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Abstract

Tremendous progresses have been made in recent years
in developing better image captioning models, yet most of
them rely on a separate object detector to extract regional
features. Recent vision-language studies are shifting towards
the detector-free trend by leveraging grid representations
for more flexible model training and faster inference speed.
However, such development is primarily focused on image
understanding tasks, and remains less investigated for the
caption generation task. In this paper, we are concerned with
a better-performing detector-free image captioning model,
and propose a pure vision transformer-based image caption-
ing model, dubbed as ViTCAP, in which grid representations
are used without extracting the regional features. For im-
proved performance, we introduce a novel Concept Token
Network (CTN) to predict the semantic concepts and then
incorporate them into the end-to-end captioning. In particu-
lar, the CTN is built on the basis of a vision transformer, and
is designed to predict the concept tokens through a classifi-
cation task, from which the rich semantic information con-
tained greatly benefits the captioning task. Compared with
the previous detector-based models, VITCAP drastically sim-
plifies the architectures and at the same time achieves com-
petitive performance on various challenging image caption-
ing datasets. In particular, VITCAP reaches 138.1 CIDEr
scores on COCO-caption Karpathy-split, 93.8 and 108.6
CIDEFY scores on nocaps and Google-CC captioning datasets,
respectively.

1. Introduction

The task of image captioning aims to generate human-
readable descriptive text from an image. Recent studies
have witnessed its great development which are primarily
reflected in the aspects of more advanced cross-modal fusion
architectures [11,45,50,54,57,63,65,67,70]; more expres-
sive object-centric features [4, 69] & tags [16, 23, 35, 58]
obtained from a pre-trained object detection model; or learn-
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Figure 1. Comparisons of different image captioning models.
Top: A general image captioning pipeline. Bottom: (a). Prevailing
conventional models [23, 36, 69] which are based on an object
detector to extract regional features. Object tags [35, 69] can be
optionally used to assist the text generation through a multi-modal
decoder network. This usually requires regional operations (REG.
OPE.) that are time consuming. (b). To eliminate the detection
module, a ResNet variant [20] or Vision Transformer [30] can be
applied as substitution to output the grid feature [61, 62]. This
replacement has been studied on the image understanding task
recently but very few works focus on the generation task. (c). Our
proposed ViTCAP, which is detector-free and incorporates a novel
Concept Token Network to predict semantic concepts as tokens for
the image captioning task.

ing general Vision and Language (VL) representations from
large image-text corpus [16,35,58,61,62,71].

Despite these significant advances, most of the main-
stream captioning models [11,45,54,70] rely heavily on a
bulky object detector to provide regional visual representa-
tions for the multimodal interaction, as shown in Figure 1-a.
In spite of the superior performance brought by the object
features, the ensuing difficulties occur as they: 1) lead to
heavy computational load due to the regional operations
(i.e., RPN, Rol Pooling, and NMS). These intermediate op-
erations unavoidably cause training inefficiency and high
inference latency at prediction stage [30, 58]; 2) require
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box annotations and largely limit the flexibility in training
and application. To address these challenges, there is an
emerging trend that more recent works propose to elimi-
nate the detector for the VL pre-training in an end-to-end
fashion [25,26,30,61,64]. In such detector-free design, a
general visual encoder serves as a substitute for the detec-
tor and from which the grid features are produced for later
cross-modal fusion, as in Figure 1-b. Heretofore, the major-
ity of these works mainly focus on the image understand-
ing task, which is typically cast as a classification problem,
and only a few of them shed light on the generation task.
In [62], the image is encoded with ResNet [20] and the per-
formance (117.3 CIDEr on COCO [62]) is still far from the
state-of-the-art detector-based approach (129.3 CIDEr with
VinVL-base [69]). The challenge remains uncharted and
insufficiently investigated regarding how to build a stronger
detector-free image captioning model.

Previous efforts [16, 23, 35, 58, 69] have demonstrated
that the object tags play an important role in improving
the captioning performance. Instead of gleaning the object
tags from the detector, we introduce a novel fully VIsion
Transformer based image CAPtioning model, dubbed ViT-
CAP, with a lightweight Concept Token Network (CTN) that
produces concept tokens (see Figure 1-c). VITCAP is con-
structed on the basis of a vision transformer [13] as the stem
image encoder. Our vision transformer backbone starts with
encoding the image and produces grid features, on top of
which the CTN branch is then applied to predict semantic
concepts of images. We represent the semantic concepts at
the token level instead of the tag level to avoid the tokeniza-
tion. The multi-modal module then takes the input of both
grid representations and Top- K concept tokens for decoding.
During training, the CTN is optimized to predict the pseudo
ground-truth concepts extracted from image captions via a
simple classification task. We also investigate to adopt the
object tags from the detector as the pseudo ground-truth,
and empirically observe no further improvement. Overall,
this straight-forward design allows the injection of semantic
concepts into the multi-modal fusion module with abundant
semantics, and is critical for the improved captioning perfor-
mance.

Our ablative analysis suggests that, with no bells and
whistles, simple vanilla transformer architecture based ViT-
CAP 1) significantly outperforms existing detector-free cap-
tioning models; 2) surpasses most detector-based models and
3) approaches the state-of-the-art detector-based models. In
particular, VITCAP achieves 138.1 CIDEr scores on COCO-
caption Karpathy split [38], 108.6 on Google-CC [52], and
95.4 on nocaps [1] datasets.

To summarize our contributions:

* We present a detector-free image captioning model ViT-
CAP with fully transformer architecture, where it leverages
grid representations without regional operations.

* We propose to inject semantic concepts into end-to-end
captioning by learning from open-form captions. We find
that our proposed concept classification training and con-
cept tokens significantly benefit the captioning task.

» Extensive evaluations on multiple captioning datasets con-
firm the validity of our method. VITCAP achieves compet-
itive or even leading results amongst detector-based prior
arts with clear inference-time advantages.

2. Related Work

Image Captioning aims to produce an open-form and
human-readable textual description that summarizes the con-
tent of an image. Most previous captioning models unani-
mously [4, 15,19,23,50,54,57,63,67] use detector based vi-
sual encoder like Faster-RCNN [49] to extract visual features,
and apply decoders like RNN, LSTM or Transformer for cap-
tion generation. Existing efforts on image captioning are re-
flected from the perspective of novel architectures [11,45,70],
more effective learning objectives [23,43,50], or large-scale
VL pre-training [35, 69, 71], etc. Some recent works [4, 70]
arrive at an empirical conclusion that a strong object detec-
tor is necessary, providing clean and unambiguous regional
features for objects. Li et al. [23,35] show that object tags
output from the detectors play a critical role as anchoring
points in VL tasks across modalities. Following this, [69]
proposes to adopt a strengthened detector to obtain regional
features and expanded object tags covering both entities and
attributes for VL tasks. Nevertheless, object detectors hinder
the VL models to be deployed on edge devices, known for
their snail’s pace at inference.

Efficient VL Models. Several recent efforts build efficient
VL Models that either optimize the object detector for feature
extraction with faster inference speed, or adopt non-detector
image encoders. For instance, MiniVLM [58] first proposes
an EfficientNet [53] based lightweight detector. [26] revisits
grid features for VQA task with great performance and fast
inference speed. [14,25,30,61,62] also inherit such detector-
free design and use architecture like ResBlocks [20] for
image encoding. On the other side, DistillVLM [16] intro-
duces VL distillation that facilities VL pre-training & fine-
tuning for small transformer architectures; [18] proposes
to prune the transformer architecture and shows that close
performance can be maintained at 50%-70% model sparsity.

3. ViTCAP

Existing image captioning models usually consist of an
object detector module (Detector) to extract regional feature
(vT) from the raw image (I), and a multi-modal module
(MM) to generate a textual description ( ¢). Several recent
works [35,69] show that the object tags (t7) extracted from
the detector can serve as anchoring points across modalities,
and are essential for various VL tasks. This procedure can
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Figure 2. Architecture of our proposed ViTCAP image captioning model. ViTCAP is a detector-free image captioning model based on
the vision transformer, where image patches are encoded into continuous embeddings as grid representations. The CTN branch roots from
an intermediate block of the image encoder, and is a shallow transformer architecture (e.g., 4 self-attention blocks). The CTN is trained
via a classification task using object tags gleaned from the Teacher VLM’s detector as pseudo-labels and the keywords parsed from image
captions as the semantic concept ground-truth. During captioning, the CTN-produced concept tokens from the semantic concept vocabulary
are then concatenated with the grid representations and fed into the multi-modal module for decoding. Best viewed in color.

be expressed as follows:
(vT,t7) = Detector(1), ¢=MM(v’,tT). (1)

Several VL models [25, 30, 62] obtain a great improvement
in inference speed by using general image encoders without
regional operations. However, these models are unable to
utilize the image tags due to the absence of a detector.

In this work, we aim to build a detector-free caption-
ing model with concept tokens containing rich semantics,
coming from a novel Concept Token Network (CTN). An
overview of VITCAP is depicted in Figure 2. The raw image
is firstly fed into the image encoder to generate the interme-
diate representations (v;) and the final grid representations
(v). A CTN branch then takes v; as the input and predicts
concept tokens (t), followed by the multi-modal module
that allows the interactions across modalities and generates
caption (c¢). We adopt the fully transformer [55] framework
in all modules, but the image encoder and CTN modules
are not architecture-specific. The overall pipeline can be
summarized as:

@;,v)=Encoder(I), t=CTN(v;), c=MM(v,t). (2)

In the following, we first introduce how the vision trans-
former produces grid representations and our proposed CTN
in Section 3.1, and the overall training losses in Section 3.2.

3.1. Model Structure

Vision Transformer. The transformer architecture and its
instantiations (e.g., BERT [12], GPT [7]) are well-known for
their remarkable performances on natural language process-
ing tasks, which are mostly attributed to the self-attention

design. Recent efforts have advanced this to vision tasks, i.e.,
Vision Transformer (ViT) [13]. We use ViT as the backbone
of the image encoder to produce grid representations (v;
and v ). To be specific, the raw image I € RH*Wx3 jg
partitioned into N disjoint patches. The size of each patch
is P x P x 3 and the number of patches N is (HW)/P2.
These patches are then flattened and projected into patch
embedding of dimension d via a trainable linear projection
layer. Concatenated with a special [CLS] token, these patch
representations are added with learnable positional embed-
dings and then sent into M consecutive transformer blocks
thereafter. To this end, we use the final representation as the
grid features v, and extract the output of the first M/ blocks
as the intermediate representations v;, which is the input
of the Concept Token Network for concept predictions as
detailed below.

Concept Token Network. The Concept Token Network
(CTN) is composed of M transformer blocks to process
the intermediate features v;. The output representation cor-
responding to [CLS] is used to predict the concept token
with a multi-linear perceptual (MLP) network. The vocabu-
lary of the concept token is identical with the one used for
the captions. It is noted that we predict the concept in the
token level rather than in the tag level, and thus the top-K
(K = 50 in our experiments) tokens can be directly used by
the multi-modal decoding module for auto-regressive decod-
ing. In [35,69], the object tags are predicted from the object
detector, while we eliminate the detection module to remove
the dependency of the box annotations. Another difference
lies in the tag/concept vocabulary. The existing approaches
apply the tag list from the dataset as the vocabulary which
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are pre-defined and need an extra tokenization operation.
Instead, our concept token vocabulary is shared with the one
for captions and also removes the tokenization step.

Multi-Modal Fusion Module. Our multi-modal fusion
module is a shallow network composed of multiple trans-
former blocks, and we follow [7,47] to apply the seg2seq
attention mask to generate the caption token in an auto-
regressive way. First, the Top-K concept tokens’ indices are
mapped to token embeddings through an embedding layer
lc.. Then, the module takes as input the concatenation of
concept token embeddings (¢) and grid representations (v)
to generate the description, where we append a mask token
[MASK] to the previous generated tokens (empty at very
beginning) to predict the next token one by one. With the
seqg2sedq attention mask, the generated token (including
the appended [MASK] token) is able to access the preceding
tokens and (¢, v), while (¢, v) has no access to the generated
tokens. The generated caption token is also mapped through
an embedding layer /4. In experiments, we make the two
embedding layers (I. and [;) shared to reduce the parame-
ter size as the result is similar to two separate layers (see
Appendix for results).

3.2. Model Training

The training of VITCAP is composed of the CTN and the
captioning training.

CTN is used to predict the image concepts. However, the
widely-used VL pre-training dataset contains only the image
descriptions without the tags. To address the issue, one can
simply retrieve the concepts from the open-form captions
(e.g., by extracting nouns or adjective words as keywords) as
the pseudo ground-truth concepts, or alternatively leverage a
pre-trained object detector (e.g. on Visual Genome [31]) to
produce the image tags (remove the bounding boxes). Empir-
ically, we observe that by using caption extracted concepts
lead to better results. We optimize the CTN to predict the tar-
get concepts via a multi-label classification task. Due to the
extremely imbalanced semantic concepts distribution (cer-
tain concepts appear much frequently than the rest), we adopt
the simplified asymmetric focal loss [6,38,39] which shows
great performances handling sample imbalance problems
for the multi-label classification task. The overall concept
classification loss can be expressed as:

ﬁvc - EviNDfQ(p | vi)v (3)

K

1 5 {(1 — pr)* -log(pr), +,

) = — 4
et b log(l-p), -

K j—
pr € [0, 1] denotes the output probability for the k-th class
and =+ specifies whether the class is the pseudo ground-truth
concept. Despite the rarity of positive samples, setting pa-

rameters 4 < y_ decouples its decay rates from the deluge

of negative samples and emphasizes more the contribution of
the positive. We set parameters vy = 0 and y— = 1 as [39]
in our experiment.

For the captioning training, the multi-modal module takes
the Caption-Concept Token-Feature triple (¢, t, v) as input,
where ¢ = {¢y,...cr} are the masked input words after
tokenization and we set the mask probability = 15%. The
masked tokens are replaced with the special token [MASK].
The prediction of masked token at the position ¢ is condi-
tioned on the preceding tokens (c«), visual representations
(v) and the concept tokens (¢). We train our model param-
eters # by minimizing the negative log-likelihood over the
masked tokens:

Leap = ~Ernp [log [T Po(érlecr,tv)], )

é~Cym

where C); refers to the ground-truth set of the masked to-
kens.

Recent works [16,40] reveal that by leveraging the knowl-
edge distillation technique [22], the VL model can be im-
proved compared to the non-distilled counterpart using a pre-
trained Teacher VL model. In our training, we experiment
with applying a trained detector-based captioning model as
the Teacher (parameterized by 6;), i.e., VinVL [69], to assist
the training of ViTCAP. Note that the Teacher model is a two-
stage VL model adopting regional features and object tags
from the detector, yielding discrepant visual features with
ViTCAP, and hence the distillation objectives like attention-
map loss and hidden-states loss are not directly applicable
as in [16]. We adopt the classification distillation loss over
the masked token probabilities between the predictions from
the Student (Fy) and Teacher (Fp,) models:

Law=Erp| Y KL(P(@). Po(@)].  ©

¢i~Cuy

where KL( , ) is the Kullback-Leibler divergence. Overall,
our final loss is then the combination of the terms:

L= E'uc + /Ccap + £dis~ (7)

4. Experiment

We now introduce the implementation details of ViT-
CAP and empirically verify the validity of our proposed
training schema from different aspects. To highlight the
generalizability of VITCAP, we benchmark performances of
VIiTCAP and compare it with prior arts on multiple image
captioning testbeds. We then exhaustively study the effect
of our proposed concept tokens, the benefits of pre-training
at scale, the effect of VL distillation, etc. In the end, we vi-
sualize the attention maps of ViTCAP and provide in-depth
discussion.
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4.1. Datasets

Pre-training Datasets. In our experiment, we aggre-
gate image-text pairs from Google-CC [52], SBU Caption
dataset [44], MS COCO [38] and Visual Genome dataset [31]
to form the pre-training corpus. In total, our pre-training cor-
pus contains 9.9M image-text pairs and 4.1M independent
images, and we follow [42] to de-duplicate testing images
exist in evaluating datasets. Details of the pre-training corpus
can be found in the Appendix.

Evaluation Datasets. We report performances of ViT-
CAP on COCO captions (Karpathy split) [38], Google-
CC [52], and nocaps [1] datasets. We follow Karpathy’s
split and use 113k, 5k and 5k images for training, valida-
tion and testing respectively on MS COCO dataset. As re-
gards to Google-CC, we follow [52] and use its training split
containing 3M image-text pairs for training, and report the
performances on validation split with 16K image-text pairs.
To test the generalization of ViTCAP, we also report the
performances on nocaps dataset [1], a benchmark consisting
of 166k human-generated captions describing 15k images in
the wild collected from the Openlmages dataset [51].

4.2. Implementation Details

Architecture. Our ViTCAP is based on a Vision Trans-
former base (ViT/b) architecture consisting of M = 12
consecutive transformer blocks, with hidden size as 768, and
12 attention heads. In our experiment, we set the patch size
as 16 x 16 and resize the shorter side of the image to 384. We
use M; = 8 transformer blocks in Stem Image Encoder to
extract the intermediate grid representations and use My = 4
transformer blocks for the CTN branch. When enlarging the
size of CTN and Feature Extractor to My = 12 transformer
blocks, it is equivalent to two independent networks for the
computation of Concept Token/Embedding and Grid Feature
respectively. We adopt this design with more learnable pa-
rameters in our VITCAP with large scale pre-training (see
VIiTCAP* in Table 1). Data augmentations are applied on
raw images before the linear projection as [13] including
Colorlitter, horizontal flipping, etc.

Two-stage Training. Training both the CTN branch jointly
with the captioning task jointly from scratch is challenging,
we observe that using a pre-trained CTN with stable and
consistent concept prediction throughout the training leads
to superior captioning results. Thus in practice, we first
conduct concept classification training for a good concept
prediction, and then train the model with both tasks. Such
strategy prevents the “cold-start” issue when the initially pro-
duced concepts are mostly random, impairing the captioning
training. During the joint captioning & concept branch train-
ing, we reduce the learning rate for both the Stem Image
Encoder and CTN branch by a factor of o (v = 10) and keep
the predicted concepts relatively consistent but still slowly

adapted throughout the training.

* Concept Classification. The concept classification is con-
ducted on an aggregated dataset with 4.1M images (see
later section for details). To obtain the pseudo ground-
truth concepts, we experiment with using the NLTK [41]
toolkit to parse out the nouns and adjectives as the target
concepts, or simply use all tokens in captions as targets for
the classification task. For the detector-produced tags, we
take advantage of a ResNeXt-152 C4 architecture based
object-attribute detector that has been well-trained [69] to
produce image tags as pseudo-labels for concept classifi-
cation training. We only retain image tags with confidence
score > 0.2 from the detector and acquire 50 tags at most
per image. For classification training, the model is initial-
ized from the ImageNet-21k [32] pre-trained checkpoint!,
and is optimized for 10 epochs using AdamW [48, 68]
optimizer. The batch size is 1,024. The initial learning
rate is e — 5 and is linearly decayed to 0.

* Captioning Training. For the joint optimization, we ap-
ply the well-trained model after concept classification to
initialize Stem Image Encoder, CTN and the feature ex-
tractor. The initial weights in the feature extractor are
copied from the CTN branch, as the architecture for grid
feature extractor is the same as the CTN branch. We set
base learning rate I = le — 4, batch-size = 512 and train
the model for 30 epochs using AdamW optimizer, and set
weight decay= 0.05.

Evaluation. We evaluate the quality of the generated cap-
tions using the prevailing metrics including BLEU @4 [46],
METEOR [5], CIDEr [56], ROUGE [37] and SPICE [3].
During inference, we use beam search (beam size = 1)
for decoding. There exist many evaluating metrics study-
ing the qualities of the generated captions, including Self-
CIDEr [59], SMUREF [17] and from different aspects [21,27,
60]. In the Appendix, we conduct more studies studying the
diction quality of our generations using SMURF [17] metric.

4.3. Main Results

We perform extensive comparisons of VITCAP with the
prior arts. Table | presents the captioning results on MS
COCO dataset where the models are trained with cross-
entropy loss or optimized with CIDEr as reward [50]. We
compare ViTCAP with 1). “detector w/o VLP” models with
complex architectural modifications. These models [11,
24,45,70] all come unanimously with heavy computational
burdens and extra learnable parameters. 2). “detector w.
VLP”: prevailing detector-based VL models pre-trained with
a large VL corpus and then fine-tuned on image captioning
tasks. 3). “detector-free” methods: the end-to-end trainable

'https://github.com/lucidrains/vit-pytorch.
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Cross-Entropy Loss

CIDEr Optimization

Methods V. ENC. #I-T

B@e4 M R C S B@e4 M R C S
Detector w.o. VLP
RFNet [28] Ensemble 35.8 274 56.5 1125 20.5 36.5 27.7 57.3 121.9 21.2
BUTD [4] F-RCNNi01 36.2 27.0 56.4 1135 20.3 36.3 27.7 56.9 120.1 21.4
LBPF [66] F-RCNNi01 374 28.1 575 1164 212 383 285 584 1276 220
SGAE [65] F-RCNN0; 36.9 27.7 57.2 116.7 20.9 384 284 586 127.8 22.1
AoANet [24] F-RCNN01 372 284 57.5 119.8 21.3 389 29.2 588 129.8 224
M? Transfm. [11]  F-RCNNyq; - - - - - 39.1 29.2 58.6 131.2 22.6
X-LAN [45] F-RCNNi01 38.2 28.8 58.0 122.0 21.9 395 29.5 59.2 132.0 234
RSTNet [70] RESNeXti52 - - - - - 40.1 29.8 59.5 135.6 23.3
Detector-Free w.o. VLP
ViTCAP (Ours) ViT, 35.7 28.8 57.6 121.8 22.1 40.1 294 594 133.1 23.0
Detector w. VLP
UVLP [71] F-RCNNig1 4M 36.5 28.4 - 116.9 21.2 39.5 29.3 - 129.3 23.2
MiniVLM [58] Eft-DET 14M 35.6 28.6 - 119.8 21.6 39.2 29.7 - 131.7 23.5
DistillVLM [16] Eff-DET ™ 35.6  28.7 - 120.8 22.1 - - - - -
OSCAR; [35] F-RCNNig1 7™ 36.5 30.3 - 123.7 23.1 40.5 29.7 - 137.6 228
UNIMO,, [34] F-RCNNig1 9M 38.8 - - 1244 - - - - - -
VL-T5 [10] F-RCNNjg1  9M - - - 1165 - - - - - -
VinVL,; [69] RESNeXti52 9M 38.2 30.3 - 129.3 23.6 409 30.9 - 140.4 25.1
Detector-Free w. VLP
ViLT-CAP # ViT, 10M 33.7 27.7 56.1 113.5 20.9 - - - - -
E2E-VLP [62] ResNetso 6M 36.2 - - 117.3 - - - - - -
ViTCAP* (Ours) ViT, 10M 363 293 581 1252 226 412 30.1 60.1 138.1 24.1

Table 1. Performance comparisons on COCO-caption Karpathy split [29], where B@4, M, R, C denote BLEU @4, METEOR, ROUGE-L,
CIDEr and SPICE scores. All values are reported as percentages (%). We compare the VITCAP with previous state-of-the-art detector-based
baselines (without the VLP) in the first section, and detector-based baselines (with large scale pre-training) in the third section, and the
detector-free methods with pre-training in the last section. V. ENC. denotes visual encoders for feature extraction; # I-T refers to the number
of image-text pairs used in pre-training (in millions). VITCAP* is a larger version of ViTCAP with more parameters. ® is the results we
achieved using the ViLT [30] pre-trained checkpoint for image captioning task (see Appendix for more explanation).

image captioning models without object detector (with or
without pre-training).

Without VLP. To compare fairly with the detector-based
baselines without VLP, we adopt the VinVL tags as con-
cept sources instead of the captions to guarantee that no
additional captions have been exploited during the concept
classification training. Note that the knowledge distillation
objective is not applied for this experiment as it introduces
extra knowledge from the pre-training of Teacher model. On
COCO-caption Karpathy split, our VITCAP achieves simi-
lar results and even surpasses most existing detector-based
methods, i.e., CIDEr score 121.8, using caption extracted
concepts. It is worth mentioning that the architectures of
most existing detector-based methods are deliberately de-
signed, e.g., the self-attention module in X-LAN [45] has ond
interactions for multi-modal inputs, M? Transformer [11] has
the multi-level representation of the relationships between
image regions, etc. ViTCAP adopts the simplest vanilla
transformer architecture without any bells and whistles. This
proves the effectiveness of our proposed learning paradigm.

The ablations in the later section comprehensively explore
the benefits of CTN and the knowledge distillation technique.
With VLP. We observe a clear performance gain of ViT-
CAP after the large scale pre-training (3.0 higher CIDEr
scores), better than most detector-based VL methods: e.g.,
125.2 vs. 123.7 (OSCARy), and 0.8 higher than UNIMOy,
8.7 higher than VL-T5 when pre-trained on similar VL cor-
pus. This conclusion is further supported by results of other
metrics. VITCAP approaches the state of the art, only 2.3
lower than VinVL in CIDETr scores after CIDEr optimization,
considering the fact that VinVL used ResNeXt;52-based
object detector. Compared with detector-free baselines, ViT-
CAP outperforms all existing works with an obvious discrep-
ancy: 11.7 CIDEr scores higher than the VILT-CAP [30] and
7.9 higher than E2E-VLP [62].

4.4. Ablative Study

We now comprehensively study VITCAP’s performance
gain from different aspects, i.e., knowledge distillation, the
effect of concept tokens, and large-scale pre-training.
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Concept Source COCO Captioning

B@4 M R C S

339 27.8 56.4 1148 21.3
BUTD [4] 35.0 282 569 1174 21.3
VinVL [69] 35.6 28.6 57.4 119.7 21.8
CAPTION 35.6 28.7 57.6 1209 21.8
VinVL — CAP* | 35.9 286 57.6 121.3 21.9
CAPTION* 35.7 28.8 57.6 121.8 22.1

Table 2. Adopting various sources of semantic concept leads to
different performances. “CAPTION” represents the baseline ex-
tracting keywords from open-form captions; “*” is the baseline us-
ing all words in captions as target concepts; “BUTD” and “VinVL”
represent using the object tags produced by the object detector
from [4] and [69] as target semantic concepts, respectively. “VinVL
— CAP.” represents adopting detector tags [69] during first stage
of concept classification and using caption extracted tags during
the second stage.

Semantic Concept Sources. We study the effects of dif-
ferent semantic concept sources, i.e., from object detec-
tors [4, 69], captions-extacted concepts, and the combina-
tion of them. Table 2 lists the performances of VITCAP on
the COCO caption dataset with various semantic concepts
sources. Open-form captions are the most accessible source
to directly obtain semantic concepts, although these descrip-
tions can sometimes be noisy, inaccurate and incomplete.
“CAPTION” in Table 2 is the result using nouns and adjec-
tives parsed from captions using NLTK [41] toolkit as target
concepts. This leads to an obvious improvement over the
baseline (without CTN): CIDEr 120.9 vs. 114.8. We also
attempt to leverage all tokens from the captions as concept
targets in case of omitting essential words during parsing
(see “CAP.*”), which brings further incremental improve-
ment and yield best result. Although using all tokens in the
caption might inevitably introduce more noisy or irrelevant
words, e.g., connection and stop words, it also broadens the
semantic concepts vocabulary as some rare entities/attributes
might be missed using just keywords.

We then experiment with using the detectors in [69]
and [4] to produce image-level tags as target concepts. We
observe that using the detector of VinVL yields better per-
formances than BUTD, i.e., 119.7 vs. 117.4 CIDEr scores.
This is mainly because of the more diverse collection of
semantic concepts involved in [69] than BUTD [4]. The
second last row is the experiment where the model is firstly
trained using VinVL tags on large scale dataset (in the first
stage), and then using the caption tokens during the second
stage of captioning. This indicates that, when no captions
are attainable, it is also viable to leverage detector-produced
tags to improve the performance.

Effect of Different Modules. In Table 3, we show in details
the independent performance gains from each design, viz.,

Cross-Entropy Loss

Methods B@4 M R c s

ViT/B 339 278 564 1148 21.3
ViT/B ko 354 285 575 1200 @ 21.7
VAiT/B: crvmaa 352 280 570 1171 214
ViT/B op1a 343 282 574 1174 217
VITCAP: crvrok 357 288 57.6 121.8  22.1

ViTCAP: crvrok+pre+kp -~ 36.3  29.3  58.1 125.2 22.6

Table 3. Comparisons of VITCAP with or without knowledge distil-
lation, large-scale pre-training and with CTN. Performances are re-
ported on COCO-caption Karpathy split optimized by cross-entropy
loss. +op-tag indicates the result using the detector produced off-
the-shelf tags as [35]. tcn-tok is the result of VITCAP using the
initialization after first-stage concept classification. kp and prr are
results obtained with masked token classification distillation and
pre-training at scale respectively.

with or without concept tokens, masked token distillation
loss, pre-training and the combinations of them. We report
the result of the baseline model which reaches CIDEr scores
114.8 on COCO caption dataset. With the aim of isolating
the performance gain from concept tokens, we first decode
the image-level semantic concepts and store them as offline
tags for the captioning task. We then follow [35] to tokenize
them and concatenate the tag embedding with visual features
for captioning task. This allows us to directly compare the
effect of CTN-produced concepts with detector tags without
the concept classification initialization. Adopting the explicit
tags predicted by the CTN leads to obvious improvements:
2.3 higher CIDEr and 1.3 higher BLEU @4 scores, reaching
similar results with that using VinVL’s detector tags directly
(see ViT/B,op.tag): 117.4 vs. 117.1 CIDEr scores. This
proves that our generated semantic concepts play a signifi-
cant role in the captioning task and have a similar effect as
the VinVL'’s detector tags. Next, we apply the pre-trained
weights after the concept classification to initialize the ViT-
CAP for the captioning task, and find further improvement
(see ViITCAP,crn.Tok). This proves that both the predicted
concept tokens and the concept classification training are
beneficial for captioning tasks. For the knowledge distil-
lation experiment, we use the VinVL-base [69] optimized
on COCO-caption dataset as the Teacher and keep it frozen
during distillation. The application of KD on masked token
prediction (ViT/B.kp) is also evidently helpful: there is an
over 5.0 CIDEr scores improvement over the baseline. Note
that the KD objective is only applied in the downstream for
the ViITCAP baseline after VLP for fair comparison with
previous works. Finally, by pre-training the ViITCAP with
large scale VL corpus continuously contributes to the results.
Performances on other Benchmarks. To evaluate the gen-
eralizability of VITCAP, we continue to expand the testbeds
to other challenging captioning benchmarks, i.e., Google-
CC [52] and nocaps [1] datasets. For the Google-CC dataset,

18015



nocaps validation set

in-domain | near-domain | out-of-domain overall
C S C S C S C S

781 11.6 |57.7 10.3 |31.3 8.3 55.3 10.1
80.0 12.0|73.6 11.3 |66.4 9.7 73.1 11.1
80.0 12.0 |73.6 11.3 |66.4 9.7 73.1 11.1
79.6 123 |166.1 11.5 |45.3 9.7 63.8 11.2
834 12.0|81.6 12.0 |776 10.6 |81.1 11.7
90.4 13.0 1849 12,5 |83.0 10.7 |85.3 12.2
92.2 129|878 12.6 |87.5 11.5 |88.3 124

CC-3M dev
Methods CIDEr Methods
FRCNN (8] 89.2
Ultra [8] 93.7
VIiLT-CAP [30]* 83.8 UpDown [1]
VinVL [69]* 103.4 UpDown + CBS
CC-3M [9] 100.9 UpDown + ELMO + CBS
CC-12M [9] 105.4 OSCAR [35]
ViTCAP 108.6 .32 OSCAR + CBS
Table 4. Performances of ViT- VIVO [23]
CAP model on Conceptual Captions VIVO + CBS
(Google-CC 3M dev-split) [52] bench- ViTCAP
mark. We compare with the baseline XiTCAP + CBS

methods FRCNN [8], Ultra [8] and [9].

99.3 13.2|904 129 |78.1 11.9 |89.2 12.7
98.7 1331923 133 |[954 127 |93.8 13.0

+6.5 +0.4 +4.5 +0.7 +7.9 +1.2 +5.5 +0.6

The VILT-CAP* and VinVL represent Table 5. Performances of VITCAP in nocaps validation split. We compare our ViTCAP with
our reproduced results with pre-trained  previous state-of-the-art models at “in-domain”, “near-domain” and “out-of-domain”. Re-

checkpoint from [30] and [69].

we train the VITCAP on the training split, which consists
of ~3.3M image-caption pairs, and test it on the dev split.
We follow the same training protocols as previously men-
tioned and optimize the ViITCAP for 120 epochs. Follow-
ing previous works, we evaluate the performances using
the CIDEr metric and Table 4 shows the results of ViT-
CAP compared with previous captioning models. In par-
ticular, VITCAP achieves the state-of-the-art results CIDEr
108.6 scores (without the knowledge distillation), surpassing
all detector-based captioning models. CC-12M is the model
trained with 12M image-caption pairs [9]. Again, when
evaluating on nocaps dataset, ViTCAP shows promissing re-
sults across all in-domain, near-domain, and out-of-domain
splits. For example, VITCAP achieves 98.7 and 93.8 CIDEr
scores on in/out-domain splits, 6.5 and 5.5 higher than the
VIVO [23], which exploits Openlmage [33] dataset to learn
semantic concepts for captioning task. The great generaliza-
tion ability of VITCAP can be partly ascribed to its ability
to recognize expansive semantic concepts extracted from the
open-form captions. Compared to predicting the pre-defined
tags as in the detector, the usage of caption extracted con-
cepts largely expands the concept vocabulary. This provides
the VITCAP with robust and broad concept tokens, which is
essential for the images with novel concepts.

Qualitative Examples. We show visualization examples
of the attention maps from ViTCAP in Figure 3 together
with their generated concepts&captions. Interestingly, we
observe obvious correlations between the attended regions
across different layers and predicted concepts. For example,
“dog” is notably highlighted according to the mean-averaged
attention maps, yet the * ” is more attended in shallower
transformer blocks. We conjecture that instead of relying
on an object detector to glean object locations, training the
detector-free VL model properly via image-text supervisions
might potentially lead to a strong grounding model.

sults are reported with constrained beam search (CBS) decoding [2].

Lay. 1

Pred. Concept:[dog, bench, man, white, park, leash ..]
Pred. Caption: A man sitting on the bench with a dog in park.

Pr:ed. C;mcepf: [wine, motorcycle, stand, bar, shelf, blue ..]
Pred. Caption: A motorcycle parked in front of a bunch of bottles of wine.

Figure 3. Visualization of the attention maps from ViTCAP and its
produced concepts&captions. ” refers to the concepts appear
in captions. Best viewed in color.

5. Conclusion

In this paper, we propose the VITCAP, a detector-free
image captioning model in the full transformer architec-
ture fashion. Compared with existing captioning models,
VIiTCAP can be trained in an end-to-end fashion without
intermediate regional operations using grid representations.
Our proposed Concept Token Network learns broad seman-
tic concepts and encodes them as the concept tokens that
largely benefit the captioning task on a series of challeng-
ing captioning benchmarks. Extensive experiments indicate
that VITCAP achieves competing performances, approach-
ing most detector-based models. We anticipate that VITCAP
will lead to more future works in building efficient Vision
and Language models.
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