2212.00949v1 [astro-ph.GA] 2 Dec 2022

arxiv

MNRAS 000, 1-16 (2022)

Preprint 5 December 2022

Compiled using MNRAS IXTEX style file v3.0

On the Fast Track: Rapid construction of stellar stream paths

Nathaniel Starkman'*, Jo Bovyl, Jeremy J. Webb!, Daniela Calvetti & Erkki Somersalo,>
'David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, M5S 3H4, Canada

2 Department of Mathematics, Case Western Reserve University, Cleveland, Ohio, USA

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Stellar streams are sensitive probes of the Galactic potential. The likelihood of a stream model given stream data is often
assessed using simulations. However, comparing to simulations is challenging when even the stream paths can be hard to
quantify. Here we present a novel application of Self-Organizing Maps and first-order Kalman Filters to reconstruct a stream’s
path, propagating measurement errors and data sparsity into the stream path uncertainty. The technique is Galactic-model
independent, non-parametric, and works on phase-wrapped streams. With this technique, we can uniformly analyze and compare
data with simulations, enabling both comparison of simulation techniques and ensemble analysis with stream tracks of many
stellar streams. Our method is implemented in the public Python package TrackStream, available at https://github.com/

nstarman/trackstream.

Key words: Astrophysics - Astrophysics of Galaxies — Galaxy: structure — Galaxy: kinematics and dynamics — methods: data

analysis — methods: statistical

1 INTRODUCTION

A stellar stream is the association of stars tidally stripped from a
common progenitor system that orbits in an underlying galactic grav-
itational field (Johnston 1998; Helmi & White 1999). Stream pro-
genitors are gravitationally bound systems, such as satellite dwarf
galaxies or star clusters (Odenkirchen et al. 2001; Majewski et al.
2003). In the absence of external interactions these systems are sta-
ble, though still capable of mass loss driven by internal processes
(Hills 1975; Heggie & Hut 2003), e.g. relaxation and binary inter-
actions. Considering external interactions, these progenitor systems
may be disrupted: completely, as in the merger events that formed
the Galactic stellar halo (Lynden-Bell 1967; Searle & Zinn 1978); or
partially, such as tidal disruption forming a stellar stream.

In the approximation of a smooth galactic gravitational field, the
progenitor’s extent is limited to the tidal radius. Through processes
internal and external, progenitor stars can achieve sufficient energy
to bring them beyond the tidal boundary, thus “escaping” into the
galactic field. Escape primarily occurs at both an inner and outer
saddle point of the combined potential — e.g. the L2 and L3 Lagrange
points for a spherical galactic field (Ross et al. 1997; Fukushige
& Heggie 2000; Binney & Tremaine 2008). Generally, the initial
phase space position of the escaped star is very similar to that of
the progenitor: the configuration position is the tidal boundary and
the star has a low peculiar velocity. Since both the escaped star and
its progenitor orbit in the same underlying galactic potential and
have similar phase space positions their orbits are similar (Binney
& Tremaine 2008). Given sufficient time the phase space separation
will increase and an escaped star will lead or trail the position of
the progenitor, depending on the location from which it escaped.

* E-mail: n.starkman@mail.utoronto.ca

© 2022 The Authors

Therefore, a collection of tidally stripped stars will form extended
structures, aka tails or streams, that are few to thousands of parsecs
in length (Johnston 1998; Helmi & White 1999; Bovy 2014).

To be a coherent, observable structure the peculiar velocity dis-
persion of escaped stars relative to the progenitor must be relatively
low, but does vary from system to system. Stars in kinematically
hot streams (e.g. from progenitors with larger kinematic dispersions)
have more dissimilar orbits from each other and the progenitor than
do stars in cold streams, with smaller dispersions (Johnston 1998;
Hendel & Johnston 2015). The orbit of a star depends on its phase
space position and the gravitational potential; therefore measuring
a star’s position and velocity and observing its orbit reveals the lo-
cal potential, which is normally dominated by the Galaxy (primarily
the dark matter halo at large distances) (Gibbons et al. 2014). How-
ever, an orbit is impractical to observe on human timescales. Cold
streams offer a workaround. Like measuring one star at many points
in one orbit over an extended period, streams are many stars mea-
sured at different points along approximately one orbit at the same
time. Therefore stellar streams are one of the most promising means
to study the Galactic gravitational potential: the stellar components
as well as the dark matter (Johnston 2016).

On the observational front there has been a large concerted effort
in the field to find new stellar streams (for an extensive list of known
Galactic streams see Mateu 2022), extend the detected extents of
known streams (e.g. for Palomar 5 alone: Rockosi et al. 2002; Ibata
et al. 2017; Grillmair & Dionatos 2006; Carlberg et al. 2012; Stark-
man et al. 2019), and increase the general purity of stream catalogs.
On the simulation end, there are numerous methods to generate and
model stellar streams, spanning many degrees of complexity. The
simplest method is modeling the stream as tracers sampled from a
single orbit, a technique called orbit fitting (e.g. Johnston et al. 1999;
Malhan & Ibata 2019). However, streams generally do not lie on a

https://github.com/nstarman/trackstream
https://github.com/nstarman/trackstream

2 N. Starkman et al.

single orbit (Sanders & Binney 2013) and this approximation can
produce biased results. The distribution function method of Bovy
(2014) starts from the orbit of the progenitor, but also models the
mean difference between the stream’s and progenitor’s orbits. Like
orbit fitting, this method produces an analytic characterization of the
stream’s trajectory, albeit in action-angle coordinates that are con-
verted to a phase-space track by linear interpolation. The distribution
function method is a marked improvement over the orbit approxima-
tion, however it makes a number of simplifying assumptions and also
struggles to model interactions with the stream that can perturb the
path. Particle spray models (e.g. Fardal et al. 2015; Bonaca et al.
2014) redress some of these shortcomings by integrating orbits of
many tracer particles released over time from a simulated progenitor.
Models of tidal disruption and interactions can be explored in this
framework. However, particle spray methods are non-analytic and are
also more computationally intensive than their analytic counterparts.
The most expensive, but also most accurate and detailed, stream mod-
eling method is direct N-body simulation simulations, e.g. bespoke
modeling of GD-1 to try to identify the progenitor (Webb & Bovy
2019).

How observations and simulations are compared depends on the
simulation method. When using analytic methods like distribution
functions (Bovy 2014) this comparison can unsurprisingly be done
analytically, by directly modelling the mean path, width, and other
properties along the stream. Computing fit statistics to real data is
straightforward in this framework. For non-analytic simulation meth-
ods, where the stream is modeled by a set of tracer particles, a direct
comparison to data is challenging. One method, from Bonaca et al.
(2014), is to calculate probabilities for each tracer and marginalize
over all model points. For a smooth likelihood function this method
requires several times more model points than data points, and is
a notable limitation when trying to closely match observations, e.g.
with an N-body simulation. Thus, this method is well-suited for its in-
tended use case, less so for other situations. A different and common
approach to analyzing streams, both in simulations and from obser-
vations, is by fitting a stream track: a smooth path through phase
space which characterizes the trajectory of the stream. For visualiza-
tion, checking the sky footprint, and calculating model likelihoods
the track of a stream is a multi-purpose tool. In many respects, what
is meant by a stellar stream is its track, not its constituent stars.

Despite its centrality to the field, there is no set definition and a
multitude of computational methods for defining a stream track. The
most common definition of a stream track is with a low order poly-
nomial fit. The stream is projected from its initial reference frame,
e.g. ICRS (Arias et al. 1997), into a rotated on-sky frame, with lon-
gitude ¢ and latitude ¢;, such that the stream extends along ¢.
In this frame the stream may be fit by a low-order polynomial as a
function of ¢ (e.g. Bonaca et al. 2020). Similar, if more sophisti-
cated, methods swap tools like univariate splines (e.g. Erkal et al.
2017; Bonaca & Hogg 2018) for the low-order polynomials. Using
a coordinate dimension, here ¢, as the independent variable works
for many streams, as ¢; sweeps monotonically along the stream.
For example GD-1 is straight for over 80 degrees (Webb & Bovy
2019; Price-Whelan & Bonaca 2018). However, this is not true in
general: a stream’s path can become kinked by subhalo interactions,
or curved on the celestial sphere in an observer’s reference frame,
or like the Magellanic stream wrap multiple times around the Milky
Way (Wannier & Wrixon 1972). When a stream track is not a func-
tion, methods fitting ¢, (#1) fail. One solution is to instead fit in
both ¢ and ¢, non-parametrically, for example using 2-D splines
(Erkal et al. 2017; Koposov et al. 2019; Li et al. 2021; Tavangar
et al. 2022). This method allows for the path, width, and numerous

MNRAS 000, 1-16 (2022)

other properties to be fit simultaneously. Though implemented in 2-
D, the method is extensible to higher dimensions and so can be used,
e.g. with full 3-D measurements from Gaia or simulations. While
powerful, this technique is slow, requiring Monte Carlo methods to
optimize the number and placement of the spline nodes. Given its
speed constraints, the method cannot be reasonably used as a step in
a larger Monte Carlo analysis, such as to derive stream tracks for the
generative stream models discussed previously.

In order to compare simulations to data as a step in a Monte
Carlo analysis we require a fast method to derive stream tracks.
Without the opportunity to examine each step, the method must
work when the stream track is not a one-to-one function, such as
with phase wraps. We require the method to work on data with
errors, constrained to be on-sky or in full 3-D, and with and with-
out velocities. Furthermore, the same method should work on many
different mock stream generation methods — including analytic, par-
ticle sprays, and N-body simulation simulations — so that results
derived with one simulation technique can be compared to the re-
sults from another. In this paper we present a novel method for ac-
complishing these goals: rapidly constructing stellar stream tracks,
accounting for measurement error and data sparsity. The technique
is Galaxy-model independent, non-parametric, and works on many
different mock stream generation methods. Our method is imple-
mented in the public Python package TrackStream, available at
https://github.com/nstarman/trackstream.

The organization of this paper is as follows. In Section 2 we present
a sequence of methods for ordering the stars in a stellar stream. This
order will allow us to treat the data similarly to a time-ordered data
set, and therefore apply time-series techniques to reconstruct the
stream track. In Section 3 we present one such application — the
Kalman Filter. In Section 4 we apply the stream track pipeline to a
variety of data. We conclude with discussion in Section 5.

2 METHODS: ORDERING THE DATA

The first step in the stream path fitting procedure is ordering the data.
With simulated data, there are numerous options for ordering, such
as the ejection time from the progenitor (Gibbons et al. 2014) or
in action-angle coordinates (Bovy 2014). However real observations
rarely, if ever, permit these orderings. Instead we order using only
configuration and kinematic phase-space information.

Consider the toy model of a static, spherical potential (for both
the Galaxy and progenitor) where all test masses (stars) are ejected
with the same velocity. As the progenitor orbits the Galactic COM,
its orbital path describes an elliptical path in an orbital plane. The
progenitor’s tidal tails (stream) will likewise lie near the progeni-
tor’s orbital plane. Observing from the Galactic center, an orbital
plane lies on a great circle in the observer’s ‘sky’ and it is possible
to re-orient the longitude (¢) and latitude (b) to a stream-oriented
coordinate system (¢, ¢o) with the progenitor at the origin and the
stream along ¢ (¢ ~ 0). However, our observations are not from the
Galactic center, but approximately 8 kpc distant (for recent measure-
ments, see GRAVITY Collaboration et al. 2018; Leung et al. 2022).
For an arbitrary stream lying (approximately) along a galactocentric
ellipse there is no guaranteed rotation to “linearize” the stream in the
observer coordinates so that the stream lies along ¢, ~ 0. Thank-
fully, many streams are sufficiently distant from both the Galaxy and
observer or oriented such that a rotation a) exists, or b) applies to sig-
nificant lengths of the stream before deviations become problematic.
When modeling streams and fitting a track in the same representa-
tion as the data, for most streams transforming to the stream-oriented

https://github.com/nstarman/trackstream

On the Fast Track: Rapid construction of stellar stream paths 3

coordinate system is a worthwhile first step to ordering the data and
is discussed in Section 2.1.

The second step takes advantage of the low-dimensional struc-
ture of streams. Spatially, streams are approximately 1-dimensional
curves in a 2-to-6 dimensional space (depending on the number of
available phase-space dimensions). Rather than constructing a data-
ordering in real (e.g. position and velocity) space, we can instead find
a 1-D subspace in which the stream is approximately a line, and the
ordering is more evident. Following Section 2.1, in Section 2.2 we
describe a robust and performant means to recover an approximate
1-D subspace containing the stream and then order the stream data.

2.1 Great-Circle Coordinate Frame

Constructing the stream-oriented coordinate system requires three
parameters, a new on-sky origin — at longitude ¢, and latitude b,
— and a rotation angle about the origin. The new origin point is
chosen to be the location of the progenitor, if known, and anywhere
reasonable on the stream otherwise. In simulations the location of
the progenitor is always known, even if the progenitor has fully
dissolved. The rotation angle 6 must be fit. Since errors in ¢, b are
negligible in both (contemporary) observations and simulations, the
best-fit parameters are found by simple ensemble minimization of
¢ of the stream stars. For the fixed origin point (£, b.) on the sky
and rotation 6, the transformation'to a stream-oriented great-circle
frame (@1, ¢7) is given in a Cartesian basis by (Bovy 2011):

1 —cos(b:) —sin(b.)
R= —cos(8) sin(H)| - 1
—sin (0) cos () sin(b.) —cos (b.)
(1)
cos (£.) —sin(£.)
sin (&) cos(£.)
1

Figure 1 shows an example construction of a rotated refer-
ence frame for a mock stream of NGC 5466 (El-Falou & Webb
2022). The mock stream was simulated with the particle-spray code
streamspraydf (Qian etal. 2022), now found in galpy (Bovy 2015)
but originally from streamtools (Banik & Bovy 2019), which is an
implementation of the Fardal et al. (2015) method. The current posi-
tion and velocity of the progenitor globular cluster is from Vasiliev
(2019). The initial conditions (the progenitor before it is disrupted
and forms tidal tails) are set by back-integrating the current phase-
space position 5 Gyr in MiPotential2014 (Bovy 2015): a good
approximation of the Galactic potential (Bovy et al. 2016) composed
of a linear combination of a spherical potential from a power-law
density with an exponential cut-off Galactic bulge, an NFW dark
matter halo (Navarro et al. 1996), and a Miyamoto & Nagai (1975)
disc. The initial progenitor is forward integrated in the same poten-
tial, forming the tidal tails shown in the top panel of Figure 1. The
stream-specific coordinate frame is the first step to ordering the data
along the stream’s path. Depending on the stream and projection
effects, ordering by ¢ might be close (or quite far) to this correct
ordering. Generally, ordering by ¢ is excellent for ||@1] ~ 0, and
progressively worse at larger ||@]|. Figure 1 demonstrates the use-
fulness of constructing a stream-specific reference frame: in ICRS

' In TrackStream, the rotation transformation is implemented to be consis-
tent with astropy’s SkyOffsetFrame and the resulting frame can be used
with the astropy package (Astropy Collaboration et al. 2022).

) T
3 20° “Naua,
= AT
v o0y S
o { 2
2 Lol N(?‘1Cl5466 mock stream \.‘\
I~ . origin o
[3
0 -40° 1, " " . : : . : —
-140° -120° -100° -80° -60° -40° -20° 0° 20°
RA (ICRS) [deg]
\"""*.:'.'"-1.' T ey,
Pl S ..'-,.' .-'l.,
20° ia,
- NGC-5466 mock stream e o, X
e origin
-200° -150° -100° -50° 0°

¢1 (stream) [deg]

1
1
i
0.15 A i
1
1
1

---- best-fit rotation = 134.91°
-150 -100 -50 0 50 100 150
Rotation angle 6

Residual / # data pts ¢, y (stream) [deg]

Figure 1. Simulation of NGC 5466 (El-Falou & Webb 2022). [top] NGC 5466
in an ICRS reference frame. [middle] Residual of 2 £V, (|| ol - 0), the
longitude coordinate of NGC-5466 in a rotated reference frame, with rotation
angle 6 and origin set in top panel. [bottom] NGC-5466 in the best-fit rotated
reference frame, with 6 = 167°. The rotation angle has a 180° degeneracy
and the selected angle depends on the starting point of the minimizer.

coordinates the Declination ¢ is not a one-to-one function of the
Right Ascension «, but the middle sub-figure shows the stream is
very well ordered by ¢1. Better yet, since NGC-5466 is reasonably
thin and straight (in projection), the ¢, (@) ordering remains valid
for the full observed length of the NGC-5466 mock stream.

For long streams that wrap around the sky (called phase wrapping)
or that curve such that ¢, (¢1) is not one-to-one, this ordering fails
without further intervention. While this failure does not quite happen
with Figure 1, extrapolating from NGC-5466, at ¢; > 50° projection
effects will ruin the simple ¢ -ordering approach. In general, streams
cannot be ordered well by their longitude coordinate. We require a
coordinate that better tracks the structure of the stream. Looking at
Figure 1, finding the on-track coordinate is somewhat analogous to
deforming the ¢ dimension, wrapping it to meet the curvature of
the stream. Another way of understanding the transformation is to
consider again a galactocentric great circle. Intuitively we see that
such an arc only projects to a line for an observer on the plane of the
great circle. For all other locations, only a non-linear projection is
guaranteed to map the curve to a line. In essence, the non-linearity of
the projection encodes the spatial components of the galactocentric-
to-observer reference frame transformation. We note, however, that
this approach cannot easily be reverse engineered to provide a novel
measure of the galactocentric frame parameters. Next we describe
how we can find a non-linear projection to recover the 1-D subspace
of a stream and use the on-stream coordinate to order the data.

2.2 Self-Organizing Maps

To determine a stream’s 1-D subspace we use the simple neural
network method of Self-Organizing Maps (SOMs). SOMs are pri-
marily for low-dimensional, discrete representations of data. Using
prototype vectors linked in a lattice structure of a desired topology,
SOMs approximate the data by iteratively updating the prototypes
to approximate the data distribution. In final form, each prototype

MNRAS 000, 1-16 (2022)

https://docs.galpy.org/en/stable/streamdf.html
https://docs.galpy.org/en/stable/reference/potential.html?highlight=MWPotential2014
https://docs.astropy.org/en/stable/api/astropy.coordinates.builtin_frames.SkyOffsetFrame.html

4 N. Starkman et al.

maps nearby high-dimensional data to a lower-dimensional lattice.
For a detailed discussion we refer the reader to Calvetti & Somersalo
(2021).

2.2.1 The Algorithm, in 1-D.

Here we review the standard SOM algorithm and mathematics as they
apply to a reduction from the higher-dimensional phase space of the
positions (and velocities) to a one-dimensional subspace. The SOM
can be extended to arbitrary features, perhaps to include photometric
information, but we defer that for future work.

The data consists of N tracers measured at positions w(™ in the
D-dimensional phase-space. In simulations, streams are generally
best represented in galactocentric Cartesian coordinates, but obser-
vations are taken in spherical coordinates: two angular positions,
possibly a radial distance, and corresponding kinematics. An impor-
tant part of the SOM is the data-space distance metric, which is a
complication when working in Cartesian coordinates versus on the
surface of a sphere. For spherical coordinates the correct distance
metric is the Vincenty (1975) formula; this is used in TrackStream
and the figures in this paper. For many streams the angular separation
between tracers is small, so it is reasonable to work within a flat sky
approximation and simplify to a Euclidean distance metric in Carte-
sian coordinates. Therefore, for simplicity here we only discuss the
method in Cartesian coordinates.

The SOM will learn the structure of the data using a smaller
number K of “prototype” vectors p®ELK] ip the same space as
the data. The need for only a few prototype vectors is analogous to
how only two points are required to describe a line, no matter how
many data points are sampled from the line. The relationship between
the py prototype vectors determines the topology and ordering of the
data w(™) Returning to the line example, the relationship between
the two line points is a linear segment, so when fit to a dataset drawn
from a line distribution, the SOM should describe the data well.

Generically the prototypes’ relationships are described with a fea-
ture map Q, where each prototype p(k) has a corresponding lattice
node qy. However, since streams are one-dimensional the only per-
tinent information is the index: q; = k. Q encodes that prototypes
p(i) , p(j) are neighbors if and only if the corresponding lattice points
q;, q; are neighbors —i.e. |i — j| = L.

With this review of feature and lattice space we are ready for the
SOM algorithm:

(1): Given the data in the stream coordinates (Section 2.1),
(2): Choose K prototypes p(k) with linear lattice Q.
(3): Iteratively,

(1): Select the next datum w(n),

(2): Update the data-space position of the nearest prototype,
keeping the lattice unchanged.

(3): Similarly update all the prototypes’ topological (lattice)
neighbors, making smaller updates for more distant proto-
types.

By multiple iterations the prototypes will be updated to lie near the
data in position space and capture the structure of the data in lattice
space. For a more mathematically detailed explanation see Appendix
A and TrackStream for a code implementation.

MNRAS 000, 1-16 (2022)

2.2.2 Projecting on the SOM

After applying the SOM and deriving the set of prototype vectors, the
next step is to project the data into the 1-D space and order the datain a
manner consistent with the topology. There are numerous projection
algorithms, such as U-matrix maps (Ultsch & Siemon 1990), that are
intended for clustering data by the lattice-point distance. The Q is
not of interest; we want to project on the real-space structure of the
SOM, and so implement a custom algorithm to connect and project
onto the SOM prototypes. While it is tempting to connect the SOM
prototypes with a smooth curve, e.g. a Bezier curve (Bezier 1982) or
3rd order piece-wise polynomial spline, not only is projection onto a
curve challenging, it is not correct for an SOM with a linear lattice.
The SOM topology is a linear structure and the SOM prototypes are
connected by line segments. Projecting each datum reduces to the
task of 1) identifying the correct line segment and 2) projecting onto
that segment.

The custom algorithm, with examples drawn from Figure 2, is as
follows:

(1): Get the ordered lattice points (black) from the SOM. The first
point is the nearest to the specified origin (e.g. the stream pro-
genitor, see Section 2.1 for details) and subsequent points draw
their ordering from the topology.

(2): Compute the directed real-space segments from one lattice point
to the next.

(3): For each data point, compute the real-space projection onto each
segment

r=p® + ¢ (pk+h) — p(h)y, (@)

e (w(™ — pR)y . (pk+1) _ p(k)y
|p(k+1) _ p(k)|2

3

for data point w(™ and lattice points qg. Projections between
the two lattice points have 0 < 7 < 1.

(4): For each data point, compare the distance to each node and
to each projection to find which node / segment it should be
associated with.

(1): data with ¢ = 0, 1 are closest to a node.

(2): data with projection parameter 0 < ¢ < 1 will be closer to
that projection than any node (e.g. d3) and can be distin-
guished between segments by the point-to-projected-point
distance. E.g., data point (green) d3 is closer to projected
point e than to e, and therefore belongs in the g-g;
segment.

(3): data with t+ < 0 or 1 < 7 and that are closest to a lattice
terminal node are within the “end-caps”, e.g, d.

(4): data with r < 0 or 1 < ¢ and not in an end-cap are in a
convexity, e.g, ds.

(5): Within each “block” (end-cap, segment, convexity) organize the
associated data points:

(a) data in an end-cap are organized by distance along the pro-
jection (extending r < 0 & 1 < 1).

(b) data in a segment are ordered by ¢.

(c) data in a convexity are ordered by their angular coordinate
sweeping from one segment to the next. This is why dg pre-
cedes dg in Figure 2.

(6): Order the blocks by the lattice node ordering.

On the Fast Track: Rapid construction of stellar stream paths 5

Figure 2. lllustration of ordering data from SOM lattice nodes. The SOM creates a 1-D lattice of connected nodes (g’s, gray) ordered by proximity to the
designated origin, then along the lattice. Data points (p’s, green) are assigned an order from the SOM-lattice. The distances from the data to each node are
computed. Likewise the real-space projections are found for each data point on the edges connecting each SOM node. All projections lying outside the edges
(shaded regions) are eliminated. Also eliminated are all but the closest nodes. Remaining edges and node connections are in dotted block, with projections
labeled e. Data points are sorted into the closest node regions (blue) and edge regions (shaded). Data points in end-cap node regions are sorted by extending the
projection onto the nearest edge. Data points in edge regions are ordered by projection along the edge. Data points in intermediate node regions are ordered by

the angle between the edge regions.

In short, the SOM is trained on the data and then used to order the
data by projecting the data onto the SOM’s 1-D subspace. Standard
methods to order a stream rely on the stream being a one-to-one func-
tion in an observational coordinate, for example the position angle
¢1 on the sky. Figure 3 shows that SOMs are not subject to this lim-
itation and can be used to order streams that wrap around the Milky
Way or are in other ways not one-to-one functions in any observa-
tional coordinate. Figure 3 is a mock dataset of stars in a stream-like
structure, created by integrating the orbital path of the sun (Reid
& Brunthaler 2004; GRAVITY Collaboration et al. 2018; Drim-
mel & Poggio 2018; Bennett & Bovy 2019) in MWPotential2014
for 200 Myrs. Stars are drawn randomly along the “stream® from a
o =100 [pc] Gaussian distribution. The SOM prototypes are initial-
ized using equi-frequency binning. Unlike the NGC 5466 simulation
(see Figure 1), the binning produces a poor match to the data. How-
ever, after 103 iterations (at ~ 18,000 iterations/second on a 2018
2.7GHz i7 MacBook Pro) the SOM fits well and orders the data well.
Note that most of the trained SOM prototypes do not lie directly on
the mock stream. For a tight curve like this one, the offset is expected:
points near to a prototype py influence its location, so prototypes are
generally interior to a convexity as that is locally the best average
position.

Figure 4 shows the SOM-derived order for a simpler example,
the mock NGC-5466 stream also shown in previous figures. Two
SOMs are used, one for each stream arm. Each SOM is trained for
10,000 iterations (~ 0.5 second on a 2018 2.7GHz i7 MacBook
Pro). The prototypes cluster more densely where the data are dense,
such as in the right-hand arm, but still provide good coverage of
the whole stream. Shown by the colormap, the SOM order is good,
with stars near in position likewise near in the ordering. For this
stream the SOM is not strictly required as the position angle ¢
is sufficient to order the data. The SOM can be initialized with
random prototypes and a connecting lattice, or with an informed
guess. Given enough iterations both will typically converge to the

7.5 P> atalel Shladans £ | "GOy

—_ . ol K WO)
%) x &
[o% 2 S Fa o 80
X 5.0 2 1 Ve
= ;‘ (%) o o
L o551 2 origin | ﬁ o =
= 7 F 3 ; 3 605
[=4
[19 00 00 Q000 OOCIUZ% i fol B
Y o0 o * o o
% ** Q 40 s
B 251 ¢ 2
T ¥
9O 50 Pl 1 20
> * mock stream = * mock stream f

_754 © SOM prototypes ¢ 1 o SOM prototypes

. 1 0

5 0 5 5 0 5
x (Galactocentric) [kpc] x (Galactocentric) [kpc]

Figure 3. The SOM-derived ordering of a mock stream. The left shows a
z-projection of the stream, with stars "observed" in a random sequence. The
initial position of the SOM prototypes (gray) do not match the data. The right
figure is the same but with the trained SOM-derived ordering. The trained
SOM prototypes are included (black circles), showing how SOMs require
only a relatively small number of prototypes to capture the structure of the
data.

same solution, but the former will require many more iterations than
the latter. Rather than skipping the SOM step, we instead use an
informed initial condition?and reduce the training iterations, e.g.
only the 10,000 used here. For Figure 4 the SOM prototypes are
initialized by equi-frequency binning in ¢;.

Were NGC-5466 simulated again in a slightly perturbed potential
or with similar initial conditions, the stream would be generally
similar. A SOM trained on the previous simulation can be the initial
condition for the SOM of the new simulation, therefore requiring very

2 In TrackStream any initialization may be used. If none is specified the
code defaults to equi-frequency binning, placing the a prototype at the average
location of every nth set of data points, where #n is the number of data divided
by the number of prototypes. Equi-frequency binning equitably spreads the
prototypes over the data, if the data is one-to-many in ¢;. If the data is
many-to-one in ¢, for example with phase-wrappings, the binning is poor.

MNRAS 000, 1-16 (2022)

https://docs.galpy.org/en/stable/reference/potential.html?highlight=MWPotential2014

6 N. Starkman et al.

log

<«
<

Q
orl T N 4y O)
2 s,

mock stream (arm1)

10e] < SOM prototypes (arm 1) “‘ 1 . } 3
mock stream (arm2) - T / -0.50 1
= -0.75

0°4+ » SOM prototypes (arm2)
-150° -100° -50° 0°

¢1 (Stream) [°]

¢, (Stream) [°]

Figure 4. Simulation of NGC-5466 ordered by SOM. The NGC-5466 simu-
lation is the same as Figure 1. The best-fit frame is determined by the method
described in Section 2.1 (and shown in Figure 1). The SOM has 10 prototypes
(per arm), initialized by equi-frequency binnning of the ¢; data (shown in
the top histogram) and trained for 10* iterations before being used to order
the data. The trained prototypes are shown offset from their actual location.
In regions of very high density the prototypes lie on the stream, while in low
density regions they do not. This is a consequence of local averaging and
shows the SOM is correctly responding to the structure of the data. The SOM
is used to order the data using the process described in Section 2.2.2.

few iterations to converge and match the new simulation. Re-using an
SOM for a similar simulation is a technique that works for any stream,
but is particularly useful for complex streams, for example Sagittarius
which wraps several times around the Galaxy (Koposov et al. 2012).
Consider a generative model run as part of a likelihood calculation
in a Markov Chain Monte Carlo (MCMC). Steps in the MCMC are
to nearby points in the parameter space of a potential and progenitor,
and as discussed in the context of NGC-5466, the generated mock
stream will be similar to the previous stream. For the initial state of
the MCMC the SOM must either run for many iterations or have an
informed starting point. For subsequent steps, the previous SOM may
be used as an informed starting point and should require only a little
tuning, not wholesale retraining. Generally, we expect the generative
model of the stream to be the time-limiting portion of any pipeline,
not the SOM.

3 METHODS: CONSTRUCTING STREAM TRACK BY
KALMAN FILTER

Cold streams are approximately 1-D and using a SOM we have
shown that stream data can be projected into a subspace that is
better suited for ordering than on-sky coordinates. The remaining
task is to move through the ordered data, fitting the track, width,
and any other observables along the stream. We will be using a first-
order Newtonian Kalman filter to fit the phase-space track. Before
deriving how Kalman filters work, it is beneficial to take a step back
and outline the challenges of the data and take stock of alternative
approaches.

The data are comprised of observations (real or simulated) of stars
known to be members of the stream. This data has at least the on-
sky position, and also perhaps the distance and kinematics of each
star. Consider a dataset of only the on-sky positions. For finding the
on-sky stream path it is appealing to fit with a low-order polynomial.
For a sufficiently trivial stream, this approach can work. However, if
the stream has any kink(s) —i.e. from interactions — or curvature — as
can happen from projection into an observer’s reference frame — then
the stream path might not be a function, as can be seen in Figure 3,
as is required to fit a low-order polynomial.

To achieve a general solution the data cannot be fit one coordinate

MNRAS 000, 1-16 (2022)

against another; much better is to have an affine variable and instead fit
parametrically for each coordinate. For a stream, this affine parameter
can be the arc-length, i.e. the angular distance along the mean path
of the stream. The point-to-point distances of the data projected
onto the SOM’s subspace are very nearly this arc-length. With the
arc-length as the affine parameter one might do a Gaussian process
regression (Cervone & Pillai 2015) or fit any manner of function:
low-order polynomial, B-spline, Bezier curve. However, all these
procedures are susceptible to the same problem, the SOM is an
unsupervised machine learning technique and is not guaranteed to
converge. In particular, if trained quickly it can make small mistakes
in the ordering. In principle this shortcoming can be overcome by
more training iterations, but if time is a constraint, this extra step may
not be practical and may require human supervision to confirm an
optimal fit, which is likewise impractical. Therefore, a general fitting
procedure for stream data should on the one hand use the SOM-
derived data ordering as an approximate affine variable, but also be
insensitive to small inaccuracies in that ordering. A fitting method
that meets both these requirements is the Kalman filter, presented
here.

The Kalman filter is a well-established algorithm to estimate a joint
probability distribution over unknown variables from a time series of
measurements that may have statistical noise (Kalman 1960). In this
context the unknown variables characterize the stream path and the
measurements are the 2-to-6 astrometric dimensions of the stream’s
stars.

Kalman filters fit data in a very different manner than e.g. polyno-
mial fitting, which works by minimizing some global residual func-
tion. Instead, Kalman filters start at some initial state (a “position”
in the astrometric phase-space) and sequentially introduce measure-
ments, evolving the state and associated uncertainties according to a
dynamical model of the system. This method is a two-step process.
The first step is a priori: predicting from the prior state and the dy-
namical model the current state variables and uncertainties. The next
step is a posteriori: adjusting the predicted state given the incoming
measurement. The posterior state estimate is a weighted average of
the prior and measurement, with the weight determined from both
the prior and measurement uncertainties. A low-noise measurement
against an uncertain prior will favor the measurement in the poste-
rior state estimation, and vice versa for a noisy measurement and
high-confidence prior.

One of the simplest dynamical models, and the one used in this
work, is a first-order Newtonian model. In this filter states are evolved
according to X — X + pAt, where X is the position of an imaginary
point moving along a smooth differentiable manifold passing near
the positions of the stars. Here, v is a pseudo-velocity of the imagi-
nary point. A more complex dynamical model might incorporate the
Galactic potential, taking into account the acceleration field. How-
ever, incorporating the potential introduces a lot of complexity to
avoid poor physics, for negligible gain. Adjacent stars on a stellar
stream do not move along the same orbit, thus simply evolving the
state in the potential is incorrect. For example, the streak-line model
(Kiipper et al. 2012) back-integrates the progenitor then forward-
integrates a stream star’s orbit from its progenitor ejection time. A
good dynamical model might use a similar approach for the next-
state prior: back-integrate the current state to its ejection (call this
Atgject), forward integrate the progenitor for the set time step, then
forward integrate an ejected star for the same Afgject. The first-order
Newtonian model is computationally faster for equally good results
and does not require information about the potential.

On the Fast Track: Rapid construction of stellar stream paths 7

B arm 1
kel .
- 4 < arml 'time' steps (subsampled) 750
o
E arm 2 . 500
2 5 > arm?2 'time' steps (subsampled)
32 250
I}
(7
g 0
221
3 -250
"
€
g 14 -500
2
L -750
& o/

—-1000

—1000 -750 =500 -250 O 250 500 750 1000
(«arm 1) SOM index (arm2-)

Figure 5. Point-to-point SOM-projected distance as proxy for the Kalman
filter time step. After the data of NGC-5466 are organized by the SOM (see
Figure 4), the data are projected into the 1-D subspace of the SOM. The
point-to-point distance is a good measure of the distance the Kalman filter
should travel when determining the location of the next point on the stream
track. Interpreting the distance step as a time step both enables the use of the
Kalman filter and also helps it closely follow the stream. As there is large
variation in the projected distance, the time steps are smoothed.

3.1 Point-to-point times

Time-series methods like the Kalman filter require a time step, how-
ever the stream data are not a time series (see Section 2): first, the
observations are not of the same object, and second, the observations
are not taken in any relevant time order. Despite that the data are
not a true time series, we can treat the data as if it were time or-
dered and amenable to the Kalman filter. By using the frame-rotated
(Section 2.1), SOM-ordered stream (2.2) the data are organized by
distance along the as-yet-unknown stream track. Consider moving
along the track, passing by each data-point with some time variable
t: the distance ordering is ordinally equivalent to the time ordering,
index-by-index.

To re-interpret distances as times we take the time step Az as the
point-to-point distance in the SOM projection of the data. For the
NGC 5466 stream this distance is shown in Figure 5 as the colored
points, indexed by the SOM ordering. We then smooth the time-step
by kernel convolution:

At; = wn] (i|AX), “4)

where w[W](i|X) is the window average of the point-to-point dis-
tances in data X, of window size W, centered on the ith index. The
choice of window is arbitrary, with long-tailed windows more closely
matching At than short-tailed windows, which will better reflect the
local density. We use a Dirichlet window (i.e. a moving window av-
erage) of window-width six — three points per side. The smoothing
reduces the effects of large outliers and the result is not sensitive to
larger window sizes, so this small size is kept fixed. The smoothed
steps are shown as connected, directed black triangles in Figure 5.
The variation in the smoothed steps is much smaller than the un-
smoothed data. Now the “time”-step is tuned so that vAt ~ Ad. The
velocity v of the Kalman Filter is not affected as we change only the
time-step to make the filter accurately reach each data point.

3.2 Running the Kalman Filter

In this section we set up a Kalman filter and discuss how it is run.
For a detailed review, Labbe (2021) offers an excellent discussion
of Kalman filters and how to implement them in Python. Labbe

(2021) works in Cartesian coordinates, but the methods are adapt-
able to spherical coordinates by using appropriate distance measures
and being careful of angular coordinate wrappings. TrackStream
supports both Cartesian and spherical metrics, which are used where
appropriate for the figures. Here, for simplicity, we only present the
Kalman filter math in Cartesian coordinates.

To set up a model, we assume that the stars are in a vicinity of a
one-dimensional differentiable manifold following the stream track,
parameterized as ¢(t), where ¢ represents an artificial time, such as
the scaled arc-length. Thus, the actual positions of the stars, indexed
according to the SOM ordering, are given by the model

wb) = () + &0, ®)

where & () is an unknown offset parameter. To link the model to
observations, let wéﬁz denote the observed position of the kth star,

representing the data,

w(()]gz =c(tp) +€X + € = ¢(tg) +nP), (6)

where € (k) is the observation error.
To set up the probabilistic phase-space model, we define an ex-
tended variable,

xB) = e)" %)

where ¢(&) = c(ty), and) is the artificial velocity vector with
respect to the parameter 7, defined as (k) = c(ty). Alocal first-order
Newtonian model gives us a propagation model,

¢ = (k=D L Ag (k=D +m§k)’ @®

p(F) = k=D +m£k)’

=t — (k) (k) .
where Aty = tx —tx_1, and m " and m,"" represent the approxi
mation error in the first order model for the position and the zeroth
order model for the velocity propagation, respectively.

The Equation (8)-(6) pair is written as a propagation-observation
(k)

pair for the phase space variable x'*’ as

xF) = Frx %D 4y m®),)
k

w(()bz = Hkx(k) +n0), (10)

where the propagation-observation matrices are given by

re=y | me-mon (an

and 1 and 0 are a unit and zero W x W matrices, where W is the
number of phase-space dimensions.

The propagation-observation pair allows us to use the Kalman
filtering and Kalman smoothing to estimate the parameterized man-
ifold points ¢®)_ To set up a Gaussian model, we postulate that the
state noise vectors m(K) and the observation noise n‘%) are mutu-
ally independent and zero mean Gaussian random variables. The
corresponding covariance matrices are set as

1 A4 14,3
ZAtkl fAtkl

(k)y — -2
covim™W) = Q=71 & 5
a1 A1

; 12)

a commonly used form in tracking applications acknowledging the
dependence of the first-order forward Euler process on the time step.
The dependence that Q. represents is the error that a smooth function
can be modeled with discrete steps, using only a velocity term to
update those steps. Similar to how a first-order Taylor expansion has
second-order errors, the first-order Newtonian model has second-
order Ar% (and higher) errors from not accounting for the smoothness.

MNRAS 000, 1-16 (2022)

8 N. Starkman et al.

In the above formula, 4 > 01is a tuning parameter. For the observation
error, we write

cov (n(k)) =Ry =

(oAb 802 . a3

stream

)2 accounts for the random variable & (k) represents

the internal dispersion of the stars within the stream, and (a'r(ni;s)z is

the variance of the observation error.
The Kalman filtering algorithm is a sequential Bayesian filtering

method, generating the conditional distribution of x(K) given all the
past observations wé{az, 1 < j < k. Under the assumption that both
the model and observation noises are independent and Gaussian, the
conditional distributions are also Gaussian, thus completely charac-

terized by the conditional mean x| and covariance Py,

(k)
where (O—stream

n(x(k) | w(l),...,w(k)) = N(X(k) | Xk |k P) (14

Xk |k and Py i based on the previous state parameters X _1|x—1 and
Py _1)k—1 are updated in two phases, prediction step and updating
(or analysis) step. The a priori prediction step is based solely on the
propagation model,

Xp k-1 = FreXp-1)k-15 (15)
Prix-1 = FrPryx—1Fx + Q. (16)

As the new observation arrives, the predicted distribution is consid-
ered as prior, and the update is obtained by Bayes’ formula. Writing
the pre-fit residuals of the mean and covariance as

k
Yi = Wébz = HpXpe |1 a7
Sk = Hi Py HY + Ry, (18)

the a posteriori update of the mean and covariance assume the forms

Xg |k = Xk|k—1 + Ke ¥ (19)
Piji = Prjk—1 — K HpPp -1, (20

where Ky is the Kalman gain matrix,
Ky =Py HE S 1)

The posterior state estimate is a weighted average of the prior and
measurement, with the weight — the Kalman gain — determined from
both the prior and measurement uncertainties. A low-noise measure-
ment against an uncertain prior will favor the the measurement in the
posterior state estimation.

The algorithm requires the initial input (xg, Pg). To define the
mean Xg|o, we choose the mean position of a few stream points closest
to the origin, rather than the origin itself, since streams originate
at the edge of their progenitor, not their center. The initial mean
velocity is the normalized mean of the differences between the first
few consecutive stream points. The covariance Pyq is defined as
a diagonal matrix, with the variances estimated by using the first
few stream points. The approximation of P as a diagonal matrix
is corrected after the first time step by Qy and later, in a back-
propagation step, discussed next.

Kalman filtering, and other Bayesian filtering methods are based
on the Markov models in which the next update depends on the
past. When the process is run on-line, the data arriving sequentially
as a time series, this updating approach is natural, while when all
data are available as in the present case, no preferential direction of
time can be justified. A common approach to find an estimate for
the posterior distribution n(x(k) | w ..,W(D)), 1<k<D,is
to use Kalman smoothing, in which the filter is run in the reverse

MNRAS 000, 1-16 (2022)

—— track arml
— track arm2
arml
e origin
arm2

HNw
e 2 3

Latitude (Stream) [deg]

<

-150° -100° -50° 0° 50°
Longitude (Stream) [deg]

Figure 6. The Kalman-predicted path for NGC-5466. Building on figures
1,4,5, this figure shows the application of the Kalman filter to each arm of
the simulated NGC-5466. The ordering of the data in each arm was done by
SOM and the data re-interpreted as a time-series by using the point-to-point
distance in the projection onto the SOM 1-D subspace. The Kalman filter was
run on this data to produce the stream tracks (black).

order, using the forward filtered distributions as priors. Starting with
the final distribution with mean xp |p and covariance Pp|p, the the
Rauch-Tung-Striebel (RTS) smoother Rauch et al. (1965) algorithm
walks backwards by computing the mean and covariance X |p and
Py |p through the updating formulas

Xi—1|D = Xk—1 k-1 + €k—1 (Xk|D = Xk k1) (22)
Py ip =Pr_ykot + ko1 (Prp — Prj—t)€f_y (23)
where the matrix c;_; back-propagates the information,

Ck-1 = Pk—1|k—1FTP;|lk_1~ (24)

RTS smoothing is a powerful technique, in no small part because
it helps correct for mistakes made when running the Kalman filter.
An obvious correction is in the eponymous smoothing of the stream
track. Also important is that the smoother will update the initial
conditions (X, Pg), which are only motivated by a heuristic —a local
average at the starting point. In particular the covariance P)q should
have off-diagonal terms as the measurement error is correlated in the
real data. Determining good values of these initial off-diagonal terms
is neither easy nor necessary as the RTS smoothing back-propagates
information on the covariance from later time steps to improve P.

In Figure 6 the Kalman filter pipeline is run on the SOM-ordered
data from the mock NGC-5466 stream shown in prior figures. This
Kalman filter was run in spherical coordinates, with the correspond-
ing distance metric. The stream track correctly accounts for the angle
wrapping at —180° to +180°. The track covariances (gray ellipses at
time steps Afy) increase where the data are dense and the stream
is cold and decreases elsewhere, such as as at the end-points of the
stream. For most of the stream the covariance ellipses are the given
width of the stream, 2°, since the data are relatively dense and the
errors in on-sky coordinates are 0 in this mock stream and negligi-
ble in, e.g. Gaia data, so do not contribute to the stream width as
determined by the Kalman filter.

4 RESULTS

Our method of fitting a track to a stream happens in three steps.
First (Section 2.1) we find a reference frame to optimally represent
the data. Second (Section 2.2) we find a one-dimensional subspace
which approximately matches the structure of the stream and into
which the stream can be projected. Third (Section 3), having ordered
the data, we fit the track by Kalman filter. This three-step method
produces good fits to the example data sets used thus far. In this
section we show the application of the method pipeline to a variety
of stellar streams, simulated using a number of different techniques.

On the Fast Track: Rapid construction of stellar stream paths 9

4.1 Comparing to Distribution Function (DF) models

In Bovy (2014) stellar streams are modeled with a distribution func-
tion in action angle space. Starting from a potential, a progenitor
position, and stream formation parameterization at some initial time
1o, the initial stream distribution is evolved to time ¢. In action-
angle space the progenitor and stream is represented very simply.
The action-angle stream distribution is transformed to position-
momentum phase space, and similarly parameterized using linear
interpolations. The DF method simulates an exact stream track and
width. Figure 7 shows a mock stream of NGC 104, simulated with
streamdf from Bovy (2014). The progenitor’s current phase-space
position is from Vasiliev (2019) with a total disruption time 4.5 Gyr
and an initial velocity dispersion of 0.365 km / s, to create a rea-
sonably thin stream. The system is integrated in MilPotential2014
with an actionAngleIsochroneApprox to map phase space coor-
dinates to the action-angle coordinates required by the mock-stream
generator (Bovy 2015).

In contrast the TrackStream pipeline estimates the track from
stream sample points (e.g. stars) in position-momentum phase
space. To compare TrackStream to a DF prediction we sample
from the stream, transforming from action-angles space, and run
TrackStream on the sample. Figure 7 shows the result and com-
parison to the DF-derived stream path. For visualization we use an
intrinsic stream width (oggream) 0f 300 pc, which exaggerates the size
of the covariance ellipses. When run with the more accurate intrinsic
stream width of 100 pc the two methods agree within 1 — o over
their lengths. The DF track extends beyond that of TrackStream
since there are no tracer particles sampled at those distances. An-
other major difference between the two methods is what is meant by
the track width. The DF analytically calculates the intrinsic width of
the stream, which is a 1-o- Gaussian along the track. TrackStream
combines an intrinsic stream width with the uncertainty in each da-
tum point and the sparsity of the data to derive a covariance of the
confidence in the track. This difference can be seen in Figure 7,
especially in regions of data sparsity, like the poorly-sampled outer
lengths of the stream. Here the confidence in the stream track is quite
low. For a large number of well-measured data points TrackStream
and the DF converge, such as near the progenitor in Figure 7.

The stream DF approach of Bovy (2014) and similar (e.g. Sanders
(2014)) are some of the few analytic means to simulate stellar streams.
However the method is subject to a number of limitations. First, it is
generally necessary in the progenitor model to model the stripping
times of stars from the progenitor to a uniform distribution. This as-
sumption is known to be false, since the mass loss rate is highest near
pericenter passages. Second, these methods do not account for the
progenitor’s gravitational influence on the stream. The next stream-
generation method trades analyticity for the capability to address
many of these limitations.

4.2 Tracking particle spray mock streams

Particle-spray (also called release) methods are a semi-analytic model
of stream formation. The model requires a potential, the current
phase-space position of the progenitor, the mass of the progenitor,
and the period of time and rate at which the progenitor has been
disrupting. To model the internal dynamics, the model also often
includes a parameter for the distribution of speeds at which particles
are ejected.

First the phase-space position of the progenitor is backwards inte-
grated to the start of the disruption period. If the model accounts for
mass loss, the progenitor’s current mass may also be back-integrated

to the initial mass by considering the disruption rate. Next, the pro-
genitor is forward integrated to the present, periodically releasing
particles (stars) according to the disruption prescription. The parti-
cles are released on orbits from a simulation-calibrated distribution
of initial positions/velocities of released particles. When fully inte-
grated the progenitor is at its present position. Despite the name, all
released particles are stream stars and should lie along the stream
track, with a reasonable dispersion.

Figure 8 shows a particle-spray generated mock stream with a
47 Tucanae-like progenitor. We use the particle-spray implementa-
tion — streamspraydf — that is included in galpy (v1.8+) (Bovy
2015) , which is an implementation of the Fardal et al. (2015)
method that is fully described in Qian et al. (2022). The poten-
tial is MWPotential2014 from Bovy (2014); the progenitor’s orbital
parameters are from Vasiliev (2019) with the mass from Marks &
Kroupa (2010) (We note that streamspraydf does not incorporate
mass loss, so this mass is fixed). The disruption time is 2 Gyr, cho-
sen arbitrarily to generate a sufficiently long mock stream. All other
parameters are set to the streamspraydf defaults. The stream track
is fit with the TrackStream pipeline. As in Section 4.1, for visual-
ization purposes we set the intrinsic stream width to 300 pc. Particle-
spray methods do not model the stream track, so the fit quality is seen
only by comparing to the tracers. The tracks for both arms correctly
start at an offset from the progenitor. Though the initial state of the
Kalman filter is much closer to the progenitor, the RTS smoother
correctly back-propagates the information that the stream does not
start at the progenitor. As expected, the uncertainty in the track is
larger at the start than immediately after. While the stream tracks are
smooth, they exhibit some structure at small scales due to variations
in the distribution of the stream stars. The structure in the track is a
balance between the information known about the stream — e.g the
intrinsic width — and the actual structure of the data. If the data has
sufficient structure, be it random from low-number statistics or from
e.g. subhalo interactions, so too will the TrackStream stream track.
It is possible to damp structure in the track by including smoothness
priors. If any sources of stream perturbations are included in the
simulation, such as sub-halos, then these priors would likely be quite
complex. Alternatively, in simulations one can generate more tracer
particles, providing more information when constructing the stream.

4.3 Tracking an N-body simulation model

N-body simulations are the most accurate but also computation-
ally expensive of the stream simulation methods, making the fewest
time-saving approximations. A high resolution N-body simulation
simulation may achieve one-to-one parity in the number of parti-
cles to number of stars in the progenitor, model the motions with
dynamic time steps to resolve close interactions, and include stellar
evolution. The disruption rate is determined by the the Galactic tidal
field and the progenitor’s internal kinematics, not an analytic pre-
scription. Often the high resolution of the progenitor is not matched
in the potential, where it is common to instead use a purely analytic
model or to also include low(er) resolution sub-halos. When trying to
match observational data, an N-body simulation simulation provides
the most accurate representation.

Figure 9 shows TrackStream applied to an N-body simulation
of Palomar 5. The N-body simulation is taken from Starkman et al.
(2019), where we searched for extended tidal features of Palomar 5.
Further details of the simulations can be found in Starkman et al.
(2019). In short, we use the direct N-body code NBODY6 (Aarseth
2006), evolving an initial progenitor of a 100,000 star Plummer
model with a half-mass radius of 10 pc. The initial mass function

MNRAS 000, 1-16 (2022)

https://docs.galpy.org/en/stable/streamdf.html
https://docs.galpy.org/en/stable/reference/potential.html?highlight=MWPotential2014
https://docs.galpy.org/en/stable/reference/aaisochroneapprox.html
https://docs.galpy.org/en/stable/streamdf.html
https://docs.galpy.org/en/stable/reference/potential.html?highlight=MWPotential2014
https://docs.galpy.org/en/stable/streamdf.html
https://docs.galpy.org/en/stable/streamdf.html

10 N. Starkman et al.
. .
- oo -
4 - -
— -
< - /
X 2 - /
= [T,
Q / *
=2 .
s 4
3 “:
< A
S 2 & Pl e a4
o
©
(L .,
= -~
- . arml
6 P, = arm2
T 4t e s /s r#® o OTiGIN
-6 -4 -2 0 2
X (Galactocentric) [kpc]
4
g
a
X 2
g
2 o
f=
[}
I}
2
5 -2
o
8
-4
= arml
6 « origin
arm2
2
6
4 Sl
g
a
=< 2
g
= .
5 0 /
]
§ -2 —— trackarml
b5} track arm2
8 _a --=" DF track
> - arml
-6 - « origin
arm2
-6 -4 -2 0 2 4 6

x (Galactocentric) [kpc]

vy (Galactocentric) [kms™?]

vy (Galactocentric) [kms~*]

vy (Galactocentric) [kms~*]

[P
-
150 /’@ 4~‘,-.._'
-~ | S
|
100 / | e,
\"‘ f N
50 Py . | 3
f .. | 3
|
0 i S ‘\‘
% ~
-50 X
i arml
_100 * = arm2
& - origin
-200 -150 -100 -50 0 50 100 150 200
v (Galactocentric) [kms™!]
150
100
E
50
0
-50
arml
s origin
100 “ arm2
-200 -150 -100 -50 0 50 100 150 200
vy (Galactocentric) [kms™1]
200
e de—— |
e ——
150 g,
| =
100 |
|
|
50 |
| Y
0 | v
|
| J—
-50 | track-arml
| track arm2
-100 = DF track
—150 R arf‘n.l
\\ « origin
-200 e arm2
-200 -150 -100 -50 0 50 100 150 200

vy (Galactocentric) [kms™1]

Figure 7. Comparing results of streamdf (Bovy 2014) to TrackStream. The stream progenitor parameters are NGC 104 from Vasiliev (2019), integrated in
MiWPotential2014 (Bovy 2015), with streamdf from Bovy (2014). [top left/right] x-y and vx-vy, projections of the simulated stream’s arms and progenitor.
The data are not yet ordered, beyond identifying to which stream arm each tail belongs. [middle left/right] Each stream arm is ordered by a SOM (Section 2.2)
run on the positions and kinematics of each stream-arm. The trained SOM prototypes are black pluses. [bottom left/right] The TrackStream tracks (orange and
blue, with gray error ellipses) are compared to the streamd£’s true tracks (dashed line), also the source of the 400 star sample on which the TrackStream was
trained. The error ellipses, shown at each step of the Kalman filter, are smoothly interpolable as a function of the arc-length. For visualization of the covariances
we exaggerate the intrinsic stream width to 300 pc. See Section 4.1 for discussion.

is from (Kroupa 2001), with a minimum and maximum stellar mass
of 0.1M o and 50M o, respectively. We use the stellar evolution pre-
scription of Hurley et al. (2000), with a metallicity of Z = 0.001,
and Hurley et al. (2002) for binary stars. The cluster is evolved for
12 Gyr in MWWPotential2@14such that the final position, velocity,
mass, and mass function are comparable to the observed properties
of Palomar 5 (Ibata et al. 2017; Grillmair & Smith 2001), though the
simulated cluster density is higher than observed.

The progenitor particles are removed as these are not part of the
stream. Likewise we remove the neutron stars and other stellar rem-
nants. The full N-body simulation simulation includes a number of
particles that were ejected from the progenitor, e.g. in a close core in-
teraction, that are not part of the stream. These non-stream members
are identified by a Local Outlier Factor (LOF) calculation (Breunig
et al. 2000) with a threshold of 1.0 and removed. Approximately,
the LOF is a local density calculation. Since the simulated stream is
dense, low density regions are likely not in the stream. The distribu-
tion of LOFs calculated for each star is very strongly peaked around
the typical density of the stream. Only in the extended tidal tails is the
LOF of the stream approximately that of the non-stream members.
In observations it is unlikely these stars would have a high stream
membership probability. The exact value of the LOF threshold often

MNRAS 000, 1-16 (2022)

makes little difference and we find the stream track determination
robust.

After removing outliers, TrackStreamis applied to the data. Start-
ing near the progenitor, like for Section 4.2, the tracks for both arms
are offset from the progenitor center. At each point along the stream,
the RTS-smoothed Kalman filter uses information both proceeding
and preceding that point to construct the track, which smoothly fits
the stream data. In higher density, kinematically cold regions the
width (covariance ellipses) shrink down to the prescribed stream
width, which is exaggerated here to 300 pc for visualization pur-
poses. As expected, where the stream density decreases or the stream
is kinematically hotter the track confidence decreases and the covari-
ance ellipses grow. At the extrema of each arm’s track the uncertainty
is also large since there are fewer stars and because at extrema the
Kalman filter only has information on one side, not both. To the
Kalman filter, the start of the stream by the progenitor is also an ex-
tremum. Physically, the progenitor is not an extrema, since the other
stream arm in Figure 9 is nearby and shares the progenitor as the ori-
gin. The Kalman filter could be modified to account for the presence
of other stream arm, but this is probably not advisable. Theoretically,
fitting the Kalman filter to each stream arm could be done as an
ensemble fit, with the progenitor as a shared constraint. While this

https://docs.galpy.org/en/stable/streamdf.html
https://docs.galpy.org/en/stable/reference/potential.html?highlight=MWPotential2014
https://docs.galpy.org/en/stable/streamdf.html
https://docs.galpy.org/en/stable/streamdf.html
https://docs.galpy.org/en/stable/reference/potential.html?highlight=MWPotential2014

vy (Galactocentric) [kms™]

6 « arml
« arm2 . S L
Qo 4 . i 7S * e, -
k3 s oorging _eaee e 3t
= ~ tL
g2 B
= .
5 T
2 .
g0 o
L *
v
8 -2 -
8
LA L
> P
P e
Moras aeuy i
-6 LR AP
—6 -4 -2 0 2 4 6

x (Galactocentric) [kpc]

6 arml
origin
arm2

y (Galactocentric) [kpc]
°

vy (Galactocentric) [kms~*]

On the Fast Track: Rapid construction of stellar stream paths 11
200 .
arml et B e B b,
1501 . arm2 ./‘.@“ .-h""'.‘w:
< origin "y

100 = .

I 3

o ¥ %
-50 i ..‘"
-100{ %, ot
-150 ..;'.‘ .. ~.3"

» N e
~200 e g et e T
-200 -100 0 100 200
v (Galactocentric) [kms™1]
200
arml

1509 . origin /AQ
100 arm2

50

0
-50
-100
150
-200

-6 -4 -2 0 2 a 6
x (Galactocentric) [kpc]

vy (Galactocentric) [kms™*]

61 — track arml
— track arm2
g 4 arml
P P
= . ori
g 2
=
5
c
o 0
o
o
I}
& -2
©
9
=
&
- s
-6 - -
-6 -4 -2 0 2 4 6

X (Galactocentric) [kpc]

-200 100

vy (Galactocentric) [kms™!]

200

— trackarml [
150 track armZ
100 arml
> A
- Jorigin
50 /
/ arm2
od
-50
-100
-150 i D
. e xaab
-200 g TR
-200 -100 0 100 200

vy (Galactocentric) [kms™1]

Figure 8. Full application of TrackStreamto a particle-spray model of NGC 104. The mock stream progenitor parameters are NGC 104 from Vasiliev (2019),
integrated in MWPotential2014, with streamspraydf from (Bovy 2014). [top left/right] x-y and vx-vy projections of the simulated stream’s arms and
progenitor. The data are not yet ordered, beyond identifying to which stream arm each tail belongs. [middle left/right] The stream is ordered (and colored) by
the SOM Section 2.2 run on the positions of each arm. The trained SOM prototypes are black, connected pluses. [bottom left/right] The TrackStream track
is compared to streamspraydf track, the source of of the 400 star sample on which the TrackStream was trained. For visualization of the covariances we

exaggerate the intrinsic stream width to 300 pc.See Section 4.2 for discussion.

modification would reduce the extrema-associated uncertainty, it is
unclear how to perform this ensemble fit without assuming informa-
tion about the potential and evolution of the cluster, assumptions we
purposefully avoid. Regardless, near the progenitor the star count is
usually larger than elsewhere along the stream and the track certainty
is correspondingly higher, mitigating the need for an ensemble fit.

4.4 Tracking Real Streams

In the previous subsections of Section 4, TrackStream was applied
to mock stream data. TrackStream also works on real data. We apply
the pipeline to two of the most commonly studied stellar streams:
Palomar 5 and GD-1, shown in Figure 10 and Figure 11, respectively.
The Palomar 5 data are a combination of data from Ibata et al. (2017)
and Starkman et al. (2019). In the stream-oriented reference frame
the stream stars span almost 30 degrees in longitude but only a few
degrees in latitude. The data set is very small, demonstrating that
TrackStreanm fits reasonable tracks even for O(10) stars. Like with
prior examples, the confidence in the track is a mixture of the intrinsic
stream width, the errors in the data, and the data sparsity. Near the
ends of the track, particularly the end point at negative longitude,
the covariance ellipse is much larger than elsewhere in the stream.

Looking at the nearby data, two reasons for the large covariance are
that the data are sparse and that the end regions have less information
(ahard limit to on one side) to inform the fit. Were the data less sparse
the covariance would be more similar to the covariance at the other
end point. Figure 11 shows a much larger, though still small compared
to e.g. the N-body simulation, data set from Price-Whelan & Bonaca
(2018) of GD-1. The thin stream is hand-selected in TOPCAT (Taylor
2005) to match the selection field of Price-Whelan & Bonaca (2018,
figure 2). The progenitor of GD-1 is unknown, so for convenience we
treat the whole stream as a single stream arm, rather than a leading
and trailing arm.

5 DISCUSSION AND CONCLUSIONS

In this paper we present a novel method for rapidly constructing stel-
lar stream tracks, accounting for measurement error and data sparsity
(e.g. Fig. 8). By using stream-oriented reference-frame transforma-
tions in conjunction with Self-Organizing Maps, we treat stellar-
stream data as a pseudo time-series, to which first-order Kalman
filters can be applied. The technique is Galactic-model independent,
non-parametric, and works on many different mock stream generation

MNRAS 000, 1-16 (2022)

https://docs.galpy.org/en/stable/reference/potential.html?highlight=MWPotential2014
https://docs.galpy.org/en/stable/streamdf.html
https://docs.galpy.org/en/stable/streamdf.html

12 N. Starkman et al.

arml
arm2
origin Y

y (Galactocentric) [kpc]

vy (Galactocentric) [kms=1]

arml
arm2
origin

—2‘.5 0.‘0 2:5 5.‘0 7.‘5
x (Galactocentric) [kpcl]

-10.0 =75

-100 =50 0 50

vy (Galactocentric) [kms~1]

=150

arml
origin
arm2 Y

y (Galactocentric) [kpc]

vy (Galactocentric) [kms=1]

arml
origin
arm2

—2‘.5 0.‘0 2:5 5.‘0 7.‘5
x (Galactocentric) [kpcl]

-10.0 =75 -5.0

-100 =50 0 50

vy (Galactocentric) [kms~1]

=150

— track
1 —— track arm2
arml
origin
arm2 e

y (Galactocentric) [kpc]

vy (Galactocentric) [kms=1]

—— trackarml
01 —— track arm2
arm1l
origin
arm2

—2‘.5 0.‘0 2:5 5.‘0 7.‘5
x (Galactocentric) [kpcl

-10.0 =75 -5.0

-100 =50 0 50

vy (Galactocentric) [kms™1]

=150

Figure 9. Full application of TrackStream to an N -body simulation simulation of Palomar 5. The mock stream progenitor parameters are for Palomar 5,
integrated in MWPotential2014. [top left/right] x-y and vx-vy, projections of the simulated stream’s arms and progenitor. The data are not yet ordered, beyond
identifying to which stream arm each tail belongs. [middle left/right] The stream is ordered by the SOM Section 2.2 run on the positions of each arm. The
trained SOM prototypes are black, connected pluses. [bottom left/right] The TrackStream track is compared to the N -body simulation, the data on which the
TrackStream was trained. For visualization of the covariances we exaggerate the intrinsic stream width to 300 pc. See Section 4.1 for details.

methods. Owing to its speed this method is well suited to comparing
simulations to data as a step in a Monte Carlo analysis.

The track-fitting procedure, implemented in TrackStream, is two
or three steps, depending on if one is working in spherical coor-
dinates. First, if in spherical coordinates we re-orient the reference
frame to minimize the training time of the following step. Second,
using SOMs we infer a one-dimensional subspace that approximates
the structure of the target stream and orders the constituent data. Third
and last, using the subspace-order we fit the track of the stream with
a Kalman filter. The track-finding technique works well for a variety
of stream-generation methods: distribution functions (Section 4.1),
particle sprays (Section 4.2), N-body simulations (Section 4.3), even
real streams (Section 4.4).

In simulations, outliers can be present. In nature, contamination
by background or foreground stars can also occur. TrackStream as-
sumes that all stars are members of the stream and should therefore
contribute to the track fit: the SOM will include the outliers and con-
tamination when finding the stream’s subspace and the Kalman filter
will likewise try to move the mean path towards those points. Without
a background model, contamination is challenging to deal with; how-
ever if stream membership probabilities are known a-priori, than the
SOM and Kalman filter can both incorporate a weighting (the prob-
ability) to minimize the impact of low-probability members, which

MNRAS 000, 1-16 (2022)

are likely contaminants. Outliers may be detected and removed, in
separate steps to the SOM and Kalman filter. In the case of Figure 9,
a LOF metric is used to rank for each datum how connected it is
to neighboring data. Data with connectivity below a given threshold
are marked as an outlier and removed. This initial step of outlier
removal is very useful and sufficient in all the examples discussed
here. For more challenging scenarios we find it useful to add a sec-
ond outlier removal step, after running the SOM. Now the LOF is
run on the data projected into the SOM manifold, which strongly
constrains what data are (or are not) neighbors. The SOM may be
re-run, or just further train, to minimize the impact of the outliers
on the SOM manifold. Alternatively, one could modify the Kalman
filter to use Gaussian distribution conditioned on an adaptive width,
essentially a hierarchical model where the width has its own model.
This modified Kalman filter will be less sensitive to outliers. In this
paper we employ only the single outlier detection and removal step,
which is sufficient for these simulated and real streams.

One of the motivating use cases of TrackStream is to fit stream
tracks with no human supervision, for example as a step in a like-
lihood calculation of observational data given the stream model in
an MCMC. TrackStream has a number of inputs, some requiring a
human check to ensure the track is well fit. In particular, the SOM
needs to be checked for convergence, which can require a long train-

https://docs.galpy.org/en/stable/reference/potential.html?highlight=MWPotential2014
https://github.com/nstarman/trackstream

On the Fast Track: Rapid construction of stellar stream paths 13

7
5 5 arml et :
9 - origin s =
Z o
— 0 - arm2 @
%) .
o 20 L
5 e
= -5°
3 7
= -10°
-140° -135° -130° -125° -120°
RA (ICRS) [deg]
3
o
[
S
E .
o - arml . L
o .+ origin “ Gt
Q0 . arm2 Ta ,:,,:"@ ¥ o
-15° -10° -5° 0° 5 10°
£ (Stream) [deg]
30
=)
CIJ
S 2
€
© 0
o! - arml
ﬁ « origin
2f arm2 g, @
-15° -10° -5° 0° 5 10°
£ (Stream) [deg]
= * —— track arm1l . origin
g track arm2 . arm2 y,
— 2°
- arml
€
g
=]
8 g
Py 3

-15° -10° -5° 10°

o
£ (Stream) [deg]

Figure 10. Full application of TrackStream to real data on the Palomar 5
stream from Ibata et al. (2017) and mean track points from Starkman et al.
(2019). [top] The stream stream is shown in ICRS (observed) coordinates.
The position of the origin is from Vasiliev (2019). We hand-label and color the
stream arms. [top middle] A best-oriented frame is fit to the data, minimizing
b. [bottom middle] An SOM (black connected dots) is fit to each arm. [bottom]
The Kalman filter is run on each arm (blue and orange), using the SOM
ordering.

ing period if the initial prototypes are poorly chosen. Since human
intervention is not possible at every step inan MCMC, TrackStream
is designed such that the inputs only need to be well chosen once and
then apply well for any stream generated in a similar region of param-
eter space. For inputs like the initial stream width, these are generally
well known and a stream with a very different width might produce
a less smooth track, but covariance ellipses will likewise be large
and the model likelihood will be low. For the SOM, using the initial
prototypes also means having a long training time at every step. We
emphasize that “long” is of order 10 seconds for 10° iterations on a
consumer laptop, but this may still be a prohibitive time constraint.
Steps in the MCMC are to nearby points in the parameter space of a
potential and progenitor and the generated mock stream will generally
be similar to the previous stream. For subsequent steps, the previous
SOM may be used as an informed starting point and should require
only a little tuning, not wholesale retraining, and most importantly,
no human supervision.

For reference we compare the training time of a SOM to the DF
method (Bovy 2014), which is the fastest of the simulation meth-
ods described here. The speed of the DF method depends on the
underlying potential: with a simple logarithmic potential both arms
of a stream with a NGC 5466-like progenitor may be simulated in

arml
origin

¢2 (GD1) [deg]

origin
arml

¢ (GD1) [deg]

-20° 0°

— track arml
origin
arml

¢2 (GD1) [deg]

-40° -20° 0
¢1 (GD1) [deg]

Figure 11. TrackStreamfit to a subset of the GD-1 data from Price-Whelan
& Bonaca (2018). [top] The data transformed to the frame from Koposov et al.
(2010). The thin stream is hand-selected in TOPCAT (Taylor 2005) to match
the selection field of Price-Whelan & Bonaca (2018, figure 2). [middle] The
same, but now including the SOM prototypes (black connected points) and
coloring the data by the SOM ordering. [bottom] The fit track to the stream
(black) overlaid on the SOM-colored data.

approximately 20 seconds on a 2018 2.7GHz i7 MacBook Pro, while
a similar progenitor evolved in MWPotential2014 takes approxi-
mately 2% minutes. Training the Self-Organizing Map for 2 million
iterations takes approximately 20 seconds (ten per arm) on either
stream. For well chosen initial prototype locations the number of it-
erations may be reduced arbitrarily, but running for at least a few tens
of thousands of iterations can be good practice to ensure convergence.

The stream is re-simulated with a modified MWPotential2014,
where the mass of the bulge and disc are both increased by 30% —
a very large difference and one that significantly affects the stream
morphology, with a very obvious kink in the z projection. Retraining
from scratch would take a few million iterations and tens of seconds.
However, the SOM prototypes trained on the stream simulated with
MiiPotential2@14 are proximate in phase-space and already have
the correct topological arrangement. Using these prototypes as an
informed initial condition, the requisite training time to convergence
is reduced to a few tens of thousands of iterations and less than
one second per arm. The SOM is only a time-limiting step of the
TrackStream pipeline once. The Kalman filter is never a time-
limiting step, taking only a few milliseconds to run. Thereafter, the
entire pipeline is significantly faster than the stream’s generative
model.

TrackStream, in its current form, computes an affine parameter-
ized mean track and its associated covariance. The latter incorporates
the intrinsic width, but it is hard to separate this from the details of
the covariance. A useful future improvement to TrackStream will
be to modify the Kalman filter to be a Bayesian hierarchical model
incorporating the intrinsic width, which would be constrained simul-
taneously with the mean path. In addition, the Kalman filter can be
relaxed to the more general Bayesian filter, allowing for non-Gaussian
descriptions of the streams.

TrackStreamis an efficient means to characterize a stream’s path.
While designed for use with simulations, TrackStream’s methods

MNRAS 000, 1-16 (2022)

https://docs.galpy.org/en/stable/reference/potential.html?highlight=MWPotential2014
https://docs.galpy.org/en/stable/reference/potential.html?highlight=MWPotential2014
https://docs.galpy.org/en/stable/reference/potential.html?highlight=MWPotential2014

14 N. Starkman et al.

and pipeline work well with real observational data. For example, a
probabilistic model can use the stream track to compute the likelihood
of a mock stream given real data, or vice versa, the probability
of the data given a mock stream. Running TrackStream on both
the observations and simulations allows for the comparison of both
tracks. Therefore, in application, TrackStream’s novel method for
rapidly constructing stellar stream tracks enables us to approach a
problem using the path of real data, simulated data, or both.

ACKNOWLEDGEMENTS

We thank Joshua Speagle for insight and means to incorporate data
error into SOM weighting. NS acknowledges support from the Natu-
ral Sciences and Engineering Research Council of Canada (NSERC)
- Canadian Graduate Scholarships Doctorate Program [funding ref-
erence number 547219 - 2020]. NS and JB received partial support
from NSERC (funding reference number RGPIN-2020-04712) and
from an Ontario Early Researcher Award (ER16-12-061; PI Bovy).

DATA AVAILABILITY

Using ShowYourWork (Luger et al. 2021), all the figures
in this paper can be reproduced from their source code at
https://github.com/nstarman/trackstream_paper. TrackStream may
be used under a modified BSD-3 license and is available on GitHub
in the repository https://github.com/nstarman/trackstream.

REFERENCES

Aarseth S., 2006, Gravitational NBody simulations. Vol. 38, Cambridge
University Press, doi:10.1007/s10714-006-0278-1

Arias E. F., Charlot P., Feissel M., Lestrade J. F., 1997, IERS Technical Note,
23,1V

Astropy Collaboration et al., 2022, ApJ, 935, 167

Banik N., Bovy J., 2019, MNRAS, 484, 2009

Bennett M., Bovy J., 2019, MNRAS, 482, 1417

Bezier P., 1982, Numerical Control: Mathematics and Applications. J. Wiley,
https://books.google.ca/books?id=e0eAyQEACAA]

Binney J., Tremaine S., 2008, Galactic Dynamics: Second Edition. Princeton
University Press

Bonaca A., Hogg D. W., 2018, ApJ, 867, 101

Bonaca A., Geha M., Kiipper A. H. W., Diemand J., Johnston K. V., Hogg
D. W, 2014, ApJ, 795, 94

Bonaca A, et al., 2020, ApJ, 889, 70

Bovy J., 2011, GitHub - jobovy/stellarkinematics: Some notes on coordinate
transformations in stellar kinematics, https://ui.adsabs.harvard.
edu/abs/2011PhDT........ 86B/abstract

Bovy J., 2014, ApJ, 795, 95

Bovy J., 2015, ApJS, 216, 29

Bovy J., Bahmanyar A., Fritz T. K., Kallivayalil N., 2016, ApJ, 833, 31

Breunig M. M., Kriegel H.-P., Ng R. T., Sander J., 2000, in Proceedings of
the 2000 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’°00. Association for Computing Machinery, New York,
NY, USA, p. 93-104, doi:10.1145/342009.335388, https: //doi.org/
10.1145/342009.335388

Calvetti D., Somersalo E., 2021, Mathematics of Data Science: A Computa-
tional Approach to Clustering and Classification. SIAM

Carlberg R. G., Grillmair C. J., Hetherington N., 2012, ApJ, 760, 75

Cervone D., Pillai N. S., 2015, arXiv e-prints, p. arXiv:1506.08256

Drimmel R., Poggio E., 2018, Research Notes of the American Astronomical
Society, 2, 210

El-Falou N., Webb J. J., 2022, MNRAS, 510, 2437

Erkal D., Koposov S. E., Belokurov V., 2017, MNRAS, 470, 60

MNRAS 000, 1-16 (2022)

Fardal M. A., Huang S., Weinberg M. D., 2015, MNRAS, 452, 301

Fukushige T., Heggie D. C., 2000, MNRAS, 318, 753

GRAVITY Collaboration et al., 2018, A&A, 615, L15

Gibbons S. L. J., Belokurov V., Evans N. W., 2014, MNRAS, 445, 3788

Grillmair C. J., Dionatos O., 2006, ApJ, 641, L37

Grillmair C. J., Smith G. H., 2001, AJ, 122, 3231

Heggie D., Hut P., 2003, The Gravitational Million-Body Problem: A Multi-
disciplinary Approach to Star Cluster Dynamics

Helmi A., White S. D. M., 1999, MNRAS, 307, 495

Hendel D., Johnston K. V., 2015, MNRAS, 454, 2472

Hills J. G., 1975, AJ, 80, 809

Hurley J. R., Pols O. R., Tout C. A., 2000, MNRAS, 315, 543

Hurley J. R., Tout C. A., Pols O. R., 2002, MNRAS, 329, 897

Ibata R. A., Lewis G. F., Thomas G., Martin N. F., Chapman S., 2017, ApJ,
842,120

Johnston K. V., 1998, ApJ, 495, 297

Johnston K. V., 2016, in Newberg H. J., Carlin J. L., eds, Astrophysics and
Space Science Library Vol. 420, Tidal Streams in the Local Group and
Beyond. p. 141 (arXiv:1603.06601), doi:10.1007/978-3-319-19336-
6_6

Johnston K. V., Zhao H., Spergel D. N., Hernquist L., 1999, ApJ, 512, L109

Kalman R. E., 1960, Transactions of the ASME—-Journal of Basic Engineer-
ing, 82, 35

Koposov S. E., Rix H.-W., Hogg D. W., 2010, ApJ, 712, 260

Koposov S. E., et al., 2012, ApJ, 750, 80

Koposov S. E., et al., 2019, MNRAS, 485, 4726

Kroupa P., 2001, MNRAS, 322, 231

Kiipper A. H. W, Lane R. R., Heggie D. C., 2012, MNRAS, 420, 2700

Labbe R., 2021, Kalman and Bayesian Filters in Python, http://rlabbe.
github.io/Kalman-and-Bayesian-Filters-in-Python/

Leung H. W., Bovy J., Mackereth J. T., Hunt J. A. S., Lane R. R., Wilson
J. C., 2022, arXiv e-prints, p. arXiv:2204.12551

LiT. S, etal., 2021, ApJ, 911, 149

Luger R., Bedell M., Foreman-Mackey D., Crossfield I. J. M., Zhao L. L.,
Hogg D. W., 2021, arXiv e-prints, p. arXiv:2110.06271

Lynden-Bell D., 1967, MNRAS, 136, 101

Majewski S. R., Skrutskie M. F., Weinberg M. D., Ostheimer J. C., 2003, The
Astrophysical Journal, 599, 1082

Malhan K., Ibata R. A., 2019, MNRAS, 486, 2995

Marks M., Kroupa P., 2010, MNRAS, 406, 2000

Mateu C., 2022, arXiv e-prints, p. arXiv:2204.10326

Miyamoto M., Nagai R., 1975, PASJ, 27, 533

Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563

Odenkirchen M., et al., 2001, ApJ, 548, L165

Price-Whelan A. M., Bonaca A., 2018, ApJ, 863, L20

Qian Y., Arshad Y., Bovy J., 2022, MNRAS, 511, 2339

Rauch H. E., Tung F., Striebel C. T., 1965, ATAA Journal, 3, 1445

Reid M. J., Brunthaler A., 2004, ApJ, 616, 872

Rockosi C. M., et al., 2002, AJ, 124, 349

Ross D. J., Mennim A., Heggie D. C., 1997, MNRAS, 284, 811

Sanders J. L., 2014, MNRAS, 443, 423

Sanders J. L., Binney J., 2013, MNRAS, 433, 1813

Searle L., Zinn R., 1978, ApJ, 225, 357

Starkman N., Bovy J., Webb J., 2019, arXiv e-prints, p. arXiv:1909.03048

Tavangar K., et al., 2022, ApJ, 925, 118

Taylor M. B., 2005, in Shopbell P., Britton M., Ebert R., eds, Astronomical
Society of the Pacific Conference Series Vol. 347, Astronomical Data
Analysis Software and Systems XIV. p. 29

Ultsch A., Siemon H. P., 1990, Kohonen’s Self Organizing Feature Maps for
Exploratory Data Analysis, 1990 edn. Springer, Dordrecht, Netherlands

Vasiliev E., 2019, VizieR Online Data Catalog, p. /MNRAS/484/2832

Vincenty T., 1975, Survey Review, 23, 88

Wannier P., Wrixon G. T., 1972, ApJ, 173, L119

Webb J. J., Bovy J., 2019, MNRAS, 485, 5929

https://github.com/nstarman/trackstream_paper
https://github.com/nstarman/trackstream
http://dx.doi.org/10.1007/s10714-006-0278-1
https://ui.adsabs.harvard.edu/abs/1997ITN....23d..13A
http://dx.doi.org/10.3847/1538-4357/ac7c74
https://ui.adsabs.harvard.edu/abs/2022ApJ...935..167A
http://dx.doi.org/10.1093/mnras/stz142
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.2009B
http://dx.doi.org/10.1093/mnras/sty2813
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.1417B
https://books.google.ca/books?id=e0eAyQEACAAJ
http://dx.doi.org/10.3847/1538-4357/aae4da
https://ui.adsabs.harvard.edu/abs/2018ApJ...867..101B
http://dx.doi.org/10.1088/0004-637X/795/1/94
https://ui.adsabs.harvard.edu/abs/2014ApJ...795...94B
http://dx.doi.org/10.3847/1538-4357/ab5afe
https://ui.adsabs.harvard.edu/abs/2020ApJ...889...70B
https://ui.adsabs.harvard.edu/abs/2011PhDT........86B/abstract
https://ui.adsabs.harvard.edu/abs/2011PhDT........86B/abstract
http://dx.doi.org/10.1088/0004-637X/795/1/95
https://ui.adsabs.harvard.edu/abs/2014ApJ...795...95B
http://dx.doi.org/10.1088/0067-0049/216/2/29
https://ui.adsabs.harvard.edu/abs/2015ApJS..216...29B
http://dx.doi.org/10.3847/1538-4357/833/1/31
https://ui.adsabs.harvard.edu/abs/2016ApJ...833...31B
http://dx.doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
http://dx.doi.org/10.1088/0004-637X/760/1/75
https://ui.adsabs.harvard.edu/abs/Carlberg2012
https://ui.adsabs.harvard.edu/abs/2015arXiv150608256C
http://dx.doi.org/10.3847/2515-5172/aaef8b
http://dx.doi.org/10.3847/2515-5172/aaef8b
https://ui.adsabs.harvard.edu/abs/2018RNAAS...2..210D
http://dx.doi.org/10.1093/mnras/stab3505
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510.2437E
http://dx.doi.org/10.1093/mnras/stx1208
https://ui.adsabs.harvard.edu/abs/2017MNRAS.470...60E
http://dx.doi.org/10.1093/mnras/stv1198
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452..301F
http://dx.doi.org/10.1046/j.1365-8711.2000.03811.x
https://ui.adsabs.harvard.edu/abs/2000MNRAS.318..753F
http://dx.doi.org/10.1051/0004-6361/201833718
https://ui.adsabs.harvard.edu/abs/2018A&A...615L..15G
http://dx.doi.org/10.1093/mnras/stu1986
https://ui.adsabs.harvard.edu/abs/2014MNRAS.445.3788G
http://dx.doi.org/10.1086/503744
https://ui.adsabs.harvard.edu/abs/Grillmair2006
http://dx.doi.org/10.1086/323916
https://ui.adsabs.harvard.edu/abs/2001AJ....122.3231G
http://dx.doi.org/10.1046/j.1365-8711.1999.02616.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.307..495H
http://dx.doi.org/10.1093/mnras/stv2035
https://ui.adsabs.harvard.edu/abs/2015MNRAS.454.2472H
http://dx.doi.org/10.1086/111815
https://ui.adsabs.harvard.edu/abs/1975AJ.....80..809H
http://dx.doi.org/10.1046/j.1365-8711.2000.03426.x
https://ui.adsabs.harvard.edu/abs/2000MNRAS.315..543H
http://dx.doi.org/10.1046/j.1365-8711.2002.05038.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.329..897H
http://dx.doi.org/10.3847/1538-4357/aa7514
https://ui.adsabs.harvard.edu/abs/2017ApJ...842..120I
http://dx.doi.org/10.1086/305273
https://ui.adsabs.harvard.edu/abs/1998ApJ...495..297J
http://arxiv.org/abs/1603.06601
http://dx.doi.org/10.1007/978-3-319-19336-6_6
http://dx.doi.org/10.1007/978-3-319-19336-6_6
http://dx.doi.org/10.1086/311876
https://ui.adsabs.harvard.edu/abs/Johnston1999
http://dx.doi.org/10.1088/0004-637X/712/1/260
https://ui.adsabs.harvard.edu/abs/2010ApJ...712..260K
http://dx.doi.org/10.1088/0004-637X/750/1/80
https://ui.adsabs.harvard.edu/abs/2012ApJ...750...80K
http://dx.doi.org/10.1093/mnras/stz457
https://ui.adsabs.harvard.edu/abs/2019MNRAS.485.4726K
http://dx.doi.org/10.1046/j.1365-8711.2001.04022.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.322..231K
http://dx.doi.org/10.1111/j.1365-2966.2011.20242.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.420.2700K
http://rlabbe.github.io/Kalman-and-Bayesian-Filters-in-Python/
http://rlabbe.github.io/Kalman-and-Bayesian-Filters-in-Python/
https://ui.adsabs.harvard.edu/abs/2022arXiv220412551L
http://dx.doi.org/10.3847/1538-4357/abeb18
https://ui.adsabs.harvard.edu/abs/2021ApJ...911..149L
https://ui.adsabs.harvard.edu/abs/2021arXiv211006271L
http://dx.doi.org/10.1093/mnras/136.1.101
https://ui.adsabs.harvard.edu/abs/Lynden-Bell1967
http://dx.doi.org/10.1086/379504
http://dx.doi.org/10.1086/379504
http://dx.doi.org/10.1093/mnras/stz1035
https://ui.adsabs.harvard.edu/abs/Malhan2019
http://dx.doi.org/10.1111/j.1365-2966.2010.16813.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.406.2000M
https://ui.adsabs.harvard.edu/abs/Mateu2022
https://ui.adsabs.harvard.edu/abs/1975PASJ...27..533M
http://dx.doi.org/10.1086/177173
https://ui.adsabs.harvard.edu/abs/1996ApJ...462..563N
http://dx.doi.org/10.1086/319095
https://ui.adsabs.harvard.edu/abs/2001ApJ...548L.165O
http://dx.doi.org/10.3847/2041-8213/aad7b5
https://ui.adsabs.harvard.edu/abs/2018ApJ...863L..20P
http://dx.doi.org/10.1093/mnras/stac238
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.2339Q
http://dx.doi.org/10.2514/3.3166
http://dx.doi.org/10.1086/424960
https://ui.adsabs.harvard.edu/abs/2004ApJ...616..872R
http://dx.doi.org/10.1086/340957
https://ui.adsabs.harvard.edu/abs/Rockosi2002
http://dx.doi.org/10.1093/mnras/284.4.811
https://ui.adsabs.harvard.edu/abs/1997MNRAS.284..811R
http://dx.doi.org/10.1093/mnras/stu1159
https://ui.adsabs.harvard.edu/abs/2014MNRAS.443..423S
http://dx.doi.org/10.1093/mnras/stt806
https://ui.adsabs.harvard.edu/abs/SandersBinney2013
http://dx.doi.org/10.1086/156499
https://ui.adsabs.harvard.edu/abs/1978ApJ...225..357S
https://ui.adsabs.harvard.edu/abs/2019arXiv190903048S
http://dx.doi.org/10.3847/1538-4357/ac399b
https://ui.adsabs.harvard.edu/abs/2022ApJ...925..118T
https://ui.adsabs.harvard.edu/abs/2019yCat..74842832V
http://dx.doi.org/10.1179/sre.1975.23.176.88
http://dx.doi.org/10.1086/180930
https://ui.adsabs.harvard.edu/abs/1972ApJ...173L.119W
http://dx.doi.org/10.1093/mnras/stz867
https://ui.adsabs.harvard.edu/abs/2019MNRAS.485.5929W

On the Fast Track: Rapid construction of stellar stream paths 15

APPENDIX A: THE MATH FOR A 1-D SOM

The goal of SOM is to sequentially introduce data vectors w,, and adapt the prototypes and lattice according to the data.
See Section 2.2.1.

(1) Given the data in the stream coordinates:

Let the data be a finite number N of vectors, indexed by n, with D features (like 2 or 3 positions and 2 or 3 velocities).
w e RP where n € NN [1,N]. (A

In matrix form,

T
w=|wl) L wN | e RNXD, (A2)

(2) Choose K prototypes p(k) with linear lattice Q:

The SOM learns the organization — i.e. the 1-D structure — of the data with K prototype vectors in the data’s space
px € RP, ke NN [1,K]. (A3)
In matrix form,

p=[p0 ... p®| RO, (A4)

The prototype vector topology is tracked with a feature map Q, where each prototype has a corresponding lattice point qx. A one-dimensional
SOM means Q € Z*™ is one-dimensional and the only information contained in qy is its index:

qi = k. (AS)
This is called a linear lattice. With a linear lattice, prototype vectors p;, p; are neighbors if and only if the corresponding lattice points g;, ¢ ;
are neighbors —i.e. |i — j| = 1. The distance between any two prototypes is given by the distance matrix Do € REXK where

dij =0 =pVlg = llgi — ¢l = 1i = Jl. (A6)

The prototypes can be randomly initialized or more intelligently chosen. The goal of the next step is to train the SOM on the data.

(3) Iteratively:
(1) Select the next datum w(n)

The data are selected until exhaustion and without replacement to the SOM. The SOM is generally run on many such selection cycles until it
reaches equilibrium. While the ordering of the data should not be important, the SOM is not guaranteed to converge to the global minimum,
so in principle the order can be consequential. However, for all examples presented in this paper, the ordering has not proved important and is
not further considered.

(2,3) Update the position of the nearest prototype and its neighbors

Having selected a data point, the prototypes need to be updated in both the data and lattice spaces — we start with the closest.
Using whatever distance metric is appropriate for the data space, the nearest prototype is p(c(")), i.e. such that

1P — w || = min{|[p® - xP| |k}, (A7

When the nearest prototype is updated, all other prototypes should be likewise updated. More distant prototypes should move less do nearer
ones. To quantify how much a prototype should be updated requires not only the distance matrix D, but also a matrix of the coupling strength
between prototypes. The neighborhood matrix — H € RK*K _ has elements

d?.
- Y
hij = exp (272) : (A8)
where 7y is a user-selected coupling constant. Note that fori = j, d;; = 1

MNRAS 000, 1-16 (2022)

16 N. Starkman et al.

Therefore, for each k the jth prototype is updated according to
p(k) - pX + @he () k (w(n) _ p(c‘(n))))

. where « is the learning rate, another free parameter.
When k = ¢(n), this reduces to the simpler form

pk(m) _y p(k(m) 4 g () _ p(k(m)).

MNRAS 000, 1-16 (2022)

(A9)

(A10)

	1 Introduction
	2 Methods: Ordering the Data
	2.1 Great-Circle Coordinate Frame
	2.2 Self-Organizing Maps

	3 Methods: Constructing Stream Track by Kalman Filter
	3.1 Point-to-point times
	3.2 Running the Kalman Filter

	4 Results
	4.1 Comparing to Distribution Function (DF) models
	4.2 Tracking particle spray mock streams
	4.3 Tracking an N-body simulation model
	4.4 Tracking Real Streams

	5 Discussion and Conclusions
	A The Math for a 1-D SOM

