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Abst rac t

The development of autonomous finishing operations in manufacturing
process has the potential to decrease the costs and increase the qual-
ity of the operations. In this context, robotic manipulators have been
introduced in sanding and polishing applications. Inspired by the recent
development in machine learning and robotics, this paper is focused on
designing a system capable of estimating the surface roughness using
only a force torque sensor integrated with a robotic manipulator that
performs the sanding of fiberglass panels. We present an investigation
into the usage of convolution neural networks on the force-torque data
to produce a quantitative estimation of surface roughness. To  validate
the results obtained a profilometer is used to gather pre- and post-
operation data. The establishment of a relationship between measured
force data and post-operation surface roughness will be used to develop
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2 Roughness estimation

a prediction of the surface quality for sanding operation using robotic
manipulators. This project intents to act as proof-of-concept that tradi-
tional robotic sensors, can be used beyond their original scope, minimize
the complexity of robotic systems integrated into manufacturing processes.

K e y wo r d s :  robotics, neural networks, fiberglass panels, force-torque sensor,
roughness

1 Intro duct ion
In the composite materials industry, finishing operations such as sanding, pol-
ishing or trimming play an important role in the manufacturing process. These
operations are primarily human-worker driven and require extensive knowl-
edge and understanding of the process. As these tasks are purely qualitatively
driven, based on worker’s experience, they are dificult to automate, hence
requiring machine-driven systems to determine satisfactory part completion. In
the past years, robotic systems have been equipped with sanding tools and have
been tele-operated [1] to perform finishing operations. The research started
focusing towards automating the processes, developing control and planning
architectures for robotic system performing sanding and polishing operations,
based primarily on the geometry of the part. In these cases, the task was pre-
determined without considering task completion or the quality of the work
[2, 3], the robotic system still relying on human operators to decide when the
task has been completed.

Surface roughness is a common metric to assess the quality of a product
[4]. For polymer composites, surface characteristics are especially important
for applications where surface preparation is required after manufacturing
for painting or bonding [5–7]. In the past years, various strategies have been
developed to predict roughness for various types of materials and fabrication
processes. Notably, significant work has been done to estimate roughness
through computational methods. In [8], an overview of various approaches to
predict surface roughness in turning and milling tasks, and for the same
application in [9], presents a correlation between the tool vibration and the
surface profile. A  human study was presented in [10], which shows the correlation
of the friction and force variation in the subjective determination of roughness
through touch. Inspired by this method, an approach for correlating the finishing
forces and the surface quality was established for magnetorheological abrasive
flow finishing in [11], while a robotic system was used in [12] to estimate the
contact forces based on part roughness. Nevertheless, most applications require
special sensors and tooling [13, 14] to collect the data necessary for surface
roughness estimation. Integrating such tooling and sensors into robotic systems
can be time-consuming, expensive, and sometimes, not feasible if the robot is
an off-the-shelf system.
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Most robotic systems involved in any manipulation task are equipped with
force-torque sensors that sense vibrations at the contact point. This represents
useful information as vibrations could be used for surface roughness estimation
as shown in [4]. Using a sensor that is already integrated with the robotic
system can enable the robot to estimate the surface roughness of a part, and it
would allow the realization of a feedback system that can be used to enable
fully autonomous sanding or polishing without the need for human input.
Furthermore, it would allow the creation of a simulation environment where
various manufacturing strategies can be evaluated before being applied in
practice.

The work presented here is focused on analyzing the data provided by
force/torque sensors integrated with a robotic manipulator to predict surface
roughness of glass fiber (GF)/epoxy laminates manufactured by vacuum-assisted
resin infusion ( VA R I ) .  Large composite parts requiring post-processing opera-
tions (i.e., sanding, painting, bonding) are commonly fabricated by this method,
including components for the energy, aerospace, transportation, and maritime
industries [15, 16]. Furthermore, this paper evaluates the performance of vari-
ous machine learning approaches using the force measurements from robotic
manipulators to estimate the surface roughness in composite panels. One of the
main contributions of this paper is to show that raw force data, recorded at low
frequencies, coming from off-the shelf robotic systems can be used with stan-
dard machine learning techniques to generate information regarding the surface
roughness of glass fiber components. Such measurements and prediction frame-
work can be used during automation processes to ensure high quality parts,
and no specific surface roughness sensors need to be integrated in the process.

The paper is structured as follows: Section 2 presents an overview of previous
work done in the field, Section 3 discusses composite laminates manufacturing,
the experimental set-up, and the methodology for data collection, Section 4
discusses the data-driven approaches used in this work, Section 5 presents the
estimation of the surface roughness, and Section 6 discusses the conclusions
and future research avenues.

2 Related work
Autonomous finishing operations have been explored for several decades, both in
research and industry. In [17], a robotic die polishing system was proposed,
which used perception sensors. Furthermore, machine learning approaches were
used to identify the texture of the environment and to identify the direction in
which the polishing tool needs to act. In [18], a 5-axis polishing machine was
introduced, capable of improving the surface quality of sculptured die surfaces
using acoustic emission sensors to detect changes of the polishing status. In [19],
the development of an autonomous sanding robot was presented. The robot
was able to autonomously perform sanding operations on an unknown object
without human intervention, using approaches such as impedance control and
perception systems based on structured light.
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One method to achieve uniform surface sanding or polishing using
autonomous systems is to implement capability to evaluate and understand the
surface characteristics by means of roughness estimation. Several works have
focused on the design of modeling approaches to estimate the surface roughness.
In [20], a prediction model that correlates material removal with applied pres-
sure was developed based on elastic and plastic contact theory. In [8], both an
analytical model and a geometric simulation were used to predict the surface
roughness of a machined surface. A  review of approaches used to predict surface
roughness is detailed in [21], highlighting the emergence of machine learning
approaches. In [22], surface roughness estimation for molds was presented using
a three-layer artificial neural networks (ANN). The approach took into account
the hardness, grit, pressure, tool speed, feed rate, polishing time, and prior
surface roughness. In [23], it was found that neural networks can be used to
effectively estimate surface roughness in computer numerical control ( CNC )
processes. Cutting speed, feed rate, and depth of cut were known input vari-
ables in the model. The authors found that accelerometer data was suficient to
obtain usable information to predict surface roughness. While contact force is
a factor in polishing quality, constant contact stress between the tool and part
being polished is what determines the quality of a polished part. In [24], the
authors developed a model for the contact stress between the polishing tool
and the part, which allowed analysis of the contact stress during the operation.
In [25], it was found that there is a relationship between material removal rate
and vibration power input in a pitch polishing process.

Several papers in the literature have explored the topic of modeling finishing
operations in the context of complex materials and geometries. In [26], an
automatic polishing process for complex geometries was studied and resulted
in a modeled surface roughness. The authors of [27] proposed a process for
modeling and implementing robotic polishing operations in mold manufacturing.
Xian et al. [28] studied the issue of vibration in the polishing process of a
turbine blade with an abrasive cloth wheel. The authors established a method
for analyzing the vibration characteristics of a polishing process in the frequency
domain. Huang et al. [29] proposed an in-process monitoring system to predict
surface roughness, and used this information as online input to a control system.
Similarly, Bagaric et al. [14] developed a robotic sanding cell for thin-walled
structures, equipped with a force control unit, and in-situ vibration, acoustic
emission, and sound sensors, as well as an infrared camera and an optical
sensor for roughness measurement. In [30], a surface roughness estimation
method is presented based on frequency analysis for achieving smart sanding
of wood panels through design of robust control systems. In [31], fast Fourier
transform ( F F T )  data was used to predict roughness and to determine when
to complete a robot-assisted polishing operation. The integration of F F T  data
into predictive roughness models was explored in [4], where the ability of three
different predictive models to estimate roughness using vibration data was
analyzed. It was concluded that out of one-dimensional convolution neural
network (CNN), Fast Fourier Transform Deep Neural Network (FFTDNN),
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and Fast Fourier Transform Long Short Term Memory Network ( F F T L S T M ) ,
the CNN and F F T L S T M  models produced similar and acceptable predictions.
Vibration data, together with thermocouples, infrared temperature sensors,
and accelerometers, were used in [32] to train a data-driven modeling approach to
estimate surface roughness in additive manufacturing. In [33], prediction of
surface quality of special-shaped stones by robotic grinding leveraged a
combination of support vector machine models based on improved whale
optimization algorithm. The input data used consisted of spindle speed, feed
speed, cutting depth, and cutting width, while surface roughness measurements
obtained with a roughness meter were used as outputs.

In this work, we propose to extend the studies presented above by focusing
specifically on robust approaches for surface roughness estimation when robotic
systems are used for sanding applications on polymer composite laminates using
raw data. The work presented here investigates the benefits of using machine
learning techniques with only force/torque data obtained at low sampling rates
by the robotic system.

3 Exp er imental  set-up

3.1 Composite laminates manufacturing
GF/epoxy laminates were used in this study. Saertex stitched biaxial glass fiber
fabric (830 gsm areal density) was purchased from FiberGlast (Brookville, OH,
USA). The laminates were manufactured by vacuum-assisted resin infusion
( VA R I )  with System 4500 epoxy (FiberGlast), as illustrated in Fig. 1.
An aluminum plate was used as a mold and three layers of release agent
(Loctite 700-NC) were applied to facilitate demolding after fabrication. The
fabric plies were cut into 23 cm ×  23 cm squares and placed on the plate in a
[±45]3 layup. The fabric was covered with a peel ply layer (Econostitch® )
and resin flow medium mesh (Airtech Resinflow), then sealed with a nylon
vacuum bagging film (Airtech Wrightlon® WL5400) and tacky tape (Airtech
AT200Y) .  The vacuum bag was connected to an epoxy resin pot on one end
and to a vacuum pump on the other, with spiral wrap and polyethylene tubing.
After full vacuum was achieved, the resin was allowed to flow into the
vacuum bag and fabric layers until full impregnation was completed. The
laminate was then cured at room temperature for 6 to 8 hours.

3.2 Robotic system and design of experiments
For data collection, a robotic sanding setup, seen in Fig. 2, was used, combining a
UR5e manipulator (Universal Robotics) and a Dremel Fortiflex orbital sander
attached to the end-effector using a custom-made bracket.

A  force-torque sensor was integrated in the end-effector of the robotic
system, capable of recording the forces applied in the X ,  Y ,  Z  directions of
the end-effector. The sander speed was set to 23, 000 R P M  for each test, as
recommended per manufacturer specifications. The sandpaper diameter was
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Fig.  1: Schematic of VA R I  setup to fabricate GF/epoxy laminates (pump from
Grainger).

F i g .  2: Robotic sander system performing sanding on a small-scale GF/epoxy
wind blade (2 meters in length).

25.4 mm and the grit size was 240. The sandpaper was attached to the bottom
of the sanding tool. The robot was programmed to apply 2 N force in the Z
direction, 0 N in the Y  direction, and 0 N in the X  direction during sanding.
The force sensor was recorded using the UR5e’s Real Time Data Exchange
network protocol at 100 Hz (maximum operating frequency of the system).
The data was collected by sanding 50 different areas on the GF/epoxy panels,
each area being sanded for 10 seconds in a single pass.

4 Predict ive  roughness estimation
In this section, we present the benefit of machine learning techniques to estimate
the roughness of GF/epoxy samples, as regression problems, by leveraging the
information collected during sanding with the force-torque sensor placed at the
end-effector of the manipulator.
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4.1 Convolution Neural Networks
Here, a brief overview of the general structure of a CNN is presented to highlight
the mechanism underlying its success. A  CNN is a type of multi-layer neural
network that has been extensively used in image processing applications, such as
image recognition and identification [34]. Recently, advancements in the CNN
structures have enabled such architectures to be used for multidimensional
data classification and time series forecasting. It generally consists of layers
like convolution, pooling, and fully connected layers. CNNs perform linear
operations where the input is multiplied by a set of weights. Filters are specially
designed to extract specific features from the input data. In a CNN, different
features are determined by applying many filters in parallel. More features
are obtained by adopting the filters to not only the input data, but also, to
feature matrices obtained by filtering the inputs. To  increase the non-linearity of
the CNN, after the convolution process is completed, rectified linear units
(ReLUs) can be used together with maximum functions. To  solve the down-
sampling problem, using the pooling layer, feature maps with fewer features and
lower resolution are created. The pooling layer can also be applied more than
once. Frequently used pooling operations are average pooling and maximum
pooling. After the pooling is completed, its output is usually converted to one-
dimensional data with the flatten layer and is transferred to the fully connected
layer. At this stage, each activation function is interconnected and enables the
extraction of high-level features from the data. At the end of this process,
classification can be done with a sof t −  max layer or forecasting can be done
with a regression layer.

F ig.  3: The structure of the CNN used for roughness estimation in this study.

The CNN used for the proposed work, shown in Fig. 3, has one sequential
input layer, one 2D convolution layer, an activation layer (hyperbolic tangent,
tanh), a maximum pooling layer, a dropout layer, a fully connected layer, and a
regression layer. The hyperparameters chosen are eight filters with 3 ×  41 size
each, a 0.003 learning rate, 0.35 dropout rate, and 2 strides. The input to the
network is the three channels force data (X,  Y ,  Z  - axes) and the output is
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the predicted roughness value. Extracting features from the input data before
the input layer generally increases the performance of the network, however, in
this case, it is unnecessary for the force data due to the CNN’s powerful
feature extraction capability.

4.2 Long Short-Term Memory Network
Recurrent Neural Networks (RNNs) are a class of neural networks which can
learn time series and sequential data. They have gained recognition in natural
language processing and time series forecasting [35]. Some special types of
RNNs include Long Short-Term Memory ( L S TM)  networks, Gated Recurrent
Networkss (GRUs), and bidirectional models of LSTMs and GRUs.

L S T M  has the advantage that it can learn long-term dependencies, being
developed to solve the vanishing gradient problem. This network structure
works by ignoring ”bad” data and learning only from the useful data. The
general structure of an L S T M  network is given in Fig. 4 and consists of three
layers: forget gate, input gate, and output gate. In the input, the information
to be extracted from the cell-state is selected using a sigmoid function by the
forget gate. Then, by the input gate, new information is created to add to the
cell-state using i t  and c ′ t functions, as shown in Equation (1). The sigmoid
function decides whether to add new information to the current data or not.
The tanh function creates the values to be added to cell-state using the input
data. In the output gate, the output data is calculated by Equation (2).

i t  =  σ (Wi ·ht−1 , xt
 
+  bi ) ct

=  tanh(WC · [ht−1 , xt ] +  bc )

ot =  σ(Wo·ht−1 , xt
 
+  bo)

ht =  ot · tanh(ct)

(1)

(2)
where ht is the hidden state of the current timestamp and x t  is the current
input, while bi , bc, and bo are the biases, Wi, Wc and Wo are the weight matrices of
the input, current state, and output, respectively, and subscript t −  1 refers to
the previous timestamp.

The sigmoid function decides whether the relevant data should pass to
the output or not. In this work, the L S T M  structure consists of two L S T M
layers with 120 and 80 hidden units, a dropout layer (rate of 0.3), a fully
connected layer, and a regression layer. The inputs to the L S T M  are the three
channel force data and the output is the predicted roughness value. The L S T M
structure used for the proposed work is shown in Fig. 5

4.3 Hybrid Neural Network
Due to the capabilities of extracting the features from raw force data by a CNN,
such an approach can be coupled with the L S T M  structure for prediction of
surface roughness.
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F i g .  4: The general structure of LSTM.

Fig.  5: The structure of the LSTM network used for surface roughness estima-
tion.

A  hybrid network was designed by using 2D CNN and L S T M  networks to
combine their capabilities in feature extraction for time series. The structure of
the hybrid CNN-LSTM network is given in Fig. 6. The inputs of the network is
the three channel force data and the output is the roughness values. The
hybrid CNN-LSTM model has an input layer, a sequence folding layer, a 2D
convolution layer, an activation layer (tanh), a maximum pooling layer, a
dropout layer (with rate 0.03), a sequence unfolding layer, a flatten layer, a
L S T M  layer with 20 hidden units, a dropout layer (with rate of 0.3), a fully
connected layer, and a regression layer. The hyperparameters of the hybrid
network are the same as the CNN model, except for the dropout rate, chosen as
0.3.
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F i g .  6: The structure of the hybrid CNN-LSTM network used for surface
roughness estimation.

F i g .  7: Example of GF/epoxy samples sanded with the robotic manipulator:
(a) shows a laminate divided in 12 sections, while (b) is divided into 10 sections.
Each section represents a sanded area where roughness measurements were
acquired.
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(a) (b)

(c) fig:tt2-cnn

Fig.  8: Training results of the CNN: a) Distribution of predicted R a  values; b)
Error graph of the predicted R a  values; and c) Loss function output during
training.

5 Results

5.1 Datasets Preparation
A  total of 50 GF/epoxy specimens were sanded with the system presented
in Section 3 and raw force data was collected during the sanding process. A
few examples of manufactured laminates sanded by the robotic system are
shown in Fig. 7. The force sensor acquired three-axis vibration data (in the
X ,  Y ,  Z  -axes), with 100 samples per second for each axis, and a total of
300 data points collected during each test. Data collected at a higher
sampling rate would result in a more detailed understanding regarding the
behavior of the system, therefore, better training and more accurate
predictions could be obtained. However, the robotic system used in this
research works at a maximum frequency of 100 Hz. This work aims to
demonstrate that robotic systems operating at low frequencies can be used in
manufacturing applications. Hence, it is preferable to use the data collected by
the robotic system rather than introducing an additional higher resolution
sensor, which would be out of the scope of this study.
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(a) (b)

(c)

F i g .  9: Training results of LSTM:  a) Distribution of predicted R a  values; b)
Error graph of the predicted R a  values; and c) Loss function output during
training.

To  validate the roughness of the material, a portable surface roughness tester
(Mitutoyo Surftest SJ-210) was used to obtain the ground truth roughness
measurements before and after sanding. The average roughness ( R a  in µm) was
recorded over the same area the robotic sanding was performed. The inputs for
the CNN, LSTM, and hybrid neural networks were obtained from the force sensor
measurements and the outputs for all networks were the R a  values from the
roughness tester. The problem to be solved by these networks was posed as a
regression problem, hence the data gathered was organized in ascending order
based on the roughness measurement values.

The performance of the approaches discussed in Section 4 was evaluated
in three different ways. A  first approach was considered by analyzing and
visualizing the loss value graphs, Mean Absolute Percentage Error (M A P E )
graphs, and analyze the Root Mean Square Errors (RMSE)  values when the
full dataset was used at the training stage. This step is needed to confirm that
the network can learn from the dataset used in the study. A  second evaluation
focused on dividing the dataset into training and testing specimens, using 90%
data points for training and 10% for testing. This stage is important to confirm
that the trained network can predict the test data. Lastly, cross-validation
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(a) (b)

(c)

F ig.  10: Training results of CNN-LSTM: a) Distribution of predicted R a  values;
b) Error graph of the predicted R a  values; and c) Loss function output during
training.

was used to evaluate the performance of the system on all datasets. Al l  hyper
parameters used in this work for the CNN, LSTM, and hybrid CNN-LSTM,
including training parameters, are given in Table 1.

5.2 Experimental Results
Evaluation during training: The performance of the three models during the
training process was evaluated using all the data points available. The predicted
value graphs are given in Fig. 8(a), Fig. 9(a), and Fig. 10(a) for the CNN,
LSTM, and hybrid approaches, respectively. The blue line shows the measured
roughness values of the dataset (ground truth), and the red dots are the
predicted roughness values by the respective networks. Qualitatively, it can be
seen that both L S T M  and hybrid approach have similar accuracy, with the
L S T M  shows slightly better performance. This can also be analyzed by
investigating the performance of the loss function.

The loss function shows the difference between the output values of the
trained network and the ground truth values. This function gives insight into
how well the data has been learned. Its output is expected to converge toward
zero. Loss function graphs of the CNN, LSTM, and hybrid networks are given in
Fig. 8(c), Fig. 9(c), and Fig. 10(c). While all three models converge to zero and
have acceptable convergence values, the CNN and L S T M  networks have a more
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(a) (b)

(c) (d)

F ig.  11: Training results of CNN for selected intervals: Test Set 3 and Test Set 5.
(a) Distributions of predicted values when Test Set 3 is used; (c) Distributions
of predicted values when Test Set 5 is used; (b) Error graphs of the predicted Ra
values when Test Set 3 is used; (d) Error graphs of the predicted Ra values when
Test Set 5 is used.

Input size
2D Convolution layer

Activation layer
Max. pooling layer

Number of neurons ( L S T M )
Dropout layer

Ful ly  connected layer
Mini batch size

Optimizer
Max. epochs

Initial learning rate
Shufle

Hybrid C N N - L S T M L S T M C N N
[3 101 1]                         3                      [3 101 1]
F S  =  8 - F S  =  8

tanh -                           tanh
F S  =  2, Stride=2 - F S  =  2, Stride=2

20                         120/80                        -
0.03/0.3                   0.3/0.3                     0.35

Number of outputs =  1
64

Adam
500

0.006
Every epoch

Table  1: Hyper parameters for CNN-LSTM, LSTM, and CNN networks,
including training parameters. F S  refers to filter size.
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(a) (b)

(c) (d)

F i g .  12: Training results of L S T M  for selected intervals: Test Set 3 and
Test Set 5. (a) Distributions of predicted values when Test Set 3 is used; (c)
Distributions of predicted values when Test Set 5 is used; (b) Error graphs of
the predicted Ra values when Test Set 3 is used; (d) Error graphs of the
predicted Ra values when Test Set 5 is used.

stable behavior, while the hybrid approach presents a more oscillatory behavior
over the iterations. The CNN shows good convergence performance during
training, as demonstrated quantitatively in the following paragraph. The Mean
Absolute Percentage Error (M A P E )  and Root Mean Square Errors (RMSE)
calculations were used to compare the estimation capabilities of the networks.
The formulations of these metrics are given in Equation (3) and Equation (4).

M A P E  =  
1 n      y j  −  x j  ×  100 (3)

j = 1 j

u n

R M S E  =  t (yj  −  x j )2 (4)
j = 1

where yj  represents the prediction obtained from the corresponding network
for the j -th sample, x j  represents the ground truth measurement obtained with
the roughness tester for the same sample. The results are presented in Table 2,
while the M A P E  graph is presented in Fig. 8(b), Fig. 9(b), and Fig. 10(b).
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(a) (b)

(c) (d)

F i g .  13: Training results of CNN-LSTM for selected intervals: Test Set 3 and
Test Set 5. (a) Distributions of predicted values when Test Set 3 is used; (c)
Distributions of predicted values when Test Set 5 is used; (b) Error graphs of
the predicted Ra values when Test Set 3 is used; (d) Error graphs of the
predicted Ra values when Test Set 5 is used.

R M S E
M A P E  [%]

C N N        L S T M
0.107        0.455
2.53          18.04

Hybrid C N N  - L S T M
0.814
12.77

Table  2: R M S E  and M A P E  for all three networks when all data points were
used during training.

These results indicate an average M A P E  over 10% for the hybrid approach, and
over 18% for the LSTM. During these tests, it was observed that the L S T M
network performs similarly to the CNN-LSTM, while CNN can overfit the data, as
seen on Fig. 14. The validation frequency is set for every 10 iterations, and it is
observed that the test and validation errors are high while the training error
is low, which means that the network is overfitting.

Training-Testing Evaluation: The results of the above evaluation showed
that all networks can be trained using the dataset, but do not provide guidance
about the prediction performance. A  second evaluation is needed to see if the
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F i g .  14: Training-validation graph of the CNN network; zoomed image shows
more clearly the differences between the training loss and validation loss

networks can predict the test data that is not used in the training process. To
properly evaluate the prediction performance of the networks, the available
dataset is divided into two groups: training and testing datasets. Testing is
performed with data not used for training. Due to the limited dataset, the
performance was examined by separating the data in a 90% −  10% training-
testing ratio.

To  obtain meaningful results, it was ensured that the testing data covered
all ranges of surface roughness measured. To  achieve this, the data was grouped
as follows. Initially, the complete dataset was sorted from the smallest to the
largest value according to their R a  values. The dataset was further divided into
five sections, based on the R a  values, where each section contained 10 samples.
The division of these sections is presented in Table 3. The first and the fifth
sections contain the low-range R a  values and high-range R a  values respectively,
while the other three sections contain the medium-range R a  values. The next
step was to randomly select the testing data such that for all testing groups,
samples were taken from each of the subsections described above. Hence, it was
ensured that each testing dataset contained data from all ranges of the collected
roughness values. Al l  ten testing sets were used to evaluate the performance
of the system, as seen in Table 3. When one of these testing sets was used for
testing, it was not used for training.

The results for the training performance of the CNN, LSTM, and hybrid
approached are seen in Fig. 11, Fig. 12, and Fig. 13, respectively, for the case
when Set 3 and Set 5 were used for testing. The L S T M  presents large prediction
errors based on the qualitative results and M A P E  metrics. The L S T M  overfits
data at the end of the training process, as shown in Fig. 12. This is an expected
result for L S T M  because it cannot extract features when little data is available.
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(a) (b)

(c)

F ig.  15: Cross-validation results for (a) CNN, (b) LSTM, and (c) CNN-LSTM
networks.

The CNN presents good performance for Test Set 3, with lower performance
for Test Set 5, while hybrid CNN-LSTM has the lowest mean error values for
both datasets. These results are as expected due to the large variability in the
datasets. To  ensure that the performance of machine learning approaches are
viable for such datasets, cross-validation is presented in the next paragraphs.

Cross-validation: The training-testing evaluation shows that the proposed
networks can predict the test data. To  understand the capabilities of the
network to avoid overfitting and estimate the capabilities of the model on new
data, cross-validation is performed to see the overall prediction performance of
the trained models. Five different testing datasets were selected randomly, as
presented in Table 4. For each validation dataset, the remaining 45 data are
used for training.

For all the testing sets, the M A P E  values were calculated for each of the
testing sets and averaged. This process was repeated for the CNN, LSTM,
and hybrid networks, shown in Fig. 15. For all testing cases, hybrid CNN-
LSTM has the lowest M A P E  values between 14.83% − 24.91%, with an average
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Range Lower Medium Higher
Number 1-10

Set 1           1.697
Set 2           2.257
Set 3           2.410
Set 4           2.456
Set 5           2.544
Set 6           2.638
Set 7           2.798
Set 8           2.859
Set 9           3.207

Set 10          3.317

11-20 21-30 31-40 41-50
3.372 4.207 5.227 6.389
3.462 4.219 5.229 6.401
3.520 4.306 5.353 6.721
3.569 4.349 5.688 6.735
3.634 4.516 5.776 6.785
3.885 4.605 5.869 6.945
3.908 4.867 6.013 7.068
3.985 4.975 6.232 7.131
4.094 5.004 6.330 8.046
4.099 5.034 6.336 8.165

Table 3: Rearranged training data R a  values.

Testing Set Number
3
4
5
7
8

Samples
(3, 13, 23, 33, 43)
(4, 14, 24, 34, 44)
(5, 15, 25, 35, 45)
(7, 17, 27, 37, 47)
(8, 18, 28, 38, 48)

Table 4: Testing sets considered for cross-validation based on sample number.

value of 20%. CNN has M A P E  values between 19.14% and 37.71%, with an
average of 27.12%. The LSTM-based model has M A P E  values between 30.97%
and 51.37%, with an average of 39.86%, showing the lowest performance out of
all the networks tested. Furthermore, the CNN and hybrid CNN-LSTM
models have better prediction results for mid-range R a  values. The L S T M
presents poorer results, as high frequency is challenging for feature extraction
without data preprocessing, and some characteristic data can be affected by
environmental noise at the lower range. Overall, the cross-correlation results
show that the CNN-LSTM model can be used for accurate surface roughness
estimation in sanding processes.

6 Conclusions
In this paper, we demonstrated that using force-torque measurements recorded
using a robotic manipulator performing sanding operations can be used to
estimate surface roughness in polymer composite laminates. Furthermore, the
design and evaluation of deep learning networks for surface roughness prediction
using vibration data recorded during the sanding process were presented. A
CNN, LSTM, and hybrid CNN-LSTM networks were used and evaluated based
on training and prediction performances. Al l  three models displayed good
training performances, although the CNN-LSTM based approach had the best
prediction performance when comparing the cross-validation outcomes. CNN
had the second-best prediction performance owing to its feature extraction
capability. The L S T M  network had poorer results, due to the nature of LSTM,
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which cannot handle raw data. However, L S T M  improved the CNN network
in the hybrid configuration to achieve better results by combining the feature-
extracting capability of CNNs and the time series learning ability of LSTM.
As a result, prediction results of the CNN-LSTM model had M A P E  values
between 14.83% and 24.91%. Hence, the CNN-LSTM based surface roughness
framework leads to suficient predictions and may be helpful during sanding
processes. As future work, a real-time surface roughness prediction system
based on the CNN-LSTM model will be designed by also collecting a larger
dataset to improve accuracy. Furthermore, other learning approaches, such as
spiked neural networks, will be designed to enable reliable estimations when
limited datasets are available.
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