2023 Design, Automation & Test in Europe Conference (DATE 2023)

Adversarial Attack on Hyperdimensional
Computing-based NLP Applications

Sizhe Zhang*, Zhao Wang?, Xun Jiao*
*Villanova University, *University of Chicago

Abstract—The security and robustness of machine learning
algorithms have become increasingly important as they are used
in critical applications such as natural language processing (NLP),
e.g., text-based spam detection. Recently, the emerging brain-
inspired hyperdimensional computing (HDC), compared to deep
learning methods, has shown advantages such as compact model
size, energy efficiency, and capability of few-shot learning in
various NLP applications. While HDC has been demonstrated
to be vulnerable to adversarial attacks in image and audio input,
there is currently very limited study on its adversarial security to
NLP tasks, which is arguable one of the most suitable applications
for HDC. In this paper, we present a novel study on the adversarial
attack of HDC-based NLP applications. By leveraging the unique
properties in HDC, the similarity-based inference, we propose
similarity-guided approaches to automatically generate adversar-
ial text samples for HDC. Our approach is able to achieve up to
89% attack success rate. More importantly, by comparing with
unguided brute-force approach, similarity-guided attack achieves
a speedup of 2.4X in generating adversarial samples. Our work
opens up new directions and challenges for future adversarially-
robust HDC model design and optimization.

I. INTRODUCTION

Natural language processing (NLP) aims to process and
analyze large amounts of natural language data, e.g., text,
to understand and extract contextual insights and nuances
in the document. Modern NLP is largely developed using
the emerging machine learning (ML) methods such as deep
neural networks, which has shown superior performance in
variety of fields within NLP such as spam detection [5],
sentiment analysis [12], and question answering [9]. Popular
universal language models include Word2Vec [17], ELMo [21],
Glove [20] and BERT [6], which have been developed to extract
word semantics into vectors and combined/included the neural
network model like LSTM [11] and Transformer [24].

Howeyver, recent studies have shown that ML-based NLP
applications are vulnerable to adversarial attacks [2], [8], which
can become a notable security threat to the security-critical
applications such as spam detection. In adversarial attack,
the imperceptible perturbations on the input can lead to the
wrongfully-predicted results. The adversarial attack problem
first raises awareness in the image classification field [7], and
then was observed in NLP domain as well. For example, a
single character change may result in a change in the meaning
of the word [8], as well as changes to the word itself may result
in a change in its grammatical meaning [2].

Recently, an emerging brain-inspired method called hyperdi-
mensional computing (HDC) has shown promising accuracy
and efficiency in various NLP tasks [15], [22], [23]. This
“non-von Neumann” computing scheme aims to imitate human

brain functions to process information in high-dimensional
space. Compared with DNNs, HDC shows advantages such as
compact model size, energy efficiency, and capability of few-
shot learning. Nevertheless, HDC also faces security challenges
like DNNs, e.g., adversarial samples can fool HDC to make
wrong predictions [16]. To the best of our knowledge, there
is currently no study to automate the generation of adversarial
attacks for HDC-based NLP applications. Thus, the paper aims
to provide a novel effort in this direction and raise awareness
of the community to jointly design adversarially-robust HDC-
based NLP applications.
Our contributions are summarized as follows:

o We present a novel effort in automatically generating
adversarial samples for HDC-based NLP applications.
Specifically, we develop a similarity-guided approach to
automatically replace words with their synonyms, which
preserves the original semantic meaning of the text but
leads to incorrect classifications.

o To develop the similarity-guided approach, we propose
two guide scores, cosine similarity and integrated simi-
larity which synthesizes four different similarity metrics
in HDC models.

o We perform adversarial attacks on spam detection bench-
marks and compare their advantages and disadvantages
based on a variety of datasets. Our experimental result
shows that, our guided approach is able to achieve up
to 89.49% attack success rate. Besides that, our guided
approach is able to generate adversarial samples 2.4X
faster than the unguided approach. By using the integrated
similarity as the guide score, we are able to further
generate 30.4% more adversarial samples and 39.4% faster
speed than the cosine similarity approach.

II. RELATED WORK

The generation of adversarial samples for NLP applications
has received considerable attention in recent years. Unlike
the adversarial image sample, small perturbations, such as a
rewording, may significantly alter the semantic meaning of the
original sentence. Due to this, attacking the model for NLP
tasks is more challenging. Researchers have explored different
levels of perturbation in order to generate NLP adversarial
samples. As an example, altering characters from plain text
can generate adversarial samples [8]. A small spelling mistake,
character replacement, or other minor changes in a word are
considered typos and will not affect the original semantic mean-
ing. On the word level, as a result of the fact that substituting

978-3-9819263-7-8/DATE23/© 2023 EDAA

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 22:41:35 UTC from IEEE Xplore. Restrictions apply.

synonyms for words is unnoticeable and less risky in this
domain, word-level perturbation is more common [2], [14].
Rephrasing the whole sentence is also feasible but challenging
to implement [13].

While HDC is an emerging learning method, many re-
searchers have begun to study its vulnerability and security.
In the image classification domain, a genetic algorithm was
used to generate adversarial samples for handwritten digits
with a 78% attack success rate [25]. In voice recognition, with
a differential evolution algorithm, researchers can achieve an
85.7% success rate when they launch non-target attacks against
HDC [4]. Recently, a framework called HDTest uses differential
fuzz testing methods to systematically examine the robustness
of HDC model thoroughly [16].

Due to the computational differences between DNNs and
HDCs, existing adversarial attack techniques of DNNs cannot
be applied directly to HDC models due to the indifferentiable
architecture of HDC [16]. Furthermore, to the best of our
knowledge, there is currently no study on automatically gener-
ating adversarial attacks for HDC-based NLP tasks. This paper
presents a novel study in this domain.

III. BACKGROUND

In this section, we present the background of applying HDC
methods to NLP tasks. First, we introduce the fundamental
elements and operations of HDC. Then, we describe several
stages of applying HDC in NLP tasks, including encoding, one-
pass training, inference, and retraining.

A. HDC basic element and operations

The hypervector(HV) is the most fundamental component of
HDC models. Training and inference rely on high dimensional
vectors as the basic dataflow element. In the HDC model,
HVs need to be in a fixed dimension. Additionally, the HDC
model is dominated by HV’s element-wised operations. Com-
mon operations in the HDC model are element-wise addition,
multiplication, and HV permutation. The detail is shown in
Eq. 1.

+ﬁy = <h961 +hy1ahzz +hy2v"'ahfcn +hyn,>
¥ Hy = (hay % By hay % By oo he, % hy) (1
Pl(ﬁ) = <hn7h17h27"~»hn—1>

8

B. Encoding

Among the components of HDC, encoding is the most
essential process. It is necessary to encode both training and
testing samples into HVs before they can be used. Different
encodings have been investigated for various tasks. In HDC
models for NLP, N-gram encoding is one of the more popular
encoding methods [15], [22], [23]. At the start of the encoding,
we first randomly generated 37 orthogonal bipolar-1,1 HVs that
would serve as the base HVs(item memory) for all characters.
These 37 HVs represent a total of 26 alphabetic characters, 10
numbers, and all other signs(including space). Each character
will be assigned to their base HVs. The next step of encoding
is to calculate each block of N consecutive letters.

Tri-gram

EM{H VSﬂlllmple ‘
p?HV, }+p HV |+ HV |=H Vb_'l_ockl J
p*HV; +p'HVc | +HV) = [H Vb_'l_otkz J

p? \:1‘17Cj\+p1{HVp +HVE = HVpiocks

Fig. 1. HDC N-gram Encoding

As an example, consider the case where we compute a tri-
gram encoding for the sentence with the character “ABCDE”.
At the beginning, “ABC”,“BCD”, and “CDE”’s block HV
needs to be computed. To calculate the block HV of “ABC”,
we first select each character’s base HV. Next, we perform
HV permutation on these base HVs based on their positions
in the block. Last, we add them together to generate the
HV for the first block. This process can be summarized as
Hb;ock = p? (EA) * pt (HjB) * Iifc. By redoing this process for
each three characters nearby, we are able to get their block
HVs. Last, we add them together to produce the sample HV.
The sample HV is the encoded HV for the whole sentence
which will be used for training and inference. A summary of
this process can be found in Fig. 1.

C. One-pass Training

In the following steps, we encode all training samples into
HDC, followed by HDC one-pass training. Every class will be
allocated an empty class HV and stored in associative memory.
A subsequent step is to perform element-wise additions of
the sample HVs of training samples and add them up to the
corresponding class HVs. After one-pass training, HDC model
is able to get an acceptable level of accuracy.

D. Inference

HDC inference is based on calculating the similarity between
class HVs and sample. As a first step, we encode testing
sentences into sample HVs using the same encoding mechanism
and parameters as before. The next step is to calculate the
cosine similarity between each sample HV H s and all the class
HVs H_;l The highest score r indicates the most similarity
between the sample HV and the class HV, and the class HV’s
corresponding label represents the classification results.

E. Retraining

After a single pass of training, optional retraining can be
performed several times to fine-tune the HDC model if needed.
The training sample HVs will be used to perform inference
first; if the prediction is wrong, these sample HVs H_I;r will
be subtracted from the incorrectly predicted class HV sz and
added to the right class HV H_;T. By using this method, the
HDC model’s accuracy can be increased from about 70% to
around 90% with fewer than ten epochs.

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 22:41:35 UTC from IEEE Xplore. Restrictions apply.

Encoding Training _________ Cosi —~
2| Traini Training [Class |! Singf::‘:ty o Nof Guide S (o) 1
£| Training —_— i -“"Attack >~_Nol Guide | | rigina
= { L - b | q
-é Data HV .| HV | >~ Success? .- | 1_Score_) kP_eril_“zat_wi]‘— Examples

' Retraining i . " Yes

Encoding ' . .
8 : : : Similarit
£ Testing Testing : Class) Check T Encoding Adversarial Adversarial
5| Data HV L _!'I_Y_ i HV Examples Examples
£ Similarity

Check

HDC
Fig. 2. The overflow

IV. ADVERSARIAL DATA GENERATION
A. Threat Model

To begin with, we will assume that the HDC model is a
gray box for attackers. An attacker is not aware of the training
dataset, the HDC encoding method, the associative memory
value, or any other parameter. An attacker only can access,
on the output side, the cosine similarity between the encoded
samples (sample HVs) and HDC’s class HVs. This setting is
widely used in both NLP adversarial samples generation [2]
and HDC adversarial attacks [25]. The attacker’s goal is to fool
HDC in order to make the model falsely classify the samples.

B. Perturbation

The purpose of this paper is to explore word-level replace-
ment as a perturbation, which is the most popular approach
to attack NLP neural networks. We aim to replace words in
plain sentences with their synonyms. Rather than replacing
every word, we first filter all stop words from the NLTK
(Natural Language Toolkit [3]) stop words list (e.g., “is”, “the”
and “or”). In most cases, stop words do not contribute to the
semantics of a sentence, however, changing them may result
in a break in the original sentence’s grammar and a reduction
in the readability of the sentence. After removing stop words,
we explore the Glove word embedding space [20] to find the
nearest neighbors of the remaining non-stop words. Beyond
that, we apply the counter-fitting method [18] to post-process
the Glove embedding space in order to ensure that the nearest
neighbors are synonyms. Once we get the Glove embedding
space model post-processed, we select the top N (N = 10)
closest words to the original word in the embedding space as
their synonyms. It is possible that the Glove embedded space
dictionary does not cover all of the words we used in our
task which means some words cannot find their synonyms.
This set of methods of finding synonyms has been extensively
studied in the context of generating natural language adversarial
samples on neural networks [2]. In contrast to image and
signal perturbations, natural language perturbations are difficult
to evaluate and nearly impossible to achieve perfection, so we
employ mature approaches as our perturbation scheme.

C. Adversarial Generation Algorithm

To automatically generate adversarial samples, we propose
two strategies, unguided generation and guided generation. The

Generate Adversarial Examples

of proposed approaches

former strategy is based on a brute-force search without any
guidance. The latter approach is a greedy approach guided by
the similarity scores we propose. Because our task is a binary
classification, we call the plain text prediction result as the
original label. If the attack is successful, the flipped label which
we call it adversarial label. The whole HDC model and attack
overflow is shown in Fig. 2. The details are as follows.

Brute-force Algorithm We first develop a brute-force search
method to generate adversarial samples. In order to generate as
many adversarial samples as possible, it will attempt to search
for every possible word replacement combination for the plain
sentence. Specifically, we first generate and test all possible
adversarial samples which is generated by only one word
substituted on the plain sentence. If any of these adversarial
samples can not “fool” the model, we will try every possible
two-word substitution. In addition, if too many words are able
to be replaced, the number of possible combinations may be
enormous. We, therefore, set a time limit for generating each
adversarial sample. If it finds an adversarial sample that can
fool the model or reaches the process time limit, it will stop
and try to generate an adversarial sample based on the next
plain sentence. Besides that, if the number of word changes
meet our max limit(n), it will give up this try and attempt the
next one. This process is explained in Algorithm 1.

Algorithm 1 Brute-force
for y=1,...,5 in x4y do
if y is not in stop words list then
Aly] < find synonym(y, N)
for i =1,2..n do
for C in combination(i,Xorig) do
for CC in Cartesian product(i,Xqq,) do
Xadv = perturb(Xorig, A[C][CC)
Labely,,, = test(Xqdv)
if Labely,,,! = Labely,,,, then
return X, {Attack sdccess}
i=i+1

Greedy Algorithm An alternative method for generating
adversarial samples is to utilize the output of the model as
guidance, which are cosine similarities between sample HV
and class HVs in HDC model. We develop a greedy algorithm
using cosine similarity and integrated similarity as the guid-

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 22:41:35 UTC from IEEE Xplore. Restrictions apply.

ance scores((7). In general, a higher score indicates that the
adversarial samples are closer to our adversarial label class HV
hence is more promising to lead to a successful attack. First, the
algorithm generates all possible adversarial samples with only
one-word replacements. After that, we determine whether any
of these adversarial samples attack successful or not. If not, as a
result, we will select the sample with the highest score G4, as
the new sample and repeat this procedure until attack success.
However, we only replace each word in the original sentence
once. Similar to the brute-force approach, we set limits for the
number of words(n) to be replaced, and the maximum time it
takes to generate each adversarial sample. The details of the
algorithms are provided in the Algorithm 2.

Algorithm 2 Greedy Algorithm
Xadv = Xorig
fory=1,....5 in x44, do
while ij=n do
if y is not in stop words list and not replaced then
Aly] « find synonym(y, N)
Xado = perturb(Xorig, Aly])
Labelx g4y, G = test(Xaqw)
if Labely,, | = Label then
return X, {Attack success}
Gmaz +— maz(G)
if Gaz > 0 then
Ymaz = Alargmaz(G)]
Xadv = Perturb(xadva A[ymaw})
t=1+1

Xorig

D. Guidance Scores

To make the algorithm perform better, the algorithm needs
guidance from the HDC model to better replace words to attack.
As mentioned in Section IV-A, we assume the HDC model as
a grey box in this paper. The attacker will have access to the
cosine similarity between the encoded sample (sample HVs)
and the class HVs. Based on these, we propose two guidance
scores to guide our greedy algorithm.

Cosine Similarity Current HDC adversarial attacks [4], [16],
[25] generally use cosine similarity to guide their decision
making. An increase in similarity indicates that the samples are
more likely to be classified as belonging to the same class as
the adversarial samples. The difference between the adversarial
sample and the original sample similarity to the adversarial
class HV on the adversarial sample is calculated, if it is
negative, the adversarial sample is less similar to the adversarial
class, which is undesirable. When it is positive, it indicates
a more likely chance of attacking success for the adversarial
sample. Due to HDC inference results being obtained from
comparing the most similar vectors. It is a very useful and
straightforward score.

Integrated Similarity In order to guide the adversarial attack
more effectively and comprehensively, we develop an integrated
similarity as a guidance score. This score is based on four
similarities rather than two. There are four cosine similarities

between adversarial sample encoded sample HV and the ad-
versarial class HVs: C,,. (cosine similarity between adversarial
sample encoded sample HV and the adversarial label class HV),
C,, (cosine similarity between original sample encoded sample
HV and the adversarial label class HV), C,,,, (cosine similarity
between original sample encoded sample HV and the original
class HV), and Cy, (cosine similarity between adversarial
sample encoded sample HV and the original class HV). In order
to maximize the similarity between the encoded sample HV and
the adversarial class HV, as well as the minimum similarity
between the sample HV and the original label class HV, we
mixed these four similarities differences. The details of the
calculation are explained in the Eq. 2.

S = (Car - Cor) + (Cow - Caw)

@

V. EXPERIMENTAL RESULTS
A. Experiment Setup

We pre-train three HDC models for three text spam detection
datasets, SMS text [10], YouTube comments [1] and Hotel
reviews [19], using 70% of training data in each dataset. Then
for each model, we use the remaining 30% data as the base
(validation) data to generate adversarial samples. According
to the section above, we use the n-gram encoding to train
our HDC models [22], [23]. A counterfitting method [18] was
used to post-process the vectors using the GloVe embedding
space [20]. In order to minimize the disruption of original
sentences, we limited the number of word replacements (n)
to 30% of each sample across all our approaches. We test
our three unguided and guided approaches including: brute-
force search, greedy with cosine similarity, and greedy with
integrated similarity. We test the number of adversarial samples
that are generated against the generation time. As part of our
experiment, we also conducted experiments with various time
limits (5s,10s,30s) for generating each adversarial sample in
order to better understand the benefits of each method. Table 11
shows our attack success rate across different datasets and
approaches. Figure 3 illustrates the results.

B. Comparisons Between Different Approaches

Attack Success Rate The attack success rate with different
approaches across different datasets is shown in Table II. Our
first finding is that no matter what approach we use, the
attack success rate is relatively low (3%-18%) for the SMS
and Youtube datasets. However, we are able to achieve an
attack success rate of 89% for the Hotel Review dataset. This
is reasonable because it is more challenging to attack the
dataset with shorter-length sentences due to the limited word
substitutions we can make. As an example, SMS and YouTube
samples contain 18 and 20 words on average, respectively.
However, the average number of words in the hotel reviews
dataset is 170. By having more words in each sample, it is easier
to have more options for word substitutions, which will lead to
a higher attack success rate. The same phenomenon has been
observed in DNN-based NLP applications [2]. It is also possible

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 22:41:35 UTC from IEEE Xplore. Restrictions apply.

TABLE 1
EXAMPLES OF ADVERSARIAL SAMPLES FOR DIFFERENT DATASETS. MODIFIED WORDS ARE IN RED AND ORIGINAL WORDS ARE IN GREEN.

SMS Texts

Original Text Prediction = Ham. (Cosine Similarity: 0.1225)

1 the new mobile

Adversarial Text Prediction = Spam. (Cosine Similarity: 0.2499)

I enjoyed the new mobile

YouTube Comments

Original Text Prediction = Spam. (Cosine Similarity:0.2623)

Eminem is the king of Micheal Jackson is the king of pop If you also wanna go hard and wanna be the person of first class fame just
check out Authenticviews*com and be famous just within days !! yO

Adversarial Text Prediction = Ham. (Cosine Similarity:0.2644)

Eminem is the king of rapper Micheal Jackson is the king of pop If you also wanna go hard and wanna be the person of first class fame
just check out Authenticviews*com and be famous just within days !! yO

Hotel Review

Original Text Prediction = Truthful. (Cosine Similarity:0.6231)

The Sheraton Chicago Hotel and Towers is a place to stay if you a place to stay on quick notice, but it certainly does not ’exceed
expectations’ as touted on their website. Their Starpoints system is somewhat complicated and not helpful for the frequent traveler. *Chic
but not fussy’ is an overstatement. The room was clean, although the bed covering was wrinkled and the bathroom counter had water lying
on it that appeared as though it hadn’t been cleaned since the last guest. There was hand lotion and shampoo samples, but no soap sample.
The bathroom was short on two towels and it took two calls to housekeeping to get this fixed. ’Cheap’ might have been a better adjective.
Check out was simple and not much hassle. Overall, the Sheraton Chicago Hotel and Towers is fine in a pinch, but next time, I will research
hotels a little better before making a decision and reserving a room.

Adversarial Text Prediction = Deceptive. (Cosine Similarity:0.6237)

The Sheraton Chicago Hotel and Towers is a lovely place to stay if you needs a place to stay on quick notice, but it certainly does not
“exceed expectations’ as touted on their website. Their Starpoints system is somewhat complicated and not helpful for the frequent traveler.
’Chic but not fussy’ is an overstatement. The room was clean, although the bed covering was wrinkled and the bathroom counter had water
lying on it that appeared as though it hadn’t been cleaned since the last guest. There was hand lotion and shampoo samples, but no soap
sample. The bathroom was short on two towels and it took two calls to housekeeping to get this fixed. ’Cheap’ might have been a better
adjective. Check out was simple and not much hassle. Overall, the Sheraton Chicago Hotel and Towers is fine in a pinch, but next time, I

will research hotels a little better before making a decision and reserving a room.

TABLE I
ATTACK SUCCESS RATE ACROSS ALL APPROACHES AND DATASETS

Brute-force Cosine Similarity Integrated Similarity

SMS 7.27% 3.31% 4.14%
Youtube 18.93% 13.84% 16.38%
Hotel 25.72% 60.51% 89.49%

that the rewording cannot effectively attack HDC in short-
length sentence tasks and that character-level replacements or
sentence rephrases would be more effective.

Attack Speed Additionally, we have observed that our
guided approaches are capable of generating adversarial sam-
ples much more quickly than the unguided approach. It can
be seen from Figure 3 that the slope of the guided approach
is always steeper. As a result, our guide approach is able to
generate adversarial samples 2.4X faster than the brute-force
approach. In theory, the brute-force approach is able to achieve
the highest attack success rate since it will search the entire
space, but practically, it is not realistic, especially for long
sentence samples. In this regard, we believe it is essential to
take into account the speed of the attack.

Different Guidance Score Lastly, the performance of the
approach with integrated similarity is better than the cosine
similarity one, both in terms of success rate and speed. As
shown in the table and figure, our guide approach with in-
tegrated similarity generates 30.4% more adversarial samples
and 39.4% faster than cosine similarity. This proves that our
proposed integrated similarity is able to guide an adversarial
attack on HDC more effectively than cosine similarity with

nearly no additional overhead.

C. Perturbations of Adversarial Sample

As we mentioned in the introduction, reword as perturbation
is clearly perceptible in the NLP task. At the same time, unlike
images or voice, the perturbation in the NLP task is challenging
to evaluate because there is no widely-used objective metric.
Many existing studies require volunteers to perform user studies
as part of the evaluation of the perturbations [2], [14], in
which their settings are varied, and volunteers’ evaluations
are subjective. In order to minimize the side effects of the
perturbation, we utilize widely used perturbation approaches
as we described in the Section IV-B. Even though we cannot
conduct some user studies, we still believe this is a reasonable
approach. Table I illustrates some adversarial samples we
generated across different datasets.

VI. CONCLUSION

Brain-inspired HDC as a novel computing paradigm has
shown promising performance in NLP tasks. This paper
presents a novel study on automatically generating adversarial
attacks for HDC-based NLP applications. We propose similar-
ity score-guided greedy algorithms to automatically generate
adversarial samples for text data. Experimental results on three
spam detection datasets show that our approach can achieve
up to 89% attack success rate and similarity-guided attack
achieves a speedup of 2.4X in generating adversarial samples
than the brute-force approach. Our future work will focus on
leveraging the automatically-generated adversarial samples to

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 22:41:35 UTC from IEEE Xplore. Restrictions apply.

oo}
o

[=)]
o

Adversarial Examples
ey
o

20|
0% 2000 0 2000 4000 O 5000
Time[s] Timel[s] Timel[s]
(a) SMS 5s (b) SMS 10s (c) SMS 30s
(%]
<
g60
©
x
Wag
©
©20
o
>
2 0% 200 0 200 400 0 500 _ 1000
Time[s] Time[s] Timel[s]
(d) Youtube 5s (e) Youtube 10s (f) Youtube 30s
(%2}
Q<
9150
IS
%
1100
©
@ 50
7}
>
2 G0 1000 0 1000 2000 0 2500 5000
Time[s] Time[s] Time[s]
(g) Hotel 5s (h) Hotel 10s (i) Hotel 30s

Brute-force ~ =mmm Cosine Similarity = === |ntegrated Similarity

Fig. 3. Number of generated adversarial samples versus time across different
approaches, datasets and time limits

enhance the robustness of HDC-based NLP applications to
adversarial attacks.

Acknowledgments. This work was partially supported by NSF
grant #2202310. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] Tdlio C Alberto, Johannes V Lochter, and Tiago A Almeida. Tubespam:
Comment spam filtering on youtube. In 2015 IEEE 14th international
conference on machine learning and applications (ICMLA), pages 138—
143. IEEE, 2015.

[2] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani
Srivastava, and Kai-Wei Chang. Generating natural language adversarial
examples. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2890-2896, Brussels, Belgium,
October-November 2018. Association for Computational Linguistics.

[3] Steven Bird, Ewan Klein, and Edward Loper. Natural language pro-
cessing with Python: analyzing text with the natural language toolkit. ”
O’Reilly Media, Inc.”, 2009.

[4] Wencheng Chen and Hongyu Li. Adversarial attacks on voice recognition
based on hyper dimensional computing. Journal of Signal Processing
Systems, 93(7):709-718, 2021.

[5] Michael Crawford, Taghi M Khoshgoftaar, Joseph D Prusa, Aaron N
Richter, and Hamzah Al Najada. Survey of review spam detection using
machine learning techniques. Journal of Big Data, 2(1):1-24, 2015.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805, 2018.

[7] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust

(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

physical-world attacks on deep learning visual classification. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
pages 1625-1634, 2018.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. Black-box
generation of adversarial text sequences to evade deep learning classifiers.
In 2018 IEEE Security and Privacy Workshops (SPW), pages 50-56.
IEEE, 2018.

Sarik Ghazarian, Ralph Weischedel, Aram Galstyan, and Nanyun Peng.
Predictive engagement: An efficient metric for automatic evaluation of
open-domain dialogue systems. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 77897796, 2020.

José Maria Gomez Hidalgo, Tiago A Almeida, and Akebo Yamakami. On
the validity of a new sms spam collection. In 2012 11th International
Conference on Machine Learning and Applications, volume 2, pages 240—
245. 1EEE, 2012.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

Tomoki Ito, Kota Tsubouchi, Hiroki Sakaji, Tatsuo Yamashita, and
Kiyoshi Izumi. Word-level contextual sentiment analysis with inter-
pretability. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 42314238, 2020.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. Ad-
versarial example generation with syntactically controlled paraphrase
networks. arXiv preprint arXiv:1804.06059, 2018.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is bert really
robust? a strong baseline for natural language attack on text classification
and entailment. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 8018-8025, 2020.

Fangxin Liu, Haomin Li, and Li Jiang. L3e-hd: A framework enabling
efficient ensemble in high-dimensional space for language tasks. In
Proceedings of the International ACM Sigir Conference on Research and
Development in Information Retrieval (SIGIR), 2022.

Dongning Ma, Jianmin Guo, Yu Jiang, and Xun Jiao. Hdtest: Differential
fuzz testing of brain-inspired hyperdimensional computing. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pages 391-396. IEEE,
2021.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

Nikola Mrksié¢, Diarmuid O Séaghdha, Blaise Thomson, Milica Gasié,
Lina Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen,
and Steve Young. Counter-fitting word vectors to linguistic constraints.
arXiv preprint arXiv:1603.00892, 2016.

Myle Ott, Claire Cardie, and Jeffrey T Hancock. Negative deceptive
opinion spam. In Proceedings of the 2013 conference of the north
american chapter of the association for computational linguistics: human
language technologies, pages 497-501, 2013.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 con-

ference on empirical methods in natural language processing (EMNLP),

pages 1532-1543, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word
representations. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 2227-
2237, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics.

Abbas Rahimi, Pentti Kanerva, and Jan M Rabaey. A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing. In
Proceedings of the 2016 International Symposium on Low Power Elec-
tronics and Design, pages 64—69, 2016.

Rahul Thapa, Bikal Lamichhane, Dongning Ma, and Xun Jiao. Spamhd:
Memory-efficient text spam detection using brain-inspired hyperdimen-
sional computing. In 2021 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pages 84-89. IEEE, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, f.ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

Fangfang Yang and Shaolei Ren. On the vulnerability of hyperdimen-
sional computing-based classifiers to adversarial attacks. In International
Conference on Network and System Security, pages 371-387. Springer,
2020.

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 22:41:35 UTC from IEEE Xplore. Restrictions apply.

