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Abstract—It is not merely an aggregation of static entities
that a video clip carries, but also a variety of interactions and
relations among these entities. Challenges still remain for a
video captioning system to generate descriptions focusing on
the prominent interest and aligning with the latent aspects
beyond observations. In this work, we present a Commonsense
knowledge Anchored Video cAptioNing(dubbed as CAVAN)
approach. CAVAN exploits inferential commonsense knowledge to
assist the training of video captioning model with a novel paradigm
for sentence-level semantic alignment. Specifically, we acquire
commonsense knowledge complementing per training caption by
querying a generic knowledge atlas (ATOMIC [1]), and form
the commonsense-caption entailment corpus. A BERT [2] based
language entailment model trained from this corpus then serves as
a commonsense discriminator for the training of video captioning
model, and penalizes the model from generating semantically
misaligned captions. Experimental results with ablations on MSR-
VTT [3], V2C [4] and VATEX [5] datasets validate the effectiveness
of CAVAN and reveal that the use of commonsense knowledge
benefits video caption generation.

I. INTRODUCTION

Human beings with extensive life experiences could describe
observed daily events into narrative that semantically aligns
with their contextual knowledge. For instance, given the video
clips shown in Figure 1, one can identify the agent and the
patient are “people” and “food” respectively by leveraging
recognition, then supplement them with latent relations carrying
interactions between the agent and the patient with multiple
possibilities. The description could be as succinct as “people
are eating food”, or a verbose one, “people are talking
about food while eating”. Beyond straightforwardly narrating
objects/entities of interest, an accumulation of good sense and
sound judgement in practical matters connects them with latent
relations, thus forming descriptions carrying prominent entities
as well as suggesting probable causes, effects and attributes.

Motivated by the example in Figure 1, we argue that a
video captioning system benefits from aligning descriptions
semantically w.r.t. an inferable context (causes, effects and
attributes). Advancements made in image/video sequence-to-
sequence translation domain reveal the benefits of adopting the
evaluation metrics (e.g., CIDEr [6], BLEU [7] and SPICE [8]
scores) as additional loss, together with a traditional word-level
cross-entropy loss. More recently, reinforcement-based text
generations, e.g., policy gradient [9], [10], actor-critic [11], [12]
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Fig. 1. We present CAVAN to address the semantic alignment for video
captioning using commonsense alignment (CMS-A). Unlike traditional
generation methods where the generations are only supervised
by ground-truth annotations using token-level or phrase-matching
metrics (e.g., Cross-Entropy, CIDEr and BLEU). CMS-A leverages
commonsense knowledge as anchors to constrain the overall semantics
of the generated captions from deviating the current latent context.

formulate reward functions incorporating the phrase-matching
metrics. But a brutal integration of the phrase-level evaluation
metric based reward function could trigger severe overall
semantic misalignment. Figure 1 shows such a failure case,
where comparing to the ground-truth annotation: “person is
introducing the food”, a caption like “person eating while
talking” achieves a higher SPICE score than its semantic
inverse: “person talking while eating”, even though the latter
one is semantically more correct according to the ground-
truth. In essence, the captioning performance training and
evaluation done by the aforementioned metrics are unanimously
constricted by the ground-truth annotations from the datasets,
neglecting the latent and probably inferable context that is
not explicitly expressed by caption annotations, i.e., cause and
effect, entity and its attributes at sentence-level.

In this work, we propose a novel model supervised by a
sentence-level metric ensuring semantic alignment exploiting
commonsense knowledge. Specifically, we first design a fusion
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module that reasons over multi-model visual features and
dynamically aggregates them to obtain high-level semantic
feature, which is conducive to infer the otherwise neglected
sentence-level context. We then leverage a commonsense
knowledge atlas to query semantic anchors carrying the
inferable context, and adopt a sentence level entailment score
comparing generated caption with the retrieved anchors as a
semantic consistency measure. We present the Commonsense
knowledge Anchored Video cAptioNing (dubbed as CAVAN),
where the commonsense entailment loss is introduced for
the first time to supplement the existing caption generation
supervisions. We compile a complementary set of commonsense
knowledge by querying caption annotations from the ATOMIC
dataset [1] and a human curate commonsense annotations of
captions from the V2C dataset [4], then retrieving a set of
probable causes, effects and attributes. With the augmented
and paired (caption, commonsense knowledge) data, we train a
generic natural language entailment model based on BERT [2]
to serve as a discriminator during training by evaluating the
entailment score of each generated caption (see Figure 1).

Empirically, we test and observe that our CAVAN model
makes significant improvements over the baseline models and
achieves competitive results with previous state-of-the-art video
captioning methods. We summarize our contributions as:

• CAVAN is the first to leverage the complementary com-
monsense knowledge thus impose additional contextual
constraints for video captioning training, and ultimately
generates captions with better aligned sentence-level
semantic.

• Our ablations on CAVAN comprehensively analyze the
effect of incorporating different types of knowledge and
modules, providing guiding insights for future research.

II. RELATED WORK

Traditional captioning systems [13], [14], [15], [16] are
trained typically with a teacher-forcing [17] manner and
evaluated using discrete and non-differential metrics. However,
such training schema suffers from exposure bias [18] and
the inconsistency between the optimizing function and evalu-
ation metrics. Recent work [19], [11], [20], [21] introduce
Reinforcement-Learning (RL) techniques based on policy
gradient to tackle these issues. Specifically, Ranzato et al. [18]
adopt REINFORCE algorithm to sequence training with RNNs
via treating the task metrics as optimization objectives. Later,
Rennie et al. [22] directly optimize CIDEr metric with a self-
critical sequence training (SCST) approach that harmonizes the
model with respect to its test-time inference procedure. More
relevant efforts are further discussed in the Appendix.

III. COMMONSENSE KNOWLEDGE ANCHORED VIDEO
CAPTIONING

CAVAN’s backbone is an encoder-decoder architecture based
on the transformer self-attention modules [23]. A two-branch
encoder takes the input of global and object features respec-
tively, and produces attentively aggregated visual representa-
tions. Notably, we develop a novel module that dynamically

reasons over attended features and alternatively fusing them
based on the high-level interactions across modalities. A
transformer decoder then generates the caption taking the
visual representations from the specifically designed fusion
module, and is supervised by both traditional video captioning
losses (i.e., smoothed cross-entropy) and the newly introduced
commonsense entailment reinforcement loss (see Figure 2).

A. Video Encoder

Given a sequence of video frames, a couple pre-trained
networks are employed to extract both global (key frames or
video snippets) and entity-level features (local regional features
for objects) to form a holistic representations. Specifically, we
obtain the per-frame features from pre-trained 2D recognition
network by sampling one key frame from every 32 frames,
V f = [vf1 . . . vfT ], with T denotes the temporal length of
videos. For motion signals, we encode every non-overlapping
32 frames by a 3D activity recognition network [24], and yields
V m = [vm1 . . . vmT ]. Following recent work in video captioning
[25], [26], we extract features of the class-agnostic object
proposals sampled from keyframes of the input video. Then
typical candidates proposals are obtained by clustering on the
sampled candidates proposals and represented by the cluster
centers. Let V o = [vo1 . . . v

o
N ] denote the features of typical

object proposals, where N is the number of object proposals.
We directly adopt the transformer-based visual encoder for

encoding global and object features separately. Specifically, the
object branch passes the features of candidate proposals V o

and generates enhanced local representations L = [l1 . . . lN ] ∈
RN×d with interaction message between objects. The global
branch takes the concatenation of appearance features V f and
motion features V m as inputs to produce a global embedding
G = [g1 . . . gT ] ∈ RT×d of a temporal sequence, which
provides additional global context that may be missing in
the object branch.

B. Dynamic Fusion Module

Effective video captioning calls for a robust overall video
encoding. It is critical for such encoding to incorporate
representations with higher-order interactions. Existing research
either apply simple concatenation [27], or a polynomial feature
fusion [28]. Apart from that, Dynamic Memory Networks
(DMN) [29] has been applied in tasks across domains that
require higher-order interactions among features, and is shown
to be effective in VQA [30].

In CAVAN, we propose the Dynamic Fusion Module
which builds on an attention module and a memory update
module (dubbed as DFM). The attention module is responsible
for producing global contextual representations from global
features with relevance inferred by typical object features and
previous memory status. Then the memory update module
renews its internal episodic memory, based on the global
contextual message, to retrieve new global context that were
considered irrelevant during previous iteration.

Formally, given the refined global features G = [g1 . . . gN ]
and object representations L = [l1 . . . lN ] from visual encoders,

4096

Authorized licensed use limited to: ASU Library. Downloaded on July 29,2023 at 21:51:31 UTC from IEEE Xplore.  Restrictions apply. 



Object Branch

Global Branch

Attention
Module

Memory 
Updating
Module

DFM

CM
S D

isc
rim

ina
to

r

GT: Two men are driving along the 
countryside and enjoying the scenery.

CE
 Lo

ss

A man is driving along 
the countryside.

De
co

de
r

CM
Sl

os
s

Sampling

KG: to have a good time

Fig. 2. Illustration of our proposed framework. CAVAN consists of transformer-based encoders and decoders, a dynamic fusion module, and a commonsense
discriminator. Our model adopts a two-branch structure that generates attended object and global representations respectively. A fusion module is then adopted
to fuse the outputs of two branches for decoding. The probability distribution is under the supervision of smooth cross-entropy loss. Meanwhile, a commonsense
entailment loss is applied to guide the semantic alignment between current decoding captions and commonsense knowledge queried from ATOMIC [1].

an episodic memory M = [m1 . . .mN ] is initialized as M (0) =
L and iteratively refined by an attention mechanism until the
final step I is reached.

Attention Component: For the nth object proposal, the
attention is implemented by allowing the interaction between
object feature vector ln ∈ L and both the global features
G = [g1 . . . gN ] and previous memory states m(i−1)

n ∈ M (i−1).
The context c(i)n is obtained by applying soft attention procedure
as:

z(i)n =
[
G⊙ ln ; G⊙m(i−1)

n ; |G− ln| ;

|G−m(i−1)
n |

]
;

α(i) = SOFTMAX(W2(TANH(W1z
(i)
n + b1)) + b2);

c(i)n =
T∑

t=1

α
(i)
t · gt,

(1)

where ⊙ denotes element-wise multiplication; | · | is the
the element-wise absolute value; [; ] represents concatenation
operation. α(i)

t is the tth element of α(i) which denotes the
normalized attention weight for gt at ith iteration. W1,W2, b1
and b2 are the parameters in the linear operation.

Memory Updating Component: The memory vector is
updated as

m(i)
n = RELU(W3[m

(t−1)
n ; c(i)n ; ln] + b3), (2)

where W3, b3 are the parameters for the linear layer. mi
n is the

memory vector for nth object proposal at the tth iteration.

By the Ith iteration, the memory vector m(I)
n that memorizes

the most relevant context from global features for nth object
proposal, is fused with the object vector ln to generate globally
contextualized object representations l̃n for decoding.

l̃n = RELU(W4[ln;m
(I)
n ] + b4), (3)

Ground Truth Caption: A woman is practicing some movements in dancing room.

Attributes:

- skilled;

- talented;

- free-spirit;

- be better dancer;

- learn to dance;

- perform on stage;

- know how to dance

- feel ready

- feel happy & confident

Intentions: Effects:

ATOMIC

query

Fig. 3. Inferential commonsense knowledge retrieved from ATOMIC
includes several types, e.g., intentions, effects and attributes of the
agents.

where W4, b4 are the linear parameters.

C. Language Decoder

We design the language decoder by compiling a stack of
transformer attention blocks using self-attention module. During
training, it takes as input of the encoded word embedding and
their corresponding positional encoding [23] and attend to
visual representations from the fusion module. The training
criterion is based on cross-entropy loss LCE :

LCE = −
T∑

t=1

ϕ(w∗
t )

′
· log(P (wt)), (4)

where T denotes the total training step of the ground-truth
captions; P(wt) represents the probability distribution across
the vocabulary at time t; ϕ(w∗

t ) is the one-hot vector of ground-
truth word at time t.

D. Commonsense Entailment Loss

Supervising captioning model learning with existing short
textual annotations largely limits training efficacy. The semantic
carried by caption only is often with weak expressive power
without latent inferable context. Instead, we leverage inferable
commonsense knowledge to complement each video caption
and treat them as additional constrains to regularize the
generating process. Figure 3 depicts an example of three types
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of complementing commonsense knowledge (intention, effect,
and attribute) paired with the ground-truth caption. In practice,
we acquire the commonsense knowledge description k, w.r.t. the
video caption by either retrieving from knowledge base (MSR-
VTT + ATOMIC) or directly from human annotations (V2C).
We discuss the commonsense knowledge retrieval procedure
in Section IV-A.

Given a textual sequence ws = {ws
1 . . . w

s
T } sampled

from language decoder, we regularize the generation by an
entailment reward leveraging the commonsense description k.
Intuitively, we encourage the model to caption by entailing
the commonsense knowledge. To enable optimizing over non-
differentiable metrics, previous efforts adopt the policy gradient
approach [18], [22] and treat the task as a reinforcement
learning one, with the testing metrics as the reward function.
Particularly, Pasunuru et al. [31] implement an entailment-
enhanced score from a pre-trained model as the reward.
Formally, with the policy gradient strategy, model like an
active agent which generates words (as action) and the learning
process is supervised by minimizing the negative expected
reward function:

L(θ) = −Ews∼pθ
[r(ws)], (5)

where pθ is the policy and θ is the model parameters.
CAVAN exploits commonsense-caption entailment score

as a reward for training. We adopt a BERT model as the
commonsense (CMS) discriminator Dcms, which returns the
entailment score for the caption and commonsense description
pair. Following [4], we pre-train the BERT model on ATOMIC
dataset using the next sentence prediction task, whose input is
an event description sentence and its associated commonsense
description. Then, this BERT model is frozen and applied to
our entailment score computation as offline. Further details for
BERT pre-training are given in Section IV-B. Dcms computes
a probability (as SE score) for whether the sampled caption
(ws) entails the commonsense anchor:

rcms(w
s) = Dcms(w

s, k). (6)

Here, the commonsense-caption entailment score essentially
encodes whether the generated caption semantically aligns
with the caption w.r.t. the sentence-level meaning. Applying
rcms(w

s) to e.q. (5) yields a commonsense entailment loss
Lcms. The gradient is estimated as follows:

∇θLcms(θ) = −Ews∼pθ
[(rcms(w

s)− rcms(ŵ))

∇θ log pθ(w
s)],

(7)

where ŵ is the generated sequence obtained by the current
model using greedy decoding. The corresponding entailment
reward rcms(ŵ) is seen as a baseline to reduce the variance of
the gradient estimate without changing the expected gradient.

For our experiments, we also adopt the commonsense-caption
entailment score as an extra evaluating metric on the testing
split. Note that, the queried commonsense knowledge and
Dcms are only needed to form supervision signal Lcms, but
not required during inference.

E. Training

Putting all the loss terms together for an end-to-end training
yields an overall optimization target:

L = LCE + β · Lcms, (8)

where β is a trade-off hyper-parameter weighting each loss term.
During the training process, we freeze the CMS discriminator
and compute the rrms(w

s) with an inference mode.

IV. EXPERIMENTS

We conduct experiments and ablation studies on two bench-
marks, MSR-VTT [3] and V2C [4] dataset. We evaluate the per-
formance on CAVAN with standard caption evaluation metrics:
BLEU@4 [7], METEOR [32], ROUGE-L [33], CIDEr [6], and
our newly proposed commonsense-caption entailment score
(SE) (see Section III-D). We compare CAVAN with other
state-of-the-art methods with systematic ablations and different
experimental settings, and exhibit a few captioning examples
by CAVAN (see Figure 4). To further validate the effectiveness
of CAVAN, we conduct experiments on VATEX [5] dataset,
and observe similar performance improvements on it. Detailed
conclusions and results can be found in Appendix.

A. Dataset and Augmentation

MSR-VTT as a large-scale video description dataset, con-
tains 10,000 video clip with 200,000 clip-sentence pairs in
total. Each video is annotated with 20 English descriptions.
Following the official split, we use 6,513 videos for training,
457 videos for validation and 2,990 videos for testing.

We augment each caption in MSR-VTT dataset with 3
types of complementary commonsense descriptions (inten-
tion/attribute/effect) retrieved from ATOMIC dataset as com-
monsense anchors for training. More concretely, ATOMIC is
an atlas of everyday commonsense knowledge. It consists of
880k triplets of annotations that contain causes and effects
of human activities/events as an if-then relations. We then
extract the most related events from ATOMIC for each ground-
truth caption by encoding the key nouns and verbs of captions
and events into word vectors [40] and computing their cosine
similarities. Following [4], we then select the top-3 most
plausible commonsense descriptions for each type of knowledge
associated with the events using the BERT discriminator
to produce the ranking score. As the queried knowledge
from ATOMIC unavoidably comes with noises and incorrect
annotations, we further move to V2C dataset with more reliable
commonsense knowledge for CAVAN.

V2C is a video description dataset adapted from a subset
of MSR-VTT [3]. It contains 9,725 videos, 121,651 captions
with each surrounded by 3 types of commonsense descriptions,
i.e., intention, attribute and effect. We use the standard splits
with 6,819 videos for training, and 2,906 videos for testing.

B. Implement Details

To obtain global visual representations, We use I3D [24]
network pre-trained on Kinetics dataset [41] for motion
feature extraction, and InceptionResNetV2 [42] pretrained
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Method Motion Appearence Object External Knowledge B@4 M R C SE
RecNet [34] - Inception-V4 - - 39.1 26.6 59.3 42.7 -
PickNet [35] ResNet152 - - 41.3 27.7 59.8 44.1 -
MARN [36] C3D ResNet-101 Faster-RCNN - 40.4 28.1 60.7 47.1 -

OA-BTG [37] - ResNet-200 MASK-RCNN - 41.4 28.2 - 46.9 -
GRU-EVE [38] C3D InceptionResnetV2 YOLO - 38.3 28.4 60.7 48.1 -

MGSA [39] C3D InceptionResnetV2 Faster-RCNN - 42.4 27.6 - 47.5 -
ORG-TRL [25] C3D InceptionResnetV2 Faster-RCNN TBC&WiKi 43.6 28.8 62.1 50.9 -
STG-KD [26] I3D ResNet-100 Faster-RCNN - 40.5 28.3 60.9 47.1
Baseline(ours) I3D InceptionResNetV2 - - 40.9 27.6 60.5 47.3 47.8

CAVAN I3D InceptionResNetV2 Faster-RCNN ATOMIC 43.0 28.8 61.6 51.0 49.2
TABLE I

WE COMPARE CAVAN WITH PREVIOUS MODELS ON MSR-VTT PUBLIC TESTING SPLIT. “EXTERNAL K.” REPRESENTS THE SOURCE OF
EXTERNAL KNOWLEDGE. “SE” DENOTES THE AVERAGE ENTAILMENT SCORES OF GENERATED CAPTIONS WITH THEIR CORRESPONDED
COMMONSENSE KNOWLEDGE USING A GENERIC COMMONSENSE DISCRIMINATOR MODEL (BERT) PRE-TRAINED ON ATOMIC DATASET.

Method K. Type B@4 M R C SE
V2C [4] - 34.2 - - - -
V2C [4] INT. 34.6 - - - -

CAVAN
- 38.0 26.6 59.1 57.3 48.3

INT. 38.6 26.8 59.4 58.7 49.6
TABLE II

VIDEO CAPTIONING RESULTS ON V2C TESTING SPLIT USING
CAVAN AND INTENTION-TYPE OF KNOWLEDGE.

on ImageNet [43] for appearance features of frames. As for
object features, we utilize a ResNet152 backbone based Faster-
RCNN [44] pretrained on VisualGenome [45]. For caption
pre-processing, all captions are truncated to a maximum of 24
words. We replace all words with less than 2 word counts into
⟨UNK⟩ token in the vocabulary.

Our BERT based CMS discriminator consists of 12 trans-
former blocks, 12 attention heads, and is with 768 hidden
dimensions. For the entailment pre-training, we choose the
event sentence and its corresponded commonsense description
as a positive pair, and another random commonsense sentence
from the ATOMIC as a negative pair. In total, we have 230,624
event-commonsense pairs constructed, with 70% for training,
and 30% for testing. Our discriminator achieves 85% accuracy
on the testing split.

We use 3 transformer blocks in the visual encoders and
decoders, with 768 hidden dimensions and 8 attention heads.
We find optimum result by setting the weighting loss term
β=0.5. We use the warm-up strategy for the first 5 epochs. We
set the batch size as 32 and train the model for 50 epochs.
The reinforcement loss Lcms is not applied until 15 epochs.
During testing, we use greedy decoding to generate sentences.

C. Experimental Results

We show performances of CAVAN in Table I and compare
them with state-of-the-art methods. To translate content-rich
videos into human language, current methods not only extract
multi-modal visual features i.e.motion, appearance and object
features, but also bridge the semantic gap to generate accurate
captions by introducing external knowledge. For comparison,
we list the feature extractors and the sources of external
knowledge in Table I.

CAVAN outperforms all of the earlier methods on four
metrics except ORG-TRL. We summarize the following reasons
for this: (1) ORG-TRL carefully designs a relation graph to
encode the cross-object interactions later aggregated with global
features via a temporal-spatial attention module. Since the main
focus lies on the novel commonsense supervision, CAVAN
puts less effort on visual encoding. (2) Different video pre-
processing and feature extraction methods make it harder to get
a completely fair comparison and have a great impact on the
results: the baseline models only using appearance and motion
features for CAVAN and ORG-TRL achieve 40.9 and 41.9 on
BLEU@4 metric respectively. Despite the performance gap for
baseline results, CAVAN still gets as competitive improvement
as ORG-TRL in comparison with their own baseline models.

It is worth noting that CAVAN gets outstanding result on
CIDEr metric because semantically aligning with commonsense
knowledge encourages accurate and informative details to be
involved in the output descriptions, which coincides with the
mechanism of CIDEr. In addition, we propose to evaluate the
generated captions using the BERT produced semantic score on
testing split, which heuristically measures the caption quality
and its semantic alignment to commonsense knowledge.

We report video captioning results on V2C dataset in Table II
using CAVAN. Comparing with V2C which also uses intention-
type knowledge, CAVAN shows a great improvement on B@4
score: 4.0 higher on B@4 metric. The consistent improvements
on both MSR-VTT and V2C datasets corroborate that CAVAN
is not dataset specific, it is applicable for video captioning task
as a generic and novel training schema.

D. Effectiveness of Components

To demonstrate the effectiveness of the proposed DFM
module and commonsense entailment loss, we design control
experiments. First, baseline model applies appearance and
motion features with only global branch. After fusing the
object-level features with global representations using DFM
module (see baseline+DFM), performances of our model
are dramatically improved, which clearly indicates that the
enhanced object-level features aggregated by DFM module
help boost the results. Also, we combine the commonsense
entailment loss to the baselines(see baseline+CMS) to verify the
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Fig. 4. Caption generation examples using CAVAN on V2C dataset with intention-type knowledge (KG). GT represents the ground-truth
captions. w/o CMS denotes the model (baseline+DFM) without CMS constrains.

Model B@4 M R C SE
Baseline 40.9 27.6 60.5 47.3 47.8

Baseline + DFM 42.5 28.6 61.2 49.6 48.2
Baseline + CMS 41.5 27.9 60.9 48.4 48.8

Baseline + DFM + CMS 43.0 28.8 61.6 51.0 49.2
TABLE III

EFFECT OF EACH COMPONENT ON MSR-VTT DATASET.

K. Type B@4 M R C SE
- 38.0 26.6 59.1 57.3 48.3

ATT. 38.3 26.7 59.3 57.9 48.9
EFF. 38.4 26.8 59.4 58.3 49.4
INT. 38.6 26.8 59.4 58.7 49.6

TABLE IV
COMPARISON OF PERFORMANCES USING DIFFERENT TYPES OF

COMMONSENSE KNOWLEDGE IN CAVAN ON V2C TESTING SPLIT.

effectiveness of Lcms. Specifically, when equipped with Lcms,
CIDEr of the baseline is obviously increased from 47.3 to 48.4.
Similar trend can be observed on all other metrics, verifying
that the use of commonsense anchor brings comprehensive
benefits to captioning tasks. We notice that both object-level
feature and commonsense knowledge make improvements on
SE score. This is because object-level features provide more
semantic information and commonsense knowledge put more
semantic constrains for the generation. The performance of
CAVAN is shown at the last row of Table III where both DFM
and commonsense entailment loss are utilized.

E. Effects of Types of Knowledge

We investigate the benefit of using different types of
knowledge annotated in V2C. The results are presented in
Table IV. We can observe that each type of knowledge all can
produce positive impact on the caption generation. Among them,
using intention-type knowledge gives the best performance
for CAVAN. This observation also aligns with the conclusion
in [4], where the intention-type descriptions lead best generation
scores. We analyze that this relates to the annotating bias in
ATOMIC dataset, where intentions of human activities are
more likely to be annotated correctly.

F. Human Evaluation

Human evaluation is critical to verify the quality of queried
commonsense knowledge and the performance of CAVAN. We

conduct human evaluations by crowdsourcing ratings from
workers on Amazon Mechanical Turk (AMT). To evaluate the
quality of retrieved commonsense-knowledge, the workers are
provided with the ground-truth caption and retrieved knowledge
and asked to rate whether the retrieved knowledge entails the
caption from a scale of 1-5 (the higher the better, 1 denotes
irrelevant and 3 means valid.). We get an average score 3.6, 3.3,
3.1 for retrieved intention, attribute and effect respectively on
MSR-VTT, this verifies the extracted commonsense-knowledge
from ATOMIC is highly relevant to the video content. To
validate the performance of CAVAN, given the videos and
generations from CAVAN, the AMTurkers are required to
watch and rate how well the generated caption describes the
video content from 1-5. The skilled workers report that CAVAN
achieves 3.65 on average versus 3.50 from SOTA methods.

V. DISCUSSIONS OF CMS IN GENERATIONS

Figure 4 shows examples of generations from CAVAN
comparing with the baseline model without CMS constrain. As
illustrated in the left example, the model without CMS constrain
generates amusing descriptions, whose keywords marked as
red are totally misaligned with the ones in ground-truth caption.
CAVAN however has the capacity to rectify wrong semantics
and hit the correct keywords marked in blue. Moreover, even
when both models generate semantically correct descriptions,
the probabilities of keywords marked in orange are improved
after applying the CMS constrain (right example in Figure 4).

VI. CONCLUSION

We present CAVAN, a novel training schema for captioning
leveraging commonsense knowledge as anchors during model
learning. CAVAN is among the first which measures sentence-
level semantics using inferential-knowledge, and incorporate it
over an end-to-end training as a supervision signal. We conduct
extensive experiments to verify the effectiveness of CAVAN
on MSR-VTT and V2C dataset, where CAVAN achieves new
state-of-the-art results respectively. The observed success of
CAVAN confirms the exciting research avenue by adopting
commonsense knowledge for high level cognitive vision tasks,
including but not limited to image/video captioning, Visual
Question Answering, visual navigation, etc.
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