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ABSTRACT

Hyperdimensional Computing (HDC), also known as Vector Sym-

bolic Architecture (VSA), is an emerging AI algorithm inspired

by the way the human brain functions. Compared with deep neu-

ral networks (DNNs), HDC possesses several advantages such as

smaller model size, less computation cost, and one/few-shot learn-

ing, making it a promising alternative computing paradigm. With

the increasing deployment of AI in safety-critical systems such as

healthcare and robotics, it is not only important to strive for high

accuracy, but also to ensure its robustness under even highly uncer-

tain and adversarial environments. However, recent studies show

that HDC, just like DNNs, is vulnerable to both cyber attacks (e.g.,

adversarial attacks) and hardware errors (e.g., memory failures).

While a growing body of research has been studying the robustness

of HDC, there is a lack of systematic review of research efforts on

this increasingly-important topic. To the best of our knowledge,

this paper presents the first survey dedicated to review the research

efforts made to the robustness of HDC against cyber attacks and

hardware errors. While the performance and accuracy of HDC as

an AI method still expects future theoretical advancement, this

survey paper aims to shed light and call for community efforts on

robustness research of HDC.
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1 INTRODUCTION

Hyperdimensional computing (HDC), also known as Vector Sym-

bolic Architecture (VSA), was first proposed as a computation

scheme more than a decade ago [14]. For learning and recogni-

tion tasks, HDC is often referred to as a cross-over originating

from the intersection between symbolic and connectionist artifi-

cial intelligence [18]. HDC is inspired by human brain recognition

mechanisms and leverages the abstract patterns formed by high-

dimensional vectors. Recently, HDC has shown promising results
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in performance and efficiency in various application domains, in-

cluding natural language processing (NLP) [20, 30], robotics [26],

anomaly detection [34, 35], and bio-informatics [3, 17, 22].

Despite the advantages, HDC also faces increasing robustness

challenges from uncertain and adversarial environments, includ-

ing cyber-attacks and hardware errors. For example, by perturbing

just a few pixels in the input image, HDC can be fooled and mis-

classified digit even if the perturbation is almost imperceptible to

humans [21]. On the other hand, HDC parameters can be reverse-

engineered to perform IP stealing attacks [6]. These security and

privacy loopholes urge a systematic analysis of the impact of dif-

ferent cyber attacks as well as the defense mechanisms to enhance

the robustness against such attacks.

On the other hand, the versatility of HDC has led to its hard-

ware implementation in different platforms such as FPGA, ASIC,

and emerging memory. However, with increasing technology scal-

ing, hardware becomes more prone to errors caused by factors

such as microelectronic variations, soft errors, and inherent non-

idealities [37, 42]. The hardware errors typically manifest as incor-

rect computation results at the application level, which can cause

an accuracy drop of HDC models. Recent research efforts aim to

characterize the impact of hardware errors on HDC accuracy, as

well as enhancing HDC robustness to such errors.

In this paper, we present, to the best of our knowledge, the first

survey of techniques for characterizing and improving the robust-

ness of HDC, particularly against cyber attacks and hardware errors.

For cyber attacks, we review diverse attack schemes, including ad-

versarial attacks, data poisoning attacks, privacy attacks, and model

stealing attacks. As to hardware errors, we review research efforts

on characterizing and enhancing the robustness of HDC against

hardware errors. The objective of this survey is to shed light and

call for community efforts on this important research direction for

the emerging HDC paradigm.

2 BACKGROUND

2.1 HDC Preliminaries

As the brain’s neural circuits have a massive number of neurons

and synapses, it is suggested that large circuits are fundamental

and essential for neural processing. Based on the understanding

that the brain computes with patterns of neural activity that are

not readily associated with numbers, HDC was founded on the

mathematical properties of high-dimensional spaces, which show

remarkable agreement with behaviors controlled by the brain [14,

32]. Instead of computing with numbers, HDC computes with high-

dimensional vectors (e.g., 10,000 Dimension), which are referred to

as hypervectors (HV): �𝐻 = 〈ℎ1, ℎ2, . . . , ℎ𝑑 〉.
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In HDC, HVs are the fundamental blocks to represent “symbols”

reflecting real-world features such as pixel values, signal levels,

or language characters in the high-dimensional space. HVs are

holographic and (pseudo)random with independent and identically

distributed (i.i.d.) components. That is, every piece of information

contained in the HV is equally distributed over all its elements in a

full holistic representation of the vector so that no element inside

the HV is more responsible for storing one piece of information

over another. The formation of HVs naturally pertains to arithmetic

operations such as (element-wise) addition, (element-wise) multi-

plication, and permutation (vector rotation), which can form an

algebra over the vector space.

2.2 HDC Model Development

HDC model development is generally composed of three phases:

training, retraining, and inference. All three phases feature a fun-

damental process of encoding.

Encoding uses item memory to project real-world feature vec-

tors into their high-dimensional space representations using a set

of HD operations Γ. Item memory R consists of 𝑘 seed HVs, each

representing a possible value of the discrete features. Let �𝐹 be

the real-word feature vector of a certain sample, the process of

encoding �𝐹 into its representing sample HV �𝑆 can be noted as
�𝑆 = Γ(R( �𝐹 )) = Γ(R({𝑓1, 𝑓2, . . . , 𝑓𝑚})). HDC uses the value of dis-

crete features to index the corresponding seed HVs and then applies

HD operations to aggregate the seed HVs into one sample HV �𝑆 .

Training is the process of establishing the associative memory

using the training set. Associative memory A is the trainable part

of an HDC model. It consists of 𝑙 class HVs, each representing a

class in a classification task. For each training sample, HDC adds

its sample HV to the corresponding class HV, i.e., �𝐴𝑙 =
∑

�𝑆𝑙 . This

process is to aggregate the information from sample HVs together

into the AM.

Inference is the process of using unseen data from the infer-

ence set to evaluate the trained model’s performance. First, the

unseen sample with an unknown class is encoded into its sample

HV, specifically referred to as query HV �𝑄?. The HDC model then

calculates the distance (𝛿) between this query HV and each class

HV in the associative memory to obtain the distance metrics. The

class with the smallest distance 𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝛿 ( �𝑄?,A)) marks the

prediction of the unseen sample.

3 ROBUSTNESS AGAINST CYBER ATTACKS

In this section, we discuss the robustness of HDC against cyber at-

tacks, including adversarial attacks, data poisoning, privacy attack,

and IP stealing.

3.1 Adversarial Attacks

In adversarial attacks, attackers attempt to generate adversarial

samples with minimal perturbation to induce erroneous behaviors

of the model. Adversarial attacks can be carried out under different

attack assumptions: black-box, gray-box, and white-box, and target

different applications from image classification to voice recognition.

3.1.1 Threat model.

We present the threat model for HDC adversarial attacks in Fig. 1.

Using MNIST handwritten digit classification task as an example,

assume we have an HDC model 𝐺 (𝑥, 𝜃𝑔), for general users with

benign input 𝑡 to the model, the output label will be 𝑦 = 𝐺 (𝑡, 𝜃𝑔).

However, for malicious users, the objective is to apply perturbations

to generate adversarial inputs 𝑡 ′ so that the model prediction 𝑦′ =

𝐺 (𝑡 ′, 𝜃𝑔) is different from the benign input, i.e., 𝑦! = 𝑦′. Meanwhile,

to ensure that the differences between the benign image and the

generated perturbed image are not noticeable, the attacker needs

to minimize the perturbation, i.e.,𝑚𝑖𝑛 | |𝑡 − 𝑡 ′ | |.

��������

��������

����	
�	����

���	�����

�

�����������
�������
	�������

�

��

���	������������������������� ��!�	��	�������

���	�"�

!�	��	������

!�	��	����������
���

����
���

Figure 1: The threat model of adversarial attack on HDC.

Based on how the HDC model is accessible to the attacker or

how much information the attacker can extract, we can classify

the adversarial attacks into several scenarios: white-box, gray-box

and black-box. In white-box scenario, the attacker has full access

into the victim HDC model and is able to extract any information

during the inference. However, such scenario may be less frequent

in practical implementations compared with gray-box and black-

box scenarios. More realistic scenarios are gray-box and black-

box scenarios. Under gray-box scenario, attacker does not have

full access to the HDC model such as the encoding scheme and

item memories but can obtain some information such as the soft-

labels and/or the associative memories. Under black-box scenario,

the attacker is only able to input samples and observe the output

labels of the model and no internal information of the mode can be

obtained.

3.1.2 Robustness Study under Gray-box Scenarios.

Yang and Ren [39] explore the vulnerabilities of HDC model of

attacks from perturbed images. They assume a gray-box scenario

where attacker can send input queries to the model and obtain the

Hamming distance between the image’s query hypervector and

each class hypervector as the similarity metrics. Inspired by the

genetic algorithm, they propose GA-CGC-PA (Genetic Algorithm

with Critical Gene Crossover and Perturbation Adjustment), which

is modified from genetic algorithm with the objective of reducing

the amount of perturbations. The two major contributions of GA-

CGC-PA are the critical gene cross-over and the perturbation

adjustment. Specifically, compared with standard cross-over algo-

rithms that modify every pixel in the input images, the critical gene

cross-over proposed can selectively cross the most important genes

(pixels) of the parent images. For perturbation adjustment, each

perturbed pixel is iterated to check if there is further space possible

to reduce perturbation. The pixel is restored to its original value

first then gradually changed towards the value during adversarial
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Table 1: An overview of surveyed literature related to HDC robustness

Cyber Attacks

Adversarial Attacks [4, 21, 23, 31, 39]

Data Poisoning Attacks [33]

Privacy Attacks [9, 16]

IP Stealing Attacks [6]

Hardware Errors
Hardware Error Models [19, 24, 27, 37, 38, 40–42]

Impact of Hardware Errors [11, 13, 19, 24, 27, 37, 38, 42]

Enhancement of HDC Robustness [40, 41]

generation. For each pixel, the process can stop when the image

can successfully mislead the HDC model.

The experiments are based on HDC models with dimensionality

of 10000 under MNIST handwritten digits dataset. Two schemes of

dealing with HV elements that summed up to 0 during encoding:

randommajority rule (RMR) which randomly assigns the value to -1

or 1, and fixed majority rule (FMR) which deterministically assigns

either -1 or 1 per configuration. The performance is characterized by

an amount of perturbation and the query count, which refers to the

number of queries to generate the adversarial images. It is observed

that different digits (classes) may have different sensitivities against

perturbation, for example, digit “0” and “8” have the lowest accuracy,

which means they are easier to attack, while digit “2” and “4” have

the least number of query count under RMR. For FMR, the attack

successful rate is 0.78 however, the median number of modified

pixels is around 100.
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Figure 2: Overview of HDTest [21].

HDTest [21] employs fuzz testing, a classical method from the

software testing community to automatically generate adversarial

samples. Fuzz testing mutates inputs with the objective of gener-

ating faults or exceptions [7]. One major advantage of HDTest is

that it does not require labeling of the data but relies on differential

testing to automatically recognize the adversarial behaviors of the

model under test, hence reducing the manual efforts of labeling

and comparing the output. An overview of HDTest is illustrated

in Fig. 2. HDTest first uses the original input image 𝑡 and applies

different types of mutations without necessarily knowing the label

to generate new input 𝑡 ′. To observe the differential behaviors, both

of the two inputs are sent to the HDC classifier for the test. If there

is a discrepancy between the label of the original input 𝑡 and the

generated input 𝑡 ′, HDTest can declare a successful generation of

an adversarial input. The generation and differential testing can re-

peat for multiple times until success or reach the maximum allowed

iterations as regulated by the user.

HDTest leverages different mutation algorithms, including pixel-

wise or row and column-wise Gaussian or random mutation, as

well as vertical or horizontal shift on the original image. Both L1

and L2 distances are used as the metrics to analyze the difference

between the mutated and original images. Experimental results

report that row and column-wise mutation strategies are inferior

to pixel-wise Gaussian and random mutations. On the other hand,

HDTest also reveals that distance metrics such as L1 and L2 are

not suitable for all the mutation strategies. For example, although

the “shift” mutation strategy has a very high distance between the

mutated and original image, semantically the image is not “per-

turbed” but shifted in the positions. Therefore, to evaluate more

mutation strategies other than pixel-wise perturbations, more per-

tinent metrics are necessary. To further elucidate that HDTest can

enhance the robustness against adversarial attacks, an adversarial

retraining is also evaluated. HDTest uses (part of) the generated

adversarial samples (which has a 100% attack successful rate on

the victim model) to retrain the victim model. Then HDTest uses

the rest of the generated adversarial samples as unknown adver-

sarial samples to attack the victim model again and observe the

new successful rate. Experimental results show that using such an

adversarial retraining scheme, HDTest is able to reduce the attack

successful rate by more than 20%.

In addition to image classification applications, adversarial at-

tacks have also been investigated on audio applications. Chen and

Li propose a semi-black box attack on HDC models for voice recog-

nition [4]. They attack the VoiceHD model, which is developed

to classify voices pronouncing the English alphabet letters [12].

A differential evolution (DE) algorithm is proposed to attack on

the amplitude of bins in the data and optimize the positions of the

bins. DE algorithm can work under both non-targeted attack mode

and targeted attack mode where the difference is on the objective

function defined.

DE algorithm has four phases: initialization, mutation, crossover,

and selection. Initialization can feature random population (vector)

generation, and the mutation randomly chooses two vectors in the

population to generate the third mutation vector based on the dif-

ference between them. During crossover, new vectors are generated

by combining mutation vectors with predetermined vectors in some

possibility distribution. During selection, the population that can

yield a lower objective function is selected. Two measures are pro-

posed to minimize the changes to the original data: 1). to attack as

few bins as possible and 2). to attack more bins but keep the changes

of each bin small. Experimental results show that the proposed DE

algorithm can attack VoiceHD on the ISOLET dataset [5] with up
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to 85.7% successful rate under the non-targeted mode. Similar to

adversarial attacks on image classification, some classes, such as

the letter “w” are higher likely to be attacked than others.

3.1.3 Robustness Study under Black-box Scenarios.

Furthermore, under black-box scenarios, the attacker may have no

access to the internal components of the deployed HDC model but

only observe the output labels of an input. HDXplore assumes

such a scenario and proposes a black-box attack also based on

differential behaviors. Similar to HDTest, HDXplore incorporates

a process of perturbing the benign samples to obtain adversarial

samples. Different perturbation algorithms, including skew, noise,

brightness, and elastic transform are evaluated. Two retraining

schemes are proposed to increase the HDC model robustness: static

retraining and dynamic retraining. During static retraining, a fixed

set of adversarial images is used to iteratively retrain the HDC

model, while during dynamic retraining, new adversarial images

are generated and used after each retraining epoch. Experimental

results show that for static retraining, the accuracy of HDC model

slightly increases from about 81% first but drops below 70% after

a certain number of epochs. For dynamic retraining, the accuracy

can increase further to up to 90%.

Recently, natural language processing (NLP) applications us-

ing HDC are becoming increasingly popular [1, 20, 30]. Therefore,

adversarial attacks on HDC models for NLP tasks start to be investi-

gated, e.g., Moraliyage et al., target at the n-gram based HDCmodel

and perform adversarial attacks using widely-used text adversarial

frameworks: DeepWordBug, PWWS and TextFooler [23]. Each

sample is regarded as a vector of words and the attacker modi-

fies text input with small perturbations to misclassify the inputs.

The attack can focus on character-level or word-level substitutions

based on attack methods. Experiments are based on the European

Language Classification dataset which is to classify languages of

text and the Reuters Newsire dataset which is to classify topics

of text [25]. Results show that for PWWS and TextFooler, the

adversarial attack can cause about 15.5% and 7% accuracy degrada-

tion respectively on HDC models with gram-size of 3 for European

Language classification, while for DeepWordBug, the accuracy

degradation is much smaller. A similar trend can be observed for

Reuters Newswire dataset, which indicates that HDC NLP models

are more vulnerable to word-level attacks compared with character-

level attacks. The paper also compares HDC with other machine

learning models such as convolution neural networks and recur-

rent neural networks. It shows that HDC model is more robust to

character-level attacks than neural networks yet less robust against

word-level attacks.

3.2 Data Poisoning Attacks

The training of HDC model is also vulnerable to another type of

cyber attack: the data poisoning attack. PoisonHD first explores

such attack on HDC model [33] under white-box scenario. Instead

of attacking the inference phase of HDC by perturbing input data,

poisoning attack focuses on adding extra and modified samples

to the training dataset. The objective is to inject false informa-

tion in the training dataset so that the trained model will have

corrupted performance. An overview of PoisonHD can be found

in Fig. 3. PoisonHD embraces a confidence-based label-flipping

method specifically leveraging the HDC models mechanisms for

binary classification tasks. In PoisonHD, the confidence of each

sample is defined as the absolute difference between the cosine

similarity between the query HV and the positive class HV and the

cosine similarity between the query HV and the negative class HV.

PoisonHD ranks all the encoded training data by confidence in

a descending order and then flips the labels of the top-N highest

confidence samples to maximize the influence of the attack to the

model. PoisonHD also provides the data sanitizing against such

type of label-flipping data poisoning attack, which is also known

as “oracle defense”. Such defense relies on an extra verified dataset

which is not available to the attacker. The verified dataset is used

to build a new exclusive associative memory to verify the encoded

HVs of samples of the original training dataset to identify if the

label is flipped. The experiments are based on three binary classifi-

cation datasets: Dog-Fish, MNIST 1-7 and Breast Cancer. Results

show that flipping 15% of the data can cause up to 30% accuracy

drop while using the oracle defense can reduce the impact of data

poisoning that the accuracy drop is mitigated to less than 3%.
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Figure 3: Overview of PoisonHD [33]

3.3 Privacy Attacks

As HDC is increasingly applied to applications with sensitive input

data, it is also of great importance to examine how privacy attacks

effective on other machine learning algorithms can transfer to HDC

models. PriveHD targets at privacy breach issue that by observing

the encoded HVs, the attacker can disclose information of the input

data [16]. Specifically for HDC, because the dimension of HVs is

usually very large (10000 and above), the base vectors are almost

orthogonal. Therefore, each feature incorporated in the encoding

can be retrieved through trials by multiplying the encoded HV

and the base vectors. To defend such breach, PriveHD proposes a

differentially private training scheme for HDC via dimensionality

pruning and quantization. The dimensionality pruning is intuitive

as when dimensions are reduced, the orthogonality between base

vectors is impaired, subsequently lowering the effectiveness of the

feature retrieval. To maximize the effect of pruning while minimiz-

ing the impact on classification accuracy, PriveHD identifies the

importance of each dimension in the HV based on the proximity

of the value to 0. Quantization can also enhance the differential

privacy meanwhile causing huge performance degradation. To mit-

igate such impact, PriveHD chooses to only quantize the encoding

HVs, which shows around 5% less accuracy drop compared with

previous quantization works.

Prid also investigates the privacy attack that can reconstruct in-

puts based on encoded HVs [9]. Instead of using an analytical-based
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method like PriveHD, Prid uses a learning-based method that for-

mulates the reconstruction as a linear regression problem. Prid

configures a neural network to perform this task with the input

being the base HVs and the output being the encoded HV. Twometh-

ods are proposed: feature replacement and dimension replacement

to add masked information to ensure the reconstruction is a good

estimation of train data that has been used for model generation.

Two schemes are also proposed to enhance robustness against such

privacy attacks: iterative intelligent noise injecting and iterative

model quantization. Unimportant dimensions are identified and in-

jected with noise to reduce the sensitivity of the information while

at the same time keeping the impact on model performance mini-

mal. Quantization can also reduce the risk of reverting the encoded

HV to its original space, as already illustrated in PriveHD. Retrain-

ing is further applied on both robustness enhancement schemes to

regain accuracy. Results show that Prid can reduce the information

leakage to up to 81% while causing only around 2.1% quality loss

on classification accuracy under 2000 dimensionality.

3.4 IP Stealing Attacks

Training of machine learning models is not an easy task as it re-

quires enormous engineering and computational effort. Similar to

the data used in training and inference, the trained model itself is

also a valuable intellectual property, particularly when the model

is trained using a proprietary dataset. Due to the straightforward

implementation, HDC models are more vulnerable to model steal-

ing attacks that the entire HDC model can be reverse-engineered

even under a gray-box scenario where the attacker only has limited

access to the model [6]. HDLock carries out the model stealing

attack analytically by divide-and-conquer the value and feature

HVs due to the orthogonality in the item memories similarly as

introduced in [16]. To defend such attack, HDLock modifies the

encoding module by adding a permutation to the base vectors when

encoding. Since the permutation values require much less memory

space and can be stored in the secure memory, the encoding is now

more robust against dive-and-conquer attacks. Experimental results

with HDC models implemented on a Xilinx Zynq UltraScale+ FPGA

show that the complexity for stealing attack grows by 10 orders of

magnitude with only 21% of overhead in encoding.

4 ROBUSTNESS AGAINST HARDWARE
ERRORS

In this section, we discuss the robustness of HDC against hardware

errors. We first present the hardware error models used in recent

studies on various hardware platforms, and then we discuss the

impact of such errors on the performance/accuracy of HDC models.

Finally, we review the techniques used to enhance the robustness

of HDC against hardware errors.

4.1 Hardware Error Models

Errors in hardware can be caused by microelectronic process varia-

tions, extreme temperatures, voltages, wear-out effects [28], and

radiation [2]. Recently, HDC has been implemented in hardware

platforms, including FPGA, GPU, and emerging memory, which

are all susceptible to hardware faults/errors. As an example, if the

supply voltage of the memory is reduced from its normal value,

unstable memory cells cause bit flips. Flipping bits affect the value

of the model and influence the accuracy of the system. However, if

the model itself is robust to these errors, the memory can run at a

lower voltage, thus saving energy while the model still performs as

intended. This is referred to as voltage scaling, which is an approach

that is widely used for the design of low-power systems. A number

of existing HDC studies discuss how voltage scaling can improve

memory energy efficiency by taking advantage of HDC hardware

robustness. [13, 41]. Therefore, we introduce several common error

models in order to evaluate the hardware robustness of HDC.

Random Bit Flip is arguably the most widely-used hardware

error model. Under this error model, a randomly-chosen bit in a

parameter will be flipped. Bit flips can occur in both computations

and memory. As HDC is a memory-centric computing scheme,

most studies focus on bit flips occurring in the associative memory,

which stores the class HVs [40–42]. During inference, this affects

the similarity comparison, which leads to an accuracy drop. An

example of bit flips occurring in HVs is illustrated in Fig. 4 illustrates

how random bit flip affects HV.
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Figure 4: Fault injection (Random Bit-Flip) on Hypervector

Stuck-at-fault is a type of error that occurs in a digital circuit

that is generally caused by a manufacturing defect. The assumption

is that there is one gate/transistor in the digital circuit that is stuck,

so it will always remain in a “0” or “1” state. Several studies explore

HDC hardware robustness against stuck-at-fault [19, 27, 37, 38].

Communications noise can happen in wired and wireless com-

munication, caused by factors such as transmission power levels,

distance, propagation loss scenarios, and the number of interfering

devices. For example, HyDREA [24] uses NS-3 [8]- a network sim-

ulator to model the communication noises and explore how such

error impact HDC-based federated learning.

4.2 Impact of Hardware Errors on HDC
Accuracy

Zhang et al. [42] presents a study on the impact of memory er-

rors (under random bit flip assumption) on HDC model accuracy

in three application domains: speech recognition, human activity

recognition, and medical diagnosis. The paper examines the HDC

robustness under different HDC dimensions and data types (e.g.,

bit widths). It is shown that HDC models with less bit-width rep-

resenting parameters generally have higher better robustness to

hardware errors. For example, binary HDC models exhibit the high-

est robustness: the accuracy does not drop until the error rates

increase to 10−2. Imani et al. [13] examine how bits errors in asso-

ciative memory affect Hamming distance calculation. This study

shows that HDC is able to achieve 97.8% classification accuracy

with up to 1000-bit errors, which is equivalent to a 10% error rate

in the 10000-dimension HDC system.
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As a memory-centric computing paradigm, HDC is suitable to

run on the processing-in-memory (PIM) platform with emerging

memory devices. Unfortunately, emerging memory devices have

inherent non-idealities that can lead to errors [19, 27, 37, 38]. A

CNFETs and RRAM-based PIM system for HDC have been built [19,

27, 37, 38] and evaluated for its robustness against memory errors.

After a certain number of write cycles, the nonvolatile memory

cells will become stuck at either ’1’ or ’0’ [19, 27]. In RRAMs, the

number of write cycles before the cell becomes stuck is known as

the RRAM endurance constraint. HDC exhibited nearly no accuracy

loss when the RRAM endurance constraint was reduced to 1000.

An approximate accumulator has been designed to further enhance

HDC robustness against stuck-at-fault [37, 38]. Hsu et al. examine

the robustness of a NAND flash-based HDC implementation for

genome sequencing [11]. NAND Flash is susceptible to current

variation noise and current shift. It is shown that HDC maintains

acceptable accuracy even when the variation in the current exceeds

0.1 (𝜎/𝜇) and the current shift exceeds 0.5 (𝛿/𝜇).

HyDREA [24] examines the impact of communication noise

on the HDC-based federated learning model. To simulate wireless

noise and model the communication between devices, the authors

use the popular network simulator NS-3 [8]. A comparison was con-

ducted between HyDREA and other lightweight machine learning

algorithms such as linear regression, multilayer perception, percep-

tion, and support vector classification. HyDREA shows that HDC

is 48X more robust than certain traditional ML algorithms under a

compromised signal-to-noise ratio (SNR).

4.3 Enhancement of HDC Robustness to
Hardware Errors
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Figure 5: Overview of ScaleHD [40].

While HDC exhibits inherent robustness to hardware errors to a

certain degree, an enhancement of robustness is always desirable

to tolerate even higher error rates or enable efficient design by

exploring the efficiency-robustness trade-off. Zhang et al. enhance

the robustness of HDC by applying error masking techniques [41].

They deploy low-cost error masking schemes at two levels, bit-

level masking and word-level masking, to detect and mask errors,

as shown in Tab. 2. The error masking circuits are implemented

with the Razor double sampling-based circuitry with a 0.3% silicon

area and 12.8% power [29]. The simulation result shows that both

masking methods can effectively enhance the robustness of HDC

up to 10,000X. The paper further exploits enhanced robustness to

enable energy-efficient design using voltage scaling. On a 22nm

SRAM, up to 72.5% energy can be saved with 1% accuracy loss.

While error-masking circuitry can enhance robustness, it incurs

extra hardware overhead. A software-only approach, ScaleHD, en-

hance HDC robustness without incurring extra hardware overhead,

as shown in Fig. 5 [40]. ScaleHD is inspired by a simple observation:

a larger value will have less relative error impact compared to a

smaller value when the same bit position flips. Thus, ScaleHD uses

an adaptive numeric scaling technique to enhance HDC robustness

by scaling its class HV value. ScaleHD explore scaling at three lev-

els: Global-ScaleHD, Class-ScaleHD, and (Class + Clip)-ScaleHD.

Global-ScaleHD determines the ratio between the extreme value

in the class HVs and the maximum value that can be represented by

the available bits. Global-ScaleHD scale each of the class HV using

this ratio. Similarly, Class-ScaleHD performs a similar operation

but at an individual class level, which grants more space for scaling.

(Class + Clip)-ScaleHD sacrifices a minor accuracy by clipping

the extreme values in the class HVs to further increase the scaling

ratio. The experimental results show that ScaleHD is capable of

enhancing robustness by up to 10000X. Leveraging such robustness

enhancement, ScaleHD can enable 70% energy saving with less

than 1% accuracy loss.

In addition to bit-level enhancement, Hersche et al. present a

HDC architecture that can detect, localize, and isolate faults in

phase-change memory (PCM), and then replace new memory to

recover these faults [10]. In the first step, it analyzes the stand de-

viation of the Hamming distance between associative memory and

encoded samples in order to detect memory faults. In the subsequent

step, the memory is divided into partition blocks, and hamming

distances are calculated between these partition blocks and encoded

testing samples. Consequently, it can locate fault partition blocks

by clustering the relative sum of the distances of each block and

analyzing the data. In the end, new blocks will be added to replace

the fault partitions. By using old non-fault blocks, HDC will be able

to train new blocks unsupervised. Using their HDC architecture, ac-

curacy recovers from 16.02% to 95.05% when the fault rate is 48.5%.

Furthermore, when the fault rate is 22%, 37%, and 42%, accuracy is

able to fully recover to 96.86%.

5 FUTURE DIRECTIONS

In this section, we present potential future directions and opportu-

nities for HDC robustness research.

5.1 Robustness against Cyber Attacks

Most of the existing defense schemes against cyber attacks are

based on adversarial retraining. A significant drawback is the no-

tably associated accuracy degradation. A potential future direction

of defending against adversarial attacks with less impact is to in-

troduce the defense network, which is used in the neural network

domain for adversarial defense [36]. Specifically, a smaller model

can be added along with the original model and is dedicated to

identifying if the input is adversarial or benign. As there is no re-

training or fine-tuning over the HDC model, the negative impact of

the defense mechanism is trivial. For data poisoning attacks, more

poisoning algorithms are necessary to evaluate, particularly for
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Table 2: Recovery Schemes for Protecting HDC Models from Hardware Errors

Sign-bit Masking [41] Word Masking [41] ScaleHD [40]

error-free 10011010 00001001 10011010 00001001 10011010 00001001

after error injection 10110010 00101000 10110010 00101000 10000000 00001011 (after ScaleHD)

after masking 10111010 00001000 00000000 00000000 10101000 00101010 (after error injection)

tasks that are beyond binary classifications as used in PoisonHD.

In the meanwhile, “oracle defense” requires significant overhead

when the number of classes scale and the performance of data sani-

tizing can be sub-par if there is not enough verified data to train the

verified AM. Therefore, novel methods to defend data poisoning

attacks are necessary to reduce the overall defense overhead.

For a privacy model stealing attack, a more practical scenario

assumes a complete black-box scenario [15]. Since the training

data can be proprietary, the attacker may not know what datasets

are used to train the HDC model, thus not able to use methods

such as partial data. Under these scenarios, analytical methods of

reverse engineering are almost impossible. A potential direction

is to utilize techniques from neural network domains such as gra-

dient estimation and generative models [15]. However, since the

theoretical foundations of HDC are mathematically different than

connectionist models, such methods require more in-depth analysis.

5.2 Robustness against Hardware Errors

Most existing studies focus on errors that occurred in associative

memory of HDC models, while errors can occur in other parts of

HDC models as well, such as item memory, computing parts, etc.

Thus, one future direction would be to include all possible hardware

components in HDC models to ensure a comprehensive robustness

evaluation. With this, it is also possible to analyze the sensitivity

of different parts of HDC to hardware errors and their impact on

HDC accuracy. Another important consideration in HDC system

design is to balance the trade-off between robustness, performance,

and efficiency. While robustness can always be enhanced by adding

redundancy, this will inevitably increase the cost of the model.

Therefore, future efforts regarding designing robust-while-efficient

HDC systems are pertinent.

6 CONCLUDING REMARKS

As HDC is increasingly applied in safety-critical application do-

mains, ensuring its robustness against uncertain and adversarial

environments is becoming more pertinent. In this paper, we re-

view the recent research efforts on HDC robustness against cyber

attacks and hardware errors. For cyber attacks, we review recent

literature in examining various types of cyber attacks, including

adversarial attacks, data poisoning attacks, privacy attacks, and

model stealing attacks, and how to defend against these attacks. For

hardware robustness, we review recent literature in characterizing

the impact of hardware errors on HDC accuracy and enhancing

HDC robustness to hardware errors. This paper aims to provide

an insightful overview of the related literature and endeavors to

encourage future research efforts on this important topic.
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