor data if all uploaded, increasing the burden of the cloud server and generating unnecessary cost,
i.e., the duplicated sensor data collected by di�erent commercial vehicles which will make the cloud server to
process and store redundant data, in the data uploading.

Fig. 2. Extra Cost of Uploading All vehicles’
Data

To quantify this drawback, we study how many commercial vehicles
will be in the same region in a one-minute slot and use extra costs as
a metric. The extra cost indicates the percentage of duplicated data
uploaded in real time if asking all the commercial vehicles to upload
their sensor data. The extra cost is calculated as "

# , where " is the
total number of regions visited by the commercial vehicles including
duplicated regions; # is the number of distinct regions visited by com-
mercial vehicles. As shown in Figure 2, during the early morning, using
all commercial vehicles together to upload data will generate about
110% of duplicated data since most of the commercial vehicles in the
early morning are concentrated, which generate a large amount of
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duplicated data. Also, even in the lowest valley around 4 PM (highlighted in the box), this number would also
be more than 60%. That is because, during the afternoon, commercial vehicles are distributed in the city more
evenly, especially the taxis, which make less duplicated data.

3.3 Summary
We explore the sensing coverage of road segments by di�erent �eets based on their spatiotemporal patterns.
Further, we identify the unnecessary cost of uploading data for using all commercial �eets for sensing. The cost
is in terms of data transmission cost. In a real-world setting, many commercial vehicles are passing through the
same regions, which will cost a lot of duplicated real-time sensor data if all uploaded, increasing the burden of
the cloud server and generating unnecessary transmission and processing cost such as cellular uploading fee,
data storage, and processing cycles. As follows, we aim to address these issues to reduce the cost of urban vehicle
sensing. It motivates us to design a system to provide an e�cient assignment for real-time vehicular sensing.
In the real-world, many commercial vehicles are passing the same regions, which will cost a lot of duplicated
real-time sensor data if all uploaded, increasing the burden of the cloud server and generating unnecessary cost,
i.e., the duplicated sensor data collected by di�erent commercial vehicles which will make the cloud server to
process and store redundant data, in the data uploading.

4 VEHICULAR DATASETS

Length # of Vehicles Daily Records Total Size
Taxi 14K 65M  38.5GB
Bus 13K 44M 41.3 GB

Truck 4K 7M 7.9 GB
Regular Vehicle 11K 13M 21.8 GB

ID Date&Time GPS Speed Direction

one month

Format

Fig. 3. Fleets and Their Data

We get access to the vehicular system datasets provided by the Shenzhen Committee of Transportation (SCT),
with which we collaborate for better urban transportation management. As in Figure 3, we introduce four types
of vehicle �eets in Shenzhen, i.e., a taxi �eet, a bus �eet, a regular vehicle �eet, and a truck �eet. For each �eet,
we show the length of days, the number of vehicles, the daily uploaded records, and the total size of the data.
Please note that these datasets are the basic GPS data collected by the onboard devices, while the data that RISC
aims to collect and schedule the uploading are higher volume of sensor data from more abundant and diverse
sensors to detect environments. For example, RISC could be utilized to collect the image data from the dashcam,
which cannot be fully supported by existing real-time uploading infrastructures for cellular networks within
budget. It motivates us to design a resource-constrained sensing task scheduling approach.

• Taxi Fleet: The taxi �eet in Shenzhen contains over 14 thousand taxis where each taxi uploads its record
every 30 seconds in real time, including GPS locations, time, speed, etc. The taxi �eet has random mobility
patterns, and most of them have a frequent stopping place.

• Bus Fleet: The bus �eet in Shenzhen contains 13 thousand buses where each bus uploads record every 30
seconds in real time, including GPS locations, time, speed, etc. In contrast to the random mobility patterns
of the taxi �eet, the buses have regular mobility patterns, and they have routine routes between the two
terminals every day.
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• Truck Fleet:We leverage a truck �eet’s data from a logistics company in Shenzhen. All trucks upload their
data every 15 seconds to the company’s servers for real-time monitoring. The trucks have semi-random
mobility patterns, andmost of themwould stay in their company if they are not delivering cargos and goods.

• Regular vehicle Fleet: The regular vehicle data are used as the ground truth in our evaluation, but not in
our design. We access the data of the regular vehicle �eet through an insurance company, where regular
vehicles upload their status to a server of the insurance company for reducing their insurance fee. This
�eet in Shenzhen contains 11 thousand vehicles where each vehicle generates one record every 10 seconds.
Regular vehicles have semi-random mobility patterns, and most of them commute between their homes
and o�ces. Bus Taxi

Regular Vehicle

TruckBus Taxi

Truck

Fig. 4. Fleet Visualization

Our �eet access with heterogeneous mobility patterns enables �ne-grained urban tra�c sensing as shown
in Figure 3. Given the diverse mobility pattern, each of �eets should provide some unique mobility coverage.
For example, Figure 4 gives a heatmap visualization of these four �eets based on their one-day data and the
relative volume of them in each hour in a day. We found that each �eet has its unique mobility pattern shown
by the circles, e.g., (i) the truck �eet mostly focus on highways and a few industrial areas; (ii) the taxi �eet
covers most urban areas; (iii) the bus �eet focuses on trunk road segments; (iv) the private �eet has similar
patterns with taxis but with some exceptions at a few residential areas. Besides, from the volume of these four
�eets, we found that there are more taxis and trucks during the late night and early morning than that of
buses and regular vehicles; whereas there are more regular vehicles and buses during rush hours. Those in-
sights motivate us to design a better real-time sensing scheduling approach under a resource-constrained scenario.

Entropy: Entropy is regarded as the most fundamental quantity capturing the degree of predictability [29][8].

5HJXODU�
7UXFN�

Fig. 5. Entropy CDF

For each vehicle, we extract its origin and destination in each trip then ob-
tain its a sequence of visited locations !. We calculate the entropy ( as
( = �Õ

!08
? (!0

8 );>62 (? (!0
8 )), where !0

8 is a sub-sequence of ! and ? (!0
8 ) is the

probability of !0
8 appearing in !. We use entropy to measure the randomness

of the trip origins and destinations. The cumulative distribution is in Fig. 5.
The regular vehicles have the lowest randomness on the origin and destination
pairs in the four �eets. This is because the regular vehicles move between
several most frequent locations, which has been proved by previous works [18].
Compared with taxis and buses, the randomness of the truck is lower. One
possible reason is that the trucks are operated by logistics companies and move among warehouses intra-cities or
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inter-cities. Buses have a constant route arrangement, and the number of stations of di�erent buses is similar,
which leads to close entropy around 3.

5HJXODU�
7UXFN�
%XV�
7D[L�

� � � � �� �� �� �� ��
7RS�1�/RFDWLRQV�

Fig. 6. Daily Locations

Top-N locations: Human’s mobility can be generally modeled as the move-
ment between several essential locations, such as home, o�ce, etc [18]. To
determine how much of the mobility is rooted in the visitation patterns of the
top locations, we calculated the probability that the vehicle is in one of the
top = most visited locations in a given moment. Based on the mobility data,
we study the number of locations a vehicle passes on every weekday, which
is de�ned as the number of daily locations. Figure 6 presents the number of
daily distribution in four �eets. In particular, for the bus �eet, there are more
buses with entropies smaller than or equal to 2. The possible reason is that
some bus lines may provide the express shuttle services from the airport or
the train station to the downtown area[5], e.g., line 330B or 330C only has
two terminals. Due to the high demand for this kind of service, there may be more buses to serve these lines.
We found most vehicles have one or two most frequently visited stay locations, which may be home, work
locations, or the logistic centers. For the bus �eet, buses have a �xed route arrangement. Therefore, it shows a
more signi�cant number of stay locations, which are mostly bus stations. In short, based on the entropy and the
Top-N location analysis in Fig. 5 and 6, we found even though the numbers of important visited locations are
similar in heterogeneous vehicular �eets (as shown in Top-N location distribution), their mobility patterns di�er
signi�cantly (as shown in the entropy analysis). Therefore, these diverse (potentially complementary) mobility
patterns enable heterogeneous vehicular �eets to have better spatial coverage on urban sensing compared with a
single vehicular �eet.

5 REAL-TIME SENSING TASK SCHEDULING DESIGN
In this section, we present the framework of RISC for real-time sensing task scheduling. RISC generates an
optimal assignment based on Markov Decision Process (MDP) to assign a subset of the commercial vehicles to be
the “mobile sensors” in given time duration (e.g., 5 mins) to upload their data captured by their local sensors to a
cloud server based on the estimated rewards, i.e., the number of covered road segments of their sensing data. The
higher the coverage, the higher the reward.

5.1 Scheduling Framework
Overview: Given the real-world constraints of commercial vehicle sensing and communication capability, the
objective of this paper is to select minimal commercial vehicles, i.e., an assignment, to cover as many road
segments as possible for urban tra�c sensing in a given duration with the limitation of data uploading budget,
e.g., 1GB per month. Due to the dynamic features of human mobility, Markov Decision Process is especially
suitable for vehicle dispatching and scheduling since a vehicle’s current location is highly dependent on its
locations of previous time slots [41]. MDP has been successfully used in many problems such as stochastic
planning problems and game playing problems. Actually, MDP has been a popular solution for sequential decision
problems due to its internal design structure [38][35]. In our setting, the decisions for future actions are not
related to the previous states, and commercial vehicles are highly dynamic. Thus, MDP is appropriate for such a
stochastic decision process problem in our setting. On the other hand, the computation time for solving MDP
models is much shorter compared with solving Markov models [30]. This is crucial for complicated problems
with many states and actions such as urban-scale vehicular sensing. Due to the unpredictable events in cities,
RISC improves the MDP framework to execute the �rst optimal assignment in the current slot but considers
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future actions at the same time. We formulate this problem as a Markov Decision Process problem and use a
policy iteration algorithm [22] (PIA) to choose an optimal subset of commercial vehicles for sensing. In our
framework, a policy is a sequence of assignments. We divide time into di�erent slots. For the one-time slot, we
have one corresponding bipartite graph where the vertices of one side are commercial vehicles; the vertices
of the other side are the road segments (an example is given in Figure 7). In one slot, if a commercial vehicle
passes some road segments, the vertex of this vehicle would have edges connecting the vertices for these road
segments. Each slot many several optimal assignments with the same maximum reward. However, since each
commercial vehicle has limited data uploading capability, and some of them will visit the road segments solely in
the future time slot, which leads to a potentially higher future reward, e.g., a taxi going to a remote area where no
other commercial vehicles nearby. Therefore, when to choose this kind of commercial vehicle with high future
reward will impact the total spatial-temporal coverage in the long run, i.e., global optimum. As a result, the goal
of RISC is to �nd a series of assignments in a given duration to achieve a global optimal spatial and temporal
coverage, instead of obtaining the local optimal spatial and temporal coverage.We show our framework in Figure 7.
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Fig. 7. RISC Framework

Step (1)&(2): As shown in the step (thick arrow) (1) and step (2) of Figure 7, in the initial iteration, based on
the current and previous locations of all commercial vehicles (i.e., from CV1 to CV=), RISC predicts their future
locations by utilizing the CNN-based (i.e., Convolutional Neural Network) location prediction model. The detail
of this location prediction model is introduced in section 5.2. Based on the prediction locations of all commercial
vehicles, we have the possible visit road segment of these vehicles. This relationship between the commercial
vehicles and their possible visit road segments in the near future is represented as a bipartite graph, such as the
example shown in the bipartite graph ⌧1 in the right bottom box of Figure 7. In the example, ⇠+1 will visit road
segment '1 and 'G based on the predicted location.

Step (3)&(4): We de�ne the data uploading capability of all the commercial vehicles as a state, which is quanti�ed
by the remaining available time this vehicle can be used as a sensor. The state tables in Figure 7 gives two example
of a state, i.e., (1 (the table in the bottom right) and (2 (the table in the top right). As shown in the examples, the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 62. Publication date: June 2020.



62:10 • Xie et al.

initial capability of a commercial vehicle is  , and it will be reduced by 1 when the vehicle is assigned as a sensor
in a time slot by an assignment. In step (3) and step (4), based on the bipartite graph and the state (1, the task
scheduling center utilizes a vertex cover algorithm to obtain a set of possible assignments that choose which
subset of⇠+ nodes to cover all ' nodes (all the road segments) as many as possible in the bipartite graph⌧1. The
details of the vertex cover algorithm are given in section 5.3.

Step (5): We de�ne an action 0 is an assignment that chooses one possible minimal subset obtained from the
vertex cover algorithm. In each time slot, for each candidate vehicle we exclude it in the vertex cover algorithm
and obtain one candidate action. We de�ne � as the set of all the candidate actions. In step (5), RISC chooses
an action from � for sensing, i.e., commercial vehicles ⇠+1 and ⇠+8 in⌧2. In the meantime, the state is updated,
which is (2 in the example.

Step (6): In step 6, RISC gets the reward by the selected action and feeds to the Bellman equation 1. We de�ne a
reward function � as � (B8 ,08 , B 08 ) = #08 , where #08 is the number of newly covered road segments based on the
action 08 ; B8 and B 08 is the current state and the next state after action 08 selected (i.e., an assignment). After step
(6), RISC will go to the next iteration. In the next iteration of this action, the commercial vehicles will start at
the predicted locations. In one iteration, there are multiple actions. RISC will try all possible actions, and get
di�erent rewards and di�erent next state. In other words, one action in an iteration will create a branch of the
next iteration, and in the next iteration, it is possible that actions will create their branch of iterations. RISC
will explore all the possible sequences of actions and �nd out the sequence with the highest reward. This set of
iterations will continue for  times (where  is set to 10) to simulate the future dynamics and then stop.
Based on the following Bellman equation, the goal of our MDP is to obtain a policy c that satis�es that

+ c (B) = max
02�

[
’
B0 2(

) (B,0, B 0) (� (B,0, B 0) + _+ ⇤ (B 0))] (1)

where B is the current state; B 0 is the possible state after action 0;+ ⇤ (B 0) is the optimal reward in the next iteration
of state B 0;+ c is the �nal optimal reward in this time slot; c is the optimal sequence actions.) is the function that
indicates the probability that state B transfers to state B 0 by action 0. _ 2 [0, 1] is the discount factor, indicating the
di�erence in the importance of future rewards and current rewards. In our setting, _ is the average predictability
of assigned commercial vehicles obtained from the predictability estimation. The detail of predictability estimation
is shown in section 5.4 With this formulation, we apply PIA to obtain c . In particular, in each iteration, the
commercial vehicles will not get assigned for sensing in practice. RISC simulates their movements in the future
 time slots based on the CNN-based location prediction model. It had been proved that MDP can make the
optimal policy (assignment) [30] under the deterministic environment, e.g., the correct predicted future locations
of the commercial vehicles. Therefore, based on an assumption that the prediction of locations for all commercial
vehicles is correct in these  time slots, RISC obtains the optimal sequence of assignments for future  time slots.

Remarks: Real-Time Online Aspects on Iterative Scheduling: The MDP scheduling Framework utilizes the
vehicular real-time location prediction model and the vertex cover algorithm to obtain the action space and the
reward function. However, due to the dynamic nature of commercial vehicles and unpredictable events in the city,
it is challenging to predict their future locations without errors for the next  slots. Therefore, in the current slot,
to guarantee the optimal sensing coverage in an online fashion, RISC only executes the �rst optimal assignment
for the current slow, and even it has a sequence of assignments for the next  slots based on the simulation. In
the next slot, RISC will start this whole process again based on the updated locations of commercial vehicles in
real time to obtain a sequence of assignments for the following  slots, but still only executes the �rst assignment
of this newly obtained optimal sequence of assignments.
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5.2 Vehicular Location Prediction
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Fig. 8. CNN Framework

We utilize a CNN-based model to predict vehicular mobility pat-
terns by the o�ine training based on the historical location obser-
vations of a candidate commercial vehicle that could be able to be
used for urban sensing. We then predict its next location based on
the current location and the previous locations. We formulate this
vehicular next location prediction problem as a state prediction
problem in deep learning and utilize a CNN-based model[25] to
solve this problem. Since the commercial vehicles are required
to upload their GPS information to the cloud around every 30
seconds, RISC could obtain each commercial vehicle’s previous
locations and current locations. In our setting, we de�ne a spatial-
temporal record as one state. For the spatial granularity, we divide
Shenzhen into 1200 ⇥ 600 grids, and each of them is 100m ⇥ 100m.
For the temporal granularity, we divide one day into 1,440-time
slots where each time slot is 1 minute. With this setting, for a
commercial vehicle, RISC utilizes a k-length sequence of location
records from 'C�: to 'C as the input of the CNN model, where
: is the number of the previous : time slots and C is the current
time slot. With this input, the CNN model predicts the location
'C+1, which is the next location of the commercial vehicle in the
next future time slot.
Fig. 8 shows the design of our CNN network with three phases. (i) Encoding Phase: this phase contains one
normalization layer and four convolution layers. In our setting, we represent one spatiotemporal record of a
vehicle as a vector that includes the location of the vehicle, the time of day, the day of the week, the weather, of
the collected record. One vector of a vehicle is de�ned as the state of the vehicle in the slots. (ii) Transformation
Phase: this phase contains three conditional transformation layers. Accepting the encoded features of the previous
input states and the extracted features of the road network, it generates a high-level feature for the prediction of
the next state. (iii) Decoding Phase: this phase contains two fully-connected layers. It predicts the next state
and then maps the predicted high-level features to a spatial-temporal vector. With the predicted next location of
the commercial vehicles, it can infer which ⇠+ nodes will connect to ' nodes.

5.3 Vertex Cover Algorithm
Given the predicted location of commercial vehicles, this component aims to obtain the possible minimal subsets
of commercial vehicles to cover maximal road segments covered by using all the commercial vehicles. As shown
at the beginning of this section, in one slot, we have a bipartite graph, in which the vertices include two sides, i.e.,
the commercial vehicles and the road segments. In the example at the bottom of Figure 7, we show an example of
the vertex cover problem. In this bipartite graph, there are four vertices in the vehicle side and four vertices in
the road segment side. The objective of the sensing tasks assignment algorithm is to �nd the possible minimal
subsets that have edges connecting to all vertices in the road segment side, namely the subset containing⇠+1 and
⇠+8 in the table of the example. This could be regarded as a minimal set cover problem. In this formulation, we
de�ne a road segment as A and all the possible passed road segments as the universe* of the set cover problem
where* = A1, A2, . . . , A< , and one vehicle as one set B whose elements are the road segment it will pass. We denote
the set of all the commercial vehicles as ( , where ( = B1, B2, . . . , B= . We utilize a state-of-the-art method[16] to
solve this classic minimal set cover problem.
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5.4 Vehicular Predictability Estimation
We estimate the predictability of the commercial vehicles based on their historical traces. Based on the historical
GPS data of a commercial vehicle, we �rst divide them into di�erent trips by utilizing a stay point detection
algorithm [14], where each trip has an origin and a destination. Then we cluster them into di�erent patterns by
utilizing a density-based clustering [47] to obtain a set of clusters as with di�erent mobility patterns, based on
the origin-destination information and the temporal information of these trips. For the historical GPS data of
each cluster, we apply the CNN-based location prediction on these locations and compute the average accuracy
of prediction for each cluster. In the real-time setting, we classify the observed partial traces of a commercial
vehicle into one of its clustered patterns based on the distances between traces[9] and use the accuracy of the
speci�c cluster as the predictability used for _ in MDP.

6 FIELD STUDY
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We introduce a preliminary test to verify that if the volume of real-time uploading sensor data is acceptable for
the cellular premium plans. We set up a dashcam in a vehicle and collect the image data while driving on the road.
The dashcam is a 1080p HD car dashboard camera HP F500G with 32GB storage and 24 FPS. During the test, the
HP F500G dashcam collects video data while the car is active for a few days. The data collected by the dashcam
during one hour is about 5GB on average. This is a signi�cant volume, which exceeds the limited volume of many
cellular premium plans. As shown in Figure 9, in Shenzhen, the basic plan of China mobile is 1 GB per month
with a 50 RMB monthly fee. Even the ultimate plan provides 11 GB data, and it can only support two hours of data
uploading. As a result, if all the commercial vehicles (more than 31 thousand vehicles) are used as mobile sensors,
it would cost 31,000 dollars to upload one-hour sensing data. On the other hand, although for some cellular
service providers in some countries, e.g., AT&T in the US, the 4G data is unlimited (but the uploading speed
will be lower after the initial 5GB), 5GB per hour per vehicles is still a big burden for the storage in the cloud.
To enable the real-time collected data uploading, some techniques could be applied, e.g., data compression [26]
or a lower data uploading frequency. We study the trade-o� between the compressed data resolution and the
frequency of data uploading with a given limited volume in one hour and show the curve in Figure 10. In our
study, we assume the vehicles use the cellular premium plan of China Mobile, i.e., 1 GB per month, and limit
the total duration of data uploading in one day is 1 hour, leading 34 MB per hour in the test. From the result,
we found that, if we compress the data with high resolution, e.g., 95, in one hour the vehicle can only upload
about 60 images, whereas if we compress the data with low resolution, e.g., 5, then within one hour the vehicle
can upload 300 images. The choice of the compression resolution and data uploading frequency depends on the
application based on the uploaded data. For example, based on the collected high-resolution images, the plate
and appearance of most of the vehicles could be recognized by some computer vision algorithms, which could be
used for the suspect vehicle tracking. For the low-resolution images, even the plates of vehicles are hard to be
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recognized due to the loss of resolution, the number of vehicles still could be identi�ed, which could be used for
the vehicular volume count.

7 EVALUATION
To evaluate the performance of RISC in the urban tra�c sensing, we compare RISC with a state-of-the-art baseline
on a metric in terms of coverage of road segment with changing some factors.

7.1 Evaluation Methodology
7.1.1 Evaluation Se�ing.

• Baselines: (1) We implement a greedy method, DEGR[23], from the multi-skill resource-constrained project
scheduling problem, which regards the sensing coverage of road segments as the task, the commercial
vehicles as the resources, and the sequence of the visited road segments as the skills of the commercial
vehicles. (2) We also implement a crowdsensing algorithm HSF-ST[49], which aims to maximize the sensing
coverage and data utility. In our setting, the data utility of a commercial vehicle is replaced with the data
uploading capability, which is calculated as "

# ⇥  , where" is the available uploading capability (How
much data it can upload under the constraint) of the commercial vehicle; # is the total uploading capability
of the commercial vehicle;  is the number of road segments visited by the commercial vehicle. HSF-ST
chooses commercial vehicles with higher coverage and higher data uploading capability �rst. We use DEGR
and HSF-ST as the baselines and compare RISC with them in the evaluation.

• Metrics: As the description in section 5.2, we divide Shenzhen into a 1200 ⇥ 600 grid and map the road
network into this grid. Given a time slot, let ' be the set of the cells the road network mapped to, 'E be
the set of the cells the assigned commercial vehicles passed, the coverage of road segment is |'+ |

|' | . In our
simulation, we do not consider the physical structure of the road, e.g., the number of lanes in the road, etc.
When a vehicle passes a mapped cell, we assume the cell is covered. In our simulation, we only use the
spatial-temporal information of the commercial vehicles from GPS records to simulate sensing activities
instead of performing the actual sensing. When an assigned commercial vehicle is located at a covered cell,
we assume this vehicle collects tra�c data by its sensors in this cell. A few existing studies are utilizing
similar approaches to simulate sensing activities such as [49][6][21]. As a result, we use the coverage of the
cells with collected tra�c data to measure the performance of our sensing scheduling. The higher coverage
means better performance.

• Factors: To investigate the performance of RISC in di�erent situations, we evaluate RISC with di�erent
factors, including the time of a day (ToD), the evaluating areas, and the limitation of uploading capability.
Also, we implement RISC with single �eets to compare the performance on sensing for di�erent �eets.

7.2 Evaluation Result
7.2.1 Economical E�iciency. To study costs reduced by the RISC, we compare the number of vehicles used for
sensing by RISC and the number of all the active commercial vehicles of each time slot in Figure 11 and use the
ratio between these two numbers as a metric. We found that the implementation of RISC in the whole city of
Shenzhen reduces about 50% of vehicles for sensing on average, while that of the implementation of RISC on the
CDB (central business district) region of Shenzhen is nearly 75% on average. This is because, in the CBD region,
the resource of the public transportation system is much more su�cient than that in the suburban area. The
results show that RISC has a signi�cant impact on the reduction in the burden of urban-scale vehicular sensing,
especially in the downtown area.
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Fig. 11. Reduced Cost Fig. 12. RISC in Urban Fig. 13. RISC in Suburban

7.2.2 Impact of the Time of Day. We implement RISC, DEGR, and HSF-ST with the data of the Futian District of
Shenzhen, i.e., the urban area in Shenzhen, and show the resultant Figure 12. We found that RISC outperforms
DEGR and HSF-ST in most time slots, especially in the evening. This is because DEGR and HSF-ST only consider
the optimal assignment in the current time slot. They may reduce the capability of data uploading of some
commercial vehicles. The reduced capability of these commercial vehicles becomes essential when they pass
some unique road segments that can be only covered by them. This leads to lower coverage in the later time
slots. We also found that there exists a peak from 12:00 AM to 2:00 AM due to the operation of a late-night bus
route. Compared with DEGR and HSF-ST, RISC has a better performance in the urban region and has been less
impacted by the time of the day because of its future consideration of the data uploading capability.

7.2.3 Impact of Sensing Areas. To evaluate the performance of RISC in the suburban area, we implement RISC,
DEGR, and HSF-ST with the data in the Baoan District of Shenzhen. Figure 13 shows that all of them have a
signi�cant performance decrease in the later time slots. This is because, in the suburban area, the number of
available commercial vehicles is much smaller than that in the urban area. Even RISC considers the capability of
the commercial vehicles in the future time slot, the small number of commercial vehicles limits its performance.
Nevertheless, RISC has a better performance than DEGR and HSF-ST.

Fig. 14. Limit. of Cap. Fig. 15. Impact of Fleets

�16�42%�

�22�38%�

Fig. 16. Robustness

7.2.4 Impact of Limitation of Uploading Capability. The limitation of the data uploading duration is an essential
factor for both RISC and DEGR. With a longer uploading capability, the commercial vehicles could be assigned
as the sensors for more times. To study the impact of this limitation, we implement RISC and DEGR on data in
Futian District, changing the limitation from 1 hour to 24 hours. The resultant Figure 14 shows RISC is better
than DEGR. With the increase of the data uploading duration, the di�erence between the two methods decreases.
Especially after 11 hours, there is almost no di�erence. This is because, with the increase of uploading capability,
the drawback of DEGR is not evident since those commercial vehicles who pass the unique road segments that
can be only covered by them in the later time slots can still upload their sensor data.

7.2.5 Impact of Fleets. To explore the performance of RISC on homogeneous �eets and compare the performances
of di�erent commercial �eets on tra�c sense, we implement RISC on di�erent individual �eets, and show the
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result in Figure 15. The result shows RISC-taxi has a better performance than the RISC-bus and RISC-truck due
to its larger number of vehicles and more random mobility patterns. Also, since trucks are concentrated on the
highway and the truck, the coverage of RISC-truck is the least one. Besides, we found in the evening, and the
coverage drops signi�cantly. This is because most of the vehicles are out of the capability of data uploading.
Compared the performance of RISC implemented with the homogeneous �eet and the heterogeneous �eets, we
found that the heterogeneous method is better than the homogeneous method since an individual �eet might be
concentrated on some speci�c road segments, which might cause bias in the sensing task.

7.2.6 Robustness. In the previous evaluation, RISC obtains an assignment to assign sensing tasks to commercial
vehicles every minute based on the predicted locations of commercial vehicles within 1 minute. However, the
duration of the scheduling is a signi�cant factor for the robustness of RISC. To explore robustness, we implement
RISC by utilizing the predicted locations within a duration, changing from 1 minute to 30 minutes, as shown in
Figure 16. We found that the average coverage decreases when the duration increases. However, the decrease
becomes smaller after 16 minutes, and �nally, after 22 minutes, the coverage is kept at around 38%. This is because,
within the scheduling duration, RISC predicts a sequence of commercial vehicles in the future duration. From this
predicted location information, RISC obtains the optimal local assignment. Therefore, even RISC causes some
errors in the prediction of locations of the commercial vehicles, RISC still guarantees real-time sensing coverage.

8 APPLICATION: SUSPECT VEHICLE TRACKING
Based on RISC, there are some potential applications to improve urban e�ciency and security, e.g., (i) the suspect
vehicle tracking, which infers a trace of a speci�c vehicle, e.g., hit-and-run vehicles, (ii) the estimation of travel
time between two regions by utilizing the regular vehicles captured by the commercial vehicles in two regions,
(iii) the real-time tra�c situation monitor, etc. To verify the performance of RISC on those applications, we take
the suspect vehicle tracking as an example, and we evaluate it with the real regular vehicle GPS data in Shenzhen
in terms of two metrics introduced in the follows. We envision there exists a sensor in commercial vehicles that
could be used to detect the nearby vehicles, e.g., all commercial vehicles in Shenzhen have been equipped with
dash cams, which have been used to capture front-view for security and insurance purposes. We utilize this kind
of commercial vehicles as mobile sensors for vehicular sensing.

Sensing Vehicle
Nearby Vehicle

 Sensing Radius

α

α  Sensing Sector

Fig. 17. Sensing Scenario

8.1 Sensing Scenario
We give an example of sensing scenarios in Figure 17. In the example, the sensing vehicle is equipped with
a dash-cam with 60 to 120 degrees, which would capture the vehicles in front of it. As Figure 17 shows, due
to the limitation of sensing angles, the sensing vehicle on the right side would only sense a black vehicle and
cannot capture another closer vehicle if a 60-degree camera was used. This sensing method is transparent to the
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sensing vehicles. Note that we use the dash-cam with 60-120 degrees (dependent on cameras) as the example of
sensor-based sensing, but other sensing devices in these two kinds of methods would have di�erent con�gurations.
For example, the 360 degrees lidar would also probe the nearby vehicles with 360 degrees. Therefore, to make our
sensing model more generic, we build a uni�ed framework for vehicular sensing. Given a vehicle equipped with
sensing devices, we quantify its sensing capability with the following two metrics.

Sensing Mileage Rate: Given a trip of an equipped vehicle, let 3C be its driving distance during time slot C , �C be
its indicator in time slot 8 where �8 = C if there exists other vehicles nearby and �C = 0 if not. The Sensing Mileage
Rate is

Õ
C �C3CÕ
C 3C

. In the rest of this paper, we use mileage for short of Sensing Mileage Rate.
Sensing Gap: Given a trip of an equipped vehicle, if there are no vehicles close to it during a sequence of time
slots, this period is called a sensing gap. We use the length of the time slots as the metric to measure the sensing
gap. In the rest of this paper, we use gap for Sensing Gap.

To evaluate the performance of the suspect vehicle tracking application with the two metrics, i.e., mileage and
the gap, we implement RISC with the changing of some essential factors, including the time of day, the angle of
sensing sectors, the radius of sensing sectors, and the sensing �eets. In the rest of the evaluation, we implement
RISC and DEGR in the Futian District of Shenzhen.

Fig. 18. Sensing
Mileage

Fig. 19. Sensing
Gap

Fig. 20. Top-N Fleet
on Mileage

Fig. 21. Top-N Fleet
on Gap

8.2 Sensing Mileage Rate
We evaluate RISC on the performance on the sensing mileage rate (de�ned previously) by comparing it to DEGR
and HSF-ST. Figure 18 shows the results of these methods. In this evaluation, we set the sensing radius is 100
meters, and the sensing angle is 360 degrees. In Figure 18, we show the CDF of mileage for each system, and
the lower curve has a better performance. Based on the results, we found that RISC has a better performance
than DEGR and HSF-ST. In particular, more than 70% of regular vehicles could be captured with a probability
larger than 20% by using RISC. Compared with RISC, both DEGR, half of the regular vehicles are captured with a
probability of more than 20%, as same as HSF-ST.

8.3 Sensing Gaps
We also evaluate RISC on the performance of the gap by comparing it to DEGR and HSF-ST. We show the
performance on the gap of these systems over 24 hours in a day in Figure 19 where a lower curve has a better
performance. Compared with RISC, DEGR and HSF-ST have larger gaps on average. In particular, the gap in
implementing DEGR is 1 minute longer than that of using RISC, especially during the early morning and the
evening. This might be because, during those hours, the number of commercial vehicles is less than other times,
using the DEGR and HSF-ST method might drain out the budget of uploading of some vehicles quickly, which
cannot be used in the later time. Therefore, on the performance of the gap, RISC still has a better performance
than DEGR and HSF-ST with the same con�guration of commercial sensing vehicles.
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8.4 Performances of Top-N Fleets
To study the impact of di�erent �eets on the performance of urban vehicular sensing, we implement RISC with
the three commercial �eets individually, i.e., RISC-Bus, RISC-Taxi, and RISC-Truck. We evaluate these three
systems on the two metrics and show their performances in Figure 20 and Figure 21. In Figure 20 about the
mileage performance, the lower the curve, the better the system. Taxi-RISC turns out to have the best performance
among these systems, and it outperforms Bus-RISC slightly and Truck-RISC signi�cantly. Figure 21 about the gap
performance, the lower the curve, the better the system. Similarly, Taxi-RISC also has the best performance and
Truck-RISC has a signi�cant drawback compared with the other two systems. The di�erence is caused by the
distinct mobility patterns of these three �eets. The bus �eet has �xed routes and is most predictable. However,
due to the randomness of regular vehicles and the limitation of the size of buses, the bus �eet has a smaller
mileage area than that of the taxi �eet. Di�erent from the bus �eet, the taxi �eet has a more similar pattern with
the regular vehicles and similar size with vehicles, leading to its best performance on the vehicular sensing. For
the truck-RISC, due to its operating features, it will concentrate on the main roads, especially the highways.
Therefore, except in some particular regions, e.g., the industrial regions, the truck �eet has the worst performance
on sensing regular vehicles.

8.5 Impact of Factors
To study the impact of di�erent factors on the performances of mileage and gap, we measure RISC with di�erent
con�gurations, including the degree of the sensing sectors, and the radius of the sensing sectors.
The degree of sensing sector: We envision a regular vehicle that could be detected by a commercial vehicle if
the regular vehicle is in the sensing sector of the commercial vehicle, e.g., the regular vehicle is in the front of the
dashcam of the commercial vehicle. The degree of the sector will impact the sensing area of the dashcam. To
measure the impact of the sector degree, we implement RISC and DEGR with four choices of sector degrees, (i.e.,
90, 180, 270, and 360) and show the results in Figure 22. In Figure 22a, the X-axis is the degree of the sector, and
the Y-axis is the average mileage. We found that the sensing mileage of RISC changes from 25% to 5% when the
degree of sectors changes from 360 degrees to 90 degrees. Similarly, the di�erence in mileage of DEGR from 360
degrees to 90 degrees is from 17% to 4%. In Figure 22b, the average gap of RISC with 360 degrees is shorter than
29 minutes; whereas that of RISC with 90 degrees is more than 35 minutes. From the results in Figure 22, we
found that the degree of sensing sectors has a very limited e�ect on both RISC and DEGR.

(a) Mileage (b) Gap

Fig. 22. Impact of Sector Degree

The radius of the sensing sector: Another important factor is the radius of the sensing sector. A larger
radius enables commercial vehicles to probe more vehicles. To evaluate the impact of the radius of the sensing
sector on the performance of mileage and gap, we implement RISC and DEGR with �ve di�erent radii, e.g., 100m
(meters), 200m, 300m, 400m, and 500m. Figure 23a reveals that RISC has a more than 60% of mileage after the
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radius is larger than 400m. In addition, we found that, even with a 400m radius, the mileage of DEGR is still
around 40%. In the performance of the gap, as shown in Figure 23b, changing the sensing radius from 100m to
500m reduces the gap around 15 minutes, where that of DEGR is 13 minutes.

(a) Mileage (b) Gap
Fig. 23. Impact of Sensing Radius

9 DISCUSSION
Lessons Learned: As shown in the evaluation, with the real-time updated information, RISC utilizes less than
50% commercial vehicles for sensing to achieve similar real-time sensing coverage by utilizing all commercial
vehicles. In addition, with a more frequent assignment updating rate, RISC is able to achieve higher sensing
coverage. Since the sampling rate of the location data of commercial vehicles is around 20 seconds per record, it
is possible to set the RISC with a high frequent information updating rate to achieve better sensing coverage.
Limitations: A major limitation of our RISC is to require a large number of commercial vehicles to be installed
with some vehicular sensors, e.g., dash cameras, and have the data uploading capability. We believe this is a
reasonable assumption since large cities have already had this kind of infrastructure installed due to accounting
and security purposes, e.g., NYC [42], Beijing [31], Shenzhen.
Privacy Protection: While vehicle sensing in aggregation has the potential for signi�cant social bene�ts, e.g., to
reduce tra�c jams and increase public security, we have to protect the privacy of drivers and vehicles involved.
Bene�ted from the reduction of insurance premiums, the drivers of the regular vehicles consent to upload their
data. All vehicular data analyzed are anonymized and hashed by service providers, and a randomized serial
number replaces all IDs identi�able for a particular vehicle during our analyses.

10 CONCLUSION
In this paper, we conduct the �rst study on the resource-constrained vehicular sensing with heterogeneous
�eets based on a large-scale multi-modal dataset. In particular, we design a vehicular sensing task scheduling
system called RISC to quantify the mobility patterns of various commercial vehicles a uni�ed framework and
provide the optimal assignment to schedule their vehicular sensing under their sensing and communication
constraints with a guarantee of real-time sensing coverage. We implement and evaluate our RISC system in
Shenzhen based on one-month detailed data from three commercial �eets and design a potential application, i.e.,
suspect vehicle tracking, simulated with GPS data of a regular vehicle �eet. The evaluation shows that compared
to two state-of-the-art solutions, we improve sensing coverage by 10% on average. More importantly, we provide
a few insights based on our case study, which has the potential to o�er some guidance for some real-world
applications based on urban-scale real-time vehicular sensing.
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