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Abstract
Dictionary learning, aiming at representing a signal in terms of the atoms of
a dictionary, has gained popularity in a wide range of applications, including,
but not limited to, image denoising, face recognition, remote sensing, medical
imaging and feature extraction. Dictionary learning can be seen as a possible
data-driven alternative to solve inverse problems by identifying the data with
possible outputs that are either generated numerically using a forward model
or the results of earlier observations of controlled experiments. Sparse diction-
ary learning is particularly interesting when the underlying signal is known to
be representable in terms of a few vectors in a given basis. In this paper, we
propose to use hierarchical Bayesian models for sparse dictionary learning that
can capture features of the underlying signals, e.g. sparse representation and
nonnegativity. The same framework can be employed to reduce the dimension-
ality of an annotated dictionary through feature extraction, thus reducing the
computational complexity of the learning task. Computed examples where our
algorithms are applied to hyperspectral imaging and classification of electro-
cardiogram data are also presented.

Keywords: hyperspectral imaging, nonnegative matrix factorization,
sparse coding

(Some figures may appear in colour only in the online journal)

1. Introduction

In the current data driven age, dictionary learning is a very natural answer to the demand
of extracting information out of massive data sets available in a variety of applications. The
process of representing a signal in terms of dictionary entries has become very popular in
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several areas, including signal analysis [30], image denoising [17, 20], medical imaging [23,
32, 35], remote sensing [3, 27], artificial intelligence [31, 34] and astrophysics [26, 29], and
it has affected how we now regard tasks like feature extraction and model selection. In some
applications the signals are known to have a sparse representation or more generally, are com-
pressible in terms of properly defined underlying dictionary, in the sense that only a few com-
ponents contribute in a significant manner in the representation. When that is the case, ideally
the algorithms should exploit the sparsity. The process of selecting the dictionary and find-
ing a sparse representation of signals, often referred to as sparse coding, has been the topic
of active research over the past decade and a half. One advantage of sparse representation
is that the signal can be explained concisely in terms of few feature vectors, which leads to
effective compression of the information, but also helps the interpretation of the signals. There
are several examples of signals admitting a sparse representation over given bases [15, 34].
In many imaging and interpolation applications, it is typical to have a sparse representation
over discrete cosine or wavelet transform bases. One of the most common applications of
sparse dictionary learning is compressed sensing [18], allowing a compression and recovery
of high dimensional information from few linear observations. The core recovery algorithms
of sparse coding include the basis pursuit [16], comprising minimization of the ¢;-norm of
the unknown of interest subject to linear constraints, referred to as LASSO in computational
statistical literature [28].

Recently there has been an interest in algorithms for sparse dictionary learning which not
only favor representations in terms of a few dictionary members, but also simultaneously
reduce the size of the dictionary by extracting the most relevant features. In fact, when a
training set of possible outputs is available, a judicious reduction of the underlying diction-
ary is often feasible due to the redundancies between the training set entries comprising
the uncompressed dictionary. Adaptive dictionary learning may not only yield more accur-
ate representations, but it may also reduce substantially the computational complexity of the
problem [1, 20].

Dictionary learning is inherently a linear inverse problem where the unknowns to be estim-
ated are the coefficients of the dictionary entries, or atoms. In this paper we adhere to the
Bayesian paradigm whereas all unknown parameters are modeled as random variables, hence
described in terms of probability distributions [10]. In the Bayesian framework any a priori
belief about the solution is encoded in the prior probability distribution. The sparsity require-
ment can be seen as a prior belief, hence favoring a solution with very few nonzero entries can
be reduced to the problem of finding a suitable prior. A natural choice for this purpose is the
family of hierarchical conditionally Gaussian priors with independent components, each with
a zero mean [9, 11] and unknown variances that in turn are modeled as mutually independent
random variables. If the signal is believed a priori to be sparse, a natural choice for the prior
of the variances, usually referred to as hyperprior, is a positive fat tailed distribution with a
small expected value, thus favoring small outputs with occasional outliers [4, 7, 14].

In this paper we show that conditionally Gaussian priors with generalized gamma hyperpri-
ors are very well suited for sparse dictionary learning applications. A particular novelty of this
paper is to show that using the computational efficiency of Krylov subspace iterative solvers
for linear systems equipped with prior conditioning [6] within an iterative alternating scheme
(IAS) algorithm [7, 14] it is possible solve sparse dictionary learning problems of high dimen-
sionality at very small computational cost. Moreover, we show the viability of the approach in
applications where the dictionary is known to consist only of nonnegative signals and the sig-
nal to be encoded is believed to be nonnegative. In those cases the nonnegativity can guide the
adaptation of the dictionary, generating effectively a sparse non-negative matrix factorization
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(NMF) [21]. In the computed examples, the viability of the approach is demonstrated with an
application to hyperspectral imaging and classification of electrocardiograms (ECGs).

The paper is organized as follows. In the next section we formulate the dictionary learn-
ing problem with positivity and sparsity both in the supervised and unsupervised contexts.
In section 3 the problems are recast in the form of computing maximum a posteriori (MAP)
estimators for appropriately selected Bayesian models, and variants of the IAS algorithm to
solve the problems are presented. Finally, section 4 contains computed examples of both super-
vised and unsupervised dictionary learning.

2. Dictionary learning, sparsity and positivity

Dictionary learning algorithms aim to solve a rather wide class of problems for which the data
matrix X € R"*? is approximated by the product of two matrices,

X=WH, WeR>k HeRMr,

)

The factor matrices W and H may be subjected to additional constraints, for example non-
negativity and/or sparsity. In the context of dictionary learning, the matrix W is referred to
as the dictionary, and its columns, denoted by wU ), 1 <j < k as dictionary entries or atoms,
while the entries of H are the coefficients. Depending on the problem, the atoms may either be
given, or alternatively, learning the dictionary based on a training set is part of the problem. In
the following, we recall the basic concepts and introduce the notation to be used in the rest of
the article.

Non-negativity: In several applications, the non-negativity of the matrix entries of W
and/or H may be required. We will use the notation A > 0 to indicate that all entries of A
are non-negative.

Sparsity: Define the ¢y-norm of a vector x € R™ as the cardinality of its support,

|lx]lo = card(supp(x)) = #{j € {1,...,m} such that x; # 0}.
We say that a vector x is sparse if ||x||o < m, a concept that is to some extent subjective due
to the interpretation of the meaning of ‘<’. More generally, we say that the vector x is com-
pressible with a threshold value § > 0 if

lIxllo,s = #{j € {1,...,m} such that |x;| > 0} < m.

Next we summarize some of the dictionary learning approaches proposed in the literature,
and their applications.

2.1 Unsupervised learning

Dictionary learning approaches have been successfully employed in applications related to
inverse problems. In inverse problems, the goal is to estimate an unknown quantity x from
indirect and noisy observations, the most standard model being

b=flx)+e,

where f: R” — R"” is a presumably known function, and ¢ represents additive noise. Instead
of pursuing the solution by optimization based methods or Bayesian statistical methods, in
some important applications [23, 26], a different, data-driven approach is assumed: by using
a computer model, a large family of possible outcomes,

{W(l),...,W(N)}7 w) :f(x(i))’

3



Inverse Problems 39 (2023) 024006 N Waniorek et al

is first generated, and the observation b is then matched with the outcomes, through the solution
of a minimization problem of the form

minimize || — WHh|| subject to constraints & > 0, ||A|jo < N.

A sparse coefficient vector 4 is tantamount to saying that it is possible to explain the data
with a few candidate feature vectors, or a mixture of elementary models, or endforms, as in
hyperspectral imaging [3, 27]. Thus, the atoms in the given dictionary W represent a template
set to be used to explain an observation, and the problem has a formal similarity to matched
filtering or query matching algorithms. When the dictionary is very rich, the matching process
may become computationally demanding. In those cases it may be necessary to compress
the dictionary in a learned way. Let X € R"*? represent a computed or measured data set,
and assume that we want to reduce the number of atoms by removing the redundant ones.
If we assume, furthermore, that the columns x) of X represent non-negative quantities, the
corresponding dictionary learning problem can be written as

(W*,H) = argmin{ X — WHI|r, (W, H) € R x R*7} subject o W>0,H>0, (1)

where the rank k is chosen arbitrarily. The non-negativity of W and H is required in order to
allow an interpretation of the atoms w(/) in physical terms. The minimization problem (1) can
be interpreted as a NMF; see e.g. [13, 21] and references therein. To favor sparse solutions,
we can recast (1) in the form

(W*,H*) = argmin{ | X — WH||r, (W,H) € R"* x R*”} subject to W >0,
H > 0,H sparse. 2)
Sparsity promoting NMF algorithms have been proposed in the literature, see, e.g. [22]. In this

paper, we address the sparsity in terms of hierarchical Bayesian hypermodels, as discussed in
detail in section 3.

2.2. Supervised learning

Unlike in unsupervised dictionary learning, in the supervised dictionary learning (SDL) con-
text, the training data X, are assigned class labels, hence it is natural to partition the columns
of the data matrix according to their classification, i.e.

Xirain = [ Xy o X ] ERnXpa (3)

with each submatrix X, € R"*P¢ comprising the data in class ¢, 1 < ¢ < L. SDL algorithms are
typically used for classification of vectors with unknown labeling into the classes.

We discuss briefly two SDL algorithms most relevant for our work, the sparse
representation-based classification (SRC) algorithm, developed by Wright et al [34], and
Metaface, developed by Yang et al [36].

The SRC algorithm uses the full training set (3) as a dictionary, W = Xi;ain, Wy = Xy. Given
the test data matrix Xese € R"*? whose columns are the vectors x(/) with unknown class attrib-
utes, the SCR algorithm seeks to represent x{) in terms of the dictionary,

. KU
D~ WhY = Zweh(ﬂ)7 n) — , LU0 e R,
=1 hUL)
using sparse coding. In matrix form, this is equivalent to solving the problem

H* = argmin{|[Xiesc — WH||#*, H € R"*“} subject to H sparse,H > 0. (4)

4
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The vector x/) is then assigned to the class that minimizes the Euclidian norm of the residual,

re(x¥) = [l — W htO| 2,

If the dictionary X is overcomplete, the solution of (4) may be numerically demanding.

In order to reduce the computational burden of the SRC algorithm, Metaface proposes to
find smaller subdictionaries to represent the classes in the original dictionary. The subdiction-
ary W, corresponding to the /th class is learned by solving a minimization problem of the
form (1) over each class separately,

(Wj,H;) = argmin{ | X, — W¢H,||r*} subject to W¢,H, >0, H, sparse, 1 < ¢ < L.

A vector with unknown class attribute is then represented in terms of the learned dictionary
W* = [W7,...,Wj], and, as in SRC, assigned to the class that yields the smallest residual.

3. Sparsity, positivity, and hierarchical Bayesian models

The algorithm that we propose for computing non-negative and possibly sparse matrix fac-
torizations is based on a hierarchical solver for linear inverse problems. Consider the linear
inverse problem of estimating x € R” based on the observation

b=Ax+e, e~N(0,%), )]

where A € R™*" with m < n is the forward model operator, x € R” is the unknown of interest,
3 € R™*™ is the symmetric positive covariance matrix of the additive Gaussian noise €, and
b € R™ is the indirect noisy observation. In the Bayesian framework, the likelihood density of
b conditioned on x is of the form

(b | X) o exp (;(b —A)TE (b Ax)) = exp (;nsz; - SAx||2> ,

where ¥ ~! = STS is a symmetric factorization of the noise precision matrix. To set up a
prior model capable of accounting for possible sparsity and positivity, we first postulate a
component-wise conditionally Gaussian prior model, xj\ﬂj ~N (O,GJ), 1 <j < n, where 0; is
the prior variance of x;, yielding a conditional prior model

1\ 1
Tyo(x | 0) = (%) m 229
1

In order for the model to favor sparse solutions, we define a hyperprior model for the variances
such that most of the time small positive values are favored, but occasional large outlier values
are allowed. For reasons of computational convenience, distributions from the generalized
gamma family have been proven to provide a versatile class of hyperpriors [7]. The model
case is provided by the gamma distribution,

n Qﬁ 1 0.
_ I l j
= mofh), o 0) = ﬁBF(ﬁ) =P <_19j> ’ ©

where 3 > 0 is a shape parameter, and ¥; are scale parameters. Combining the likelihood model
with the prior model, Bayes’ formula yields the posterior distribution

5
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Te0lp X Tpje (D | X) o (x| 0)ma(0)
o exp —1||Sb — SAx|> — lzn: x—]z + nznzlogﬂ - i i}
2 24~0; , N
j=1 j=1 j=1
3
_ 5 3 7

n=_p X @)
where we require that 3 > 3/2 to guarantee that 7 > 0. The MAP estimate (xymap, Omap) is the

maximizer of (7) or, equivalently, the minimizer of the Gibbs energy,

&(x]0)

n xz n 9
£(00) =180 SAA + 35 ~23 (rioes— ). ®
j=t 7 =1 !

&(0)x)

It was shown in [5, 14] that the Gibbs energy has a unique global minimum, and the minimizer
can be found by the IAS algorithm, that proceeds by alternating the two minimization steps:

(a) update x, setting x' = argmin&’(x | 0'~!),
(b) update 6, setting §' = argmin&’(6 | x*).

Observe that the updating step (a) is a standard least squares problem, while step (b) can be
performed component-wise by solving the first order optimality condition

0
—&00)x)=0 9
550 14)=0. ©)
which has an explicit solution,
1 2(xt)2
0i= v | n+ nMQ , 1<j<n. (10)
) Y

It has been proved in the cited articles that the parameter 7 controls the sparsity of the solution,
and that at the limit as n — 0+ the solution computed by the IAS algorithm converges to the
{1-penalized least squares solution,

e "y
x; = argmin{ = ||Sbh — SAx|* + V2 L5,
S O

while for larger values of 7, the minimizer resembles an /,-penalized least squares solution.
In particular, for small 7, the IAS can be thought as a computationally efficient alternative for
¢ -penalized regularization, or basis pursuit algorithms [16]. The selection of the scaling para-
meters 1J; are related to the noise level and sensitivity, see [14] for details. A computationally
efficient Krylov subspace-based iterative solver for large least squares problems, e.g. a prior-
conditioned CGLS algorithm (pCGLS) with an early stopping criterion can be used to approx-
imate updates (a) of x [6]. It has been shown that in few iterations the IAS-pCGLS algorithm
learns the sparsity structure of the unknown x, and takes advantage of it in the subsequent iter-
ations, significantly reducing the computational burden. We omit the details, that can be found
in the cited articles.
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The IAS algorithm described above can extended to more general hyperprior models. More
specifically, the gamma hyperprior (6) can be replaced by other heavy tailed distributions, for
example by any member of the family of the generalized gamma distributions,

ol (3 () e o

~

By setting r =1, (11) yields the gamma distribution, while r = —1 gives the inverse gamma
distribution. The MAP estimate for generalized gamma hyperpriors were analyzed in detail in
[7], where it was shown that while r < 1 favors more strongly sparse solutions than r =1, the
computation of the MAP estimate yields a non-convex optimization problem with no guarantee
of unique minimizer. In particular, in the case where r = —1, the MAP estimate corresponds
to the minimizer of the Gibbs energy, the counterpart of (8), of the form

X2 "

"L X V; 3
o _ _ 2 J 2 — -
F(x,0) =||Sb — SAx||” + g o 2 E (f@'logﬁj 9/‘) , K=p+ 5

J=1 j=1

In IAS, the updating step of x remains unaltered, while the first order optimality condition (9)
yields an explicit solution in this case, too, given by

_ 0 (G
9]‘—%(19/_4—2 , (12)

as is easy to verify.

Unlike the case r =1 the hyperprior with r = —1 does not lead to a convex objective func-
tion, and therefore the IAS minimization algorithm may get trapped into local minima. To
avoid local minima of suboptimal quality, it is important to start the iterations with r = —1
near a local minimum that has the same sparsity structure as the unique solution of the convex
problem r = 1. A hybrid IAS algorithm, proposed in [8], starts the IAS iteration with » =1, and
once the solution is sufficiently close to the global minimizer, the hyperprior is switched to a
greedier one, e.g. the inverse gamma model r = —1. To make the two prior models compat-
ible, we require that the scaling parameters in the models are chosen so that the formulas (10)
and (12) coincide when xj’» =0.

Finally, it was shown in [8] that by using a Yoshida—Moreau envelope, the algorithm can be
easily modified to ensure that the solution is non-negative. Effectively, the positivity is enforced
simply by projecting the iterates x” onto the positive cone R’} = {x € R” | x; > 0} at the end of
each updating round. Further details can be found in the two cited articles. For completeness,
we summarize the TAS iteration in an algorithmic form. Without loss of generality, we may
assume that the linear problem (5) is whitened, that is 3 = |, the m X m unit matrix.
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IAS algorithm

Given: Matrix A € R™*", right hand side b, hyperparameters 3 and v}, 1 <j < n, stopping
parameters 7 >0 and 7.
Initialize: Set 6; =¥, Ag =00, t=1.
Iterate until stopping criterion 7 > T or Ay < T is met:
1. Update x: Solve the least squares problem

M= argmin{nb — AP+ |\D;£/,2x\|2} , Dy = diag(6'").
2. Update 0: If r =1, use formula (10), if r = —1, use (12).
3. Optional: Project onto the positive cone, setting x' = max(0,x").

4. Compute

9'70'71H
Ng=1020T1
0 Ter=T]

5. Check the convergence criterion, advance the counter t — ¢+ 1.

In the following section, we will write symbolically the MAP solution (x, ) given (b,A)
as

(x,6) = IAS (b, A),

and if, in addition, the non-negativity x > O is required and the optional step 3 in the IAS
algorithm above is activated, we will write

(x,0) = IAS . (b, A).

The choices of the parameter values are not explicitly indicated in this notation, but will be
specified when we discuss computed examples.

3.1. IAS-based unsupervised dictionary learning: IAS-NMF

The IAS-based unsupervised dictionary learning algorithm with the full training set as dic-
tionary, typically yielding an overcomplete frame to represent the data, has been discussed
in detail in [25]. Here we restrict the discussion to the problem of learning an economy-size
dictionary. In particular, when we restrict our attention to the case of non-negative data, the
problem can be reduced to an NMF algorithm with the option of sparse coding.

In the description of the algorithm, the columns of a matrix are indexed by superscripts,

e.g.
X= [x(l),...,x(p)], XV e R”,

while the rows are indexed by subscripts, that is,

T
)
X= . y X € RP.
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The IAS-based NMF algorithm can be summarized as follows:

TAS-NMF algorithm

Given: data matrix X € R"*?, X > 0, rank k£ > 0,
Initialize: W’ € R"**, 1 =0.
Iterate until stopping criterion is met:

1. Update H: Set A =1AS ; (x), W®) for 1 <j < p, and

H+D = [h(1)7.4.,h(1’)};
2. Scale the rows of HTD |
h)) i
3. Update W: Set w( ;) = IAS (x(;), (H(’+]))T) for 1 <j < n, and set
T
W)
WD —
Win)

4. Check the convergence criterion, advance the counter t — ¢+ 1.

Observe that due to the identity
WH = WLL™'H,

where L € Rk is an arbitrary diagonal matrix with positive diagonal, the NMF algorithm
leaves the freedom to scale either the columns of W or the rows of H. Here we choose to
scale the rows, using the /;-norm that suits best to the application that will be discussed in the
following section.

For the stopping criterion, we use the condition

||W(t) —_ W1 I |||-|(t) —_ HG=D I
W=D [HE=D |7

<, (13)

where § is a threshold parameter.
We will write the algorithm in a functional form using the shorthand notation

(W, H) = IAS_NMF(X, k),

with the understanding that the model parameters of the algorithm need to be specified as part
of the input.

3.2. IAS-based SDL

We shall apply the IAS algorithm to SDL problems for classification, considering the SRC
algorithm with the IAS optimization, and two slightly different NMF-based algorithms. The
first algorithm is summarized in the following steps.
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TAS-SRC algorithm

Given: annotated training data with L classes, Xain = [(Xerain) 15 - - , Kteain) 2] € R"*?, an
unlabeled test data set X € R"*7.
Define: the dictionary W = Xirain, We = (Xirain)e € R"*P, 1 < £ < L.
Classify: For each column 9 of X,
1. Compute 1 = IAS, (x), W) € R?, yielding the approximation
A0

. L
XD SSWRY | where h=| @ |, K'Y eRee

= A®
2. Classify xU ) to the class that minimizes the residual

rg(x(j)) — ||x(j) — Wgh([)H.

For comparison, we then consider a version in which the full training set as dictionary is
replaced by a reduced size learned dictionary similar to Metaface, and a slight modification
of it, referred to here as a Metadictionary algorithm. The IAS-NMF algorithm, appropriately
modified, can be used for SDL by applying it to the class-specific submatrices of the training
data. We summarize the steps in the following algorithm.

TAS-Metaface algorithm

Given: annotated training data with L classes, (Xirain)e, 1 < € < L, rank k > 0, an unlabeled test
data set X.
For each class /, 1 < ¢ < L, compute the NMF factorizations,

(W, He) = IAS_NMF((Xirain) e, k), 1< €< L.

Write W = [W],.. . 7WL}.
Classify: For each column 9 of X:
1. Compute h = IAS 4 (x'), W) € R*, yielding the approximation
JAS
) L
) ZW[/’Z(Z), where h= : . hY e RF
=1 ;
A

2. Classify xY to the class that minimizes the residual

rg(x(j)) — ||x(j) — Wgh(@”.

The IAS-Metadictionary algorithm is obtained by a slight modification of the above one,
whereby the vectors of unknown label are represented separately in terms of each subdictionary
W, rather than merging the subdictionaries into a single dictionary W. This is explained in
algorithmic form below.
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TAS-Metadictionary algorithm

Given: annotated training data with L classes, (Xirain)e, 1 < £ < L, rank k > 0, an unlabeled test
data set X.
For each class ¢, 1 < ¢ < L, compute the NMF factorizations,

(W¢,Hy) = IAS_NMF((Xirain) e, k), 1< €< L.

Classify: For each column x\) of X:
1. Compute 19 =1AS ; (x),W,) € R¥, 1 < ¢ < L yielding the approximations

D =W, 1< L.
2. Classify x/) to the class that minimizes the residual

re(XU)) — Hx(j) —Weth-

Thus, the difference between the two reduced dictionary algorithms is that in the latter, the
hypothesis is that the best reduced approximation is obtained by using a learned subdictionary
based on the correct class of the training data, avoiding possible ambiguities of combining
features from different subdictionaries.

4. Computed examples

In this section, we apply the IAS-based dictionary learning algorithms to two different prob-
lems, hyperspectral imaging and classification of ECGs.

4.1. NMF-IAS versus K-SVD

To highlight the flexibility and special features of the algorithms, we start by a brief comparison
with one of the state-of-the-art algorithms in dictionary learning, the K-SVD [1].

Standard NMF algorithms, e.g. the multiplicative updating (see, e.g. [21]) do not lead auto-
matically to sparse representations, although sparsity-promoting versions have been proposed
[22]. To address the sparsity, the K-SVD algorithm seeks a sparse coefficient matrix, while
iteratively learning a compact dictionary, or ‘code book’, as it is referred to in [1]. We briefly
review the idea of the algorithm. The algorithm is an alternating iterative algorithm, seeking a
low rank approximation X ~ WH, where W € R"*¥, H € R¥*?, and k is decided by the user.
Here, the coefficient matrix H is required to be sparse, and is resolved through a least squares
problem by minimizing

F(h(f)) _ ||x(7) —Wh(f)||2, 1<j<p,

using a basis pursuit algorithm, W representing the current update of the dictionary. This rather
standard step is followed by the dictionary update, which is characteristic to the algorithm:
Denoting by w/) € R” the columns of W and by h{i) € R? the rows of H, the product WH is
written as a sum of rank-one matrices, and the dictionary updating is performed entry-by-entry.
Hence, by writing

X = WHIlg = [|(X = > _whfy) = whiy e = [IED —wOnfy I
J#k

1
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we observe that updating the kth dictionary entry amounts to approximating the current error
matrix E(®) by a rank-one matrix. To not spoil the sparsity properties of the updated hzk), the

columns corresponding to zero entries in the current vector h{k) are deleted from E®) and h-(rk),
leading to a reduced minimization problem,

minimize ||E(k) - W(k)ilﬂ(rk) [

where E(® and () are the reduced arrays. The optimal rank-one approximation of the reduced
error matrix is now computed through SVD, leading to an update of w*) and h(Tk .

To demonstrate the flexibility of the [AS-based algorithm, we implement the K-SVD
algorithm using the TAS algorithm instead of the basis pursuit ¢;-penalized minimization
algorithm for updating H, followed by the SVD-based updating of the dictionary. We apply
the algorithm to the standard handwritten digits NIST database, selecting for the training data
the data vectors corresponding to handwritten digits ‘1°, ‘8’, and ‘0’. The training data X,
containing the 16 x 16 images in its columns, is of size 256 x 432. The rank parameter is set
k =20. For comparison, we also run the [AS-NMF algorithm, using the same parameter values
to update the coefficient matrix.

The two algorithms are run by using the Gamma hyperprior in the IAS step, with parameters

NH = 10_3, ’191-1 = 10_3

in the common sparse coding step of updating H. In the IAS-NMF algorithm, the parameters
for updating W are set at values

nw = 10_4, 19W: 10_3.

The stopping condition for both algorithm is given by the threshold parameter in (13) set to
value 6 =0.1.

Not surprisingly, the K-SVD reaches faster the stopping condition than NSF-IAS. In the
test run corresponding to results shown here, the K-SVD required 8 iterations, while NSF-IAS
converged in 28 iterations. Typically, the convergence of the latter requires 2-3 times more
iterations. Likewise, the relative error of the approximation at the end of iterations,

_ IX=WH]
Xl

is lower for K-SVD, e =0.28 versus e = 0.33 for NMF-IAS, reflecting the optimal low-rank
approximation property of SVD. A comparison of the reduced dictionaries found by the meth-
ods reveal the merits of the latter algorithm. In figure 1, the dictionary entries are plotted
as 16 x 16 images. First, we observe that K-SVD does not produce non-negative dictionary
entries as opposed to NMF-IAS. Second, the dictionary entries of K-SVD mix the features of
underlying digits, while NMF-IAS gives feature vectors that are strongly associated to partic-
ular digits. Finally, unlike K-SVD, the IAS-NMF algorithm strongly promotes sparsity of the
feature vectors. Summarizing, the interpretability of the latter dictionary is clearly better than
the former.

4.2. Hyperspectral imaging

Hyperspectral imaging is a remote sensing application in which an airborne infrared/near
infrared camera records the upwelling radiance of a ground target at several wavelengths over
a spectral range, thus generating a stack of single frequency images. Another way of describ-
ing the data is to think that each pixel in the scenery corresponds to a spectrum of intensities

12
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Figure 1. The feature vectors computed with IAS-NMF (left) and with the hybrid IAS-
KSVD algorithm (right). In the former, the light gray background corresponds to zero,
while in the latter, negative pixel values are indicated by red, positive by gray, white
representing zero.

at different frequencies, the spectrum being a fingerprint, or a spectral signature of the pixel,
carrying information about the properties of the corresponding patch of the ground target. The
NMF algorithm has been used for blind hyperspectral unmixing, aiming at identifying mater-
ials in the captured scene through sparse representation of the spectra in terms of the atoms
called endmembers, see, e.g. [3] for an overview. We demonstrate the efficiency of the IAS
algorithm by applying it to an NMF problem of hyperspectral data.

The test data considered here is the 220 band airborne visible/infrared imaging spectrometer
(AVIRIS) hyperspectral sensor data, consisting of a 145 x 145 pixel scenery of agricultural
land, each pixel corresponding to 220 spectral channels, the wavelengths ranging from 400
to 2500 nanometers [2]. We arrange the spectra in a data matrix X € R"*?, where n =220,
p = (145)% = 21025, and seek a low rank approximation

X=WH, WeR> HeR>?,

where W,H > 0 and H is sparse. We run the IAS-NMF algorithm using the gamma hyperprior
model (6). The algorithm is tested with two values of the rank parameter, k =3 and £ =20. In
both cases, the parameters controlling the sparsity are set to

NH = 10_3) nNw = 10_17

therefore promoting strongly the sparsity of H, while not requiring any sparsity from W. The
scaling parameters are assumed constant with respect to the index j, and the constant values
are set to

Iy =y = 1073,
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Figure 2. Convergence of the relative discrepancy (14) for k=3 (left) and for £k =20
(right).

To initialize the NMF iterations we set W° € R"*¥ equal to k randomly selected spectra
from the data matrix X. The standard deviation of the approximation error in both cases is set
to 0 =0.1. We run a maximum of 50 iterations of the NMF algorithm for each choice of k,
and choose a relatively loose stopping condition by setting the threshold parameter in (13) to
6 =0.1. Figure 2 shows two realizations, corresponding to k=3 and k = 20 respectively, of
the Frobenius norm of the relative discrepancy,

d, = || X —WH|, (14)

as a function of the iteration #, 1 <t < 50.

To visualize the results, consider first the case k = 3. For each pixel j, consider the relative
importances of the feature vectors in the representation of the pixels and normalize the columns
of H so that

1ROy = h + Y + Y = 1.

We then interpret the weight vectors 4(/) as red-blue-green (RGB) color code triplets, thus
using them to assign a color to each pixel. An interpretative color map is obtained by defining
a triangle T with vertices v(!), v(®) and v(®). Each point v in the triangle can be represented in
terms of the barycentric coordinates (£7,£,,£3) as

v=EvW+ 6@+ 60 eT, g+6+6=1,

and interpreting the barycentric coordinates as RGB values, a unique color can be assigned
to each point in the triangle. Interpreting the coefficients hi(j ) as barycentric coordinates, each
pixel is therefore mapped into the color triangle in a unique way. Figure 3 shows the RGB
triangle and the color coded map determined by the algorithm. Similar colors of different
pixels indicate similar composition of the upwelling radiance, and therefore point towards
similar properties of the ground targets.

For k =20, we scale the matrix H by the maximum of its entries and visualize the rows of
H as images by interpreting the coefficient corresponding to a given pixel as the intensity level
of the pixel. Figure 4 shows the rows of H as images, plotted by using the Matlab color scale
‘parula’, where dark blue corresponds to zero, and yellow to one. The predominance of blue
in the images is an indication of the sparsity of the representation.

To further investigate the sparsity properties of the coefficient matrix, figure 5 shows (part)
of the histogram of the values of the matrix H, scaled by it maximal entry Hy.x = maxh;;. We

14
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Figure 3. Graphical representation of the hyperspectral data using NMF with £ =3.
Each pixel corresponds to an RGB vector that defines the color of the pixel (right).
Since the sum of the RGB components is one, they may be interpreted as barycentric
coordinates of a triangle. Coloring each point inside the triangle with a color corres-
ponding to its barycentric coordinate (left), we get an interpretative map of the colors.
Pixels with the same color correspond to the same point inside the triangle, indicating
that the spectra of the pixels are close to each others.

observe that a significant portion, roughly 35%, of the entries are in the first bin, hence close
to zero. The figure shows also the cumulative distribution of the values,

1
Cdf(H)(S) = N#{hlj < SHmax}, 0<s < 17

where N = 20 x (145)? is the number of entries in H. The plot shows that approximately 90%
of the pixel values are less than 20% of the maximal entry value, highlighting the algorithm’s
capability to explain the data with few feature vectors.

4.3. Classification of ECG data

In the second computed example, we consider the annotated data set ECG200 [38] consisting
of ECGs of both normal heartbeats and heartbeats with a supraventricular premature beat. The
ECG curves are all scaled to have an equal length of n =96 arbitrary time units, thus defining
the dimensionality of the data. The data contains a set of 100 ECG curves in the training set,
and another set of 100 curves in the test set, see figure 6. The number of normal heartbeats
in the training data and in the test data are 69 and 64, respectively, the corresponding number
of abnormal heartbeats therefore being 31 and 36, respectively. We observe that the normal
heartbeats have very similar means over the two sets and relatively little variability around the
mean, while in the abnormal heartbeat data there is more variability. The task here is to use
SDL for classifying the test data.

To test the IAS-based dictionary classification, we consider first the SRC-IAS classification
(‘training set as dictionary’). In this case, we need to find a sparse non-negative matrix H
satisfying the minimization condition (4). To compute the coefficient matrix, we use the hybrid
version of the TAS algorithm with the following parameter choices: For each column vector
x(f), we first run a maximum of 50 outer iteration rounds, that is, 50 updates of the pair (x,),
with the gamma hyperprior (6), stopping the iterations if the relative change in 6 drops under
the threshold of 1%,

16" — 61|

<7=00l. (15)
[Cl
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Figure 4. The rows of the matrix H € R2* (14 ) scaled by the maximum entry of the
matrix, interpreted as 145 x 145 images, the entries defining the intensity level (0 = dark
blue, 1 = yellow). The sparsity, or compressibility, of H is reflected by the predominance
of blue.

Using the computed 6 as an input for each column vector, we then launch the more greedy IAS
algorithm with inverse gamma hyperprior, (11) with » = —1, running a maximum of 50 outer
iterations, again stopping when the relative change of 6 is less than 1%. The hyperparameter
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Figure 5. Left: histogram of the relative entry values of the matrix H, plotted over the
interval [0,0.2]. Right: cumulative distribution cdf(H)(s) of the entry values, showing
that most of the entries are concentrated to the low end of the value range.
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Figure 6. The training data (top row) consist of 100 electocardiograms scaled to the
same time interval, with 69 corresponding to normal heartbeats and 31 to abnormal
heartbeats with a supraventricular premature beat. The center panel shows the average
over the normal heartbeats, with an envelope of 75% quantile. The right panel shows
the mean and quantile envelopes corresponding to the abnormal beat. The bottom row
corresponds to the test data, with 64 normal heartbeats and 36 abnormal ones.

values for the hybrid IAS were set to (1,9) = (107%,10~*) for the gamma hyperprior and
(8,9) = (1,2.5 x 10~1°) for the inverse gamma hyperprior. We refer to [8] for the details on
how the compatibility conditions guides the choice of the hyperparameters.
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Figure 7. Left: number of IAS iterations needed to reach the stopping condition (15).
Right: the coefficient matrix H. The dictionary and the test data are ordered so that the
normal curves are at the beginning of the list, followed by the abnormal curves. The
horizontal red line indicates the boundary between normal and abnormal ECG curves
in the training data, and the vertical one the corresponding division line in the test data.

Figure 7 (left) shows the numbers of IAS iterations needed to meet the stopping criterion:
The average number of iterations is 16.2 for the gamma hyperprior, and 6.4 for the inverse
gamma hyperprior. Figure 7 (right) shows a black-and-white image of the matrix H, with white
corresponding to zero, and black to the maximum (=0.87) of the absolute values of the entries
of the matrix H € R?*? with p = 100. The red lines marks the division between normal and
abnormal cases: Ideally, the off-diagonal blocks of the H-matrix should vanish, corresponding
to the case of no confusion between the normal and abnormal curves. The predominance of
white in the figure is an indication of the sparsity of the coefficient vectors. Indeed,

#{h; > 0.01 x max{h;}}
P2
that is, the matrix H is rather strongly compressible. The performance of the SRC classifier is

summarized in the confusion matrix below, showing that the performance of the classifier is
89% correct classifications.

=0.054,

Normal Abnormal
Classified as normal 60 4
Classified as abnormal 7 29

In comparison, consider next the two reduced subdictionary algorithms applied to the
ECG classification problem. In this particular example, there is no reason to expect that
either of the subdictionaries W; € R"*¥ (normal heartbeat) and W, € R”** (abnormal heart-
beat), are sparse or non-negative, while the corresponding coefficient matrices H; € R¥*? and
H, € R"*? are both sparse and non-negative. The flexibility of the IAS algorithm allows us to
choose the hyperparameters separately for the W-update and H-update so that in the former,
sparsity is not requested. The values used in the IAS iterations are given in the table below.
Observe that since we do not seek a sparse solution for W, we do not use the hybrid algorithm
for updates of W, and therefore, the parameters of the second phase of the iteration are omitted.
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In our computed experiment, we choose the rank of the approximate matrix factorizations to
be k =6, that is, both normal and abnormal heartbeats are approximated by six feature vectors
each. Due to the random initialization of the factorization algorithm, the classification result
is also random, and in order to test the performance, we perform 1000 independent runs and
report the statistics of the outcome. We set the stopping criterion of the NMF iteration to be
rather loose, using § = 0.05 in the criterion (13). With this choice, the number of iterations in
the NMF algorithm varies between 10 and 50. For comparison, we run the classification by
using both the IAS-Metaface and IAS-Metadictionary algorithms.

The summary statistics of these runs are presented in figure 8, showing the histograms
of correct classifications as well as histograms of the entries of the confusion matrices.
We observe that from the point of view of overall classification performance, the IAS-
Metadictionary algorithm performs slightly better, and the confusion matrix histograms reveal
that this slight gain in performance is due to higher success rate in correctly classifying the
abnormal heartbeats.
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5. Conclusions

Dictionary learning algorithms are popular in a variety of applications requiring classification
or interpretation of complex data as in the applications discussed in this article. Dictionary
learning algorithms are becoming increasingly popular as an alternative to traditional para-
meter estimation problems, or inverse problems, often paired with a complex generative model
performed by an algorithm in which the measured data are matched with computed outputs
in a library [23, 26, 29]. An essential part of the algorithms is a sparse coding step and, as
the dictionaries get significantly large, the computational efficiency becomes a key issue. The
present article demonstrates how sparsity-promoting hierarchical Bayesian methods can be
used to improve computational efficiency in sparse dictionary learning applications.

The computed examples in the article demonstrate the potential of the Bayesian sparse
coding algorithms. Future research include finding rigorous and robust ways of setting some
of the model parameters. In particular, while in traditional inverse problems, the covariance of
the likelihood function can be related to the measurement noise level and possible modeling
errors, in the present problem the observation model corresponds to the ansatz of representing
the training data in terms of low rank matrix factorization, with no a priori knowledge of how
well one can expect the approximation to hold, making it difficult to use concepts like signal-
to-noise ratio to set hyperparameters as in the case of traditional inverse problems [14]. In the
Bayesian context, the unknown likelihood covariance can be seen as an unknown, therefore
subject to probabilistic modeling. It is an open problem to develop data-driven methods of
estimating the covariance, although the use of hypermodels to estimate an unknown noise
level have been shown to be promising for inverse problems [12]. In conclusion, while in the
traditional context of Bayesian inverse problems, the role of hyperparameters of the Gamma
or generalized Gamma hyperprior models is well analyzed and understood to be related to
the a priori sparsity of the solution as well as to sensitivity of the data to the parameters, in
the context of dictionary learning, establishing easily intepretable criteria for choosing the
parameters remains a project for the future.
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