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A B S T R A C T

The different active roles of neurons and astrocytes during neuronal activation are associated with the
metabolic processes necessary to supply the energy needed for their respective tasks at rest and during neuronal
activation. Metabolism, in turn, relies on the delivery of metabolites and removal of toxic byproducts through
diffusion processes and the cerebral blood flow. A comprehensive mathematical model of brain metabolism
should account not only for the biochemical processes and the interaction of neurons and astrocytes, but
also the diffusion of metabolites. In the present article, we present a computational methodology based
on a multidomain model of the brain tissue and a homogenization argument for the diffusion processes.
In our spatially distributed compartment model, communication between compartments occur both through
local transport fluxes, as is the case within local astrocyte-neuron complexes, and through diffusion of some
substances in some of the compartments. The model assumes that diffusion takes place in the extracellular
space (ECS) and in the astrocyte compartment. In the astrocyte compartment, the diffusion across the
syncytium network is implemented as a function of gap junction strength. The diffusion process is implemented
numerically by means of a finite element method (FEM) based spatial discretization, and robust stiff solvers
are used to time integrate the resulting large system. Computed experiments show the effects of ECS tortuosity,
gap junction strength and spatial anisotropy in the astrocyte network on the brain energy metabolism.
1. Introduction

The brain is arguably the most important and complex organ of the
human body, and the hardest to observe directly due to the protective
role of the skull enclosing it and the impossibility of accessing it
without interfering with its regular functions. Understanding brain
metabolism faces the additional challenge that most cerebral functions
depend on the coordinated action of neurons and astrocytes, and rely
on a sophisticated network of blood vessels to promptly replenish
metabolites and remove waste products. Cerebral blood flow, in turn,
is regulated through neurovascular coupling, a feedback system that is
not yet fully understood. The large amount of energy that is needed to
sustain the electrophysiological processes in the brain has prompted
a lot of interest in understanding cerebral metabolism, and how it
responds to different levels of neuronal activation. For the last several
years, brain energy metabolism has been the topic of a large body
of research, and over time mathematical models have assumed an
increasingly important role. It is now acknowledged that mathematical
models are necessary to put the results of experimental procedures
into a proper context, as highlighted in a recent review (Barros et al.,
2018). While experimental results are vital for understanding the brain
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energy metabolism, the different conditions under which laboratory
experiments are carried out may be the reason for the discrepancy in
the findings, highlighting how it may be hard, if not impossible, to draw
definitive conclusions on the basis of laboratory data alone. Realistic
mathematical models of human brain metabolism have an important
role in the pharmaceutical industry also, since the efficacy of drugs in
the brain depends on how they can reach the target destination and
on the underlying metabolic processes (Vendel et al., 2019). Moreover,
a better understanding of cerebral metabolism may shed some light
on whether altered metabolism may play a role in some important
pathologies, including those related to aging.

It is well known that human brain requires a disproportionately
large amount of energy (Attwell and Laughlin, 2001) compared to its
small size. The brain does not have any reserve of oxygen, because of
the lack of myoglobin, and virtually no way to store glucose, although
it has been established (Rothman et al., 2022) that there is some
glycogen in astrocyte that can be tapped on if needed, thus it requires
a continuous replenishing of substances needed for energy production,
mainly glucose and oxygen, and removal of byproducts like carbon
dioxide and lactate. The partitioning of glucose, the main oxidative
vailable online 30 June 2023
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metabolite, between neurons and astrocytes has been a somewhat
controversial issue, with some researchers sustaining that glucose de-
livered to the brain is mostly taken up by astrocytes and transformed
into lactate, deemed to be the preferred oxidative fuel for neurons,
and others arguing that neurons prefer and process predominantly
glucose. Regardless of the roles attributed to neurons and astrocytes,
the importance of astrocytes in energy metabolism is now universally
acknowledged. The coordination of the metabolism in neurons and
astrocytes is of crucial importance for guaranteeing the continuity of
brain functions (Bonvento and Bolaños, 2021), although the details of
the coupling mechanism between them is not fully understood.

Most mathematical models of brain energy metabolism are based
on the well-mixed compartment assumption, a paradigm whose validity
has been questioned (Barros and Martínez, 2007). A main shortcoming
f compartment models is the inability to account for the role of
iffusion, a key component in many physiological processes. Diffusion
n brain tissue through the extracellular space has been studied quite
xtensively, and the importance of the diffusion in electrolyte dynamics
as been acknowledged and to some extent also addressed through
athematical models in the literature (Tuttle et al., 2019). In Syková
nd Nicholson (2008), the authors investigate the effect of the tortu-
sity of the extracellular space as well as the size of the molecules of
he different substances. The process of obtaining quantitative measures
s complicated by the loss of molecules across the blood–brain barrier
r through the uptake by neuron and astrocytes. The diffusion of
etabolites across groups of astrocytes in networks connected through
pecial membrane structures known as gap junctions has been ob-
erved in cultures of astrocytes (Giaume et al., 1997), thus highlighting
he potentially important role of interconnected astrocytic pathways
n cerebral metabolism. A recently proposed mathematical model of
strocyte syncytium has been used to study potassium buffering in
onnection with neuronal firing (Terman and Zhou, 2019). Still, to
date, there are only very few detailed spatially distributed mathemati-
cal models of brain metabolism, in part because their large complexity
and the orders of magnitude difference in typical times pose significant
computational challenges. The present article is a contribution towards
filling this gap.

The systematic development towards a spatially distributed model
of brain metabolism, initiated in Calvetti et al. (2015), was inspired by
the bidomain models for electrolyte diffusion in myocardium. To avoid
addressing the complexity of micro-geometric structure of brain tissue,
the tissue is modeled as spatially distributed coexisting compartments
with local interaction through transport of substrates from one com-
partment to another. In principle, this approach would make it possible
to include complex local metabolic interactions without having the
complexity become overwhelming. The cited article, where the authors
presented a proof of concept prototype model of metabolism with only
few metabolites tracked in each compartment, is the starting point for
the present work. The main contribution of this paper is to provide
a predictive spatially distributed model of brain energy metabolism
that accounts for the diffusion of metabolites in extracellular space
and astrocyte networks. By adhering to a multidomain setting, the
metabolism is described in local terms as neuron-astrocyte complexes,
coupled together by a detailed diffusion model through the ECS and
astrocyte networks. The computational scheme is based on a finite
element discretization of the domain.

The reminder of the paper is organized as follows. In the Materials
and Methods section we describe the anatomical characteristics of
the brain region that we consider, and we set up the multidomain
framework while establishing the notation to be used in the rest of
the paper. Section 2.1 is dedicated to diffusion in extracellular space
nd its mathematical formulation, while diffusion in astrocyte is dis-
ussed in Section 2.2. In Section 2.3 we perform a model reduction by
ntegrating along the dimension of the orientation of the axons, and in
2

ection 2.4 we present the details of the finite elements discretization
Fig. 1. A cartoon of the organization of neuronal axons in the region of interest.

of the two dimensional reduced domain. Section 2.5 lists the cross-
membrane exchanges of metabolites between compartments and the
mathematical expressions of the rates at which they occur, with Sec-
tion 2.6 entirely dedicated to glutamate–glutamine cycle, which in our
model is a proxy for the electrophysiological activity. In Section 2.7
we introduce the reactions that are considered in the model and the
mathematical expression of their rates. Section 3 presents the results of
computed experiments related to three different protocols, designed to
highlight the role of diffusion to sustain the energetic needs of neuronal
activation, in addition to some conclusions and an outline of future
work.

2. Materials and methods

We start by introducing the different components of our spatially
distributed model of human brain metabolism.

2.1. General setup

The brain consists of a vast assemblage of densely packed cells of
varying sizes, structures and functions, interspersed with a dense net of
blood capillaries. For the purpose of brain energy metabolism, we will
concentrate on neurons and astrocytes in the gray matter. Between cells
and capillaries there is a small interstitial space called the extracellular
space (ECS), that has been likened to the water phase of a foam, with
the gaseous phase corresponding to cells (Kuffler and Potter, 1964).

We begin by considering a three dimensional domain 𝑊 ⊂ R3 such
as gray matter, and we assume that the region of interest occupies a
cylindrical subset 𝛺 ⊂ 𝑊 ,

𝛺 = 𝐵 × [0, ℎ], 𝐵 ∈ R2.

To simplify our model, we assume that in the region of the brain that
we are modeling, neurons are highly organized in sieve-like fashion,
with axons and dendrites predominantly perpendicular to the cortical
surface, as schematically illustrated in Fig. 1.

We introduce a Cartesian coordinate system with the 𝑧-axis perpen-
dicular to the cortical surface. To avoid having to deal with the detailed
geometric description of individual cells, following (Calvetti et al.,
2015), we define a multi-domain structure as follows. We consider 𝐽
copies 𝛺𝑗 of 𝛺, and associate to each 𝛺𝑗 for 1 ≤ 𝑗 ≤ 𝐽 , a positive scalar
𝜂𝑗 , called the volume fraction of 𝛺𝑗 , with

𝜂1 +⋯ + 𝜂𝐽 = 1.

Each subdomain 𝛺𝑗 represents a homogenized compartment that oc-
cupies a fraction 𝜂𝑗 of the total volume of the domain, and each point
𝑥 ∈ 𝛺 is assumed to belong simultaneously to all 𝐽 subdomains. More
formally, define the 𝑗th subdomain as

𝛺𝑗 =
(

𝛺, 𝜂𝑗 𝑑𝑥
)

,

i.e., the domain 𝛺 equipped with the Lebesgue measure weighted by
𝜂𝑗 . For any integrable function, 𝑓 ∶ 𝛺 → R, define the integral over 𝛺𝑗

as

∫𝛺𝑗
𝑓 (𝑥) 𝑑𝑥 = 𝜂𝑗 ∫𝛺

𝑓 (𝑥) 𝑑𝑥,

and interpret the volume fractions as

𝜂𝑗 =
|𝛺𝑗

|

|𝛺|
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Fig. 2. A rendition of the multidomain that we assume at each space location.

with | ⋅ | denoting the volume of the set. We can express the multi-
domain formally as a quotient space

𝛺 = 𝛺1 ×𝛺2 ×⋯ ×𝛺𝐽∕ ∼,

where ‘‘∼’’ indicates the identification of points in the sets 𝛺𝑗 . The
multidomain model that we propose here consists of a coupled system
of convection–reaction–diffusion equations with four subdomains, 𝐽 =
4, corresponding to blood (𝑗 = 1), ECS (𝑗 = 2), neurons (𝑗 = 3) and
astrocytes (𝑗 = 4), respectively, see Fig. 2. The neuron and astrocyte
subdomains represent the cellular compartments, and we assume that
the replenishing of metabolites and the removal of waste products
occurs through the ECS.

Our model assumes that:

(a) Metabolites may diffuse in domains 𝑗 = 2, 4 (ECS and astrocyte).
(b) Diffusion in domains 𝑗 = 1, 3 (blood and neuron) is insignificant,

thus it is neglected.
(c) The exchange of substances across compartments is a local pro-

cess, hence modeled point-wise.
(d) Blood capillaries run rather densely through the domain 𝛺, and

the replenishing or depletion of metabolites by the blood com-
partment is modeled as a local process.

(e) The synaptic cleft between pre- and postsynaptic neuron is mod-
eled effectively as a subdomain of the ECS where the only metabo-
lites of interest are glutamate and glutamine, and where no
diffusion occurs.

(f) In the neuron domain we do not differentiate between pre- and
postsynaptic neurons, glutamatergic and GABAergic neurons.

2.2. Diffusion in ECS

In general, diffusion of solutes in ECS plays an important role for
non-synaptic cell-to-cell communication, oxygen delivery, extracellular
𝐾+ and glutamate buffering during neuronal signaling, and cellular
nutrient uptake (Syková and Nicholson, 2008; Syková, 2004). Diffusion
n ECS is important in the local delivery of drugs, and in understanding
ome anomalous conditions such as cortical spreading depolarization.
Diffusion in the ECS can be modeled at the microscopic scale or
acroscopic scale. On a microscopic scale, it can be described through
andom walk of the molecules, using, e.g., regular and random arrays
f convex polytopes to describe the ECS, whereas the process on a
acroscopic scale can be described by a modified diffusion equation.
n this paper we follow the latter.
The most relevant properties of ECS with regard to diffusion at a
acroscopic scale are its volume fraction 𝜂 and its tortuosity 𝜆 (Nichol-
on, 2001). Volume fraction of ECS is defined as the ratio

= 𝜂2 = 𝑉ECS∕𝑉Tissue,

here 𝑉ECS is the volume of ECS in 𝛺 and 𝑉Tissue is the volume of the
rain tissue in 𝛺. In this subsection, we suppress the subindex in 𝜂2
o keep the notation simpler. Tortuosity can be summarized in terms
f a complex parameter 𝜆 which describes the average hindrance of
3

complex medium in comparison to an obstacle-free medium. More
ormally, 𝜆 is defined as

=
√

𝐷
𝐷∗ (1)

where 𝐷 is the diffusion coefficient in free medium, e.g., water or
ilute gel, and 𝐷∗ is the effective diffusion coefficient in ECS. Tortuosity
as proved to be very important in many processes in the brain,
anging from ischemia and osmotic stress to delivery of nutrients and
rugs (Hrabe et al., 2004).
There is a large amount of experimental data confirming that the

olume fraction of ECS under normal conditions is ∼ 20%, see Nicholson
2001), Syková and Nicholson (2008), Nicholson et al. (2000), and it
an decrease to 5% during ischemia due to cell swelling. In healthy
rain tissues, the experimental value of tortuosity 𝜆 is typically assessed
round 1.6, meaning that a small molecule has an effective diffusion
oefficient about 2.56 times smaller than in free solution, and the
ortuosity value increases for pathologies that involve cell swelling.
On a microscopic scale, various studies have attempted to design

omputational experiments to derive diffusion parameter values using
athematical models of ECS and Monte Carlo methods. The models
ypically involve random walks of populations of point-mass particles
n a complex geometric domain, and the parameter values are estimated
rom the statistical distribution of the particles. The simulations are
ypically time-consuming and depend on the level of details included
n the geometry. In Nandigam and Kroll (2007), ECS is modeled as
mpty three-dimensional space between closely packed arrays of fluid
embrane vesicles. These packings were generated by minimizing
he configurational energy using a Monte Carlo procedure. A random
alk algorithm is then used to compute the geometric tortuosities.
n Rusakov and Kullmann (1998), ECS is assumed to be a space con-
aining a random assembly of space-filling obstacles, and the authors
eported a geometric tortuosity 𝜆 = 1.4−1.5 irrespective of the size and
he shape of the ECS model. In Tao et al. (2005) the authors employed
variety of ECS models based on an array of cubic cells containing
pen rectangular cavities that provided the ECS with dead-end mi-
rodomains. Monte Carlo simulations demonstrated that the tortuosity
is relatively independent of the shape of the cavities and the number
f cavities per cell. The tortuosity estimated from these simulations
ould reach, and even substantially exceed, the experimental value of
.6 at an ECS volume fraction 𝜂 = 0.2.
In Jin et al. (2008), the authors modeled ECS diffusion of arbitrary-

ize solute molecules in three dimensions for a cell array with varying
ell size, cell–cell gap dimensions, and comprising intracellular lakes,
.e., expanded regions of brain ECS at multi-cell contact points. The
odel predicted

√

𝐷∕𝐷∗ ∼ 1.7 and also yielded predictions for the
sensitivity of solute diffusion to 𝜂, cell size, solute molecule size and
CS cell–cell contact geometry. An important finding of the simulations
as that solute movement in the ECS, despite its complex and crowded
eometry, was generally described well by Brownian non-anomalous
iffusion. Similarly, a random-walk model to simulate macromolecule
iffusion in brain ECS in three dimensions was developed in Verkman
(2013). The input of the model included ECS volume fraction, cell
size, cell–cell gap geometry, intracellular lake and molecular size of
the diffusing solute. The model accurately predicted 𝐷∕𝐷∗ for several
solute sizes.

Another approach, outlined in Hrabe et al. (2004), assumes a macro-
scopically homogeneous, but not necessarily isotropic, environment
composed of two phases representing the cellular obstacles and the
extracellular space occupying volume fraction 𝜂 around them. The
authors derive a connection between a probabilistic fine scale diffusion
model and a macroscopic diffusion tensor in the mean field model, thus
shedding light on the interpretation of the macroscopic parameter in
terms of the fine structure.

A modified version of Fick’s classical equation that has been used to
describe diffusion in ECS on a macroscopic scale includes parameters
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for volume fraction and tortousity. The derivation of the modified
equation is based on a volume averaging process over an appropriate
representative elementary volume (REV) of brain tissue large enough to
contain cellular and ECS elements to justify an average, yet sufficiently
small to represent local values of the significant variables. We refer
to Nicholson (2001) for details.

To keep the model description simple, in the following discussion
we consider the diffusion of one substance, generalizing the formalism
later to vectors of concentrations. Following (Syková and Nicholson,
2008), we write the modified diffusion equation for a substance in ECS
linking 𝜂 and 𝜆 as

𝜂 𝜕𝑢
𝜕𝑡

= ∇ ⋅𝐷∗∇𝑢 + 𝑞, (2)

where 𝐷∗ = 𝐷∕𝜆2, 𝑢(𝑥, 𝑡) is the actual concentration of the substance
in the ECS, and 𝐷 is the diffusion coefficient in free medium. The
term 𝑞 is a source/sink term accounting for a release/uptake of the
substance by the cellular domains or the blood domain through the
blood–brain-barrier at the location 𝑥. The assumptions (c) and (d) imply
hat

= 𝑞(𝑥, 𝑡; 𝑢(𝑥, 𝑡)), (3)

hat is, if 𝑞 depends on the concentration 𝑢, the dependence is local,
.e., the dependency on 𝑢 is restricted to the value of 𝑢 at the point 𝑥
nd at time 𝑡. We omit the effect of bulk flow in the ECS, considered
o be insignificant over the spatial and temporal scales of interest here.
he presence of the volume fraction in the diffusion model is necessary
or conservation of mass. Observe that 𝑞 depends on the concentration,
ypically in a non-linear manner; the functional form of the term 𝑞 will
be derived later.

2.3. Diffusion in astrocytes

Numerous recent studies in the literature have focused on the role
of astrocyte syncytia in brain, by which we mean astrocytes intercon-
nected by gap junctions. Gap junctions are specialized intracellular
junctions whereby adjacent cells are connected through protein chan-
nels (Terman and Zhou, 2019). These channels connect the cytoplasms
of adjacent cells, allowing the passage of molecules, ions and electrical
signals without having to go through the extracellular fluid surrounding
the cell. In line with these findings, our spatially distributed model
accounts for diffusion in the astrocyte domain.

A detailed modeling of gap junctions would require a description of
the complete network connectivity of the cells, an approach probably
unrealistic because of the complexity of the network. Following the
approach of Tuttle et al. (2019), Shapiro (2001), O’Connell and Mori
2016), Mori (2015), we describe the movement of molecules through
gap junctions through the diffusion coefficient in a modified diffusion
equation similar to (2). In this approach 𝐷∗ is interpreted as the driving
force of the gap junction, and is therefore replaced by 𝐷∗

𝑎 , given as

𝐷∗
𝑎 = 𝑠𝐷∗ (4)

where 𝑠 describes the gap junction strength, a parameter that can be
modified.

2.4. Model reduction

In this subsection we present a step by step reduction of the three
dimensional model of brain metabolism introduced earlier to a compu-
tationally more feasible two dimensional one. The model reduction is
motivated by the observation that in portions of the brain, for example
the cerebral cortex, the axons and dendrites of the neurons are often
highly organized and orthogonal to the cortical surface (Mountcastle,
1997). This implies that, at each instance, at each time, it is reasonable
4

to expect the concentrations of metabolites to remain fairly constant
along the neuronal axons, therefore suggesting that the model can be
reduced by integrating along that direction.

More specifically, we denote by 𝑢(𝑥, 𝑡) the concentration of the
biochemical species of interest in a diffusive compartment with volume
fraction 𝜂, and use the form of the diffusion equation given in (2) to
write

𝜂
𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

= ∇ ⋅𝐷∇𝑢(𝑥, 𝑡) + 𝑞(𝑥, 𝑡; 𝑢(𝑥, 𝑡)), (5)

where 𝐷 ∈ R3×3 is the diffusion tensor characteristic for the substance
in the current compartment. We assume that the material in the com-
putational domain 𝛺 is orthotropic, that is, the diffusion tensors are
block diagonal,

𝐷 =
[

𝜅 0
0 𝑘

]

, (6)

where 𝜅 ∈ R2×2 is the diffusion tensor in the (𝑥1, 𝑥2)-direction parallel
to the cortical surface, and 𝑘 > 0 is the diffusion coefficient in the
orthogonal 𝑥3-direction. The boundary conditions for 𝛺 are assigned
so as to be in agreement with the following assumptions:

(a) The top boundary, 𝑥3 = ℎ, represents the surface of the brain, or
pial membrane. Since there is no diffusion out of this surface, we
set

𝑛 ⋅𝐷∇𝑢||
|𝑥3=ℎ

= 𝑘 𝜕𝑢
𝜕𝑥3

|

|

|

|𝑥3=ℎ
= 0, where 𝑛 = 𝑒3.

(b) The bottom boundary, 𝑥3 = 0, marks the border between gray and
white matter. We assume that there is no flux between gray and
white matter, and set

𝑛 ⋅𝐷∇𝑢||
|𝑥3=0

= 𝑘 𝜕𝑢
𝜕𝑥3

|

|

|

|𝑥3=0
= 0, where 𝑛 = 𝑒3.

(c) On the side boundary 𝜕𝐵 × [0, ℎ], we put a Robin boundary
condition, which is equivalent to assuming that the flux through
the boundary depends linearly on the concentration gradient
across the boundary, the equivalent of Fick’s law for compartment
models. If the outside concentrations 𝑉 are known, we can write

𝑛 ⋅𝐷∇𝑢||
|𝜕𝐵×[0,ℎ]

= −𝜆
(

𝑢||
|𝜕𝐵×[0,ℎ]

− 𝑉
)

for some 𝜆 > 0.

To reduce the model, we set 𝑥′ = (𝑥1, 𝑥2) and we integrate out the
third dimension, defining

𝑢 = 1
ℎ ∫

ℎ

0
𝑢(𝑥′, 𝑥3)𝑑𝑥3, 𝑞 = 1

ℎ ∫

ℎ

0
𝑞(𝑥′, 𝑥3)𝑑𝑥3.

Averaging Eq. (5) over the vertical direction yields

𝜂 𝜕𝑢
𝜕𝑡

= 1
ℎ ∫

ℎ

0
∇ ⋅𝐷∇𝑢 𝑑𝑥3 + 𝑞,

Observe that from the orthotropic assumption it follows that

∇ ⋅𝐷∇𝑢 = 𝜕
𝜕𝑥3

𝑘 𝜕𝑢
𝜕𝑥3

+ ∇′ ⋅ 𝜅∇′𝑢,

where

∇′ = 𝜕
𝜕𝑥1

𝑒1 +
𝜕
𝜕𝑥2

𝑒2.

Furthermore, letting 𝜅 = 𝜅(𝑥′), we have

1
ℎ ∫

ℎ

0
∇ ⋅𝐷∇𝑢 𝑑𝑥3 = 1

ℎ
𝐷 𝜕𝑢
𝜕𝑥3

|

|

|

|

𝑥3=ℎ

𝑥3=0
+ ∇′ ⋅ 𝜅∇′𝑢

= ∇′ ⋅ 𝜅∇′𝑢, (7)

as implied by assumptions (a) and (b).
In summary, in astrocyte and extracellular space the system of three-

dimensional governing equations over 𝛺 can be reduced to a system of
two-dimensional equations over 𝐵 of the form

𝜂 𝜕𝑢 = ∇′ ⋅ 𝜅∇′𝑢 + 𝑞. (8)

𝜕𝑡
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In the neuronal domain (𝑗 = 3), where there is no diffusion, we have:

𝜂 𝜕𝑢
𝜕𝑡

= 𝑞.

To retain the local form of the source term 𝑞 in the reduced model,
e make an approximation

𝑞(𝑥′, 𝑡) = 1
ℎ ∫

ℎ

0
𝑞
(

𝑥′, 𝑥3, 𝑡; 𝑢(𝑥′, 𝑥3, 𝑡)
)

𝑑𝑥3 ≈ 𝑞
(

𝑥′, 𝑡; 𝑢(𝑥′, 𝑡)
)

,

hat is, we assume that the average source can be expressed as a
unction of the average concentration value at the point where 𝑞 is
evaluated.

The form of the equations for the blood domain will be discussed
after we integrate the metabolism into the system. In the remainder of
the paper, we will consider only the reduced model. To simplify the
notation, we will simply write 𝑢 instead of 𝑢, ∇ instead of ∇′ etc.

Before describing how the metabolism is embedded into the system,
we discuss the finite element discretization of the model to obtain a
predictive computational scheme.

2.5. Blood compartment

The structure of the capillary network in the brain tissue has been
studied extensively in the literature, and it is known to be geomet-
rically and topologically complex (Smith et al., 2019; Kirst et al.,
2020), thus posing a challenge for simplified modeling suitable for the
multicompartment representation.

To derive the model for the blood compartment 𝛺1, consider a
given concentration 𝑢(𝑥, 𝑡) convected by a flow with velocity 𝑣(𝑥, 𝑡), and
depleted/replenished by a flux 𝜙(𝑥, 𝑡) through the blood–brain barrier
separating the blood compartment and the ECS. The net macroscopic
model for the concentration dynamics is written as

𝜂1 𝜕𝑢
𝜕𝑡

= −∇ ⋅ (𝑣𝑢) + 𝜙. (9)

e assume that the blood flows predominantly in the vertical direction,
rom the pial arteriole network at the top boundary 𝑧 = ℎ of 𝛺 towards
he bottom white matter boundary. For simplicity, consider first the
deal case in which 𝑣(𝑥, 𝑡) = −𝑣3(𝑥′, 𝑡)𝑒3, where 𝑥′ = (𝑥1, 𝑥2). With this
pproximation, the average concentration 𝑢 satisfies

1
ℎ ∫

ℎ

0

(

𝜂1 𝜕𝑢
𝜕𝑡

)

𝑑𝑥3 = 𝜂1 𝜕𝑢
𝜕𝑡

1
ℎ ∫

ℎ

0
𝑣3(𝑥′, 𝑡)

𝜕𝑢
𝜕𝑥3

(𝑥′, 𝑥3, 𝑡)𝑑𝑥3

+ 1
ℎ ∫

ℎ

0
𝜙(𝑥′, 𝑥3)𝑑𝑥3

𝑣3(𝑥′, 𝑡)
ℎ

(

𝑢(ℎ, 𝑥′, 𝑡) − 𝑢(0, 𝑥′, 𝑡)
)

+ 𝜙(𝑥′, 𝑡).

Assuming further that the concentrations at 𝑥3 = ℎ and 𝑥3 = 0
correspond to known arterial and venous concentrations, 𝑢(𝑥′, ℎ, 𝑡) =
𝑢𝑎(𝑥′, 𝑡), 𝑢(𝑥′, 0, 𝑡) = 𝑢𝑣(𝑥′, 𝑡)) respectively. Denoting the scaled velocity
by 𝑄, we have

𝜂1 𝜕𝑢
𝜕𝑡

(𝑥′, 𝑡) = 𝑄(𝑥′, 𝑡)
(

𝑢𝑎(𝑥′, 𝑡) − 𝑢𝑣(𝑥′, 𝑡)
)

+ 𝜙(𝑥′, 𝑡).

ext, we write the average concentration as an interpolant between the
rterial and venous concentrations,

𝑢 = (1 − 𝐹 )𝑢𝑎(𝑡) + 𝐹𝑢𝑣(𝑡), 0 < 𝐹 < 1,

where 𝐹 is the mixing ratio, and we obtain

𝑢𝑎(𝑥′, 𝑡) − 𝑢(𝑥′, 𝑡) = 𝐹 (𝑢𝑎(𝑥′, 𝑡) − 𝑢𝑣(𝑥′, 𝑡)),

allowing us to eliminate the venous concentration, leading to the model

𝜂1 𝜕𝑢
𝜕𝑡

(𝑥′, 𝑡) =
𝑄(𝑥′, 𝑡)
𝐹

(

𝑢𝑎(𝑥′, 𝑡) − 𝑢(𝑥′, 𝑡)
)

+ 𝜙(𝑥′, 𝑡).

The quantity 𝑄 = 𝑣3∕ℎ is formally given in units of 1/time, and is
interpreted as a measure of blood volume that passes through a unit of
5

tissue volume in a unit time, often expressed in brain research literature
in milliliters/minute per one gram tissue.

More generally, if we relax the assumption of the velocity field being
axial and write 𝑣 = 𝑣3𝑒3 + 𝑣⟂ where 𝑣⟂ is the tangential velocity field,
a similar calculation leads to the more general model

𝜂1 𝜕𝑢
𝜕𝑡

(𝑥′, 𝑡) = 𝑄(𝑥′, 𝑡)
(

𝑢𝑎(𝑥′, 𝑡) − 𝑢𝑣(𝑥′, 𝑡)
)

+ 1
ℎ
∇′ ⋅ ∫

ℎ

0
𝑣⟂(𝑥′, 𝑥3, 𝑡)𝑢(𝑥′, 𝑥3, )𝑑𝑥3 + 𝜙(𝑥′, 𝑡),

where ∇′ represents the tangential gradient operator. While the integral
term above may not vanish, we assume that the distribution of tan-
gential flow velocities along the axes 𝑥′ =constant is close to uniform,
implying that the velocities approximately cancel each other, and we
may neglect the integral term. A more detailed analysis would require
a stochastic model for the flow field, which is beyond the scope of the
present article.

2.6. Finite element discretization

To discretize the diffusion equation in the spatial direction using the
finite element method, assume that the domain 𝐵 is approximated by a
polygon subdivided into conforming triangular elements. The vertices
of the elements and the midpoints of the edges are the nodes 𝑝𝑘, 1 ≤ 𝑘 ≤
. We use second order nodal basis functions, denoted by 𝜓𝑘. These are
iecewise second order polynomial Lagrange basis functions with the
roperty

𝑘(𝑝𝓁) = 𝛿𝑘𝓁 , 1 ≤ 𝑘,𝓁 ≤ 𝑁.

onsider the diffusion Eq. (8) after dimension reduction in one of the
ubdomains 𝛺𝑗 . Define the inner product

𝑢, 𝑣⟩ = ∫𝐵
𝑢(𝑥)𝑣(𝑥)𝑑𝑥.

et 𝑣 = 𝑣(𝑥) be a test function defined on 𝐵. The inner product of (8)
ith the test function 𝑣 yields

𝑣, 𝜂 𝜕𝑢
𝜕𝑡

⟩

= 𝜂 𝑑
𝑑𝑡

⟨𝑣, 𝑢⟩

= ⟨𝑣,∇ ⋅ 𝜅∇𝑢⟩ + ⟨𝑣, 𝑞⟩

= ∫𝜕𝐵
𝑣𝑛 ⋅ 𝜅∇𝑢𝑑𝑆 − ⟨∇𝑣, 𝜅∇𝑢⟩ + ⟨𝑣, 𝑞⟩

= 𝜆∫𝜕𝐵
𝑣(𝑉 − 𝑢)𝑑𝑆 − ⟨∇𝑣, 𝜅∇𝑢⟩ + ⟨𝑣, 𝑞⟩.

e write a Galerkin approximation of the concentrations and the
ource term as

(𝑥, 𝑡) ≈
𝑁
∑

𝑘=1
𝑢(𝑝𝑘, 𝑡)𝜓𝑘(𝑥), 𝑞(𝑥, 𝑡) ≈

𝑁
∑

𝑘=1
𝑞(𝑝𝑘, 𝑡)𝜓𝑘(𝑥),

nd we choose the test function 𝑣 to be one of the basis functions,
= 𝜓𝓁 . This leads us to the equation
𝑛
∑

𝑘=1

𝑑
𝑑𝑡
𝑢(𝑝𝑘, 𝑡)⟨𝜓𝓁 , 𝜓𝑘⟩ = 𝜆∫𝜕𝐵

𝜓𝓁𝑉 𝑑𝑆 −

𝜆
𝑁
∑

𝑘=1
𝑢(𝑝𝑘, 𝑡)∫𝜕𝐵

𝜓𝓁(𝑥)𝜓𝑘(𝑥)𝑑𝑆 −
𝑁
∑

𝑘=1
𝑢(𝑝𝑘, 𝑡)⟨∇𝜓𝓁 , 𝜅∇𝜓𝑘⟩

+
𝑁
∑

𝑘=1
𝑞(𝑝𝑘, 𝑡)⟨𝜓𝓁 , 𝜓𝑘⟩. (10)

To express the equation in matrix notation we define the mass matrix
𝖬, and the stiffness matrix 𝖪,

𝖬𝓁𝑘 = ⟨𝜓𝓁 , 𝜓𝑘⟩,

𝖪𝓁𝑘 = ⟨∇𝜓𝓁 , 𝜅∇𝜓𝑘⟩,

and the boundary mass matrix 𝖡, whose entries

𝖡𝓁𝑘 = 𝜓𝓁(𝑥)𝜓𝑘(𝑥)𝑑𝑆,
∫𝜕𝐵
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Table 1
Metabolites and compartments: a cross indicates the presence of the metabolite indexing the column in the compartment
indexing the row. The second row lists the indices of the metabolites. The concentrations of the metabolites are measured in
mM.

Glc O2 CO2 Lac Glu Gln Pyr ATP ADP NAD+ NADH

1 2 3 4 5 6 7 8 9 10 11

Blood × × × ×
ECS × × × × × ×
Neuron × × × × × × × × × × ×
Astrocyte × × × × × × × × × × ×
𝐔

I
d
l
s
𝐐

m
m
m
s
c
i
v

𝜂

s

vanish if the nodes 𝑝𝑘 and 𝑝𝓁 do not lie on the boundary 𝜕𝐵. Further,
e introduce the vectors

(𝑡) =
⎡

⎢

⎢

⎣

𝑢(𝑝1, 𝑡)
⋮

𝑢(𝑝𝑘, 𝑡)

⎤

⎥

⎥

⎦

, 𝐪(𝑡) =
⎡

⎢

⎢

⎣

𝑞(𝑝1, 𝑡)
⋮

𝑞(𝑝𝑁 , 𝑡)

⎤

⎥

⎥

⎦

,

nd the boundary vector 𝐕 with entries

𝓁 = 𝜆∫𝜕𝐵
𝜓𝓁𝑉 𝑑𝑆,

hat vanish for nodes outside the boundary. With these notations, we
btain the following system of ordinary differential equations in the
iffusive compartments, astrocyte and extracellular space,

𝖬
𝑑𝐮
𝑑𝑡

= 𝜆𝐕 −
(

𝖪 + 𝜆𝖡
)

𝐮 +𝖬𝐪. (11)

In the neuron and blood compartments, where no diffusion is assumed,
the governing equations reduce to

𝜂𝖬𝑑𝐮
𝑑𝑡

= 𝖬𝐪. (12)

The next step is to vectorize these equations to include all metabo-
lites, and to couple the equations through the fluxes of metabolites from
one compartment to another, which constitutes part of the source terms
𝐪.

2.7. Vectorization

We are now ready to couple the four compartments and to include
all metabolites of interest, keeping in mind that not all substances are
present in all compartments. To simplify the bookkeeping, we introduce
the following indexing convention: Since the discretization of each
compartment is the same, the number 𝑁 of nodes in the finite element
discretization is the same for every substance in every compartment.
We introduce the labeling of the vectors,

𝐮𝓁𝑘 ∈ R𝑁 ,

where

𝓁 = index of the compartment, 1 ≤ 𝓁 ≤ 4,
𝑘 = index of the metabolite.

The number of the metabolites followed by the model varies from
compartment to compartment. To keep the computational complexity
from becoming excessively large, we will consider a rather restricted
metabolic model comprising 11 metabolites, some of them appearing
only in the cellular compartments, astrocyte and neuron. The full list
of the metabolites in the different compartments is given in Table 1.

The concentrations are collected into a single vector, first by stack-
ing the metabolites in each compartment together, and subsequently by
stacking the compartment vectors together. We define the compartment
concentration vectors as

𝐔1 =
⎡

⎢

⎢

𝐮11
⋮
1

⎤

⎥

⎥

, 𝐔2 =
⎡

⎢

⎢

𝐮21
⋮
2

⎤

⎥

⎥

,

6

⎣ 𝐮4 ⎦ ⎣ 𝐮6 ⎦

m

in blood (𝑗 = 1) and ECS (𝑗 = 2), and

3 =
⎡

⎢

⎢

⎣

𝐮31
⋮
𝐮311

⎤

⎥

⎥

⎦

, 𝐔4 =
⎡

⎢

⎢

⎣

𝐮41
⋮
𝐮411

⎤

⎥

⎥

⎦

,

in neuron (𝑗 = 3) and in astrocyte (𝑗 = 4), yielding the composite
concentration vector

𝐔 =
⎡

⎢

⎢

⎣

𝐔1

⋮
𝐔4

⎤

⎥

⎥

⎦

∈ R32𝑁 .

n every compartment, each metabolite has its own sink/source term
enoted by 𝐪𝓁𝑘 , with the same indexing convention as for the metabo-
ites. Following the same procedure used to define 𝐔𝓁 , we collect the
ource terms of each metabolite in the 𝓁th compartment into the vector
𝓁 .
In the finite element model, the mass matrix 𝖬 and the boundary
ass matrix 𝖡 are the same for all equations, while, since the stiffness
atrix 𝖪 depends on the diffusion coefficient characteristic to the
etabolite and to the compartment, we index it as 𝖪𝓁

𝑘 ∈ R𝑁×𝑁 . For
implicity, we assume that the parameter 𝜆 in the Robin boundary
ondition is the same for all compartments and metabolites. Therefore,
n the diffusive compartments 𝓁 = 2 (ECS) and 𝓁 = 4 (astrocyte) the
ectors 𝐔𝓁 satisfy the equations

𝓁𝓁 𝑑𝐔𝓁

𝑑𝑡
= 𝜆𝐕𝓁 −

(

𝓁 + 𝜆𝓁)𝐔𝓁 + 𝓁𝐐𝓁 , (13)

where the mass matrices are obtained through a diagonal replication
by means of a Kronecker product,

2 = 𝖨6 ⊗𝖬, 4 = 𝖨11 ⊗𝖬,

2 = 𝖨6 ⊗ 𝖡, 4 = 𝖨11 ⊗ 𝖡,

and the stiffness matrices have block diagonal structure

2 =
⎡

⎢

⎢

⎣

𝖪2
1

⋱
𝖪2
6

⎤

⎥

⎥

⎦

, 4 =
⎡

⎢

⎢

⎣

𝖪4
1

⋱
𝖪4
11

⎤

⎥

⎥

⎦

.

We combine the governing equations in the non-diffusive compart-
ments 𝓁 = 1 (blood) and 𝓁 = 3 (neuron) in the same manner, to get

𝜂𝓁𝓁 𝑑𝐔𝓁

𝑑𝑡
= 𝓁𝐐𝓁 , (14)

with obvious notations.
To formulate a coupled diffusion-transport-reaction system for the

composite vector 𝐔, we need to model the rates of the transports
between compartments as well as for the reactions. For later reference,
we write

𝐐 =
⎡

⎢

⎢

⎣

𝐐1

⋮
𝐐4

⎤

⎥

⎥

⎦

= 𝐐transport +𝐐reaction +𝐐f low,

eparating the contributions from the transports between compart-
ents, reactions within the cellular compartments, and the blood flow.
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Table 2
Transports between compartments: The ECS serves as passage for transport of metabolite from one compartment to another.
The table lists the index of each of the transport flux.
Transport blood → ECS ECS → blood ECS → neuron neuron → ECS ECS → astrocyte astrocyte → ECS

Flux 1 2 3 4 5 6
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2.8. Source terms

The delivery of metabolites and the clearing of waste products
through blood flow, transport of metabolites from one compartment
to another, and the biochemical reactions inside the cellular domains
are accounted for by the source terms.

2.8.1. Transport fluxes
All exchanges of metabolites occur through the ECS. In our model,

only the first four metabolites (glucose, oxygen, lactate and carbon
dioxide) are exchanged between the ECS, blood and the cellular com-
partments. In addition, glutamate and glutamine are exchanged be-
tween the cellular compartments and the ECS through the synaptic
cleft, constituting a part of the ECS. The glutamate–glutamine exchange
is referred to as the neurotransmitter cycle, or V-cycle. For bookkeep-
ing’s sake, we number the transport fluxes as indicated in Table 2,
here the notation 𝑥 → 𝑦 indicates the flux from compartment 𝑥 to
ompartment 𝑦.
We are now ready to assemble the source terms considering the

xchange of metabolites in each nodal point 𝑝𝑘. Since the formulas are
invariant from point to point, we do not indicate the spatial dependency
explicitly. We use the notation

𝝓(𝑗) = transport fluxes 𝑥→ 𝑦, 1 ≤ 𝑗 ≤ 6,

where the index 𝑗 refers to the numbering in Table 2. The transport
fluxes enter in the definition of the total transport flux which, in each
compartment, takes into account the replenishment and depletion of
each substance.

Exchanges between blood and ECS. All four metabolites tracked in
the blood compartment, Glc, O2, CO2 and Lac, are exchanged with ECS.
Hence, the transport fluxes from blood to ECS, 𝝓(1), and from ECS to
blood, 𝝓(2), comprise the four 𝑁-vectors,

𝝓(1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝝓(1)
Glc

𝝓(1)
O2

𝝓(1)
CO2

𝝓(1)
Lac

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝝓(1)
1

𝝓(1)
2

𝝓(1)
3

𝝓(1)
4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where we use the metabolite numbering of Table 1, and each vector
𝝓(1)
𝑗 ∈ R𝑁 contains the transport fluxes at the 𝑁 nodal points in their
components. Similarly, we write

𝝓(2) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝝓(2)
Glc

𝝓(2)
O2

𝝓(2)
CO2

𝝓(2)
Lac

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝝓(2)
1

𝝓(2)
2

𝝓(2)
3

𝝓(2)
4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The cross-membrane passage of glucose (𝑘 = 1) and lactate (𝑘 = 4)
ccurs through the action of specialized glucose transporters (GLUT)
nd monocarboxylate transporters (MCT), respectively. We express the
ransport fluxes in Michaelis–Menten type form,

(1)
𝑘 = 𝑇 (1)

𝑘

𝐮1𝑘
𝐮1𝑘 +𝑀

(1)
𝑘

, 𝝓(2)
𝑘 = 𝑇 (2)

𝑘

𝐮2𝑘
𝐮2𝑘 +𝑀

(2)
𝑘

(15)

where 𝑇 (⋅)
𝑘 and 𝑀 (⋅)

𝑘 are the maximum transport rates and affinity
onstants, respectively. Here, the division of a vector by a vector is to be
nderstood as component-wise. For simplicity, we assume symmetry in

(1) (2)
7

he maximum transport rates and affinity constants, that is, 𝑇𝑘 = 𝑇𝑘 f
and 𝑀 (1)
𝑘 = 𝑀 (2)

𝑘 , where 𝐮1𝑘 and 𝐮2𝑘 are the concentration vectors of
glucose (𝑘 = 1) or lactate (𝑘 = 4) in the blood and ECS, respectively.

Special attention must be paid to the oxygen flux, because in blood
we must account for free oxygen dissolved in plasma, and for oxygen
bound to hemoglobin. The total oxygen concentration 𝑢12 at a given
node can be written according to Hill’s equation (Keener and Sneyd,
2009) in terms of the free oxygen concentration [Ob

2]f ree as

𝑢12 = [Ob
2]f ree + 4Hct[Hb]

[Ob
2]
𝑛
f ree

𝐾𝑛
𝐻 + [Ob

2]
𝑛
f ree

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[Ob

2]bound

= 𝐹
(

[Ob
2]f ree

)

,

where Hct is the hematocrit, [Hb] is the hemoglobin concentration in
plasma, 𝑛 = 5∕2 is Hill’s constant, and 𝐾𝐻 is the hemoglobin affinity.

We express the net oxygen flux from blood to ECS in terms of free
oxygen, using a modified Fick’s law of the form

𝝓(1)
2 − 𝝓(2)

2 = 𝜆(1)2
(

[Ob
2]f ree − 𝐮22

)𝜅

= 𝜆(1)2
(

𝐹−1 (𝐮12
)

− 𝐮22
)𝜅 (16)

with 𝜅 = 0.1. Here, 𝐹−1 is the inverse of the vectorized function
mapping the free oxygen concentrations to the total concentrations, and
𝐮12 and 𝐮22 are the concentration vectors of the total oxygen in the blood
and oxygen in the ECS. The above modification of the standard linear
Fick’s law was proposed in Calvetti et al. (2018) to account for the ob-
erved limited increase of oxygen uptake during activity, thus leading
o the observed decrease rather than increase of the oxygen–glucose
ndex (OGI) during neuronal activity. The physiological explanation
or the somewhat unexpected OGI behavior could be related to the
ransport mechanism through gas channels: According to the classical
heory of Overton (Overton, 1897), the exchange of gases is modeled
s passive diffusion through the lipid phase of the cell membrane,
lthough there is evidence (Boron, 2010) that the transport may take
lace, at least partly, through specified gas channels. However, further
nvestigations of the hypothesis are beyond the scope of the present
aper.
Finally, we model the CO2 (𝑘 = 3) flux using Fick’s law as

(1)
3 − 𝝓(2)

3 = 𝜆(1)3
(

𝐮13 − 𝐮23
)

,

here 𝐮13 and 𝐮23 are the concentration of CO2 in blood and ECS. This
odel may need a modification similar to that of the oxygen transport,
ut for the purposes of the present model, Fick’s standard formulation is
dequate, as the carbon dioxide has no effect on the metabolic activity.

xchanges between cellular compartments and ECS. Six metabolites
re exchanged between ECS, and neuron and astrocyte: Glc, O2, CO2,
ac, Glu and Gln. The transport fluxes from ECS to neuron, 𝝓(3), and
euron to ECS, 𝝓(4), therefore consist of 6 𝑁-vectors,

(3) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝝓(3)
Glc

𝝓(3)
O2

𝝓(3)
CO2

𝝓(3)
Lac

𝝓(3)
Glu

𝝓(3)
Gln

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝝓(3)
1

𝝓(3)
2

𝝓(3)
3

𝝓(3)
4

𝝓(3)
5

𝝓(3)
6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

he vector 𝝓(4) having the same structure. Similarly, the transport fluxes
(5) (6)
rom ECS to astrocyte, 𝝓 and from astrocyte to ECS, 𝝓 , have
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the same form. The functional expressions for glucose and lactate are
analogous to those of 𝝓(1) and 𝝓(2),

(3)
𝑘 = 𝑇 (3)

𝑘

𝐮2𝑘
𝐮2𝑘 +𝑀

(3)
k

, 𝝓(4)
𝑘 = 𝑇 (4)

𝑘

𝐮3𝑘
𝐮3𝑘 +𝑀

(4)
𝑘

,

and

𝝓(5)
𝑘 = 𝑇 (5)

𝑘

𝐮2𝑘
𝐮2𝑘 +𝑀

(5)
k

, 𝝓(6)
𝑘 = 𝑇 (6)

𝑘

𝐮4𝑘
𝐮4𝑘 +𝑀

(6)
𝑘

,

for 𝑘 = 1, 4. For the gas exchanges of oxygen and carbon dioxide, we
use the linear Fick’s law

𝝓(3)
𝑘 = 𝜆(3)𝑘 𝐮2𝑘, 𝝓(4)

𝑘 = 𝜆(4)𝑘 𝐮3𝑘, 𝑘 = 2, 3,

and

𝝓(5)
𝑘 = 𝜆(5)𝑘 𝐮2𝑘, 𝝓(6)

𝑘 = 𝜆(6)𝑘 𝐮3𝑘, 𝑘 = 2, 3,

What remains to be described are the formulas for the glutamine–
glutamate cycling between the neuron and the astrocyte.

The glutamate–glutamine cycle, also known as the V-cycle, de-
scribes how glutamate is released by the glutamatergic neuron into
the cleft, from where it needs to be removed rapidly by astrocytes
via sodium-dependent excitatory amino acid transporters (EAAT), ac-
tive transporters that take up the glutamate into the cell against its
concentration gradient. Once in astrocyte, glutamate is synthesized
to glutamine through the glutamine synthesis reaction. Glutamine is
released into the cleft and taken up by pre-synaptic neuron via amino
acid transporter systems that depend on Na+∕K+ − ATPase. In pre-
synaptic neuron, ammonium is released from glutamine via phosphate
activated glutaminase producing glutamate. The released ammonium is
transported to astrocyte, probably in the form of ammonia (Calvetti and
Somersalo, 2013), and further recycled by astrocytes for the amidation
of glutamate by glutamine synthetase to form glutamine, completing
the cycle.

Glutamate released into the cleft does not enter the neuron, and no
glutamine is effluxed from neuron, therefore

𝝓(3)
Glu = 𝝓(3)

5 = 𝖮𝑁×1, 𝝓(4)
Gln = 𝝓(4)

6 = 𝖮𝑁×1,

where 𝖮𝑁×1 denotes an 𝑁-vector of zeros.
The rate at which glutamine enters the neuron is expressed in

Michaelis–Menten type form,

𝝓(3)
6 = 𝑇 (3)

6

𝐮26
𝐮26 +𝑀

(3)
6

,

here 𝐮26 is the concentration of glutamine in ECS. Similarly, the
athematical formula for the rate at which glutamate flows out of the
resynaptic neuron is

(4)
5 = 𝑇 (4)

5

𝐮35
𝐮35 +𝑀

(4)
5

,

here 𝐮35 is the concentration of glutamate in the neuron. A modifica-
ion of this flux using an activity function will be introduced when we
iscuss how we simulate neuronal activity.
Moreover, since we assume that there is no glutamate efflux from

nd glutamine influx into astrocyte, we write
(5)
6 = 𝖮𝑁×1, 𝝓(6)

5 = 𝖮𝑁×1,

nd for the glutamate flux into astrocyte, we use the Michaelis–Menten
ype expression

(5)
5 = 𝑇 (5)

5

𝐮25
𝐮25 +𝑀

(5)
5

,

here 𝐮25 is the concentration of glutamate in ECS. The expression for
rate of efflux of glutamine from astrocyte is

𝝓(6)
6 = 𝑇 (6)

6

𝐮46
4 (6)

,

8

𝐮6 +𝑀6
where 𝐮46 is the concentration of glutamine in astrocyte.
We stack all the fluxes together into the combined transport flux

vector,

𝝓 =
⎡

⎢

⎢

⎣

𝝓(1)

⋮
𝝓(6)

⎤

⎥

⎥

⎦

∈ R(2×4+4×6)𝑁 = R32𝑁 .

and write the contributions of the transports to the source vector as

𝖰transport = 𝖥𝝓 ∈ R32N, (17)

where the matrix 𝖥 ∈ R32𝑁×32𝑁 has the block structure shown in
Table 3, with the matrices 𝖤b and 𝖤ECS defined as (see Table 4)

𝖤b =
[

𝖨4𝑁
𝖮2𝑁×4𝑁

]

, 𝖤ECS =
[

𝖨6𝑁
𝖮5𝑁×6𝑁

]

.

2.8.2. Reaction fluxes
Biochemical reactions only occur in neuron and astrocyte. Some

of the reactions that we consider in our model are representative of
sequences of reactions with intermediate species not included in the
model. The complete list of reactions included in the model is given in
Table 5.

The stoichiometric matrices for neuron and for astrocyte are almost
identical 11 × 7 matrices (one reaction is deleted in astrocyte (PAG),
one in neuron (GS). We denote those matrices by 𝖲3 ∈ R11×7 and
𝖲4 ∈ R11×7, respectively, given by

𝖲3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 3 0 0 0
0 1 −1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 −1 0
2 −1 1 −1 0 0 0
2 0 0 1 5 0 −1

−2 0 0 −1 −5 0 1
−2 1 −1 −5 2 0 0
2 −1 1 5 −2 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and

𝖲4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 3 0 0 0
0 1 −1 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 1 0
2 −1 1 −1 0 0 0
2 0 0 1 5 −1 −1

−2 0 0 −1 −5 1 1
−2 1 −1 −5 2 0 0
2 −1 1 5 −2 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

We extend the stoichiometric matrices for the 𝑁 nodes through Kro-
necker products, defining

3 = 𝖲3 ⊗ 𝖨𝑁 ∈ R11𝑁×7𝑁 , 4 = 𝖲4 ⊗ 𝖨𝑁 ∈ R11𝑁×7𝑁 .

Let 𝜸3𝑘 ∈ R𝑁 denote the flux of the 𝑘th reaction in neuron, and
𝜸4𝑘 ∈ R𝑁 the 𝑘th reaction in astrocyte, and define the combined reaction
vectors as

𝜸3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝜸31
⋮

𝜸45
𝜸36
3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

∈ R7𝑁 , 𝜸4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝜸41
⋮

𝜸45
𝜸47
4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

∈ R7𝑁 ,
⎣ 𝜸8 ⎦ ⎣ 𝜸8 ⎦
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Table 3
The matrix 𝖥 in formula (17).

𝖥 =

⎡

⎢

⎢

⎢

⎢

⎣

𝖨4𝑁 −𝖨4𝑁 𝖮4𝑁×6𝑁 𝖮4𝑁×6𝑁 𝖮4𝑁×6𝑁 𝖮4𝑁×6𝑁
−𝖤b 𝐸b 𝖨6𝑁 −𝖨6𝑁 𝖨6𝑁 −𝖨6𝑁
𝖮11𝑁×4𝑁 𝖮11𝑁×4𝑁 −𝖤ECS 𝖤ECS 𝖮11𝑁×6𝑁 𝖮11𝑁×6𝑁
𝖮11𝑁×4𝑁 𝖮11𝑁×4𝑁 𝖮11𝑁×6𝑁 𝖮11𝑁×6𝑁 −𝖤ECS 𝖤ECS

⎤

⎥

⎥

⎥

⎥

⎦

∈ R32𝑁×32𝑁 ,
Table 4
Transports: List of relevant parameters in the mathematical expression of transport rates of the six metabolites exchanged between compartments,
their units and the values used in the computed experiments. 𝑇 (𝓁)

Met and 𝑀
(𝓁)
Met are the maximum transport rate and affinity constant, respectively,

in the Michaelis–Menten equations for the transport 𝓁 of the metabolite Met. 𝜆(𝓁)Met is the parameter in the Fick’s law expression for the diffusion
of oxygen and CO2 for transport flux 𝓁.
Transport Blood ↔ ECS Neuron ↔ ECS Astrocyte ↔ ECS

Parameter Value Units Parameter Value Units Parameter Value Units

Glc 𝑇 (1)
Glc 1.02 mM/min 𝑇 (3)

Glc 5000 mM/min 𝑇 (5)
Glc 5000 mM/min

𝑀 (1)
Glc 4.7 mM/min 𝑀 (3)

Glc 0.4 mM/min 𝑀 (5)
Glc 12500 mM/min

O2 𝜆(1)O2
2.43 mM1−𝜅∕min 𝜆(3)O2

56.63 mM/min 𝜆(5)O2
40.73 mM/min

CO2 𝜆(1)CO2 0.718 mM/min 𝜆(3)CO2 0.224 mM/min 𝜆(5)CO2 0.0275 mM/min

Lac 𝑇 (1)
Lac 10 mM/min 𝑇 (3)

Lac 4000 mM/min 𝑇 (5)
Lac 4000 mM/min

𝑀 (1)
Lac 5 mM/min 𝑀 (3)

Lac 0.4 mM/min 𝑀 (5)
Lac 0.4 mM/min

Glu 𝑇 (3)
Glu 2.3614 mM/min 𝑇 (5)

Glu 1.348 mM/min

𝑀 (3)
Glu 97.7431 mM/min 𝑀 (5)

Glu 3.57e−5 mM/min

Gln 𝑇 (3)
Gln 2.3560 mM/min 𝑇 (5)

Gln 2.3614 mM/min

𝑀 (3)
Gln 7e−5 mM/min 𝑀 (5)

Gln 0.0698 mM/min
Table 5
List of the reactions included in the model, and the corresponding abbreviations. Lactate dehydrogenase is the only reversible
reaction in the model.
Name Neuron Astrocytes Reaction

Glycolysis (Gcl) 𝜸31 𝜸41 Glc + 2NAD+ + 2ADP → 2 Pyr + 2NADH + 2ATP

Lactate dehydrogenase (LDH1) 𝜸32 𝜸42 Pyr + NADH → Lac + NAD+

Lactate dehydrogenase (LDH2) 𝜸33 𝜸43 Lac + NAD+ → Pyr + NADH

Tricarboxylic acid cycle (TCA) 𝜸34 𝜸44 Pyr + ADP + 5NAD+ → 3CO2 + ATP + 5NADH

Oxidative phosphorylation (OXPhos) 𝜸35 𝜸45 O2 + 2 NADH + 5ADP → 2NAD+ + 5ATP + 2 H2O

Phosphate activated glutaminase (PAG) 𝜸36 – Gln → Glu

Glutamine synthetase (GS) – 𝜸47 Glu + ATP → Gln + ADP

ATP dehydrogenase (ATPase) 𝜸38 𝜸48 ATP → ADP
and write the reaction flux contribution to the ODE system as

𝐐reaction =

⎡

⎢

⎢

⎢

⎢

⎣

𝖮4𝑁×1
𝖮6𝑁×1
3𝜸3
4𝜸4

⎤

⎥

⎥

⎥

⎥

⎦

= 𝖵

[

𝜸3
𝜸4

]

,

here the parsing matrix 𝖵 is given by

=

⎡

⎢

⎢

⎢

⎢

⎣

𝖮4𝑁×7𝑁 𝖮4𝑁×7𝑁
𝖮6𝑁×7𝑁 𝖮6𝑁×7𝑁

3 𝖮11𝑁×7𝑁
𝖮11𝑁×7𝑁 4

⎤

⎥

⎥

⎥

⎥

⎦

.

he functional forms of the reaction fluxes are listed in Table 6.

.8.3. Convection by blood flow
We assume that the blood flows through each node of the finite

lement mesh, replenishing the glucose and oxygen concentrations and
emoving the waste products, lactate and carbon dioxide. At a nodal
oint 𝑝𝑗 , we write the convection model of the 𝑘th metabolite in the
lood compartment as

(𝑝 , 𝑡) =
𝑄(𝑝𝑗 , 𝑡) (𝑈 art (𝑝 , 𝑡) − 𝑢1(𝑝 , 𝑡)

)

,

9

𝑘 𝑗 𝐹 𝑘 𝑗 𝑘 𝑗
where 𝑄(𝑝𝑗 , 𝑡) is the blood flow, 𝐹 is the mixing ratio expressing the
proportion of arterial to venous blood at 𝑝𝑗 , and 𝑈 art

𝑘 is the arterial
concentration of the metabolite. As with the transports and reactions,
we define an𝑁-vector 𝐜𝑘(𝑡) for each of the four substances in blood, and
stack them into the 4𝑁-vector 𝐜(𝑡). Since the convective component is
present only in the blood compartment, we define (see Table 7)

𝐐f low =

⎡

⎢

⎢

⎢

⎢

⎣

𝐜
𝖮6𝑁×1
𝖮11𝑁×1
𝖮11𝑁×1

⎤

⎥

⎥

⎥

⎥

⎦

∈ R32𝑁 .

2.9. The coupled system

We are now ready to combine Eqs. (13) and (14) into a single
coupled matrix equation. Denote by 𝐌 the combined block diagonal
mass matrix with blocks 𝑗 on its diagonal, and by Ψ the diagonal

matrix with appropriate volume fractions on its diagonal, and write the
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Table 6
Functional form of reaction fluxes in neuron and astrocyte together with parameter values and units. In the table, 𝑝𝓁
denotes the phosphorylation state, given as the fraction of ATP to ADP, while 𝑟𝓁 is the redox state, given as the ratio
of NADH to NAD+, 𝓁 = 3 is for neuron and 𝓁 = 4 is for astrocyte.
Reaction Parameter Units Neuron Astrocyte

Gcl: 𝑉 𝓁
Gcl

1∕𝑟𝓁

1∕𝑟𝓁 + 𝜈𝓁Gcl

1∕𝑝𝓁

1∕𝑝𝓁 + 𝜇𝓁Gcl

𝐮𝓁1
𝐮𝓁1 + 𝐾𝓁

Gcl
𝑉 𝓁
Gcl mM/min 15.30 15.07
𝐾𝓁

Gcl mM 4.60 3.10
𝜇𝓁
Gcl 0.09 0.09
𝜈𝓁Gcl 10.00 10.00

LDH1: 𝑉 𝓁
LDH1

𝑟𝓁

𝑟𝓁 + 𝜈𝓁LDH1

𝐮𝓁7
𝐮𝓁7 + 𝐾𝓁

LDH1
𝑉 𝓁
LDH1 mM/min 8.62𝑒4 2.50𝑒5

𝐾𝓁
LDH1 mM 2.15 6.24

𝜈𝓁LDH1 0.10 0.10

LDH2: 𝑉 𝓁
LDH2

1∕𝑟𝓁

1∕𝑟𝓁 + 𝜈𝓁LDH2

𝐮𝓁4
𝐮𝓁4 + 𝐾𝓁

LDH2
𝑉 𝓁
LDH2 mM/min 9.48𝑒4 1.95𝑒5

𝐾𝓁
LDH2 mM 23.70 48.67

𝜈𝓁LDH2 10.00 10.00

TCA: 𝑉 𝓁
TCA

1∕𝑟𝓁

1∕𝑟𝓁 + 𝜈𝓁TCA

1∕𝑝𝓁

1∕𝑝𝓁 + 𝜇𝓁TCA

𝐮𝓁7
𝐮𝓁7 + 𝐾𝓁

TCA
𝑉 𝓁
TCA mM/min 1.80 0.56
𝐾𝓁

TCA mM 1.25e−2 1.24e−2
𝜇𝓁
TCA 0.01 0.01
𝜈𝓁TCA 10.00 10.00

OxPhos: 𝑉 𝓁
OxPhos

𝑟𝓁

𝑟𝓁 + 𝜈𝓁OxPhos

1∕𝑝𝓁

1∕𝑝𝓁 + 𝜇𝓁OxPhos

𝐮𝓁2
𝐮𝓁2 + 𝐾𝓁

OxPhos
𝑉 𝓁
OxPhos mM/min 491.04 153.15
𝐾𝓁

OxPhos mM 1.00 1.00
𝜇𝓁
OxPhos 0.01 0.01
𝜈𝓁OxPhos 0.1 0.1

PAG (neuron) : 𝑉 𝓁
PAG

𝐮𝓁6
𝐮𝓁6 + 𝐾𝓁

PAG
𝑉 𝓁
PAG mM/min 1.18 –
𝐾𝓁

PAG mM 3𝑒 − 3 –

GS (astrocyte): 𝑉 𝓁
GS

𝑝𝓁

𝑝𝓁 + 𝜈𝓁GS

𝐮𝓁5
𝐮𝓁5 + 𝐾𝓁

GS
𝑉 𝓁
GS mM/min – 2.36
𝐾𝓁

GS mM – 3𝑒 − 2
𝜇𝓁
GS – 100.00

ATPase : 𝑉 𝓁
ATPase

𝐮𝓁8
𝐮𝓁8 + 𝐾𝓁

ATPase
𝑉 𝓁
ATPase mM/min 18.28 2.92
𝐾𝓁

ATPase mM 2.00 2.20
Table 7
Volume fraction and blood flow parameters: We provide here the volume fraction of each of our
four compartments. The cleft compartment is a sub-compartment of the ECS. We also provide the
blood flow parameters and arterial concentrations.
Volume fraction Blood flow parameters Arterial concentration

Parameter Value Parameter Value Units Parameter Value Units

Blood (𝜂1) 0.04 Hct 0.45 𝐶art,Glc 5 mM

ECS (𝜂2) 0.25 Hb 5.18 𝐶art,O2
9.14 mM

Neuron (𝜂3) 0.45 𝐾𝐻 36.4e−3 mM 𝐶art,CO2
23 mM

Astrocyte (𝜂4) 0.25 Q 0.4 1/min 𝐶art,Lac 1.1 mM

Cleft (𝜂2𝑐 ) 0.01
coupled ODE system as

Ψ𝐌 𝑑
𝑑𝑡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐔1
− − −−

𝐔2
− − −−

𝐔3
− − −−

𝐔4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= RHSdif fusion + RHStransport

RHSreaction + RHSf low,

here

HSdif fusion = − (𝐊 + 𝜆𝐁)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝖮4𝑁×1
− − −−

𝐔2
− − −−
𝖮11𝑁×1
− − −−

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

+ 𝜆

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝖮4𝑁×1
− − −−
𝐔2
06𝑁×1

− − −−
𝖮11𝑁×1
− − −−
4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

,
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⎣
𝐔4 ⎦ ⎣

𝐔011𝑁×1⎦
the matrices 𝐊 and 𝐁 combining the compartment-wise stiffness and
boundary mass matrices, and

RHStransport = 𝐌𝖥𝝓,

RHSreaction = 𝐌𝖵𝜸

and (see Table 8)

RHSf low = 𝐌

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐜
− − −−
𝖮6𝑁×1
− − −−
𝖮11𝑁×1
− − −−
𝖮11𝑁×1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

3. Simulations and results

In the following numerical simulations, the domain 𝐵 is a disc

of radius 0.25 cm. The diffusion coefficients in the free medium for
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Table 8
Steady state concentrations of the metabolites in units of mM. The model is first run with the following initial conditions without activation
and using baseline blood flow value until steady state is reached. The steady state values obtained through this process are used as the initial
values for different neuronal activation protocols.

Glc O2 CO2 Lac Glu Gln Pyr ATP ADP NAD+ NADH

Blood 4.60 6.83 25.15 1.19
ECS 1.13 0.034 83.75 1.25 1𝑒 − 5 1𝑒 − 5
Neuron 1.13 9.8e−3 85.46 1.25 14 0.001 0.12 2.19 0.023 0.03 0.003
Astrocyte 0.75 9.8e−3 85.46 1.25 0.01 0.01 0.12 2.19 0.023 0.03 0.003
f
a
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w
c
n
t
n
r
A
w

𝜸

Table 9
Diffusion coefficients of the metabolites used in the model. The values represent
the coefficient in a free medium such as water. These numbers are sourced from
publications cited in the third column.

Metabolite Diffusive coefficient
in free medium

Source

Glucose 6.73 × 10−6cm2∕s Koch (1996)
Oxygen 2.0 × 10−5cm2∕s Han and Bartels (1996), Carlson (1911)
CO2 1.88 × 10−5cm2∕s Mazarei and Sandall (1980)
Lactate 1.0 × 10−5cm2∕s Koelsch et al. (2013)
Glutamate 7.6 × 10−6cm2∕s Rusakov and Kullmann (1998)
Glutamine 7.6 × 10−6cm2∕s Longsworth (1953)
Pyruvate 1.12 × 10−5cm2∕s Koelsch et al. (2013)
ATP 7.2 × 10−6cm2∕s Bowen and Martin (1964)
ADP 7.2 × 10−6cm2∕s Bowen and Martin (1964)
NAD+ 4.2 × 10−6cm2∕s Doménech et al. (1999)
NADH 3.9 × 10−6cm2∕s Hasinoff et al. (1987)

each metabolite are given in Table 9. We assume that there is no
diffusion in the blood and neuronal compartments, and since glutamate
and glutamine are assumed to act locally only in the synaptic clefts,
the diffusion of these metabolites is neglected. Formula (1) is used
o calculate the diffusion coefficients in ECS based on the tortuosity,
.e., the effective diffusion coefficient in ECS compartment (𝓁 = 2) for
etabolite 𝑘 is given by

𝓁
𝑘 = 𝐷

𝜆2
,

ith 𝜆 = 1.6, corresponding to the experimental tortuosity of ECS in
ealthy brain tissue. We set 𝐷𝓁

𝑘 = 0 for 𝑘 = 5, 6, corresponding to
glutamate and glutamine in ECS.

The diffusion coefficients of the metabolites in astrocyte are poorly
known. We make the assumption that the diffusion coefficients in
astrocyte is smaller than in a free medium. In lack of well established
experimental or theoretical models, we set the diffusion coefficient of
each metabolite in the astrocyte to be 70% of that in free medium,
that is, 𝐷a = 0.7𝐷. Furthermore, since the diffusion in the astrocyte
yncytium depends on the gap junction strength 𝑠, we set

𝓁
𝑘 = 𝑠𝐷a. for 𝓁 = 4, 𝑘 = metabolite,

n our computer experiments, we will test different values of 𝑠 to better
nderstand the effect of the gap junctions on the metabolism. We also
ssume that there is no diffusion of glutamate and glutamine in the
strocytic compartment.

.1. Simulation setup

We calibrate the model with a simulation of local normal neu-
onal activity to demonstrate the metabolic interaction between neu-
on and astrocyte in a spatially distributed framework. To this end,
e introduce first an activity function that is a proxy for a detailed
lectrophysiologic activation.
11
Fig. 3. Plot showing the activity function (blue) and the concentration of glutamate
in the cleft (red) peaking at about 1.1 mM for one node of the FEM mesh using the
modified form of glutamate flux from neuron to cleft.

3.1.1. Activity simulation
We simulate the increased release of glutamate from the small

vesicles in the presynaptic neuron in response to intracellular calcium
signaling by writing a dynamic model for the glutamate transport from
neuron to ECS of the form

𝝓(4)
Glu = 𝑇 (4)

Glu (1 + 2𝜉(𝑡))
𝐮35

𝑀 (4)
Glu (1 − 0.5𝜉(𝑡)) + 𝐮35

, (18)

where 𝐮35 is the concentration of glutamate in neuron, and 𝜉(𝑡) is a
dimensionless activity function. To simulate a local activation of 3 min
starting after 2 min from the beginning of the run, we set

𝜉(𝑡) =
{

𝜌, 2 < 𝑡 ≤ 5
0, otherwise.

where the parameter 𝜌 is adjusted so that the peak glutamate concen-
tration during the activity reaches the experimental value of 1.1mM.
Numerical experiments suggest a value 𝜌 = 0.9099. According to Dzubay
and Jahr (1999), the concentration of glutamate in the synaptic cleft
ollowing action potential mediated release exceeds 1mM for < 10 ms,
nd rapidly returns to < 20 nM between release events due to the high
ffinity glutamate uptake by astrocytes (see Fig. 3).
Glutamate, an excitatory neurotransmitter which enables transmis-

ion of action potential from pre- to post-synaptic neuron needs to be
emoved rapidly from the cleft to prevent post-synaptic overexcitation
hich can lead to cell death. As long as glutamate concentration in the
left is significant, glutamate sensitive ion channels in the postsynaptic
euron remain open, allowing influx of calcium and sodium ions, thus
riggering a transmission of the action potential in the postsynaptic
euron and potential loss of ionic balance. The energy required for this
emoval by active pumps and exchangers is provided by an increase in
TP hydrolysis in neuron. Following (Calvetti and Somersalo, 2011),
e define ATPase in neuron as

3
8 = 𝛷base + 𝑉 3

ATPase ⋅  (𝐮38) ⋅
𝐮38

3 3
,

𝐮8 + 𝐾ATPase
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Fig. 4. Blood flow profile given as 𝑞(𝑡) as described in the equation above. After the
beginning of the activation, the blood flow increases by 30% from baseline, and remains
at that level for 3 minutes before returning gradually back to its baseline value.

where  is a sigmoid saturation function defined as

 (𝐮𝓁8 ) =
(𝐮25)

2

(𝐮25)
2 + 𝑘Glu

.

This function triggers the increase in ATP hydrolysis in response to
elevated glutamate level in the cleft. We set 𝑘Glu = 1.67 × 10−10 mM2,
nd 𝛷base = 3.9996 mM∕min is the baseline cost of maintaining steady
tate when no activity is taking place.

.1.2. Blood flow simulation
In an activation event, elevated values of 𝜉(𝑡) trigger an increase

n cerebral blood flow. The hemodynamic response to an elevated
euronal activity amounts to a local increase in arterial blood flow, thus
ncreasing the amount of oxygen and glucose available to the tissue.
he blood flow formula used is given below:

(𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑞0 0 ≤ 𝑡 < 𝑡1 + 𝑑1,
(

1 + 𝛽
(

𝑡−𝑡1−𝑑1
𝑟1

))

𝑞0 𝑡1 + 𝑑1 ≤ 𝑡 < 𝑡1 + 𝑑1 + 𝑟1,
(1 + 𝛽)𝑞0 𝑡1 + 𝑑1 + 𝑟1 ≤ 𝑡 < 𝑡𝑓 + 𝑑𝑓 ,
(

𝑒−𝛼(𝑥−𝑡𝑓−𝑑𝑓 )𝑎 + 𝑏
)

𝑞0 𝑡𝑓 + 𝑑𝑓 ≤ 𝑡 < 𝑡𝑓 + 𝑑𝑓 + 𝑟𝑓 ,
𝑞0 𝑡𝑓 + 𝑑𝑓 + 𝑟𝑓 ≤ 𝑡 < 𝑇 ,

where 𝑞0 is the baseline value. The blood flow responds to elevated
neuronal activity with a delay of 𝑑1 = 2 seconds, and it increases 30%
(𝛽 = 0.3) above its baseline value 𝑞0 = 0.4 mL∕min per one gram tissue,
remaining elevated until 𝑑𝑓 = 5 seconds after the end of the activation.
In the model the ramping time response of the blood flow is of 𝑟1 and 𝑟𝑓
seconds at the start and end of the activity event. In our computations,
we use 𝑡1 = 2 and 𝑡𝑓 = 5, expressed in the units of minutes, as the
initial and final times of the activation event. The blood flow profile is
displayed in Fig. 4.

3.2. Results

The first computed experiment simulates an elevated neuronal activ-
ity event, accompanied by an increase of the blood flow. The activated
area is a circular patch of radius 𝑟 = 0.03 cm, corresponding to roughly
10% of the radius of the domain, centered at the node point with
coordinates [−0.075,−0.05]. The activity and the increased blood flow
are limited to the nodal points inside this patch.

During the simulation, we follow the time courses of metabolites
in all compartments of the model through a time window of 𝑡 = 30
minutes. In this experiment, the gap junction strength is set to 𝑠 =
1, and tortuosity to 𝜆 = 1.6. Figs. 5 and 6 show snapshots of the
concentration distribution of glucose, oxygen, lactate and pyruvate in
neuron and astrocyte, respectively, at times 𝑡 = 2.4 minutes, or 24
seconds after the onset of the elevated activity level, 𝑡 = 4.8 minutes, or
12 s before the end of the activity, and 𝑡 = 6.8 minutes, or 108 s after
the end of the activity. The plots show that diffusion causes a change
12

in the concentrations of metabolites in an area beyond the activity t
patch, or core of the activity, indicated by a circle in the plots. In both
intracellular compartments, we observe a decrease in glucose, oxygen
and pyruvate concentrations and an increase of lactate concentration
in the core of the activity, as well as in the margin of the activity.

In neuron, lactate returns to equilibrium much faster than the other
metabolites, while glucose shows a rather slow return to equilibrium. In
astrocyte, the concentration of metabolites others than glucose return
to an equilibrium state faster than in neuron. Due to the diffusion in
astrocyte, the area with a higher concentration of glucose and pyruvate
is wider than in neuron. We remark that, even though the model does
not assume diffusion in the neuron compartment, diffusion in ECS and
astrocyte paired with the interaction between the cell type, indirectly
affects the neuron compartment, too.

After the baseline simulation with normal neuronal activity, we test
the effect of different parameters by running three different simula-
tion protocols. The first test is designed to investigate the effect of
gap junction strength in astrocyte, the second one addresses the role
of tortuosity, and the third one investigates anisotropic diffusion in
astrocyte.

3.2.1. Protocol 1: Gap junction strength
Experimental results reported in the literature have rather mixed

outcomes about the role of gap junctions, with some suggesting that gap
junction communication is beneficial to cells, and others warning that
they may extend damaged areas in some pathological conditions. In our
first series of computed experiments, we test different strengths of the
gap junctions by varying 𝑠 in Eq. (4), setting 𝑠 = 0 corresponding to a
block in astrocytic diffusion, 𝑠 = 0.25 for a partial block, 𝑠 = 1 assuming
free diffusion between astrocytes, and 𝑠 = 4, which is a hypothetical
scenario of amplification of diffusion by gap junctions.

The results of the simulations indicate that in the cellular domains
in the core activity region, the diffusion process in general reduces
the drop of glucose and oxygen concentration and the increase of
the lactate concentration by distributing the metabolites more evenly
into the margin area. This supports the hypothesis that stronger gap
junctions will distribute the metabolic changes in response to neuronal
activation more evenly over a wider region. To test this hypothesis and
to quantify the results, we consider the average concentrations over
the core and the margin regions. Thus, if 𝑢(𝑥, 𝑡) denotes any particular
metabolite concentration, the average over a domain 𝑆 is given by

𝑢𝑆 (𝑡) =
1
|𝑆| ∫𝑆

𝑢(𝑥, 𝑡)𝑑𝑡.

For each metabolite, we compute the signed relative maximum change
over the simulation period compared to the baseline steady state con-
centration 𝑢0,

𝑢∗𝑆 = ±
max{|𝑢𝑆 (𝑡) − 𝑢0| ∶ 0 ≤ 𝑡 ≤ 𝑇 }

𝑢0
,

where the sign is chosen according to whether the concentration has
increased (+) or decreased (−) as a result of neuronal activity. Hence,
for instance, lactate concentration assumes a positive sign, and oxygen
a negative sign. The results, summarized in Fig. 7, indicate that in both
neuron (first row) and astrocyte (second row), the maximum average
lactate concentrations are most strongly affected by the gap junction
strength. At the core of activity in neuron, lactate increases up to about
44% from its baseline values when 𝑠 = 0, while when 𝑠 = 0.25, the
increase is 35%. When 𝑠 = 1, lactate increase is only up to 24%, and
at 𝑠 = 4, the maximal increase in concentration at the core is 13%.
imilar results hold in the astrocyte compartment. Observe that the
edox state that is known to follow the lactate/pyruvate ratio shows
imilar behavior, while the effect on glucose and oxygen, as well as
n the phosphorylation states is significantly less prominent. Relative
hange in redox state in the neurons of the core area goes from about
5% increase at 𝑠 = 0 to a 73% increase at 𝑠 = 4. The plot also shows

hat the relative change in oxygen concentration is higher rather than
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Fig. 5. Snapshots of the concentrations of glucose (row 1), oxygen (row 2), lactate (row 3), and pyruvate (row 4) in the neuron compartment. In this simulation, the gap junction
strength was set as 𝑠 = 1 and tortuosity of the ECS at the normal value 𝜆 = 1.6. The snapshots correspond to times 24 s after the activation onset (𝑡 = 2.4 minutes), 12 s before
he end of the activation (𝑡 = 4.8 minutes), and at 108 s after the end of the activation (𝑡 = 6.8 minutes). The smaller circles in black enclose the region of elevated glutamate
ecretion and blood flow, referred to as the core of the activity. The region in between the smaller and larger circle is referred to as the margin of the activity.
ower with increasing 𝑠, suggesting that the margin region is supplying
xygen to the core area by diffusion more effectively with increasing 𝑠.
The time courses of the averaged concentrations 𝑢𝑆 (𝑡) are also of

nterest, as they indicate the rate at which the metabolite concentra-
ions return to baseline values. Fig. 8 shows time courses of selected
metabolites for different values of 𝑠. We observe that increasing 𝑠
speeds up significantly the return to the baseline level of lactate con-
centration both in astrocyte and in neuron, not only in the core but
also in the margin area, where the blood flow does not change. In the
core area, the recovery time in both neuron and astrocyte decreases
13
from approximately 6 min when 𝑠 = 0 to only one minute when 𝑠 = 4.
Moreover, while the peak values of pyruvate are minimally affected by
the gap junction strength, temporal profiles of pyruvate concentration
change significantly with 𝑠, indicating that the gap junction strength
affects the balance between aerobic and anaerobic metabolism. It is
worth noting how the pyruvate spike in astrocyte, appearing in the
core area at the end of the activation period, and after the onset of
the activation in the marginal area, is dampened by the increased gap
junction activity, indicating that the decreased lactate concentration
slows down the lactate oxidation by LDH.
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Fig. 6. Snapshots of the concentrations of glucose (row 1), oxygen (row 2), lactate (row 3), and pyruvate (row 4) in the astrocyte compartment. As in Fig. 5, the gap junction
strength was set as 𝑠 = 1 and tortuosity of the ECS at the normal value 𝜆 = 1.6, and the snapshots correspond to times 24 s after the activation onset (𝑡 = 2.4 minutes), 12 s before
the end of the activation (𝑡 = 4.8 minutes), and at 108 s after the end of the activation (𝑡 = 6.8 minutes). The core and the margin of the activity are again indicated by the black
circles.
We noticed (data not shown) that in the case of an activation period
lasting more that 3 min, the metabolites settle at a steady state different
from the resting state that can be sustained as long as the additional
supply of oxygenated blood continues. This is in agreement with the
findings by PET and MR spectroscopy studies, suggesting that a new
metabolic steady state can be established within minutes of the start
of a stimulus. Electrophysiological and neuroimaging evidence sup-
porting the brain’s ability to sustain continuous activity was presented
in Sonnay et al. (2015).
14

2

3.2.2. Protocol 2: Tortuosity
In this protocol, we investigate the effect of increased tortuosity of

the ECS, which could be related, e.g., to pathological cell swelling. Ex-
perimental evidence suggests that the value of the tortuosity parameter
𝜆 of a healthy brain tissue is approximately 1.6, whereas in pathologies
such as stroke or cortical spreading depolarization, the value of the
tortuosity parameter is believed to be much higher. In the following, we
run the baseline model with three different tortuosity values, 𝜆 = 1.6,
.0, and 3.0.
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Fig. 7. Relative maximum changes of metabolite concentrations for different values of the gap junction strength. The panels in the first column correspond to the core activity
region, while those in the second column are for the marginal activity region. The top row corresponds to the neuron compartment, and the bottom row to the astrocyte
compartment.
Fig. 8. Time courses 𝑢𝑆 (𝑡) of the averaged concentrations of lactate and pyruvate for different values of the gap junction strength 𝑠. The panels in the top row refer to neuron,
and those in the bottom row to astrocyte. In the first two columns, the region of interest 𝑆 is the core activity area, and in the last two the activity margin. For each figure, the
activity period is indicated by a gray shade.
The numerical simulations indicate that, unlike the gap junction
strength that most prominently affected the pyruvate and lactate con-
centrations, the tortuosity has a notable effect on the glucose and
oxygen levels. The averaged time courses 𝑢𝑆 (𝑡) of glucose and oxygen in
both cell types in the core and at the margin areas are shown in Fig. 9.

We observe that increasing tortuosity does not change significantly
the oxygen profile in the core activity area, while the glucose con-
centration drops. Interestingly, the opposite is true for the marginal
15
activity area, where the drop of the oxygen concentration is less pro-
nounced as tortuosity increases, and the glucose concentration is only
marginally affected. A plausible explanation for this specular behavior
is that during the period of the activation, the marginal area provides
oxygen to the core area through diffusion. When diffusion is hindered
by increased tortuosity, the oxygen remains segregated in the margin
area, which therefore shows increased oxygen availability. In turn, the
core area has less oxygen available, hence must rely more on wasteful
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Fig. 9. Snapshots of the averaged concentrations of glucose and oxygen in neuron (top row) and in astrocyte (bottom row). The first two columns are averages over the core
activity region, and the other two refer to the margin activity region. The three curves in each plot correspond to different values of tortuosity 𝜆 in the ECS compartment. The
activation period is indicated by the gray shade.
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Fig. 10. Time courses of average OGI for protocols 2 at core and margin of activity
areas, respectively, for varying tortuosity values in the ECS. The activation period is
indicated by the gray shade.

anaerobic metabolism, with a consequent significant dip in glucose
concentration.

To test the robustness of the proposed explanation, we consider the
Oxygen–Glucose Index (OGI) which is a reliable measure of the level of
aerobic/anaerobic metabolism state in tissue. The OGI is defined as the
ratio between the flux of the oxygen and glucose from the blood com-
partment to the extracellular space (Massucci et al., 2013), Shulman
et al. (2001),

GI =
𝝓(blood)
O2

𝝓(blood)
Glc

=
CMRO2

CMRGlc
,

here 𝝓(blood)
Glc = 𝝓(1)

1 − 𝝓(2)
1 and 𝝓(blood)

O2
= 𝝓(1)

2 − 𝝓(2)
2 are the cere-

ral metabolic rates of glucose and oxygen, calculated as in (15) and
16), respectively. It has been reported in literature ((Massucci et al.,
013), Shulman et al. (2001), Madsen et al. (1998)) that OGI values un-
der normal resting conditions are between 5 and 5.5, and between 4 and
4.5 for sustained neuronal activation. Our simulations give an increase
of the CMRO2

of 4.6% during the activation in the core activity region,
which corresponds well to the observed values (Mintun et al., 2002).
ig. 10 shows the OGI values in the core activity area (left) and in
he marginal area (right), computed by using the averaged fluxes over
he region of interest. As expected, the increased tortuosity lowers the
GI during the activity in the core area as a result of limited diffusive
xygen supply, while in the marginal area, the OGI remains essentially
naltered, indicating that the cells do not profit from the excess oxygen
emaining in situ, but rather maintain the balance between aerobic and
naerobic metabolism remarkably stable. Let us point out that the gap
unction strength parameter 𝑠 has essentially no effect on the computed
GI (data not shown here).
16

t

.2.3. Protocol 3: Anisotropy
In the third simulation protocol, we test the effect of anisotropic

rientation of the astrocyte network on diffusion and metabolism. The
strocytic communication pathways are enabled by junctional proteins
alled connexins (Cxs). Several reports have demonstrated that gap
unctional communication in astrocytes does not involve all astrocytes
nd that subpopulations of glial cells with a specific phenotype are not
utually coupled (Wallraff et al., 2004), Houades et al. (2006), Schools

et al. (2006). In Houades et al. (2008), the authors determined the
oupling properties and spatial organization of gap junction-mediated
strocytic networks in layer IV of the primary somatosensory cortex,
upporting the hypothesis that the orientation of the coupling plays
significant role. Within a discrete astrocyte cluster, also known as
barrel, dye coupling is oriented towards the barrel center, indicat-
ng that intercellular exchanges are favored within a cluster rather
han between two adjacent barrels. In Anders et al. (2014), it was
ound that coupling length constant and anisotropy were sensitive
patial measures in astrocytic gap junction coupling. Moreover, the
uthors report that astrocyte coupling is temperature-dependent and
nisotropic in the stratum radiatum of the hippocampal CA1 region.
n the same paper it was found that territories of astrocytes were
longated along an axis perpendicular to the pyramidal cell layer,
ndicating that such morphology could indeed promote diffusion along
his axis and result in anisotropic astrocyte coupling. These findings,
llustrating that diffusion of molecules may be anisotropic with varying
irectional preference even within a hippocampal subfield and possibly
epending on differences of astrocyte morphology, motivate our third
rotocol, where we simulate anisotropic diffusion in the current model
nd test its effect on the diffusion of metabolites.
To emphasize the effect of the anisotropy, we consider an elliptical

ctivation area, with the major axis ten times the minor axis. The axes
f the ellipse are along the Euclidean coordinate axes, the major axis
ligned with the vertical direction. We begin by simulating the activity
ith isotropic diffusion tensor given in the baseline simulation, and
hen modify the diffusion tensor (6) in the astrocyte to allow diffusion
nly in the directions parallel or orthogonal to the major axis of the
ctivity ellipse, respectively, corresponding to diffusion matrices

𝑥 =
[

𝜅 0
0 0

]

, or 𝐷𝑦 =
[

0 0
0 𝜅

]

. (19)

Figs. 11 and 12 show the effect of the anisotropy on lactate and
yruvate concentrations in the astrocyte compartment at different time
nstances. The effect of the anisotropy is as expected, the margin
rea spreading predominantly in the direction favored by the diffusion

ensor. The effect on oxygen and glucose diffusion is less pronounced.
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Fig. 11. Time course of lactate concentration in astrocyte with different diffusion tensors in the astrocytic compartment. The top row corresponds to isotropic diffusion, the middle
row to diffusion tensor 𝐷𝑦 with no horizontal diffusion, and the bottom row to 𝐷𝑥 with no vertical diffusion.
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ig. 13 shows snapshots of the spatial distribution of the OGI corre-
ponding to a slit-like elliptic activity region with the vertical semi-axis
en times longer than the horizontal, and the diffusion matrix 𝐷𝑥,
llowing only diffusion in the horizontal direction. The figures indicate
hat while in principle, the diffusion of the lactate produced by the
naerobic metabolism of the core region could support elevated aerobic
etabolism in the surrounding region without extra glucose uptake,
eading to an OGI larger than 6, the model rather indicates that the
urrounding regions supply oxygen by diffusion to the core region, and
he OGI drops in both regions.

. Discussion

Computational predictive models of brain energy metabolism in
he literature usually assume well-mixed compartments, and while
he importance of diffusion is generally acknowledged, in particular
hen oxygen is concerned, detailed models combining diffusion and
etabolism seem to be largely missing. The main aim of this article is
o make a substantial contribution towards filling this gap, by proposing
novel spatially distributed computational model of brain energy
etabolism. The model accounts for diffusion in ECS and astrocyte net-
ork, and allows simulations of differing diffusion patterns. Accounting
or diffusion is especially important in the study of abnormal condi-
ions, e.g., when the metabolite supply is compromised as is the case in
schemia, or when the metabolic demand is elevated such as in seizures.
17
xtensive numerical experiments with the proposed model have been
ostly concerned with the role of diffusion in ECS and astrocytes, and
he role of the parameters affecting it, namely gap junction strength
n astrocyte, tortuosity in ECS, and anisotropy. The predictions of the
odel show its stability with respect to perturbation of the diffusion
arameters, and highlight how diffusion extend the effects of activation
ver a wider region. In the different protocols designed to test the
odel, indicators of metabolic activity and hemodynamic regulation,
ike OGI and other metabolite uptake and release remained within the
hysiological ranges.

.1. Physiological relevance and limitations of model assumptions

The model that we have presented is based on a set of assump-
ions, necessary to keep the complexity of the problem from becoming
nmanageable with the available computing resources. The first sim-
lification steps to reduce the general three-dimensional problem to a
roblem in two dimensions are based on the assumption that in the
ortion of the brain that is being modeled, there is a clear preferential
rientation of the neuronal axons, aligned with the 𝑥3-axis in our
coordinate system, thus supporting the assumption that there is no
diffusion in (𝑥1, 𝑥2)-plane for the neuron compartment, and justifying
the averaging of the 𝑥3-direction. This anatomical assumption is valid
for numerous cortical regions of human brain, for example the visual

cortex and the hippocampus, but definitely not for all of them, thus
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Fig. 12. Time course of pyruvate concentration in astrocyte with different diffusion tensors in the astrocytic compartment. As in Fig. 11, the top row corresponds to isotropic
iffusion, the middle row to diffusion tensor 𝐷𝑦 with no horizontal diffusion and the bottom row to 𝐷𝑥 with no vertical diffusion.
Fig. 13. Time course of the OGI, horizontal diffusion.
reducing the applicability of the model. One way to overcome such
limitation would be to consider the full three dimensional model, albeit
at the cost of increased computational complexity.

Another major simplifying assumption is the way in which the
model accounts for the energy demands of the electrophysiological
activity. The choice to not include the ionic fluxes related to neu-
rotransmission in the model is motivated by the goal to reduce the
computational complexity, both in terms of number of degrees of
18
freedom of the system as well as in light of the wide differences in
terms of typical time scales of electrophysiology and metabolism, the
latter in the order of minutes, the former in the order of milliseconds.
Following the approach in Calvetti and Somersalo (2011), in this first
spatially distributed model of brain metabolism we use the rate of the
glutamate–glutamine cycle, or V-cycle, as a proxy for the ionic fluxes,
encoding the effects of action potential transmission in the efflux of
glutamate from neuron into the synaptic cleft in the activated regions.
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An extension of the model is underway to include a detailed description
of the electrophysiology in terms of ionic fluxes and a double feedback
mechanism, whereas the metabolism responds to the energetic needs of
the electrophysiological activity which in turn is supported by the ATP
produced by the metabolism. The new model will include potassium
diffusion and clearing, thus requiring an adjustment of the governing
equations and boundary conditions.

Similarly to most spatially lumped models, the present model does
not differentiate between the pre- and postsynaptic roles of neurons,
as the level of spatial discretization does not have sufficient resolution.
More importantly, the present model does not include GABAergic neu-
rons, but it allows a modification to account for different neuron types
by partitioning each neuron compartment into a glutamatergic neuron
compartment and a GABAergic neuron compartment, and adding to
relevant reactions. Such enrichment of the model would make it possi-
ble to model brain regions where the ratio of excitatory and inhibitory
neurons varies spatially by making the volume fractions functions of the
location. Finally, we point out that the reaction and transport models,
written as symmetric Michaelis–Menten formulas, are simplifications,
integrating several component processes that have been studied in the
literature and could be investigated further, with the cost of adding to
the complexity of the model.

The role of glycogenolysis in astrocyte as a way to make more
glucose available to neurons at the onset of activation has supported by
several recent studies, and the meta analysis in Rothman et al. (2022)
strongly suggest that models of brain energy metabolism should include
glycogen in astrocyte. The omission of glycogen from the present model
is clearly a limitation, and its inclusion may lead to a more diverse
role of metabolites in neuron and astrocyte. The local nature the
glycogen reservoir, and its prompt utilization by astrocyte at the start of
increased activity suggests a non-diffusive role of glycogen. Expanding
the model to include glycogen and glycogenolysis will be part of future
work.

The geometric and topological organization of the vasculature in
brain poses a significant challenge for macroscopic modeling of the
blood flow in brain tissue. The total length of the vasculature is almost
150 meters per hemisphere (Kirst et al., 2020), and the mean vessel
branch-point density is 6 400 branch points per cubic millimeter, giving
an idea of the complexity of the network. The arteries form a quasi-
fractal like branching structure (Lorthois and Cassot, 2010), and the
robustness of the oxygen supply is related to the topological organiza-
tion of the vasculature (Blinder et al., 2010). The capillary density is
highly heterogeneous through the brain Michaloudi et al. (2005), the
density being associated to the local oxidative metabolism rate rather
than the neuronal density (Keller et al., 2011). In this work, we assumed
a simplified convection model for the blood flow through the capillary
network in which the predominant flow direction was assumed to
coincide with the axial direction of the computational domain, thus
simplifying a dimensional reduction. The orientation of the capillaries,
in general, does not follow the structural organization of the neurons,
however, recent studies show that the capillaries are predominantly
radial, e.g., in sensory brain regions, whereas integrative and motor
regions have an equal mix of radial and planar oriented vessels (Kirst
et al., 2020). In this perspective, the blood compartment model used
in this article is most representative of sensory cortex tissue. One way
to account more accurately for the space-filling nature of the capillary
network entails modeling the blood flow using a Darcy type flow in
porous medium, see, e.g., Peyrounette et al. (2018), opening a possible
irection for future research.

.2. Future work

Several extensions of the model will be addressed in forthcoming
ork. One of the shortcomings of the current model is that the neu-
onal activity is modeled through an artificial activity function that
19

ncreases locally the glutamate flux in the clefts. While qualitatively
orrect, this excitation model does not correctly account for effects
f electrolytes to the metabolic needs. A more realistic model should
nclude the double feedback mechanism between metabolism and elec-
rophysiology, where the ATP production is a response to the ion
ump action, and vice versa, the electrolyte concentrations change
ccording to the ATP availability regulating the pump activity. Another
spect that should be included in the model is the role of astrocyte
n the potassium diffusion and extrusion, whose central importance
as been recently highlighted (Calvetti et al., 2018). The proposed
odel will further be adapted to investigate brain energy metabolism
nder some pathological conditions, including ischemia and cortical
preading depolarization. The model proposed in this paper will be the
tarting point for all future modifications and extensions.
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