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ABSTRACT

Hyperdimensional Computing (HDC), also known as Vector Sym-
bolic Architecture (VSA), is an emerging Al algorithm inspired
by the way the human brain functions. Compared with deep neu-
ral networks (DNNs), HDC possesses several advantages such as
smaller model size, less computation cost, and one/few-shot learn-
ing, making it a promising alternative computing paradigm. With
the increasing deployment of Al in safety-critical systems such as
healthcare and robotics, it is not only important to strive for high
accuracy, but also to ensure its robustness under even highly uncer-
tain and adversarial environments. However, recent studies show
that HDC, just like DNN, is vulnerable to both cyber attacks (e.g.,
adversarial attacks) and hardware errors (e.g., memory failures).
While a growing body of research has been studying the robustness
of HDC, there is a lack of systematic review of research efforts on
this increasingly-important topic. To the best of our knowledge,
this paper presents the first survey dedicated to review the research
efforts made to the robustness of HDC against cyber attacks and
hardware errors. While the performance and accuracy of HDC as
an Al method still expects future theoretical advancement, this
survey paper aims to shed light and call for community efforts on
robustness research of HDC.
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1 INTRODUCTION

Hyperdimensional computing (HDC), also known as Vector Sym-
bolic Architecture (VSA), was first proposed as a computation
scheme more than a decade ago [14]. For learning and recogni-
tion tasks, HDC is often referred to as a cross-over originating
from the intersection between symbolic and connectionist artifi-
cial intelligence [18]. HDC is inspired by human brain recognition
mechanisms and leverages the abstract patterns formed by high-
dimensional vectors. Recently, HDC has shown promising results
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in performance and efficiency in various application domains, in-
cluding natural language processing (NLP) [20, 30], robotics [26],
anomaly detection [34, 35], and bio-informatics [3, 17, 22].

Despite the advantages, HDC also faces increasing robustness
challenges from uncertain and adversarial environments, includ-
ing cyber-attacks and hardware errors. For example, by perturbing
just a few pixels in the input image, HDC can be fooled and mis-
classified digit even if the perturbation is almost imperceptible to
humans [21]. On the other hand, HDC parameters can be reverse-
engineered to perform IP stealing attacks [6]. These security and
privacy loopholes urge a systematic analysis of the impact of dif-
ferent cyber attacks as well as the defense mechanisms to enhance
the robustness against such attacks.

On the other hand, the versatility of HDC has led to its hard-
ware implementation in different platforms such as FPGA, ASIC,
and emerging memory. However, with increasing technology scal-
ing, hardware becomes more prone to errors caused by factors
such as microelectronic variations, soft errors, and inherent non-
idealities [37, 42]. The hardware errors typically manifest as incor-
rect computation results at the application level, which can cause
an accuracy drop of HDC models. Recent research efforts aim to
characterize the impact of hardware errors on HDC accuracy, as
well as enhancing HDC robustness to such errors.

In this paper, we present, to the best of our knowledge, the first
survey of techniques for characterizing and improving the robust-
ness of HDC, particularly against cyber attacks and hardware errors.
For cyber attacks, we review diverse attack schemes, including ad-
versarial attacks, data poisoning attacks, privacy attacks, and model
stealing attacks. As to hardware errors, we review research efforts
on characterizing and enhancing the robustness of HDC against
hardware errors. The objective of this survey is to shed light and
call for community efforts on this important research direction for
the emerging HDC paradigm.

2 BACKGROUND
2.1 HDC Preliminaries

As the brain’s neural circuits have a massive number of neurons
and synapses, it is suggested that large circuits are fundamental
and essential for neural processing. Based on the understanding
that the brain computes with patterns of neural activity that are
not readily associated with numbers, HDC was founded on the
mathematical properties of high-dimensional spaces, which show
remarkable agreement with behaviors controlled by the brain [14,
32]. Instead of computing with numbers, HDC computes with high-
dimensional vectors (e.g., 10,000 Dimension), which are referred to
as hypervectors (HV): H= (h1,hg, ..., hg).
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In HDC, HVs are the fundamental blocks to represent “symbols”
reflecting real-world features such as pixel values, signal levels,
or language characters in the high-dimensional space. HVs are
holographic and (pseudo)random with independent and identically
distributed (i.i.d.) components. That is, every piece of information
contained in the HV is equally distributed over all its elements in a
full holistic representation of the vector so that no element inside
the HV is more responsible for storing one piece of information
over another. The formation of HVs naturally pertains to arithmetic
operations such as (element-wise) addition, (element-wise) multi-
plication, and permutation (vector rotation), which can form an
algebra over the vector space.

2.2 HDC Model Development

HDC model development is generally composed of three phases:
training, retraining, and inference. All three phases feature a fun-
damental process of encoding.

Encoding uses item memory to project real-world feature vec-
tors into their high-dimensional space representations using a set
of HD operations I'. Item memory R consists of k seed HVs, each
representing a possible value of the discrete features. Let F be
the real-word feature vector of a certain sample, the process of
encoding F into its representing sample HV S can be noted as
S=TR(F)) = T(R{f for- ., fm})). HDC uses the value of dis-
crete features to index the corresponding seed HVs and then applies
HD operations to aggregate the seed HVs into one sample HV S.

Training is the process of establishing the associative memory
using the training set. Associative memory A is the trainable part
of an HDC model. It consists of I class HVs, each representing a
class in a classification task. For each training sample, HDC adds
its sample HV to the corresponding class HV, i.e., /Yl =3 571 This
process is to aggregate the information from sample HVs together
into the AM.

Inference is the process of using unseen data from the infer-
ence set to evaluate the trained model’s performance. First, the
unseen sample with an unknown class is encoded into its sample
HYV, specifically referred to as query HV Q?. The HDC model then
calculates the distance (J) between this query HV and each class
HYV in the associative memory to obtain the distance metrics. The
class with the smallest distance p = argmin(5(§?,A)) marks the
prediction of the unseen sample.

3 ROBUSTNESS AGAINST CYBER ATTACKS

In this section, we discuss the robustness of HDC against cyber at-
tacks, including adversarial attacks, data poisoning, privacy attack,
and IP stealing.

3.1 Adversarial Attacks

In adversarial attacks, attackers attempt to generate adversarial
samples with minimal perturbation to induce erroneous behaviors
of the model. Adversarial attacks can be carried out under different
attack assumptions: black-box, gray-box, and white-box, and target
different applications from image classification to voice recognition.
3.1.1  Threat model.

We present the threat model for HDC adversarial attacks in Fig. 1.
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Using MNIST handwritten digit classification task as an example,
assume we have an HDC model G(x, ), for general users with
benign input ¢ to the model, the output label will be y = G(¢, 0y).
However, for malicious users, the objective is to apply perturbations
to generate adversarial inputs ¢’ so that the model prediction ¢’ =
G(t', 0y) is different from the benign input, i.e., y! = y’. Meanwhile,
to ensure that the differences between the benign image and the
generated perturbed image are not noticeable, the attacker needs
to minimize the perturbation, i.e., min ||t — t’||.

benign t
y
@ E HDC model }\
benign t perturbed t’ /
g E‘ﬁ)— HDC model v

adversarial
generation

. extract

perturbation

—_—

model info
(white/gray-box)

iterate until y I=y’, minimize perturbation

Figure 1: The threat model of adversarial attack on HDC.

Based on how the HDC model is accessible to the attacker or
how much information the attacker can extract, we can classify
the adversarial attacks into several scenarios: white-box, gray-box
and black-box. In white-box scenario, the attacker has full access
into the victim HDC model and is able to extract any information
during the inference. However, such scenario may be less frequent
in practical implementations compared with gray-box and black-
box scenarios. More realistic scenarios are gray-box and black-
box scenarios. Under gray-box scenario, attacker does not have
full access to the HDC model such as the encoding scheme and
item memories but can obtain some information such as the soft-
labels and/or the associative memories. Under black-box scenario,
the attacker is only able to input samples and observe the output
labels of the model and no internal information of the mode can be
obtained.

3.1.2  Robustness Study under Gray-box Scenarios.

Yang and Ren [39] explore the vulnerabilities of HDC model of
attacks from perturbed images. They assume a gray-box scenario
where attacker can send input queries to the model and obtain the
Hamming distance between the image’s query hypervector and
each class hypervector as the similarity metrics. Inspired by the
genetic algorithm, they propose GA-CGC-PA (Genetic Algorithm
with Critical Gene Crossover and Perturbation Adjustment), which
is modified from genetic algorithm with the objective of reducing
the amount of perturbations. The two major contributions of GA-
CGC-PA are the critical gene cross-over and the perturbation
adjustment. Specifically, compared with standard cross-over algo-
rithms that modify every pixel in the input images, the critical gene
cross-over proposed can selectively cross the most important genes
(pixels) of the parent images. For perturbation adjustment, each
perturbed pixel is iterated to check if there is further space possible
to reduce perturbation. The pixel is restored to its original value
first then gradually changed towards the value during adversarial
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Table 1: An overview of surveyed literature related to HDC robustness

Adversarial Attacks

(4, 21, 23, 31, 39]

Data Poisoning Attacks [33]
Cyber Attacks Privacy Attacks [9, 16]
IP Stealing Attacks [6]

Hardware Error Models
Impact of Hardware Errors
Enhancement of HDC Robustness

Hardware Errors

(19, 24, 27, 37, 38, 40-42]
[11, 13, 19, 24, 27, 37, 38, 42]
[40, 41]

generation. For each pixel, the process can stop when the image
can successfully mislead the HDC model.

The experiments are based on HDC models with dimensionality
of 10000 under MNIST handwritten digits dataset. Two schemes of
dealing with HV elements that summed up to 0 during encoding:
random majority rule (RMR) which randomly assigns the value to -1
or 1, and fixed majority rule (FMR) which deterministically assigns
either -1 or 1 per configuration. The performance is characterized by
an amount of perturbation and the query count, which refers to the
number of queries to generate the adversarial images. It is observed
that different digits (classes) may have different sensitivities against
perturbation, for example, digit “0” and “8” have the lowest accuracy,
which means they are easier to attack, while digit “2” and “4” have
the least number of query count under RMR. For FMR, the attack
successful rate is 0.78 however, the median number of modified
pixels is around 100.

Distance-Guided Fuzzing

Generated |
input

. ¢
Objective: Generate m“xa‘
mis-predicted images

Mutation Algorithm

Original
input

Mis-predicted
images

Strategies for input mutation

Figure 2: Overview of HDTest [21].

HDTest [21] employs fuzz testing, a classical method from the
software testing community to automatically generate adversarial
samples. Fuzz testing mutates inputs with the objective of gener-
ating faults or exceptions [7]. One major advantage of HDTest is
that it does not require labeling of the data but relies on differential
testing to automatically recognize the adversarial behaviors of the
model under test, hence reducing the manual efforts of labeling
and comparing the output. An overview of HDTest is illustrated
in Fig. 2. HDTest first uses the original input image t and applies
different types of mutations without necessarily knowing the label
to generate new input ¢’. To observe the differential behaviors, both
of the two inputs are sent to the HDC classifier for the test. If there
is a discrepancy between the label of the original input ¢ and the
generated input ¢/, HDTest can declare a successful generation of
an adversarial input. The generation and differential testing can re-
peat for multiple times until success or reach the maximum allowed
iterations as regulated by the user.
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HDTest leverages different mutation algorithms, including pixel-
wise or row and column-wise Gaussian or random mutation, as
well as vertical or horizontal shift on the original image. Both L1
and L2 distances are used as the metrics to analyze the difference
between the mutated and original images. Experimental results
report that row and column-wise mutation strategies are inferior
to pixel-wise Gaussian and random mutations. On the other hand,
HDTest also reveals that distance metrics such as L1 and L2 are
not suitable for all the mutation strategies. For example, although
the “shift” mutation strategy has a very high distance between the
mutated and original image, semantically the image is not “per-
turbed” but shifted in the positions. Therefore, to evaluate more
mutation strategies other than pixel-wise perturbations, more per-
tinent metrics are necessary. To further elucidate that HDTest can
enhance the robustness against adversarial attacks, an adversarial
retraining is also evaluated. HDTest uses (part of) the generated
adversarial samples (which has a 100% attack successful rate on
the victim model) to retrain the victim model. Then HDTest uses
the rest of the generated adversarial samples as unknown adver-
sarial samples to attack the victim model again and observe the
new successful rate. Experimental results show that using such an
adversarial retraining scheme, HDTest is able to reduce the attack
successful rate by more than 20%.

In addition to image classification applications, adversarial at-
tacks have also been investigated on audio applications. Chen and
Li propose a semi-black box attack on HDC models for voice recog-
nition [4]. They attack the VoiceHD model, which is developed
to classify voices pronouncing the English alphabet letters [12].
A differential evolution (DE) algorithm is proposed to attack on
the amplitude of bins in the data and optimize the positions of the
bins. DE algorithm can work under both non-targeted attack mode
and targeted attack mode where the difference is on the objective
function defined.

DE algorithm has four phases: initialization, mutation, crossover,
and selection. Initialization can feature random population (vector)
generation, and the mutation randomly chooses two vectors in the
population to generate the third mutation vector based on the dif-
ference between them. During crossover, new vectors are generated
by combining mutation vectors with predetermined vectors in some
possibility distribution. During selection, the population that can
yield a lower objective function is selected. Two measures are pro-
posed to minimize the changes to the original data: 1). to attack as
few bins as possible and 2). to attack more bins but keep the changes
of each bin small. Experimental results show that the proposed DE
algorithm can attack VoiceHD on the ISOLET dataset [5] with up
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to 85.7% successful rate under the non-targeted mode. Similar to
adversarial attacks on image classification, some classes, such as
the letter “w” are higher likely to be attacked than others.

3.1.3  Robustness Study under Black-box Scenarios.

Furthermore, under black-box scenarios, the attacker may have no
access to the internal components of the deployed HDC model but
only observe the output labels of an input. HDXplore assumes
such a scenario and proposes a black-box attack also based on
differential behaviors. Similar to HDTest, HDXplore incorporates
a process of perturbing the benign samples to obtain adversarial
samples. Different perturbation algorithms, including skew, noise,
brightness, and elastic transform are evaluated. Two retraining
schemes are proposed to increase the HDC model robustness: static
retraining and dynamic retraining. During static retraining, a fixed
set of adversarial images is used to iteratively retrain the HDC
model, while during dynamic retraining, new adversarial images
are generated and used after each retraining epoch. Experimental
results show that for static retraining, the accuracy of HDC model
slightly increases from about 81% first but drops below 70% after
a certain number of epochs. For dynamic retraining, the accuracy
can increase further to up to 90%.

Recently, natural language processing (NLP) applications us-
ing HDC are becoming increasingly popular [1, 20, 30]. Therefore,
adversarial attacks on HDC models for NLP tasks start to be investi-
gated, e.g., Moraliyage et al., target at the n-gram based HDC model
and perform adversarial attacks using widely-used text adversarial
frameworks: DeepWordBug, PWWS and TextFooler [23]. Each
sample is regarded as a vector of words and the attacker modi-
fies text input with small perturbations to misclassify the inputs.
The attack can focus on character-level or word-level substitutions
based on attack methods. Experiments are based on the European
Language Classification dataset which is to classify languages of
text and the Reuters Newsire dataset which is to classify topics
of text [25]. Results show that for PWWS and TextFooler, the
adversarial attack can cause about 15.5% and 7% accuracy degrada-
tion respectively on HDC models with gram-size of 3 for European
Language classification, while for DeepWordBug, the accuracy
degradation is much smaller. A similar trend can be observed for
Reuters Newswire dataset, which indicates that HDC NLP models
are more vulnerable to word-level attacks compared with character-
level attacks. The paper also compares HDC with other machine
learning models such as convolution neural networks and recur-
rent neural networks. It shows that HDC model is more robust to
character-level attacks than neural networks yet less robust against
word-level attacks.

3.2 Data Poisoning Attacks

The training of HDC model is also vulnerable to another type of
cyber attack: the data poisoning attack. PoisonHD first explores
such attack on HDC model [33] under white-box scenario. Instead
of attacking the inference phase of HDC by perturbing input data,
poisoning attack focuses on adding extra and modified samples
to the training dataset. The objective is to inject false informa-
tion in the training dataset so that the trained model will have
corrupted performance. An overview of PoisonHD can be found
in Fig. 3. PoisonHD embraces a confidence-based label-flipping
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method specifically leveraging the HDC models mechanisms for
binary classification tasks. In PoisonHD, the confidence of each
sample is defined as the absolute difference between the cosine
similarity between the query HV and the positive class HV and the
cosine similarity between the query HV and the negative class HV.
PoisonHD ranks all the encoded training data by confidence in
a descending order and then flips the labels of the top-N highest
confidence samples to maximize the influence of the attack to the
model. PoisonHD also provides the data sanitizing against such
type of label-flipping data poisoning attack, which is also known
as “oracle defense”. Such defense relies on an extra verified dataset
which is not available to the attacker. The verified dataset is used
to build a new exclusive associative memory to verify the encoded
HVs of samples of the original training dataset to identify if the
label is flipped. The experiments are based on three binary classifi-
cation datasets: Dog-Fish, MNIST 1-7 and Breast Cancer. Results
show that flipping 15% of the data can cause up to 30% accuracy
drop while using the oracle defense can reduce the impact of data
poisoning that the accuracy drop is mitigated to less than 3%.
Dataset

3 Confidence Testing
Index Dataset
+ —
Ranking — /1/
o & Encoding Query HV
Label- &
flipping
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Training Inferenc: @
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o
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A
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Figure 3: Overview of PoisonHD [33]

3.3 Privacy Attacks

As HDC is increasingly applied to applications with sensitive input
data, it is also of great importance to examine how privacy attacks
effective on other machine learning algorithms can transfer to HDC
models. PriveHD targets at privacy breach issue that by observing
the encoded HVs, the attacker can disclose information of the input
data [16]. Specifically for HDC, because the dimension of HVs is
usually very large (10000 and above), the base vectors are almost
orthogonal. Therefore, each feature incorporated in the encoding
can be retrieved through trials by multiplying the encoded HV
and the base vectors. To defend such breach, PriveHD proposes a
differentially private training scheme for HDC via dimensionality
pruning and quantization. The dimensionality pruning is intuitive
as when dimensions are reduced, the orthogonality between base
vectors is impaired, subsequently lowering the effectiveness of the
feature retrieval. To maximize the effect of pruning while minimiz-
ing the impact on classification accuracy, PriveHD identifies the
importance of each dimension in the HV based on the proximity
of the value to 0. Quantization can also enhance the differential
privacy meanwhile causing huge performance degradation. To mit-
igate such impact, PriveHD chooses to only quantize the encoding
HVs, which shows around 5% less accuracy drop compared with
previous quantization works.

Prid also investigates the privacy attack that can reconstruct in-
puts based on encoded HVs [9]. Instead of using an analytical-based
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method like PriveHD, Prid uses a learning-based method that for-
mulates the reconstruction as a linear regression problem. Prid
configures a neural network to perform this task with the input
being the base HVs and the output being the encoded HV. Two meth-
ods are proposed: feature replacement and dimension replacement
to add masked information to ensure the reconstruction is a good
estimation of train data that has been used for model generation.
Two schemes are also proposed to enhance robustness against such
privacy attacks: iterative intelligent noise injecting and iterative
model quantization. Unimportant dimensions are identified and in-
jected with noise to reduce the sensitivity of the information while
at the same time keeping the impact on model performance mini-
mal. Quantization can also reduce the risk of reverting the encoded
HYV to its original space, as already illustrated in PriveHD. Retrain-
ing is further applied on both robustness enhancement schemes to
regain accuracy. Results show that Prid can reduce the information
leakage to up to 81% while causing only around 2.1% quality loss
on classification accuracy under 2000 dimensionality.

3.4 IP Stealing Attacks

Training of machine learning models is not an easy task as it re-
quires enormous engineering and computational effort. Similar to
the data used in training and inference, the trained model itself is
also a valuable intellectual property, particularly when the model
is trained using a proprietary dataset. Due to the straightforward
implementation, HDC models are more vulnerable to model steal-
ing attacks that the entire HDC model can be reverse-engineered
even under a gray-box scenario where the attacker only has limited
access to the model [6]. HDLock carries out the model stealing
attack analytically by divide-and-conquer the value and feature
HVs due to the orthogonality in the item memories similarly as
introduced in [16]. To defend such attack, HDLock modifies the
encoding module by adding a permutation to the base vectors when
encoding. Since the permutation values require much less memory
space and can be stored in the secure memory, the encoding is now
more robust against dive-and-conquer attacks. Experimental results
with HDC models implemented on a Xilinx Zynq UltraScale+ FPGA
show that the complexity for stealing attack grows by 10 orders of
magnitude with only 21% of overhead in encoding.

4 ROBUSTNESS AGAINST HARDWARE
ERRORS

In this section, we discuss the robustness of HDC against hardware
errors. We first present the hardware error models used in recent
studies on various hardware platforms, and then we discuss the
impact of such errors on the performance/accuracy of HDC models.
Finally, we review the techniques used to enhance the robustness
of HDC against hardware errors.

4.1 Hardware Error Models

Errors in hardware can be caused by microelectronic process varia-
tions, extreme temperatures, voltages, wear-out effects [28], and
radiation [2]. Recently, HDC has been implemented in hardware
platforms, including FPGA, GPU, and emerging memory, which
are all susceptible to hardware faults/errors. As an example, if the
supply voltage of the memory is reduced from its normal value,
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unstable memory cells cause bit flips. Flipping bits affect the value
of the model and influence the accuracy of the system. However, if
the model itself is robust to these errors, the memory can run at a
lower voltage, thus saving energy while the model still performs as
intended. This is referred to as voltage scaling, which is an approach
that is widely used for the design of low-power systems. A number
of existing HDC studies discuss how voltage scaling can improve
memory energy efficiency by taking advantage of HDC hardware
robustness. [13, 41]. Therefore, we introduce several common error
models in order to evaluate the hardware robustness of HDC.

Random Bit Flip is arguably the most widely-used hardware
error model. Under this error model, a randomly-chosen bit in a
parameter will be flipped. Bit flips can occur in both computations
and memory. As HDC is a memory-centric computing scheme,
most studies focus on bit flips occurring in the associative memory,
which stores the class HVs [40-42]. During inference, this affects
the similarity comparison, which leads to an accuracy drop. An
example of bit flips occurring in HVs is illustrated in Fig. 4 illustrates
how random bit flip affects HV.

D
Hl HZ_HlJfl HD
OriginalHV [0 0 0 0 0 1 0 1]+ [0010010 1]
vy 3 vy 3 12
Fault Injected WV [0 0 0 1 0 0 0 1+ [1 0000 1 1 1]
H,y H; —Hp_, Hp
D

Figure 4: Fault injection (Random Bit-Flip) on Hypervector

Stuck-at-fault is a type of error that occurs in a digital circuit
that is generally caused by a manufacturing defect. The assumption
is that there is one gate/transistor in the digital circuit that is stuck,
so it will always remain in a “0” or “1” state. Several studies explore
HDC hardware robustness against stuck-at-fault [19, 27, 37, 38].

Communications noise can happen in wired and wireless com-
munication, caused by factors such as transmission power levels,
distance, propagation loss scenarios, and the number of interfering
devices. For example, HyDREA [24] uses NS-3 [8]- a network sim-
ulator to model the communication noises and explore how such
error impact HDC-based federated learning.

4.2 Impact of Hardware Errors on HDC
Accuracy

Zhang et al. [42] presents a study on the impact of memory er-
rors (under random bit flip assumption) on HDC model accuracy
in three application domains: speech recognition, human activity
recognition, and medical diagnosis. The paper examines the HDC
robustness under different HDC dimensions and data types (e.g.,
bit widths). It is shown that HDC models with less bit-width rep-
resenting parameters generally have higher better robustness to
hardware errors. For example, binary HDC models exhibit the high-
est robustness: the accuracy does not drop until the error rates
increase to 1072, Imani et al. [13] examine how bits errors in asso-
ciative memory affect Hamming distance calculation. This study
shows that HDC is able to achieve 97.8% classification accuracy
with up to 1000-bit errors, which is equivalent to a 10% error rate
in the 10000-dimension HDC system.
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As a memory-centric computing paradigm, HDC is suitable to
run on the processing-in-memory (PIM) platform with emerging
memory devices. Unfortunately, emerging memory devices have
inherent non-idealities that can lead to errors [19, 27, 37, 38]. A
CNFETs and RRAM-based PIM system for HDC have been built [19,
27, 37, 38] and evaluated for its robustness against memory errors.
After a certain number of write cycles, the nonvolatile memory
cells will become stuck at either ’1’ or ’0’ [19, 27]. In RRAMs, the
number of write cycles before the cell becomes stuck is known as
the RRAM endurance constraint. HDC exhibited nearly no accuracy
loss when the RRAM endurance constraint was reduced to 1000.
An approximate accumulator has been designed to further enhance
HDC robustness against stuck-at-fault [37, 38]. Hsu et al. examine
the robustness of a NAND flash-based HDC implementation for
genome sequencing [11]. NAND Flash is susceptible to current
variation noise and current shift. It is shown that HDC maintains
acceptable accuracy even when the variation in the current exceeds
0.1 (0/p) and the current shift exceeds 0.5 (6/p).

HyDREA [24] examines the impact of communication noise
on the HDC-based federated learning model. To simulate wireless
noise and model the communication between devices, the authors
use the popular network simulator NS-3 [8]. A comparison was con-
ducted between HyDREA and other lightweight machine learning
algorithms such as linear regression, multilayer perception, percep-
tion, and support vector classification. HyDREA shows that HDC
is 48X more robust than certain traditional ML algorithms under a
compromised signal-to-noise ratio (SNR).

4.3 Enhancement of HDC Robustness to
Hardware Errors

; ScaleHD : ; Original Data :
; P 10110+ 01010 | !
1 H H Error |
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Figure 5: Overview of ScaleHD [40].

While HDC exhibits inherent robustness to hardware errors to a
certain degree, an enhancement of robustness is always desirable
to tolerate even higher error rates or enable efficient design by
exploring the efficiency-robustness trade-off. Zhang et al. enhance
the robustness of HDC by applying error masking techniques [41].
They deploy low-cost error masking schemes at two levels, bit-
level masking and word-level masking, to detect and mask errors,
as shown in Tab. 2. The error masking circuits are implemented
with the Razor double sampling-based circuitry with a 0.3% silicon
area and 12.8% power [29]. The simulation result shows that both
masking methods can effectively enhance the robustness of HDC
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up to 10,000X. The paper further exploits enhanced robustness to
enable energy-efficient design using voltage scaling. On a 22nm
SRAM, up to 72.5% energy can be saved with 1% accuracy loss.

While error-masking circuitry can enhance robustness, it incurs
extra hardware overhead. A software-only approach, ScaleHD, en-
hance HDC robustness without incurring extra hardware overhead,
as shown in Fig. 5 [40]. ScaleHD is inspired by a simple observation:
a larger value will have less relative error impact compared to a
smaller value when the same bit position flips. Thus, ScaleHD uses
an adaptive numeric scaling technique to enhance HDC robustness
by scaling its class HV value. ScaleHD explore scaling at three lev-
els: Global-ScaleHD, Class-ScaleHD, and (Class + Clip)-ScaleHD.
Global-ScaleHD determines the ratio between the extreme value
in the class HVs and the maximum value that can be represented by
the available bits. Global-ScaleHD scale each of the class HV using
this ratio. Similarly, Class-ScaleHD performs a similar operation
but at an individual class level, which grants more space for scaling.
(Class + Clip)-ScaleHD sacrifices a minor accuracy by clipping
the extreme values in the class HVs to further increase the scaling
ratio. The experimental results show that ScaleHD is capable of
enhancing robustness by up to 10000X. Leveraging such robustness
enhancement, ScaleHD can enable 70% energy saving with less
than 1% accuracy loss.

In addition to bit-level enhancement, Hersche et al. present a
HDC architecture that can detect, localize, and isolate faults in
phase-change memory (PCM), and then replace new memory to
recover these faults [10]. In the first step, it analyzes the stand de-
viation of the Hamming distance between associative memory and
encoded samples in order to detect memory faults. In the subsequent
step, the memory is divided into partition blocks, and hamming
distances are calculated between these partition blocks and encoded
testing samples. Consequently, it can locate fault partition blocks
by clustering the relative sum of the distances of each block and
analyzing the data. In the end, new blocks will be added to replace
the fault partitions. By using old non-fault blocks, HDC will be able
to train new blocks unsupervised. Using their HDC architecture, ac-
curacy recovers from 16.02% to 95.05% when the fault rate is 48.5%.
Furthermore, when the fault rate is 22%, 37%, and 42%, accuracy is
able to fully recover to 96.86%.

5 FUTURE DIRECTIONS

In this section, we present potential future directions and opportu-
nities for HDC robustness research.

5.1 Robustness against Cyber Attacks

Most of the existing defense schemes against cyber attacks are
based on adversarial retraining. A significant drawback is the no-
tably associated accuracy degradation. A potential future direction
of defending against adversarial attacks with less impact is to in-
troduce the defense network, which is used in the neural network
domain for adversarial defense [36]. Specifically, a smaller model
can be added along with the original model and is dedicated to
identifying if the input is adversarial or benign. As there is no re-
training or fine-tuning over the HDC model, the negative impact of
the defense mechanism is trivial. For data poisoning attacks, more
poisoning algorithms are necessary to evaluate, particularly for
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Table 2: Recovery Schemes for Protecting HDC Models from Hardware Errors

Sign-bit Masking [41]

Word Masking [41]

ScaleHD [40]

10011010 00001001
10110010 00101000
10111010 00001000

error-free
after error injection
after masking

10011010 00001001
10110010 00101000
00000000 00000000

10011010 00001001
10000000 00001011 (after ScaleHD)
10101000 00101010 (after error injection)

tasks that are beyond binary classifications as used in PoisonHD.
In the meanwhile, “oracle defense” requires significant overhead
when the number of classes scale and the performance of data sani-
tizing can be sub-par if there is not enough verified data to train the
verified AM. Therefore, novel methods to defend data poisoning
attacks are necessary to reduce the overall defense overhead.

For a privacy model stealing attack, a more practical scenario
assumes a complete black-box scenario [15]. Since the training
data can be proprietary, the attacker may not know what datasets
are used to train the HDC model, thus not able to use methods
such as partial data. Under these scenarios, analytical methods of
reverse engineering are almost impossible. A potential direction
is to utilize techniques from neural network domains such as gra-
dient estimation and generative models [15]. However, since the
theoretical foundations of HDC are mathematically different than
connectionist models, such methods require more in-depth analysis.

5.2 Robustness against Hardware Errors

Most existing studies focus on errors that occurred in associative
memory of HDC models, while errors can occur in other parts of
HDC models as well, such as item memory, computing parts, etc.
Thus, one future direction would be to include all possible hardware
components in HDC models to ensure a comprehensive robustness
evaluation. With this, it is also possible to analyze the sensitivity
of different parts of HDC to hardware errors and their impact on
HDC accuracy. Another important consideration in HDC system
design is to balance the trade-off between robustness, performance,
and efficiency. While robustness can always be enhanced by adding
redundancy, this will inevitably increase the cost of the model.
Therefore, future efforts regarding designing robust-while-efficient
HDC systems are pertinent.

6 CONCLUDING REMARKS

As HDC is increasingly applied in safety-critical application do-
mains, ensuring its robustness against uncertain and adversarial
environments is becoming more pertinent. In this paper, we re-
view the recent research efforts on HDC robustness against cyber
attacks and hardware errors. For cyber attacks, we review recent
literature in examining various types of cyber attacks, including
adversarial attacks, data poisoning attacks, privacy attacks, and
model stealing attacks, and how to defend against these attacks. For
hardware robustness, we review recent literature in characterizing
the impact of hardware errors on HDC accuracy and enhancing
HDC robustness to hardware errors. This paper aims to provide
an insightful overview of the related literature and endeavors to
encourage future research efforts on this important topic.
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